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Abstract

Garrett Birkhoff has shown that the identities of an

equationally defined class of algebras are provable from the

class, using a very simple calculus all of whose proofs involve

no linguistic expressions other than equations. This paper

will present analogues of Birkhoff1 s result for the following

two classes of algebras: classes all of whose defining conditions

can be given by equations and equation implications, and classes all

of whose defining conditions can be given by equations and

expressions of the form E A... A E — f E, n >̂ 1, where

E ,,..,E , E are equations. Axioms of the forms considered

comprise almost all axiom systems used in algebra. Also, an

algebraic characterization is given of axiomatically defined

classes of algebras which are definable by axioms of the latter

form.
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1, Introduction, Garrett Birkhoff has shown [1, p. 440] that

the identities of an equationally defined class of algebras are

provable from the equations defining the class, using a very

simple calculus all of whose proofs involve no linguistic

expressions other than equations. This paper will present

analogues of Birkhoff1 s result for the following two classes of

algebras: classes all cf whose defining conditions can be given

by equations and equation implications, and classes all of whose

defining conditions can be given by equations and expressions of

the form E A. . . A E — > E, n ̂ > 1, where E , • . . ,E , E are

equations. The first of these results answers a question posed

by G. Birkhoff in [2, pp. 323-324]. Axioms of the forms con-

sidered comprise almost all axiom systems used in algebra.

Section 6 at the end of this paper gives an algebraic characteri-

zation of axiomatically defined classes of algebras which are

definable by axioms of the latter form.

In Section 2 a formal system for equation implications is

described and the precise statement of our first result (Theorem 1)



is given. The proof of Theorem 1 is sketched in Section 4,

after key lemmas are presented in Section 3. Our second result

(Theorem 2) is stated and proved in Section 5. We have deleted

those details of the proof of Theorem 2 which are either straight-

forward or identical to steps in the proof of Theorem 1.

The method of L. Henkin [4] will be used to prove our

theorems. As will be seen, the principal difficulty is to

avoid the natural use of "long" formulas (implications of non-

atomic formulas) in a Henkin type completeness argument.

This paper is in part a revised version of results first

announced in [9]. Donald Loveland has noted that two of the

rules of inference present in [9] are redundant. It has also

been pointed out that A. Robinson in [8] has proved completeness

of a calculus for a class of languages whose syntax is similar

to ours. Also, the author wishes to express his gratitude to

Professors Hugo Ribeiro and George Gratzer for suggesting this

problem to the author.

2. A Calculus of Equation Implications, We shall consider a

class of languages called equation implication languages. For

each of these the primitive symbols consist of (1) a denumerably

infinite set VR of variables, (2) an arbitrary (possibly empty)

set CN of individual constants, (3) a non-empty set FN of



function letters, (4) a binary relation symbol, = , (5) the

implication sign, ——^ , and (6) grouping symbols, ( , ). With

every member of FN is associated some finite rank. The terms

of an equation implication language are to be defined inductively

in the usual way. The only atomic formulas are the equations,

formed by applying = to the terms. The set FL of formulas

is defined to be the set of all atomic formulas and expressions

E — ^ E , where E and E are atomic formulas. The

expressions E — ^ E are the equation implications.

If <£ is an equation implication language, let G (<£)

denote the corresponding class of algebras.

Theorem. Let <£ be an equation implication language. Suppose

S <= FL, AeFL, and for all algebras <(fj of G (<£) , if each formula

of S is valid in %n , then A is valid in V7 (if |= S,

then (= A) . Then a proof of A from S exists (in symbols,

S [-« A) using the following axioms and deduction rules. The set

of axioms is the set of instances of the following three schemas,

where E is any equation and p and q are any terms.

(<x2) p = p;

(a.3) p = q — > q = p.



If E ^ E , and E 3 are equations; p ^ q ^ p ^ q ^ . . . >Pn><Jn>
 a r e

terms; BeFL; and feFN has rank n; then the following are

rules of inference.

