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Abstract. The dispersive characteristics of Alfvdn Surface Waves (ASW) along a moving plasma surrounded 
by a stationary plasma is discussed. The stability curves for the symmetric and the asymmetric modes are 
also discussed. 

1. Introduct ion 

The study of Alfv6n Surface Waves (ASW) has become very important from an 
astrophysical point of view, particularly in the solar atmosphere (Parker, 1979). Experi- 
mental observations reveal the fact that the solar corona is highly structured with a 
closed magnetic loop over a wide range of scales (Vaiana and Rosener, 1978). Recently, 
the surface wave propagation pertaining to the solar surface has been studied with a few 
approximations (Wentzel, 1979; Uberoi and Somasundaram, 1980; Uberoi, 1981; 
Somasundaram and Uberoi, 1982; Somasundaram, 1983; and, in specific cases, Rae 
and Roberts, 1981). 

All the above referred works deal with a static boundary. However, in situations such 
as in coronal streamers, a moving plasma column is surrounded by a stationary plasma. 
Parker (1963) discussed the stability of the interface when there is a discontinuity in both 
magnetic field and density. Geronicolas (1977) also discussed a similar problem, where 
the magnetic field in the stationary plasma medium is absent. His study has also been 
on the stability &magnetic flux tubes in the photosphere. It is known that a discontinuity 
either in the magnetic field or in the density at the interface introduces Alfv6n surface 
waves. In this paper, we discuss the surface wave propagation of Alfv6n waves for a 
moving plasma surrounded by a stationary plasma. 

2. D i spers ion  Relat ion  

The linearized equations governing the electromagnetic and hydrodynamic properties 
of an incompressible and infinitely conducting plasma column (medium 1 in Figure 1) 
moving with a velocity U are given by 

a~ a~ a~ 
- - +  U - - = B o t  - -  , (1) 
3t 3z 0z 
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+ U = - V + + - -  - -  , (2) 
Po, \ e t  0z 4~- 4re 0z 

v .  ~ = 0 ,  (3) 

where v, p, and b are the perturbed fluid velocity, pressure, and magnetic field, 
respectively, while Pol, Bol, and U are the density, magnetic field, and velocity of the 
basic fluid. 
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Fig. 1. The geometry.  

Taking the divergence of Equation (2) and manipulating with the other equations, we 

have 

where 

72p = 0,  (4) 

B o l  ' ~ 

. 0 = . 5 + - -  
4re 

If we assume perturbations of the form f ( x ,  z, t) = f ( x )  exp { i ( k z  - cot)}, the solution 
of Equation (4) can be written as 

/31 = A sinh(kx), (5) 

where A is an arbitrary constant. 
The solution for the pressure field for the stationary plasma (medium 2) surrounding 

the moving plasma can be shown to be 

P2  = B e-kx ,  (6) 

where B is an arbitrary constant. All the other field quantities can be easily calculated 

from the basic equations. 
Applying the boundary conditions that the total pressure and normal component of 

velocity are continuous, we obtain a dispersion relation which on simplification yields 
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the nondimensional phase velocity as 

co _ V + {[1 + t/tanh(ka)] [1 +/32tanh(ka)] - t lV2 tanh(ka)}  1/2 
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kV~ 

CO 

1 + ~/tanh (ka) 

(symmetric mode), 

V +_ {[1 + ~/coth(ka)] [1 +/3 2 coth(ka)] - t/V 2 coth(ka)} 1/2 

(7a) 

k V  A 1 + ~/coth(ka) 

(asymmetric mode), (7b) 

where fi = Bo2/Bol  and ~/= Poa/Pol are the interface parameters, V = U / V  A is a non- 
dimensional velocity, V A is the Alfv6n velocity in medium 1 and a is half the width of 
the moving plasma column. 

3. Discussion of the Results 

We first discuss the special cases when the moving plasma column is at rest. The 
dispersion relation for this case, i.e., for V = 0, has already been discussed in detail by 
Uberoi (1981) and Edvdn and Roberts (1982). 

In the limit ka -~ O, Equations (7a, b) with V = 0 become 

co 
- 1 for a symmetric mode,  

kVA 

co _ x / ~  for an asymmetric mode.  
kVA 

(8) 

In this case, the phase velocity of the symmetric mode is independent of the interface 
parameters fi and t/, which is not the case for the asymmetric mode, as is seen from 
Equation (8). 

In the limit k a - ~  o% both tanh(ka) and coth(ka)-~ 1; so that Equations (7a, b) 
become 

co _ V _ { ( I +  q ) ( l + / 3  2 ) -  qV2} 1/2 

k V  A (1 + ~/) 
(9) 

The phase velocity of both the modes coincide unlike in the case ka ~ O. 

For V = 0, Equation (9) becomes 

co {(1 +/32)~1/2 

(-1 ; ' 

which has been discussed in detail by Hasegawa and Uberoi (1982). For fi = 0 and 
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r/= 1, Equations (7a, b) become 

co V + {1 + tanh(ka) - V 2 tanh(ka)} ~/2 

kVA 1 + tanh(ka) 

V _  {1 + co th (ka ) -  V 2 coth(ka)} 1/2 

1 + coth(ka) 

(symmetric), 

(asymmetric). 

