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Introduction
In the 1920’s, Schrödinger was interested in finding quantum
states that were dynamically analogous to their classical
counterparts, especially a harmonic oscillator. This would require:

I A ‘localized’ quantum state (wavepacket) with minimal
uncertainty

I The wave packet must oscillate at the frequency of the
harmonic oscillator

I The wave packet must not spread out in time
(∂t
{

∆x2∆p2
}

= 0)

I The relative size of the fluctuations must vanish in the
classical limit

It is well known that the ground state of the QHO, being a
gaussian, is a minimum uncertainty wavepacket!
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Proof.

Consider a quantum particle of mass m in a harmonic potential
whose hamiltonian is given by

H =
p2

2m
+

1

2
mω2x2.

Definine the creation and annihilation operators a† and a by

a† =

√
mω

2~

(
x − i

mω
p

)
a =

√
mω

2~

(
x +

i

mω
p

)
which factors the Hamiltonian as

H = hω(a†a + 1/2)
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Proof.

Rewrite for x2 and p2:

x2 =
~

2mω

(
a + a†

)2

p2 = −mω~
2

(
a− a†

)2
.

Critically,

〈0|(a± a†)(a± a†)|0〉 = ±〈0|aa†|0〉 = ±1

and so (since 〈x〉0 = 〈p〉0 = 0),

〈(∆x)2〉0 〈(∆p)2〉0 = −~2

4
[1(−1)] =

~2

4

which is minimal!
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Proof.

But are all eigenstates minimal?

〈n|(a± a†)(a± a†)|n〉 = ±〈n|aa† + a † a|n〉 = ±(2n + 1)

which leads to

〈(∆x)2〉0 〈(∆p)2〉0 =
~2

4
(2n + 1)2.

Only minimal for the ground state!
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What was different? Crucial step was that

a |0〉 = 0 =⇒ 〈0|a†a|0〉 = 0

so if we postulate that |0〉 is an eigenvector of the annihilation
operator a with eigenvalue 0, we are motivated to define the states
|z〉 such that

a |z〉 = z |z〉 , z ∈ C.

Therefore

〈z |(a± a†)|z〉 = (z ± z̄)

〈z(a± a†)(a± a†)|z〉 = (z ± z̄)2 ± 1

and so

〈(∆x)2〉z 〈(∆p)2〉z =
~2

4

and we have a class of minimal uncertainty states called coherent
states.
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Coherent states are often expressed in the energy (|n〉) basis:

|z〉 =
∑
n

cn |n〉 =
∑
n

|n〉 〈n|z〉 .

We can construct any |n〉 state through successive creation
operators on the ground state

|n〉 =

(
a†
)n

√
n!
|0〉

and thus

|z〉 = 〈0|z〉
∑
n

zn

√
n!
|n〉 = e−

1
2
|z|2
∑
n

zn

√
n!
|n〉

= e−
1
2
|z|2+za† |0〉

after solving for the normalization constant.
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Time Evolution
However, what we really need is states that remain minimal for all
t. Clearly |z〉 states aren’t stationary, but note that

|z , t〉 = U(t, 0) |z , 0〉 = e−iHt/~e−
1
2
|z(0)|2

∑
n

(z(0))n√
n!
|n〉

= e−
1
2
|z(0)|2

∑
n

(z(0))n√
n!

[
e−iω(n+1/2)t

(
a†
)n

√
n!
|0〉

]

= exp

{
−1

2
|z(0)|2 − i

2
ωt + z(0)e−iωta†

}
|0〉 .

Comparing from before, we have that

|z , t〉 = e−
i
2
ωt |e−iωtz(0)〉 = |z(t)〉 .

In other words - a coherent state remains a coherent state under
time evolution!
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We can rewrite this condition as

z(t) = e−iωtz(0) =⇒ d

dt
z(t) = −iωz(t)

which in components gives

d

dt
<{z} = ω={z}

d

dt
={z} = −ω<{z}.