(pi) From E2 to infer E —>E ;

(p2) From E — ^ E and E ^E to infer E — ^ E ;

(p3) From E and E ^ Eo t o ^-n^er Eo

(p4) From B to infer the result of replacing all

occurrences of a variable z in B by p;

(p5) From E y p = q and E — ^ q = r to infer

E 1 >p = r;

(p6) From E± ^ px = q1,...,Ej—^pn = q^ to infer

= f

3. The Lemmas. An easy induction argument yields the following

lemma.

Lemma 1. Let AeFL. Let x_,...,x be the collection of
— 1 n

variables occurring in A, c ,,..,c a collection of individual

constants not belonging to CN, £' the extension of <£ defined

by enlarging CN to include c.,.,,,c 9 and A1 the result of
~~ i n

replacing each occurrence of x. in A by c. Then S |-«t A
1

The completeness property expressed in this theorem is sometimes
called strong completeness, to distinguish it from the special case
that Ŝ  is the empty set of formulas.



implies S \-£ A.

The class of terms of an equation implication language is

denoted by T. A term is defined to be closed if it contains no

occurrence of variables. The class of closed terms is denoted

by T. A formula of £ is closed if every term occurring in it

is a closed term.

A deduction of a formula A from a set S of formulas

is to be one in tree form; see for example [5, end §24]. In a

use of the rule p3, E is called the major premise, and

E ^E is called the minor premise.

Lemma 2. If p*q*r5p ,. . . ,p *£[•, >•••*<!
 a^e terms and feFN

J_ n i n *>ur*j

has rank n, then the following are derived rules of inference.

(o7) From p = q and q = r to infer p = r;

(p8) From p = q,,...,p = q to infer

Proof.

pi

p = cr >p = g p = cr—f Q = r

P = cr—»p = r

p = r



pl = V " " P n = qn

pi =

Pl = qi Pl = qi

p6

p 3

It is important to note that we will use rules pl and p8

freely. Thus, we will prove completeness for a system with rules

of inference pl-p8. The proof of our theorem then follows

immediately from Lemma 2. The purpose of this indirect procedure

is that the addition of (p7) and (p8) enables us to write deductions

in a standard form, according to the following definition and lemma.

Definition 1. A deduction from a set S of formulas of an
____________ ^̂

equation implication language is standard if the minor premise

of each application of rule p3 is an axiom, a formula of S, or

the result of applying rule p4 one or more times to a formula

of S.

Lemma 3. If S k B, then there exists a standard deduction

W of B from S.

Proof. Let W1 be any deduction of B from S. We proceed

in two steps.

I. By successive applications of the following instruction



(whose purpose is to "push-up" the uses of rule p4) , w! may-

be altered to a deduction W" of B from S with the property

that the premise of each application of (p4) is an axiom, a

formula of S, or the result of applying rule p4 one or more

times to a formula of S.

Instruction I. In a deduction replace an occurrence of the form

W , • . . ,W

pi

where i = 1,2,3,5,6,7,8; n. is the number of premises of

(pi); W. is a deduction from S of a formula x., for
3 ~ 3

j = l,,..,n. and Y is an immediate consequence of (pi) applied

to X ,...,X by

" Pi *
Y(p)

Since proofs are finite, and the result of applying (p4)

to an axiom is again an axiom, successive applications of this

instruction indeed yield a deduction W" of B from S with

the property described above.
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Instruction II. Observing that in any deduction, an expression

X Y is either an axiom, a member of S, or an immediate

consequence of one of the rules pi, p29 p4, p5, or p6, we see

now that by successive applications of the following four instruc

tions, W" may be changed to a standard deduction W.

Instruction Ila. in a deduction replace an occurrence of the

form

wo

where W is a deduction from S of X, and W is a deduction

from S of Y, by W..

