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Abstract

Garrett Birkhoff has shown that the identities of an

equationally defined class of algebras are provable from the

class, using a very simple calculus all of whose proofs involve

no linguistic expressions other than equations. This paper

will present analogues of Birkhoff's result for the following

two classes of algebras: classes all of whose defining conditions

can be given by equations and equation implications, and classes all

of whose defining conditions can be given by equations and

expressions of the form E. A...A En~—+ E, n > 1, where

1
El,...,En, E are equations. Axioms of the forms considered

comprise almost all axiom systems used in algebra. Also, an

algebraic characterization is given of axiomatically defined

classes of algebras which are definable by axioms of the latter

form.
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1. Introduction. Garrett Birkhoff has shown [l, p. 440] that

the identities of an equationally defined class of algebras are
provable from the equations defining the class, using a very
simple calculus all of whose proofs involve no linguistic
expressions other than equations. This paper will present
analogues of Birkhoff's result for the following two classes of
algebras: classes all of whose defining conditions can be given
by equations and equation implications, and classes all of whose
defining conditions can be given by equations and expressions of
the form E1 Aoo oA En-">'E’ n > 1, where El""’En’ E are
equations. The first of these results answers a question posed
by G. Birkhoff in [2, pp. 323-324]. Axioms of the forms con-
sidered comprise almost all axiom systems used in algebra.
Section 6 at the end of this paper gives an algebraic characteri-
zation of axiomatically defined classes of algebras which are
definable by axioms of the latter form.

In Section 2 a formal system for equation implications is

described and the precise statement of our first result (Theorem 1)



is given. The proof of Theorem 1 is sketched in Section 4,

after key lemmas are presented in Section 3. Our second result
(Theorem 2) is stated and proved in Section 5. We have deleted
those details of the proof of Theorem 2 which are either straight-
forward or identical to steps in the proof of Theorem 1.

The method of L. Henkin [4] will be used to prove our
theorems. As will be seen, the principal difficulty is to
avoid the natural use of "long" formulas (implications of non-
atomic formulas) in a Henkin type completeness argument.

This paper is in part a revised version of results first
announced in [9]. Donald Loveland has noted that two of the
rules of inference present in [9] are redundant. It has also
been pointed out that A. Robinson in [8] has proved completeness
of a calculus for a class of languages whose syntax is similar
to ours. Also, the author wishes to express his gratitude to
Professors Hugo Ribeiro and George Gratzer for suggesting this

problem to the author.

2. A Calculus of Equation Implications. We shall consider a

class of languages called equation implication languages. For

each of these the primitive symbols consist of (1) a denumerably
infinite set VR of variables, (2) an arbitrary (possibly empty)

set CN of individual constants, (3) a non-empty set FN of
~~ ~~



function letters, (4) a binary relation symbol, =, (5) the
implication sign, =3 , and (6) grouping symbols, ( , ). With
every member of FN is associated some finite rank. The terms
of an equation implication language are to be defined inductively
in the usual way. The only atomic formulas are the equations,
formed by applying = to the terms. The set FL of formulas

is defined to be the set of all atomic formulas and expressions
El ——)Ez, where El and E2 are atomic formulas. The
expressions El——-)»E2 are the equation implications.

If £ 1is an equation implication language, let G (£)

denote the corresponding class of algebras.

Theorem. Let &£ be an equation implication language. Suppose
S c FL, AeEE, and for all algebras @7 of G(£), if each formula
of S is valid in g7 , then A is valid in 27 (if };—” S,
then Ea7 A). Then a proof of A from S exists (in symbols,

S F& A) using the following axioms and deduction rules. The set

of axioms is the set of instances of the following three schemas,

where E 1is any equation and p and g are any terms.

(al) E—E;

(a2) p p;

(a3) p dq—» d = p.