Then recognizing that

x̄(t) = 〈x(t)〉z =

√
~

2mω
2<{z}

p̄(t) = 〈p(t)〉z = i

√
m~ω

2
(−2i)={z},

we arrive at

p̄(t) = m
d

dt
x̄(t),

d

dt
p̄(t) = −mω2x̄(t)
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Orthogonality and Completeness
One final property of coherent states is that they are overcomplete.

Proof.

Let z 6= w be two distinct coherent states. Then

〈z |w〉 =
∑
n

〈z |n〉 〈n|w〉

= e−
1
2 (|z|2+|w |2)

∑
n

(z̄w)n

n!

= exp

{
−1

2

(
|z |2 + |w |2

)
+ z̄w

}
and so

| 〈z |w〉 |2 = e−|z−w |
2 6= 0 for z 6= w

which means that the set of vectors |z〉 is an overcomplete
basis!
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However, we can still define a completeness relation:∫
d2z |z〉 〈z | =

∫
C

d2z e−|z|
2
∑
m,n

(z̄)nzm

√
n!m!

|m〉 〈n|

where the measure d2z corresponds to all complex numbers z ∈ C.
Using polar coordinates one can show that∫

d2 ze−|z|
2
(z̄)nzm = πn!δm,n

and so ∫
d2z

π
|z〉 〈z | = 1.

This ends up being the most important property of coherent states
for many generalizations!
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But what does this say about each coherent state |z〉? Using the
completeness relation,

|z〉 =

∫
C

d2z ′ |z ′〉 〈z ′|z〉 =

∫
C

d2z ′ e−
1
2
|z−z ′|2 |z ′〉

which we can interpret as a coherent state being equivalent (up to
a phase) to a weighted average over all coherent states with the
weights coming from a Gaussian distribution centered at z .

This means that if the oscillator is in the state |z〉, there is a
non-zero probability that the oscillator is also in a different state
|w〉 with the probability decreasing as |z − w | increases.

Will return to this in quantum optics.
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Summary

I We can construct ‘classical’ solutions of the quantum
harmonic oscillator, called coherent states, from the
eigenstates of the annihilation operator a.

I Each coherent state has minimal uncertainty for all t.

I The expectation values satisfy the classical equations of
motion, satisfying Ehrenfest’s Theorem.

I The family of coherent states are overcomplete
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Formalism and the Heisenberg
Group
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Canonical or Standard Coherent States (CCS)

The most important properties of CCS are as follows:

P1: The states |z〉 saturate the Uncertainty Relation

〈∆x〉z 〈∆p〉z =
~
2
.

P2: The states |z〉 are eigenvectors of the annihilation
operator, with eigenvalue z

a |z〉 = z |z〉 , z ∈ C.
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Canonical or Standard Coherent States (CCS)

P3: The coherent states {|z〉} constitute an overcomplete
family of basis vectors in the Hilbert space of the H.O., which
is encoded by

I =
1

π

∫
C

d<(z)d=(z) |z〉 〈z | .

P4: The family of states |z〉 is generated by an exponential
operator acting on the ground state |0〉 of the H.O.

|z〉 = eza
†−z̄a |0〉 .
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Canonical or Standard Coherent States (CCS)

P3: The coherent states {|z〉} constitute an overcomplete
family of basis vectors in the Hilbert space of the H.O., which
is encoded by

I =
1

π

∫
C

d<(z)d=(z) |z〉 〈z | .

P4: The family of states |z〉 is the orbit of the ground state
|0〉 under the action of the Weyl-Heisenberg group

|z〉 = eza
†−z̄a |0〉 .
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Heisenberg Algebra
The Heisenberg Algebra h is motivated by the canonical
commutation relations

[Qi ,Qj ] = [Pi ,Pj ] = 0, [Qi ,Pj ] = i~δij .