Instruction lib. In a deduction replace an occurrence of the form

p3

where W is a deduction from S of X. W is a deduction
O r~> 1

from S of a formula x — * Y , and W is a deduction from S

of Y ^Y, by



— — p3 .
Y

Instruction lie. In a deduction replace an occurrence of the form

wo

where W is a deduction from S of X, W is a deduction

from S of a formula X > Y,, and W is a deduction from S

of a formula x—^Y 9, by

w o

Y l

w l w o

Y 2

W2

P7

Instruction lid. In a deduction replace an occurrence of the form

P6

L'"" q n P3 ,

where W is a deduction from S of X; and W. is a deduction
O 1^1 1

from S of X — ^ p . = q., for i = l,...,n; by
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0 1 o 0 n

Lemma 4. (Restricted Deduction Theorem) If E and E are

equations, E is closed, and S U {E } k. E , then S f- E *E .
1 rsJ 1. ^ Z rKj dU J_ Z

Proof. If E_ is E., then S k E. *E^, by (al) . If EoeS

or Eo is an axiom, then S (-« E . Thus S k, E. >EO, by (ol)«
Z ~ dL, Z ~ dL> ± Z

Otherwise, let W be a standard proof of E from S U {E }.

For each equation X occurring above E in W, hence such

that S U {E } )-„ X, we may assume as an induction hypothesis

that S !-« E, X. Since Eo is an equation, it is an immediate
^ dU X Z

consequence of an application of (p3) , (p4) , (p7) , or (p8). We

consider each of these cases.

Case 1. E is an immediate consequence of an application of (p3).

Then the last step in the deduction is of the form

E2

Since W is standard, X. >E does not depend on E . Thus

S |- X — > E
O
# By induction hypothesis S \-? E —->X. Thus, by

(P2), S hjj, =!—»E 2.
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Case 2. E is an immediate consequence of an application of

(p4) . Then S k E. 4 Eo follows by the induction hypothesis

and (p4)9 since E is closed.

Case 3. E is an immediate consequence of an application of

(p7) . Then S k E ^ E
o follows by the induction hypothesis

and (p5).

Case 4. E 9 is an immediate consequence of an application of

(p8). This case is treated as in case 3.

Hence, S k E_ > Eo in all possible cases.

Lemma 5. Let E be an equation. If there exist closed equations

E. and Eo so that S U {En}k E and S U {E. >E.} k E,
1 2 ~ JL & r<~> 1 2 &

then S )-„ E.

Proof. If the proof of E from S U {E • > E } does not depend
*** 1 2.

on E. • >EO, then S k E. Suppose the proof of E from
1 2 r*> db

S U (E. > Eo} does not depend on E. ^E o, and, by Lemma 3,
^ L 2 JL 2

let W be a standard deduction. Since here the proof of an

equation depends on the equation implication E — > E , there is

a step in the deduction of the form

X »Y o
— ^ o3
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where one of the premises depends on E ^ E
9
# Since proofs

are finite, we may assume that neither X nor any formula in

the proof above X is an immediate consequence of (p3). Thus

X does not depend on E > E . Since W is standard and

E y E is closed, it follows that X- J Y is E-• ^ E . So

S |-n, E_, since E. is X and S [-„ X. By Lemma 4, S [-„ E. \ E,

and, by (p3), S k E.

4» Proof of Theorem 1. To show that if A is not provable from

S (in symbols, S L A) , then there exists an algebra Vt so that

t= S and )k A, we first observe that it suffices to consider the

vi ~ in

case that A is a closed equation. Firstly, suppose A is an

equation, say E., and S K E.. Then, by Lemma 1, S ]{-„. E ' ,

where E ! is a closed equation. If there exists an algebra t/7
so that |= S and not f= E.! , then by definition we also have

V7 ~ VI 1

)£ E . Secondly, suppose A is of the form E- >Eo* a n^

S Ĵ £ E 1 ^E 2. By Lemma 1, S )f^ E f >E2' . By Lemma 4,

S U {E ! } Ĵ £| E
 ! . E ! is closed. If there exists an algebra VI

so that 1= S, (= E.! , and )k E ' , then by definition we also
VI ~ 1/1 1 IP 2

have )fi E « >E0. Thus in both cases a reduction is possible.
VI LVI 0

Now, suppose A is a closed equation, E, and S K E, By

Zorn1 s lemma applied to the set of extensions of S from which

E is not derivable in «£, there is a maximal extension S. of
/"w*i
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S satisfying S. J* E.