If El’ E2, and E3 are equations; p,q,r,pl,ql,...,pn,qn, are
terms; BeFL; and feFN has rank n; then the following are

rules of inference.
‘ (pl) From E2 to infer EI——aEz;
(p2) From El.--.--)E2 and E2--—-)E3 to infer El-—>E3;
(p3) From E1 and Ef_—9E§ to infer E2;
(p4) From B to infer the result of replacing all

occurrences of a variable z in B by p:;

(p5) From El.__)p=q and El_.?q r to infer

El._.>p = r;
(p6) From El..__) P, = ql,...,E]:--—-)pn = q, to infer

1
EI——Q»f(pl,...,pn) = f(ql,...,qn).

3. The Lemmas. An easy induction argument yields the following

lemma.

Lemma 1. Let AcFL. Let xl,...,xn be the collection of

variables occurring in A, CyseeesCy a collection of individual

constants not belonging to CN, £' the extension of £ defined

by enlarging CN to include c¢.,...,c_, and A' the result of

1 n

replacing each occurrence of X, in A by c,- Then S FS' Al

lThe completeness property expressed in this theorem is sometimes
called strong completeness, to distinguish it from the special case

that S is the empty set of formulas.



i nplies SN\-_EA.

The class of terns of an equation inplication |anguage is
denoted by T. A termis defined to be closed if it contains no
occurrence of variables. The class of closed terns is denoted
by T. Aformula of £ is closed if every termoccurring in it
Is a closed term

A deduction of a formula A froma set S of formulas
is to be oneintree form see for exanple [5 end 824]. 1In a
use of the rule p3, El is called the mgjor prem se,- and

El_’\E2 Is called the m nor prem se.

Lenma 2. If p*qg*rsp ,. . . ,p *fe, >eee*<l e terns and feFN
1 n [ n U
has rank n, then the followi ng are derived rules of inference.

(o7) From p=q9q and g=r to infer p =r;
(p8) From Py = s Py = Qg to infer
f(Pl,---,pn) = £(qqsee059,).

Pr oof .




Pl = V" " Pp=9

ol

pi = qlﬁpl = ql$"'!Pl = q]_-"—"‘"*Pn = qn p6

Pl = 9 Pl =9 "‘_)f(P]_:'-°sP ) = f(qlso'-sqn) 05

n

E(Pyse-esPp) = E(a 5e005q)

It is inportant to note that we will use rules pl and p8
freely. Thus, we will prove conpleteness for a systemwith rules
of inference pl-p8. The proof of our theorem then follows
i medi ately fromLemma 2. The purpose of this indirect procedure
is that the addition of (p7) and (p8) enables us to wite deductions

inastandard form according to the following definition and | emma.

Definition 1. A deduction froma set S of fornmulas of an

JAVAN

equation inplication |language is standard if the minor prenise
of each application of rule p3 is an axiom a fornula of & or
the result of applying rule p4 one or nore tines to a formula

of S

Lemma 3. If S k B, then there exists a standard deduction

W of B from §

Proof. Let W be any deduction of B from S. W proceed
in two steps.

I. By successive applications of the follow ng instruction



(whose purpose is to "push-up" the uses of rule p4d) , W nay-
be altered to a deduction W of B from S with the property
that the prem se of each application of (p4) is an axiom a

formula of S, or the result of applying rule p4 one or nore

~

tines to a forrmula of S.

Instruction I. In a deduction replace an occurrence of the form

e

1 .
—_pi
'

Y ~

where i =1,2,3,5,6,7,8; n, i's the nunber of prem ses of
(pi); V% is a deduction from S of a formula x,, for

j =1,,..,no and Y is an immediate consequence of (pi) applied

to Xi,...,X%, by
1

Y(p)
Since proofs are finite, and the result of applying (p4)
to an axiomis again an axiom successive applications of this
instruction indeed yield a deduction W of B from § wi th

the property describéd above.