However, it can be generalized to any dimension n:

Definition (Heisenberg Algebra)

The Heisenberg Lie algebra hn is a real 2n + 1 dimensional real Lie
algebra with basis elements

{P1, . . . ,Pn,Q1, . . . ,Qn, S}

and Lie bracket defined by

[Pi ,Pj ] = [Qi ,Qj ] = [Pi , S ] = [Qi ,S ] = [S , S ] = 0,

[Qi ,Pj ] = Sδij

Spencer Everett (UCSC)



Introduction Formalism and the Heisenberg Group Applications

It turns out that h is isomorphic to a Lie algebra of strictly upper
triangular matrices. For n = 1, pP + qQ + sS ∈ h for p, q, s ∈ R
can be identified with 0 p s

0 0 q
0 0 0


and the Lie bracket is just the matrix commutator:0 p s

0 0 q
0 0 0

 ,

0 p′ s ′

0 0 q′

0 0 0

 =

0 0 pq′ − qp′

0 0 0
0 0 0


which can clearly be identified with the structure constants given
before.
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This can be generalized for higher n in the following form:

Pi =

0 p 0
0 0n 0
0 0 0

 , Qj =

0 0 0
0 0n q
0 0 0

 , S =

0 0 s
0 0n 0
0 0 0

 .

which satisfy the canonical commutation relations for a given n
due to the properties of the cononical basis vectors ei .
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Some Properties of the Heisenberg Algebra
h is isomorphic to striclty upper-triangular real matrices.

I However, the algebra can be generalized by allowing q, p, s to
be elements of any commutative ring C

I Of special interest are the extra special groups in which the
ring is of prime order p and the center is the cyclic group Zp

I Quantum information, computing, error correction

The center (ideal) of h is just S :

Z (h) = S =

0 0 s
0 0n 0
0 0 0


The only non-zero commutator is [Qi ,Pi ] = S (i~) and S
commutes with all other elements

I Thus h is a nilpotent Lie algebra and therefore automatically a
solvable Lie algebra. This is often called ‘almost’ abelian.
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Heisenberg Group
WLOG, restrict to n = 1. Then exponentiating elements of h gives
(using Baker-Campbell-Hausdorff formula):

epP+qQ+sS = epP+qQ+ 1
2
pq[Q,P]+(s+ 1

2
pq)S = epPeqQe(s+ 1

2
pq)S

or equivalently in the matrix representation,

exp

0 p s
0 0 q
0 0 0

 = I +

0 p s
0 0 q
0 0 0

+
1

2!

0 0 pq
0 0 0
0 0 0

+ 0

=

1 p s + 1
2 pq

0 1 q
0 0 1


as (·)k = 0 for k ≥ 3. Therefore H is represented by
(n + 2)× (n + 2) upper triangular matrices!
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Properties of Heisenberg Group

H is a Lie group of dimension 2n + 1 that is isomorphic to
(n + 2)× (n + 2) real upper triangular matrices, and is:

I Simply Connected

I Non-compact

I Non-Abelian

I Nilpotent.

H is a semidirect product:

H ∼= Ro R2

where R2 corresponds to (P,Q) and R corresponds to S . This is
the result of a central extension of R2 by Z (H)

H2n+1 is a subgroup of the affine group Aff(2n)
.

Spencer Everett (UCSC)



Introduction Formalism and the Heisenberg Group Applications

Representations of the Heisenberg Group

While not the focus of this talk, there are many useful irreducible
representations of the Heisenberg Group:

I Schrödinger Representation (Π, L2(R))

Π(Q)ψ(q) = qψ(q), Π(P)ψ(q) = −i~∇qψ(q)

I Momentum Representation (Fourier transform of S.R.,
unitarily equivalent)

Π(Q)ψ(p) = i~∇pψ(p), Π(P)ψp(p) = pψ(p)

I Fock-Bargmann (Theta) Representation

Yet this brings up a troubling question - when doing calculations
involving the CC relations, why do we not have to specify which
representation of the operators that we are using?
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The remarkable answer is the Stone-von Neumann Theorem:

Theorem (Stone-von Neumann)

All irreducible representations of the Heisenberg group H2n+1 on a
Hilbert space satisfying

Π(S) = i~1

are unitarily equivalent.