Let y be the following interpretation of <£ with domain

T, defined in Section 3. The interpretation of an individual

constant c shall be c itself. If feFN, the associated

operation f in y shall be defined so that f (p ,... ,p )

is f(p ,...,p ), where p,j...,p eT. y shall contain a binary

relation &, defined so that p « q if and only if (p = q)eS-,

for p,qeT.

We show that a closed formula is valid in y if and only

if it belongs to S.. This is true, by definition, for closed

equations. Suppose E and E are closed equations so that

(E. Eo)eS-. By rule p35 either E./S. or E^GS.. Hence,

either Jfe E. or f= E . In either case, (= E f E . Conversely,

suppose |= E — - ^ E . Either ^ E or f= E . Hence, either
y L z y L y z

E.^S. or EoeS.. If E./S., then Sn U {E.} k E, since S.
^ M r^ r*s '*>-' rsj

is maximal. So S- U (E >E } )-„ E would imply S. [-<, E,

by Lemma 5. Thus (E.—^E^)€S_. If EoeSn, then (E., > Eo) €Sn ,
1 2 ^1 2 ~1 1 2 ^1

by rule pi. Therefore, (= E. ^ E o if and only if (E. >Eo)eS..
y ± z L * z r>u±.

In particular, Ĵ  E.

Let B be an arbitrary formula of S. If f is any function

from VR into T, let B(f) denote the result of replacing each

variable z occurring in B by f(z) at all of its occurrences.

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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By rule p4, B(f)€S_, for each function f. Hence 1= B(f), for

each function f, since B(f) is closed. Thus, we see that

BeS implies (= B, that is, f= S.

Finally, we notice that « is a consequence relation on y,

by (a2), (a3), (p7), and (p8). Therefore, y/w is an algebra in

which each formula of S is valid and A is not valid. To

complete the proof of Theorem 1, take 4/7 to be Y/W«

Remark 1. It is easy to see that the following three statements

are equivalent. There exists an AeFL such that S ){-„ A. For

all variables x and y, S K x = y. There exist distinct

variables x and y such that S K x = y. If any of these

three statements is taken as a definition of consistency, then

we may state our result in the equivalent form: every consistent

set of equations and equation implications is valid in an algebra

having at least two elements.

Remark 2. Consider a class of languages having the same primitive

symbols and formation rules as the class of equation implication

languages, except that the set FL of formulas is to be the

smallest set containing all the atomic formulas and closed under

the operation of forming A—-> B from A and B. Then we can

prove a strong completeness theorem for this class without

making the kind of analysis that appears in Lemma 3 above.
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Indeed, it is enough to have as propositional axiom schemas

A >(B ^ A ) , (A >B) >((A —^(B —*C)) ^ (A—£ C) ) , and

(A-—^ C) • >(((A >B) }C) ••> C) (these schemas appear in

[3, p. 43]); the obvious axioms for equality; and modus ponens

and siibstitution (rule p4) as the only rules of inference. The

restricted Deduction Theorem for this system is known to follow,

and the proof of the analogue of Lemma 5 for this system follows

immediately from the third propositional axiom schema and two

uses of the restricted Deduction Theorem. Then an argument

almost identical to the one presented in Section 4 above will

furnish the proof of strong completeness.