Instruction II. Observing that in any deduction, an expression

X Y is either an axiom, a member of E’ or an immediate
consequence of one of the rules pl, p2, p4, p5, or p6, we see

now that by successive applications of the following four instruc-

tions, W' may be changed to a standard deduction W.
Yy

Instruction ITa. In a deduction replace an occurrence of the
form

"y

W X—3Y

Y

pl

p3

where WO is a deduction from S of X, and W1 is a deduction

from S of Y, by Wl'

Instruction IIb. In a deduction replace an occurrence of the form

Wy Wy

p2

p3 ,

where W, is a deduction from S of X, Wy is a deduction

from S of a formula X—>Y,, and W, is a deduction from S

~

of Yl-—)Y, by



Instruction IIc. In a deduction replace an occurrence of the form

p5
1] XY

p3
Y

where WO is a deduction from S of X, Wl is a deduction

from S of a formula X——)Yl, and W2 is a deduction from S

of a formula X— Y2, by

Instruction IId. In a deduction replace an occurrence of the form

Wi,ooo,Wn

p6
W, X =3 E(PyseeesP) = £(dp,eee,q)

p3 ,
f(pl,---,pn) = f(ql,---,qn)

where WO is a deduction from S of X; and Wi is a deduction

~

from S of X-—3pi= a; s for i=1,...,n; by
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f(pl,---,pn) = f(ql,--.,qn)

Lemma 4. (Restricted Deduction Theorem) If E1 and E2 are

equations, E, is closed, and S U {El} Fe E,, then § FS E,—>E

1 2°

proof. If E, is E;, then § Lx E,—>E,, by (al). If EjeS

or E, is an axiom, then § Fx E,. Thus § FE E,—>E,, by (ol).

Otherwise, let W be a standard proof of E from S U {El}.

2

For each equation X occurring above E2 in W, hence such

that

1

U {El} F& X, we may assume as an induction hypothesis

that § FS E.l X. Since E2 is an equation, it is an immediate

consequence of an application of (p3), (p4), (p7), or (P8). We

consider each of these cases.

Case 1. E2 is an immediate consequence of an application of (p3).

Then the last step in the deduction is of the form

X X —)E,

E)

Since W is standard, X.--)E2 does not depend on E Thus

l.
S F& X —»E,. By induction hypothesis § F£ E, —»X. Thus, by
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Case 2, E2 is an immediate consequence of an application of
(p4). Then S FS E.—> E, follows by the induction hypothesis

and (p4), since El is closed.

Case 3. E2 is an immediate consequence of an application of
(p7). Then §'F£ El---—)E2 follows by the induction hypothesis

and (p5).

Case 4. E2 is an immediate consequence of an application of

(p8). This case is treated as in case 3.

Hence, S l';‘; E,—>E, in all possible cases.

~

ILemma 5. Let E bDbe an equation. If there exist closed equations
E, and E, so that § U (B}, E and s U {E,—>E }} E,
then § {Zs: E.

Proof. If the proof of E from S U {El-—€>E2} does not depend
on E,—>}E,, then s FS E. Suppose the proof of E from

s U {EI——QIEZ] does not dgpend on E,—>E,, and, by Lemma 3,
let W be a standard deduction. Since here the proof of an
equation depends on the equation implication El-—ﬁ>E2, there is

a step in the deduction of the form

X X=—3Y

03
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where one of the premises depends on El-—1}E2. Since proofs
are finite, we may assume that neither X nor any formula in
the proof above X 1is an immediate consequence of (p3). Thus
X does not depend on El-'_)Eb' Since W is standard and
El—--)E2 is closed, it follows that X—>Y is El-—>E2. So
S since

".s: Eq» is X and § |-£ X. By Lemma 4, S |-£ E— E,

By
and, by (p3), S |-£ E.

4, Proof of Theorem 1. To show that if A is not provable from

S (in symbols, S Xg A), then there exists an algebra ¥ so that
E% S and ’%n A, we first observe that it suffices to consider the
case that A 1is a closed equation. Firstly, suppose A 1is an
equation, say E,, and § %s E,. Then, by Lemma 1, § %sr E;',
where E.' 1is a closed equation. If there exists an algebra 47

1

so that ﬁb S and not bb E.', then by definition we also have

1
JE El' Secondly, suppbse A is of the form Ef_—’Ez’ and

1 1
S ’F.;: E,—>E,. By Lemma 1, § %,s:! E,' =—>E,'. By Lemma 4,
s U [El'} ¥£, E,'. E,' is closed. If there exists an algebra 7
1 1 i 1 ]
so that bh S, quEl , and ﬁ}.EZ , then by definition we also
have } E,~>E,. Thus in both cases a reduction is possible.
wm
Now, suppose A 1is a closed equation, E, and S ks E. By

Zorn's lemma applied to the set of extensions of S from which

E is not derivable in £, there is a maximal extension gl of

~
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S satisfying §% XS E.