Once you fix a particular S (i~ in our case), there is only one irreps
up to unitary transformations!

This tells us that the Heisenberg Group is far more important than
just the ‘symmetries’ of some physical system. It encodes the
structure of quantum mechanics!

Note: This theorem breakes down for infinite degrees of freedom,
as is the case in field theory. Extra difficulties arise in that case.
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What’s the Connection to Coherent States?
Before we wrote a generic element of h as

pP + qQ + sS ∈ h.

In quantum mechanics, we choose the following convenient
convention: We say that h is spanned by the basis {iQ, iP, iI} and
a generic element can be written as

is + ipQ − iqP = is + i(pQ − qP) ∈ h, s, q, p ∈ R.

But we can switch to a different basis and define the complex
number z such that

z =
q + ip√

2
, Q =

a + ia†√
2

, P =
a− ia†√

2i

which gives

e is+i(pQ−qP) = e iseza
†−z̄a ≡ e isD(z)

where D(z) is a unitary operator called the Displacement Operator.
Spencer Everett (UCSC)
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The Displacement Operator

The operator D(z) is (up to a phase factor!) a unitary
representation of translations in the complex plane.

Proof.

Clearly D(z) is unitary, as

D(z)D†(z) = eza
†−z̄ae z̄

a−za† = I

from BCH as [za† − z̄a, z̄a− za†] = −[za† − za, za† − za] = 0.
Thus D†(z) = D(−z). For two states α 6= β,

D(α)D(β) = eαa
†−ᾱaeβa

†−β̄a = e(α+β)a†−(α+β)ae
1
2

(αβ̄−ᾱβ)

= e2i=(αβ)D(α + β).
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(Quick Aside)
More generally, we can write

D(zn)D(zn−1) . . .D(z1) = e iδD(z1 + z2 + . . .+ zn)

where the phase δ = 2
∑

j<k =(zjzk) Interestingly, this phase
factor has a definite topological meaning: it is equal to the
oriented area of the polygon outlined by the closed path in C with
vertices zi as shown below

This represents a discrete version of Stokes’ Theorem!
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Back to Coherent States!
Using the displacement operator and definitions for z ,Q,P in
terms of z , a, a†, we see that (with the help of BCH)

e−
i
2
qpe ipQe−iqP = e−

1
2
|z|2eza

†
e−z̄a = eza

†−z̄a = D(z)

Now clearly

a |0〉 = 0 =⇒ e−z̄a |0〉 = |0〉+
∞∑
n=1

(−z̄a)n

n!
|0〉 = |0〉 .

Combining all of this gives

D(z) |0〉 = e−
1
2
|z|2eza

†
e z̄a |0〉 = e−

1
2
|z|2+za† = |z〉

and so we finally have our correspondence between coherent states
and the Heisenberg Group:

|z〉 = D(z) |0〉
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We have now shown the following:

P4: The family of states |z〉 is the orbit of the ground state
|0〉 under the action of the Weyl-Heisenberg group

|z〉 = eza
†−z̄a |0〉 .

Spencer Everett (UCSC)



Introduction Formalism and the Heisenberg Group Applications

Applications
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Quantum Optics

The first and largest application of coherent states is to quantum
optics. Physicist Roy Glauber introduced the term and modern use
of the states in the 1960’s when he presented the first fully
quantum mechanical description of coherence in the
electromagnetic field.
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Coherent states are needed for understanding even ‘simple’ optical
systems like lasers. The usual explanation of the pileup of
stimulated emission of 2 photons in a resonant cavity:

is incorrect! The outgoing ‘photons’ are actually the field
superposition of no interaction (1 photon) and a stimulated
emission (2 photons). After many such interactions and
superpositions, we get coherent light, which is exactly described by
coherent states. Not described by Fock numbers!
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Probability Distribution in |n〉 Representation

To see this: What’s the probability of measuring a particular n
(photon #) in a given coherent state |z〉?