5. A Calculus of Equation Conjunction Implications. We consider

now a class of languages called equation conjunction implication

(ECI) languages. The set of primitive symbols contains, in

addition to the primitive symbols of an equation implication

language, the conjunction sign, A. Terms and equations are

defined in the usual way, and, as before, the only atomic formulas

are the equations. A conjunctive formula is defined inductively

so that (1) an equation is a conjunctive formula and, (2) if A

and B are conjunctive formulas, then so is A A B. The set

FL of formulas is defined to be the set of all equations and

expressions A — ^ E , where A is a conjunctive formula and E
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is an equation. Note that, except for equations, conjunctive

formulas are not formulas. If A is a conjunctive formula,

write A(E ,...,E ) for A, where A consists precisely of

occurrences of the equations E.,...,E (in any order and with

possible repetitions).

Since ECI languages have greater expressibility than equation

implication languages, transitivity of equality can now be

written as an axiom (rule a.4 below) . On the other hand, new

axioms and rules are required, principally the conjunction rule,

p5.

For each ECI language £, G(£) denotes the corresponding

class of algebras.

Theorem 2. Let <£ be an ECI language. Suppose S £ FL, AeFL,

and for all VI of G (£) , if |= S, then f= A. Then a proof of

Inn ~ V?

A from S exists using the following axioms and deduction rules.

The set of axioms is the set of instances of the following four

schemas, where E and E are equations; p,q,p., *q,, • • • >p >q

are terms; and feFN has rank n, n > 1.

(ccl) E 1 A E

(a.2) p = p;

(a.3) p = g A q = r—>r = p

(a4) P x = qx A...A p n = qR ^ f (p^ . . . ,pn) = f
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If E ,E2,E3,E, F , ...,F , G ,...,G , n ̂  1, m ;> 1, are equations;

p is a term; B(F.,.«.,F ) and C(F , ...,F ) are conjunctive

formulas; and D€FL, then the following are rules of inference.

(pi) From E to infer E • >E ;

(p2) From E and E > E to infer E ;

(p3) From F. A. . . A F 4E_ and E. > E to infer
1 n 1 1

F. A. . . A F >E;
1 n

( p4) From F. A. . . A F ^ E_ and En A G. A. . . A G ^ E
1 n 1 1 1 m

to infer Fn A...A F A G. A...A G > E;
1 n 1 m

(p5) From BfF^...,? ) — > E to infer C(F1,...,Fn) — > E ;

(p6) From D to infer the result of replacing all

occurrences of a variable z in D by p.

It may be observed that (p5) is equivalent to the following

three rules:

From E A E > E to infer E y E;

From F. A F_ A Fo A F^ A...A F >E to infer
l l z J n

F A F A...A F — ^ E ; and,

From E. A,ttA E > E to infer E ,., A. . . A E , x >E
1 n 7 TT(1) 7r(n) ^

where IT is a permutation of (l,...,n).

Also we have the following lemma.
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Lemma 6. If E,E.,...,E 9 n ̂> 1, are equations, and A(E , ...,E )

and B are conjunctive formulas, then the following are derived

rules of inference.

(pi) From E-,...,E and A(E ,...,E ) — ^ E to infer E;

(p8) From E-,...,E and A(E-,...,E ) A B — > E to

infer B — ^ E ;

(p9) From E ^E to infer A(E-,...,E ) — ^ E .

(plO) From E to infer A(E-,...,E ) E.

Proof, To prove (pi) , we are given E]L,...,En and A(E1,...,En)

S u p p o s e A ( E . , . . . , E ) i s E . A . . . A E . .
1 m

E .

E . — - * E . E . A. . . A E . • •• b E
X2 X l Xl

E . E . A E . A. . . A E . > E

2 2 Z m

E . > E . M E . A t t t A E , i > E
X 3 X 2 X2

p5

E. E. >E
l im m

p 2
E
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The proof of (p8) is identical. In this case we start

with E. A. ..A E. A B——^E and our result is B ^E.
1 m

To prove (p9) ,

(p3)
E 2 A E l * E E 3 A E 2

A E 2 A E]L >E E 4 A Ej > E 3 ( a l )

(P3)
E A . . . A En > E

n 1

(plO) follows from (pi) and (p9).