Let Y be the following interpretation of &£ with domain
E, defined in Section 3. The interpretation of an individual
constant ¢ shall be c¢ itself. If fegg, the associated
operation f* in Yy shall be defined so that f*(pl,...,pn)
is f(pl,...,pn), where pl,...,pnei. Y shall contain a binary

relation #~, defined so that p ® g if and only if (p = q)egi,

~

for p,qu.
We show that a closed formula is valid in vy if and only

if it belongs to This is true, by definition, for closed

Sy

equations. Suppose E1 and E2 are closed equations so that

(E Ez)egl.

~ ~

1 By rule p3, either E1¢§i or Ezegi. Hence,

either }3 E, or Fk E,. 1In either case, PY E~—> E,. Conversely,

suppose F} E,—>E,. Either ¥§ E, or FY E,. Hence, either

E1¢§£ or E2€§L' If 'Elﬁgl’ then El U {El} Lx E, since S,

is maximal. So S, U {El——ﬁ>E2} F£ E would imply S, L£ E,

~ ~

by Lemma 5. Thus (El—éEz)egl. If Ezeg’y then (El—-)Ez)eg'y

by rule pl. Therefore, FQZEf——}Ez if and only if (E;,—>E,))eS;.

~

~

In particular, k} E.
Let B be an arbitrary formula of S. If £ is any function
from VR into E, let B(f) denote the result of replacing each

variable 2z occurring in B by £(z) at all of its occurrences.

HUNT LIBRARY
CARNEGIE-MELLON UNIVERSITY
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By rul e p4, B(L)€§¢, for each function f_ Hence 1;YB(t), for
each function f, since B(f) is closed. Thus, we see that
BeS implies (= B that is, f= S

Finally, we notice that « 1is a consequence relation on v,
by (a2), (a3), (p7), and (p8). Therefore, y/"is an algebra in

which each formula of S is valid and A is not valid. To

conpl ete the proof of Theorem 1, take 47 to be Y/ Y%

Remark 1. It is easy to see that the following three statenents

are equivalent. There exists an AeFL such that S){-, A  For
all variables x and y, S K x =vy. There exist distinct
variables x and y such that S K x =y. I f any of these
three statenents is taken as a definition of consistency, then

we may state our result in the equivalent form every consistent
set of equations and equation inplications is valid in an al gebra

having at |east two el enments.

Remark 2. Consider a class of |anguages having the sane primtive
synbols and formation rules as the class of equation inplication
| anguages, except that the set FL of fornulas is to be the
smal | est set containing all the atomc fornulas and cl osed under
the operation of formng A—>B from A and B. Then we can
prove a strong conpl eteness theorem for this class wthout

maki ng the kind of analysis that appears in Lemma 3 above.
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Indeed, it is enough to have as propositional axi om schenas
A >B"A), (A—>B)_>((A2(B—=2C))—"(A—£0Q), and

(A2 0 &=>(((A =B) «==3C) ~+>(C (these schemas appear in

[3, p. 43]); the obvious axions for equality; and nodus paonens

and siibstitution (rule p4) as the only rules of inference. The
restricted Deduction Theorem for this systemis known to follow,
and the proof of the analogue of Lemma 5 for this system follows
I mredi ately fromthe third propositional axiom schema and two
uses of the restricted Deduction Theorem Then an argunent

al nost identical to the one presented in Section 4 above wl|

furnish the proof of strong conpl et eness.