(I1) 

These reduce to  the values obtained by Parker (1974) for V = 0. Roberts (1981) 
discussed the case when V = 0 and 1~ = 0 so that Equations (7a, b) become 

- + 1 1 + t 1 ka , ( 1 2 )  

kVA - kcoth /  

for the symmetric and asymmetric modes, respectively. For a plasma slab in vacuum, 
t/= 0, so that 

oo V +  { [l + fiz(tanh']ka-]'~ 1/2 
- _ . ( 1 3 )  

k V  A \ c o t h /  J )  

Surface Waves 

Each of the Equations (7a) and (7b) yields two modes, of which we consider only the 
modes with positive phase velocity. We call the modes obtained with (+)re  sign in 
Equations (7a) and (7b) as the upper branch and those obtained with ( - )re sign as the 
lower branch. Figures 2 and 3 give the dispersion curves obtained from Equations (7a) 
and (7b) for the symmetric (broken lines) and the asymmetric (solid lines) modes for 
different values of the interface parameter/3 with t/= 0.5 and V = 0.2 and 1.5, respec- 
tively. 

In Figure 2, only the upper branch exists for both symmetric and asymmetric modes. 
For values/32/~/< 1, the dispersion curves for asymmetric modes have positive slope 
and, hence, they have normal dispersion while the symmetric modes have anomalous 
dispersion ( - ve slope). This feature for the two modes are seen to be interchanged when 
/~a/r/> 1. This is similar to the modes discussed earlier by Uberoi (1981), Edwin and 
Roberts (1982), and Somasundaram (1983), when the flow velocity V = 0. For values 
ka > 2, it is seen that both the modes tend to the same constant phase velocity. Hence, 
only those modes having long wavelength such that ka < 2 are seen to be affected more. 

Figure 3 gives the dispersion curves when the flow velocity is greater than the Alfvdn 
wave velocity. Here, we get all the four branches. The upper branch or the asymmetric 
mode has a normal dispersion while the symmetric mode has an anomalous dispersion 
for fl2/j~ K 1 and to a certain extent for f12/~] > 1. Thus, the increase in the flow velocity 
changes the dispersive nature of the ASW. However, an increase in the magnetic field 
in the stationary regions increases the phase velocity of the both modes. The lower 
branch of the symmetric mode which was totally absent when V = 0.2 (U < VA) appears 
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Fig. 3. Dispers ion  curves of  A S W  for t /=  0.5, V = t.5. 
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when V = 1.5 (U> VA). The lower branches of the symmetric and asymmetric modes 
suffer upper cut-off and lower cut-off, respectively, in their wavenumber k, as the 
magnetic field ratio /72 increases. Thus, the presence of the lower branches of the 
symmetric modes not only depend on the flow velocity of the coronal streamer, but also 
on the environment of the surrounding plasma. 

In Figure 4, the dispersion curves for/72 = 0.0, V = 0.2, and for various values of the 
density, ratio t/are given. In comparison with Figure 2, it should be noted that an 
increase in t/decreases the phase velocity of both the modes (upper branches) while the 
magnetic field ratio enhances the phase velocities. 

13Z= O, V=0.2 

\~ ~.o 
0.81-" \ --. 

' - - - _  

~ I 
0 1.0 2.0 3.0 4.0 

ka 

Fi B. 4. Dispersion curves of ASW for f12 = 0.0, V = 0.2. 

Stability 

Figure 5 presents the stability curves for the symmetric and asymmetric modes for 
r/= 0.5 and various other values of/? 2. The symmetric and asymmetric modes are similar 
to the sausage and serpentine modes, respectively, discussed by Parker (1963). The 
dispersion relation derived in the previous section can be shown to be similar to the one 
derived by Parker (1963). The important point which Parker has missed in his dis- 
cussion is the combined effect of the interface parameters r/and 132. An interesting 
feature, as can be seen in Figure 5, is that for r/p 2 = 1.0, the stability curves of both the 
modes coincide. In other words, if the square of the magnitude of discontinuity in the 
magnetic field is equal to the reciprocal of the magnitude of discontinuity in the density, 
then both the symmetric and asymmetric modes coincides. The stability curve for the 
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asymmetric mode when #2 = 0.4, i.e., ~//32 < 1 has a kink which is not present for the 
other curves. This means that the dispersion relation has a minimum at 
ka = tanh 1 ( x ~ ) .  ]Finally, the stability results obtained by Geronicolas (1977) follow 
when #2 = 0.0 in our present study. 

4. Conclusions 

The dispersive characteristics of ASW for a moving plasma surrounded by a stationary 
plasma reveal very interesting results for the symmetric and asymmetric modes. In 
particular, the interface parameters ~/and #2 significantly affect the phase velocities of 
these modes. The stability properties of these waves are very much dependent on the 
combined effect of the interface parameters. A similar study with compressibility effects 
taken into consideration is in progress and will be reported shortly. 
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