It is clear that (pi) implies (p2). It is important to

observe now that we do not prove completeness directly for the

system given in Theorem 2. Instead, we prove completeness for

a system with rules of inference (pi), (p3), (p4), (p5)3 (p6),

and (p7). The proof of Theorem 2 then follows. The purpose of

this indirect procedure is5 as in the proof of Theorem 1, that

the system with (pi) rather than (p2) enables us to write

deductions in a standard form. In a use of (pi), A(E.,...,E )—>E
1 n

is called the minor premise.
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Definition 2, A deduction from a set S of formulas of an ECI

language is standard if the minor premise of each application

of rule p7 is an axiom, a formula of S, or the result of

applying rule p6 one or more times to a formula of S.

Lemma 7. If <£ is an ECI language and S k B, then there is

a standard deduction W of B from S.

Proof. Let W! be any deduction of B from S (using rules

pi, and p3-p7). As in the proof of Lemma 3, we proceed in two

steps. The first step is identical to Instruction I in the

proof of Lemma 3. By this instruction WT is altered to a

deduction W" of B from S with the property that the premise

of each application of (p6) is an axiom, a formula of S, or the

result of applying rule p6 one or more times to a formula of S.

In any deduction, a formula A(X_,...,X ) • > E can be an
l n

immediate consequence of rules pi, p3, p4, p5, or p6. The purpose

of the second step is to "push up" applications of (p7) above all

applications of (pi), (p3), (p4), and (p5), thereby yielding a

standard deduction W. The replacements needed are straightforward,

(pi) above (p7) is simply deleted; (p3) above (p7) is replaced by

two successive applications of (p7); (p4) above (p7) is also

replaced by two uses of (p7); and (p5) above (p7) is replaced by
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one use of (p7) •

Lemma 8. If E ,...,E are closed equations, n ̂  1, and

S U {E1,. . . ,En) J-£ E, then S \-£ E A. . . A E > E.

Proof. If EeS or E is an axiom, then S k E. Thus

S t-,, E_ A. . . A E '• > E, by the derived rule plO. If E is one
^ <L 1 n

of E., i = 1,...,1O. Then S [•- E. )E. (E >E is a theorem
1 '**-' oL 1

by (al) and (p5).) Thus S i-« E. A.. . A E )E, by (plO) again.
^ db l n

Otherwise, let W be a standard proof of E from S U {E ,...,E }

For each equation X occurring above E in W we assume as

induction hypothesis that S [•„ E A... A E y X. E is an
/>/ oo l n

immediate consequence of (p6) or (p7) . If E is an immediate

consequence of (p6) , then S [-«, E or E is one of the E.,
~ db X

i = l,...,n, since E.,...,E are closed and W is standard.
l n

Thus, by (plO) , as in the previous paragraph, S [-„ E A. ..A E ^E.

Suppose E is a consequence of (p7). Then the last step

in the deduction is of the form
X , ...,X X- A... A X >E

Since W is standard, X A. . . A x >E does not depend

on E ,...,E . Thus, S f-- X A. . . A x ^E. Then,
X n /w du x n
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E. A. ..AE »X, X, A. ..AX >E
1 n 1 1 n T

n A...A E A X o A. ..A X1 n 2 n

En A. ..A E -
1 n 5 Xo A E. A...A E A X o A...A X -2 L n J n

E- A...A E A E. A...A E A X o A. . . A X1 n 1 n 3 n

E. A. . . A E A X o A. . . A X1 n 3 n

p4

En A. • . A E -
1 n

Lemma 9. If there exist closed equations E and E so that

S U {En} I-. E and S U {E. > E.} }-- E, then S k E.

Proof, If the proof of E from S U {E • ) E } does not depend

on E-—->E , then S k E. Otherwise, there is a step in the
JL 2 ab

deduction of the form

T 9 • • • 9 2C - } • • • y2\. )

1 n

where one of the premises depends on E E . Since proofs

are finite we may assume that neither X nor any formula in

the proof above X is an immediate consequence of {pi). Thus

X.j...,X do not depend on E > E . Since proofs are standard

and E. o is closed A(X.,...,X )
2 in

Y is E2. (in
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particular, the X.,...,X are identical.) S !-„ E and, by

Lemma 8, S |- E ^E . Thus, S f- E.