5. A Calculus of Equation Conjunction Inplications. W consider

now a class of |anguages called equation conjunction inplication

(EA) languages. The set of primtive synbols contains, in
addition to the primtive synbols of an equation inplication

| anguage, the conjunction sign, A Ternms and equations are
defined in the usual way, and, as before, the only atomc fornulas

are the equations. A conjunctive fornula is defined inductively

so that (1) an equation is a conjunctive fornula and, (2) if A
and B are conjunctive formulas, then so is A AB. The set
FL of fornulas is defined to be the set of all equations and

expressions A—E, where A is a conjunctive fornula and E
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I's an equation. Note that, except for equations, conjunctive
formulas are not formulas. If A is a conjunctive formula,

write A(E ,E_) for A where A consists precisely of

1" n
occurrences of the equations E,..... E/ (in any order and with
possi bl e repetitions).

Since EClI languages have greater expressibility than equation
i mplication |anguages, transitivity of equality can now be
written as an axiom (rule a4 below) . On the other hand, new
axioms and rules are required, principally the conjunction rule,
po.

For each EClI |anguage £, G(£) denotes the corresponding_

class of algebras.

Theorem 2. Let <£ ©Dbe an ECI language. Suppose S £ FL, AeFL,

Pired

and for all M of G(£ , if |= S then f= A Then a proof of
| Nn ~ V?

A from S exists usihg the follow ng axions and deduction rul es.
The set of axions is the set of instances of the follow ng four
1 2 ) - 1 n n
schemas, where E and E are equations; p,q,p., *q,, ***>p >Q
are terms; and feFN has rank n, n > 1.
(a2) p =p;
(a.3) p=gAg=r—r =p

(ad) Py =dx A..Ap, = gr—"f(pr. .. ,py) =f(dgseeesd)s
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If El’EZ’E3’E’ Fl,...,Fn, Gl,...,Gm, n>1l, m>1l, are equations;
p is a term; B(Fl,...,Fn) and C(Fl,...,Fn) are conjunctive

formulas; and DeFL, then the following are rules of inference.

(pl) From E, to infer E;—>E,;

(p2) From El and El-----)E2 to infer E,i

(p3) From Fl Ao o A Fn_.--,\E:L and El——)E to infer

Ao oA :
F, F_—>E

A'..A A...A
(p4) From F1 Fn——}El and El /\Gl Gm-—,E

i Ao N A A :
to infer Fl Fn G1 A Gm—-> E
(p6) From D to infer the result of replacing all

occurrences of a variable z in D by p.

It may be observed that (p5) is equivalent to the following

three rules:

A i :
From El El-—->E to infer El-——)E,

From F. AF, ANF_ ANF_ A...A Fn—->E to infer

1 1 2 3
AT :
Fl A F2 Fn-—)E and,
AQ..A i A...A
From El En——-}E to infer Evr(l) Ev(n)———>E,

where T 1is a permutation of {1,...,n}.

Also we have the following lemma.
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Lemma 6. If E’El""’En’ n > 1, are equations, and A(El,...,En)
and B are conjunctive formulas, then the following are derived

rules of inference.

(p7) From El""’En and A(El,...,En)-——)E to infer E;

(p8) From El""’En and A(El""’En) A B=—3E to
infer B —)E;

(p9) From El——ﬁ>E to infer A(El,...,En) —>E.

(pl0) From E to infer A(El,...,En) E.

Proof. To prove (p7), we are given El”"’En and A(El,...,En) —>E,

1

o o 0 i . A.I.A . L]
Suppose A(El’ ,En) is Ell E _

i
1 ol
Ei""’Ei E. A..NE, == E
2 1 11 n
p4
El El /\Ei Aeo o A Ei-—-’E
2 ol 2 2 m 05
Ei——)El El Aeo oA Ei—-——>E
3 2 2 m
o4
p5
E. E. —E
h 1
m m
p2 .
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The proof of (p8) is identical. In this case we start

i . Neo. . A i .
with Ell A Elm B—3)E and our result is B——)E

To prove (p9),

E, A E—E, (al) E—)E

(p3)
E, N E;—3E E, A Eg—>E, (al)

E3 A E2 A El——)E E4 A E3-—)E3 (al)
{p3)

(p3)

AN
En El~——)E

p5
A(E{se.- ,En) —>E.