P(n) = | 〈n|z〉 |2 =

∣∣∣∣ zn

√
n!

e−|z|
2/2

∣∣∣∣2 =
|z |2ne−|z|

2

n!

which is a Poisson distribution with λ = |z |2. This means that
given a fixed z , the most probable n is given by floor

{
|z |2
}

. From
this we find that

〈H〉 ≈ ~ω|z |2, for |z | > 1.

The Poisson distribution is a necessary and sufficient condition
that all detections are statistically independent. Compare this to a
single particle Fock state |1〉: Once a particle is detected, zero
probability of detecting a different one.
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Measurement of the electric field of a laser at different amplitudes,
and the oscillating wave packet of the middle coherent state.
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Wigner function at a particular phase of the middle coherent state.
Ripples are from experimental errors.
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Probability density in |n〉-basis for bottom coherent state. Bars are
data, dots from theory.
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Phase space plot of a coherent state. Red dots trace out
boundaries of quantum noise in left figure.
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If we soften the restriction that 〈∆x〉 = 〈∆p〉, then we can create
squeezed states.
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Wavelets and Signal Processing

What about orbits of the Heisenberg group on states that are not
the ground state? Define a new class of (non-canonical) coherent
states |α〉 as

|α〉 ≡ D(z) |ψ〉 .

While most properties of CCS have remained, we have lost one of
the main motivations of coherent states:

a |α〉 6= α |α〉 .

However, crucially (although not proved here) the completeness
relation is still satisfied:

cα|α|2 =

∫
C
| 〈α|D(z)|α〉 |2 d2z

π
=⇒ I =

∫
C
|α〉 〈α| d2z

cαπ
.
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The completeness relation allows us to to describe any |φ〉 in the
Hilbert space as

|φ〉 =

∫
C
|α〉 〈α|φ〉 d2z

cψπ

In position (Schrödinger) representation, the states |α〉 is given by

ψα(x) = e−
i
2
qpe ipxψ(x − q)

called the window, Gaboret, or wavelet, and the projection 〈α|φ〉 is
given by

〈α|φ〉 =

∫ ∞
−∞

e
i
2
qpe−ipxψ(x − q)φ(x)dx ≡ Gφ(q, p).

This is called the Gabor transform or windowed Fourier transform.
Due to the redundant basis, it represents a ‘signal’ in both the
time-frequency or spatial-frequency domain.
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Wavelets are localized in frequency and time/space.
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One example: Discontinuity detection on the Devil’s Staircase.
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Very useful in computer science, astronomy, and cosmology!

I Image compression and denoising

I Deblending

I Point spread function extraction

I Galaxy clustering and correlation functions

I Time-varying fluxes (strong-lens time delays)
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More!

Coherent states is a huge topic with far too many applications to
cover here. A few more examples:

I Feynmann Path Integration

I Geometric Quantization

I Quantum Information

I Probability and Bayesian Measure

I Quantum Hall Effect

I Partition function statistical mechanics

I Bose-Einstein Condensates

I Superfluidity and Superconductivity
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Summary
By looking for the most ‘classical’-like states of the quantum
harmonic oscillator, we are motivated to define coherent states as
eigenvectors of the annihilation operator:

a |z〉 = z |z〉 .

We found that coherent states are the orbit of the Heisenberg
ground state acting on the vacuum, and that h encodes the
structure of quantum mechanics uniquel (from Stone-von
Neumann).

Coherent states constitute an overcomplete basis but still satisfies
the completeness relation.

CS have numerous applications from theoretical tools in
quantization and quantum optics to practical/experimental tools in
signal processing.
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