We have now proved the needed lemmas and are ready to

complete the proof of Theorem 2. We show that if S J* A, then

there exists an algebra 4/7 so that (= S and j£ A. First,

observing that Lemma 1 holds for ECI languages as well as equation

implication languages, we reduce to the case that A is a closed

equation, E. This reduction is immediate if A is an equation.

Suppose A is E. A...A E ) F, n ̂  1. By Lemma 1,

S Kf E.
f A. . .A E « »E! . By Lemma 7, S U {E » ,. . . ,E * } J* f E

f .

If there exists 4^ so that f= S U {E « ,.. . ,E ! } and )k Ef , then
^ 7 ^ 1 n yj

(= S and J6 E. A...AE A E.

Then, given a closed equation E so that S K E, apply

Zorn!s lemma to obtain a maximal extension S, of S satisfying

S Ĵ^ E. Let y be the usual interpretation of «£ with domain

T so that p w q if and only if p = q€Sn , for p,qeT.

A closed equation holds in y if and only if it belongs to

S-. (In particular, )f= E.) We show this for all closed formulas.

Suppose E. A. . . A E > F belongs to S.. , where E. ,. . . ,E , F
x n /̂ l x n

are closed equations. By rule p7, E.^S., for some i, or

FGS.. Thus, either J^ E. or |= F; i. e. , j= E A. . . A E ^ F.

Suppose |= E- A. . . A E • >F. Then, either )k E., for
" Y 1 n ^ * ^ Y i

some i, or |= F. Consider the case that J^ E.. Then E./S .
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So S. U (E.) k E. By Lemma 9, if S., U {E, > F} \-p E, then

S., k. E. Thus, Sn U (E. »F} jf,, E. It follows by (p9) , since

Sn is maximal, that E_ A. # . A E >F belongs to Sn. In the~1 I n ^1

case that f= F, FeS-, so it follows by rule plO that

E. A. . . A E )F.
1 n̂  r

Using rule p6, an argument identical to that in the proof

of Theorem 1 shows that BeS implies f= B. That is {= S. By

(a2) , (a3) 5 and (a,4) y » is a congruence relation on y L e t

be y/w- Then f= S and Ĵ= A.
VI 1/7

6. ECI Definable Classes, Call a formula of an ECI language

an ECI-formula. We conclude this paper now with a characterization

of those classes of algebras which are definable by sets of ECI-

formulas. Our theorems follow directly from well-known results

in the literature, and we believe they are essentially known.

A class of algebras K is axiomatic if for some set S of

first-order formulas, K is the class of all algebras in which

every formula of S holds. A basic Horn formula is any first-

order formula of the form 8. V...V 8 , where each 8. is

1 n* I

an atomic formula or the negation of an atomic formula, and at

most one of the 0. is atomic.

Theorem 3. If K is an axiomatic class of algebras, then K

is closed under the formation of subalgebras and direct products
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if and only if K is definable by a set of basictt>rn formulas.

Proof. By the results of J. Los and A. Tarski [10], if K is

closed under the formation of subalgebras. then K is a universal

class. By the results of J.C.C. McKinsey [6] and W. Peremans [7],

a universal class which is closed under the formation of direct

products is definable by a set of basic Horn formulas. The proof

in the other direction is straightforward and well known.

Theorem 4. A class K of algebras is definable by a set of ECI-

formulas if and only if K is axiomatic, K contains the one

element algebra, and K is closed under the formation of sub-

algebras and direct products.

Proof. The theorem follows from Theorem 3 and the following two

observations made in [6]. First, if A is a basic Horn formula

and one the disjuncts is an atomic formula, then A is equivalent

to an ECI-formula. Second, no disjunction of inequalities holds

in the one element algebra.
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