(pl0) follows from (pl) and (p9).

It is clear that (p7) implies (p2). It is important to
observe now that we do not prove completeness directly for the
system given in Theorem 2. Instead, we prove completeness for
a system with rules of inference (pl), (p3), (p4), (pP5), (p6),
and (p7). The proof of Theorem 2 then follows. The purpose of
this indirect procedure is, as in the proof of Theorem 1, that
the system with (p7) rather than (p2) enables us to write
deductions in a standard form. In a use of (p7), A(El"'°’En)__9E

is called the minor premise.
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Definition 2. A deduction from a set S of formulas of an ECI

language is standard if the minor premise of each application
of rule p7 is an axiom, a formula of S, or the result of

applying rule p6 one or more times to a formula of S.

Lemma 7. If £ is an ECI language and S FS B, then there is

a standard deduction W of B from S.

Proof. Let W' be any deduction of B from S (using rules

pl, and p3-p7). As in the proof of Lemma 3, we proceed in two
steps. The first step is identical to Instruction I in the
proof of Lemma 3. By this instruction W' 1is altered to a
deduction W" of B from S with the property that the premise
of each application of (p6) is an axiom, a formula of S, or the

result of applying rule p6 one or more times to a formula of S.

In any deduction, a formula A(xl,...,Xh)-f—QE can be an
immediate consequence of rules pl, p3, p4, p5, or p6. The purpose
of the second step is to "push up" applications of (p7) above all
applications of (pl), (p3), (p4), and (p5), thereby yielding a
standard deduction W. The replacements needed are straightforward.
(pl) above (p7) is simply deleted; (p3) above (p7) is replaced by
two successive applications of (p7):; (p4) above (p7) is also

replaced by two uses of (p7):; and (p5) above (p7) is replaced by
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one use of (p7) °

Lemma 8. If El’ ...,En are closed equations, n” 1, and
SU{E;, ... ,E) F E then §\-£F1 A...AII;Z_>E.
Pr oof . | f Ee§ or E 1s an axiom then S,l& E. Thus

§¢-{ E—lA"ArﬂE"_'- >E, by the derived rule plQ If E is one

of E., 1 =1,...,10 Then S [+« E—)E. (E—>E is a theorem
1 e oL 1
by (al) and (p5).) Thus S i« E A..AE—E by (plO again.
N & | n
G herwise, let W be a standard proof of E from S U{El, ..., En}”

For each equation X occurring above E in W we assune as

i nduction hypothesis that S [+, E A.. AE_ yX E is an

= o0 I n

i mredi at e consequence of (p6) or (p7) . If E is an imrediate

consequence of (p6) , then S [« E or E is one of the E.,
- &b X
i =1,...,n, since E,...,E are closed and W is standard.

I n .- —
Thus, by (plO , as in the previous paragraph, S [, E A ..AE "E.
Suppose E is a consequence of (p7). Then the last step
In the deduction is of the form

xL____ VAL N WY, : S =
E

Si nce W is standard, X lA o Axn_>E does not depend

on E,...,E. Thus, Sf-_X.A ..Ax___"E. Then,
X n wod x ' n
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e o o A...A
E) Aveoh E——p X, X, X——>E

p4

AT A Aee oA
El En X2 Xn-——)E

p5
e o 0 ® o0 A o o o
E) Ave e AE—3X, X, AE; AuuAE A Xy AlluA X—3E

El Aee oA En A El AeooA En A X3 AeeoA Xn——)E

p5

e o o ...A
Ej AveoAE_ A Xy A X —>E

...A L]
E; A E —>E

Lemma 9. If there exist closed equations El and E2 so that

s U {El} ".s E and S U (E,—>E)} |-£ E, then S i—£ E.

~

Proof. If the proof of E from S U {El—-) E2} does not depend
on E,—)E,, then s |—£ E. Otherwise, there is a step in the

deduction of the form

xl,ooo,xn A(Xl,-no,xn) '__)Y
Y 3

where one of the premises depends on El—-) E2. Since proofs

are finite we may assume that neither X nor any formula in

the proof above X is an immediate consequence of (p7). Thus
Xl,...,xn do not depend on El—-) E2. Since proofs are standard

and El E2 is closed A(Xl,...,Xn)——}Y is El——)Ez. (In
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particular, the X ,...,X are identical.) S !-, E. and, by
Lerma 8, S |- E—_"E. Thus, S f. E

W have now proved the needed |lemmas and are ready to
conpl ete the proof of Theorem2. W showthat if S J*. A then
there exists an algebra 47 so that (= S and jJE A First,
observing that Lemma 1 holds for ECI |anguages as well as equation
I nplication | anguages, we reduce to the case that A is a closed
equation, E. This reduction is inmmediate if A is an equation.

Suppose A is E.l A .. A Eri'-'")'F’ n” 1 By Lemma 1,

SK E'T A ..AE «_»E'. BylLemma7, SU{E»_,... E*} J*; E .
If there exists 4 so that f= SU{E«,...,E'} and )k E, then
A AR S | n Vi

(=S and J6 E A...AE__AE
Then, given a closed equation E so that S'K E, apply

Zorn's lemma to obtain a maxi mal extension S, of S satisfying
S, J" E Let y be the usual interpretation of «£ wth domain

T so that pwgq if and only if p = q€S,, for p,qe"?.
A closed equation holds in y if and only if it belongs to

%l. (I'n particul ar, )fV: E.) W showthis for all closed fornulas.

Suppose E.XA. .. AEn-—>F bel ongs to S./,\1 where E. I ’En’ F
are closed equations. By rule p7, E,*g,, for some i, or
FGS. . Thus, either J"Y E, or |:YF; i.e., j=F A .. AR—"F
Suppose |= E- A .. AE*=>F. Then, either )k E., for
" Y 1 n A * NY

some i, or |% F. Consider the case that J% E;. Then Ei/§j.
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so s, U {Ei} F£ E. By Lemma 9, if S, U {(Er—> F} F& E, then

~ ~s

S, FE E. Thus, S, U {Ei-——)F} ¥£ E. It follows by (p9), since

~

is maximal, that E. A...A Eﬁ———)F' belongs to §l' In the

~

1
case that F? F, FeSl, so it follows by rule plO that

~

S1

A..IA L]
E, E —F

Using rule p6, an argument identical to that in the proof
of Theorem 1 shows that BeS implies FY B. That is FY S. By
(a2), (a3), and (c4), ~ 1is a congruence relation on vy. Let 27

be N, Then S and A.
Y/ l;, 457

6. ECI Definable Classes. Call a formula of an ECI language

an ECI-formula. We conclude this paper now with a characterization
of those classes of algebras which are definable by sets of ECI-
formulas. Our theorems follow directly from well-known results

in the literature; and we believe they are essentially known.

A class of algebras K 1is axiomatic if for some set S of
first-order formulas, K is the class of all algebras in which

every formula of S holds. A basic Horn formula is any first-

order formula of the form el VeeoV Bn, where each ei is
an atomic formula or the negation of an atomic formula, and at

most one of the Gi is atemic.

Theorem 3. If K 1is an axiomatic class of algebras, then K

is closed under the formation of subalgebras and direct products
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if and only if K .is definable by a set of basictt>n fornul as.

Proof. By the results of J. Los and A. Tarski [10], if K is

cl osed under the formation of subalgebras. then K is a universa
class. By the results of J.C C. MKinsey [6] and W Peremans [7],
a universal class which is closed under the formation of direct
products is definable by a set of basic Horn fornulas. The proof

in the other direction is straightforward and wel |l known.

Theorem4. A class K of algebras is definable by a set of ECI-
formulas if and only if K is axiomatic, K contains the one
el enent al gebra, and K is closed under the formation of sub-

al gebras and direct products.

Proof . The theorem follows from Theorem 3 and the follow ng two
observations made.in [6]. First, if A is a basicHorn formula
and one the disjuncts is an atomic fornmula, then A is equivalent
to an ECl-fornmula. Second, no disjunction of inequalities holds

in the one el enent al gebra.
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