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Abstract 

Low-frequency, long-range sound propagation over a sea surface has been calculated using a 

wide-angel Cranck-Nicholson Parabolic Equation method. The model is developed to 

investigate noise from off-shore wind turbines. The calculations are made using normal 

meteorological conditions of the Baltic Sea. Special consideration has been made to a wind 

phenomenon called low level jet with strong winds on rather low altitude. 

 The effects of water waves on sound propagation have been incorporated in the ground 

boundary condition using a boss model. This way of including roughness in sound 

propagation models is valid for water wave heights that are small compared to the wave 

length of the sound. Nevertheless, since only low frequency sound is considered, waves up to 

the mean wave height of the Baltic Sea can be included in this manner.  

 The calculation model has been tested against benchmark cases and agrees well with 

measurements. The calculations show that channelling of sound occurs at downwind 

conditions and that the sound propagation tends towards cylindrical spreading. The effects of 

the water waves are found to be fairly small.  
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Introduction 

Wind power is a growing industry. In the year 2001 wind power plants in Sweden produced 

0.47 TWh which was an increase of over 30% since 2000. In the Swedish government’s 

energy bill for 2002, it was proposed that the energy production from wind power should 

increase to 10 TWh by the year 2015. To reach this goal, large off-shore wind power plants 

must be built. However, the issue of noise from off-shore wind power is not yet fully 

investigated. According to a literature inventory made by Ljunggren (1999) only a handful 

measurements of sound propagation over a sea surface have been made. In figure 1 some 

measurements are compared to different theories. 

 

 

Figure  1 Comparison between measurements and theories regarding long-range sound 

propagation over a sea surface. The graph shows the difference between sound power level of 

the source (Lw) and sound pressure level at varying distances (Lp). Line 0 is semi-spherical 

spreading (- 6 dB/distance doubling). Points 1-3 are measurements. Lines 4-6 represent different 

calculation methods. Line 7 is cylindrical spreading (- 3 dB/distance doubling) adjusted in height 

to fit with the measurements (Ljunggren, 1999). 
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Measurements of low-frequency noise from wind turbines in deserts are presented in Hubbard 

and Shepherd (1991) and Spera (1994). Deserts have comparable meteorological conditions 

with those of an ocean. The sand surface has high impedance (at least for low frequencies) 

and the sand dunes create a smooth roughness on the surface. These measurements show 

cylindrical propagation (-3 dB per distance doubling) in downwind conditions at long ranges 

from the wind turbines.  

 

 

Figure  2 Low-frequency sound measurements from wind turbines presented in Hubbard and 

Shepherd (1991). 

 

The data collected by Ljunggren (1999) and the measurements presented in Hubbard and 

Shepherd (1991) and Spera (1994) suggest two important features for long-range sound 

propagation over a sea surface.  

• In downwind conditions, the propagation becomes cylindrical at a certain distance from 

the source, leading to a sound level reduction of only 3 dB / distance doubling. 

• The roughness of the water surface (i.e. the water waves) has little influence on sound 

propagation. 

 

To investigate these hypotheses, the mechanisms for long-range sound propagation over a sea 

surface, and state of the art sound propagation models are examined. Scattering models are 

studied as well as the meteorology and wave climate of the Baltic Sea.  
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Part I of this thesis contains the background investigations. A thorough literature inventory 

has been made regarding long-range sound propagation, propagation models, scattering, 

meteorology, and water wave theory.  

 

In Part II, the calculation model used within the project (a wide-angle CNPE) is described and 

results from the calculations are presented. Several different scenarios have been investigated 

with varying surface properties and varying sound speed profiles. Range dependence has also 

been included to examine what happens when the sound reaches the shore and travels from 

ocean to inland conditions.  
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1. Atmospheric sound propagation 

Sound waves are always affected by the properties of their propagation medium. This chapter 

will describe atmospheric effects on sound propagation. The three most important features of 

atmospheric sound propagation are absorption, refraction and turbulence. A thorough 

description of this topic can be found in the paper by Embleton (1996). 

 

1.1. Absorption 

A sound wave propagating through the atmosphere, or through any other fluid, will interact 

with the molecules of the fluid. The wave will make the molecules rotate and vibrate, thereby 

transferring energy from the sound wave to the air. The viscosity of the air will also consume 

energy from the sound wave. The combined effect of these two features is called absorption. 

The absorption depends on the temperature, the relative humidity and the pressure of the air. 

The absorption increases rapidly with the frequency of the sound, with the result that the low 

frequencies of a sound source is of much more importance than the high frequencies for long 

range sound propagation. 

 The international standard ISO 9613-1 describes how to calculate the absorption 

coefficient, defined as the sound level attenuation due to absorption per kilometre. The 

standard also includes tables for common atmospheric conditions. For typical Swedish 

conditions, Larsson (1997) has calculated absorption coefficients based on 30 years of 

meteorological data. These are suitable to use when calculating sound propagation in Sweden 

since the standardized global value overestimates the absorption at high frequencies for 

Swedish conditions.   

Frequency [Hz] 63 125 250 500 1000 2000 4000 8000 
Luleå 0,12 0,4 0,9 2,1 5,0 13,8 40,1 111,5 
Frösön 0,12 0,4 0,9 1,9 4,6 13,5 41,6 118,8 
Uppsala 0,11 0,4 0,9 1,9 4,3 11,9 37,5 114,6 
Säve 0,11 0,4 0,9 1,9 4,1 10,9 35,0 111,1 
Bredåkra 0,11 0,4 0,9 1,9 4,0 10,9 35,2 111,9 
Ljungbyhed 0,11 0,4 0,9 1,9 4,0 10,8 34,7 111,4 
Global  0,4 1,1 2,4 5,9 18,8 53,9 129,3 
Table 1. Mean absorption per frequency is given as the decrease in decibels per kilometre, 

dB/km. Swedish values are calculated by Larsson (1997), the global value is from ISO 9613-1. 
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1.2. Refraction 

Sound waves can be represented as rays travelling through the atmosphere. The path that the 

rays follow is determined by how the sound speed varies in the atmosphere. The sound speed 

is a function of the wind speed, the wind direction and the temperature; hence, variations in 

these properties will cause variations in the sound speed. The bending of sound rays due to 

varying sound speed is called refraction. 

 Refraction can be upwards or downwards depending on whether the rays are turning 

away from or towards the ground surface. Upward refraction is caused by a negative 

temperature gradient and/or a wind blowing in the direction opposite of the sound 

propagation. Since the sound rays are turned away from the surface and up into the 

atmosphere, upward refraction will reduce the sound level near the ground and can also cause 

shadow zones. 

 Downward refraction is caused by a positive temperature gradient and/or a wind 

blowing in the same direction as the sound propagation. In this case, the sound rays are 

concentrated near the ground. Downward refraction will therefore enhance long-range sound 

propagation. If the propagation path is long enough, the sound rays will be reflected one or 

multiple times by the surface, making the properties of the surface very important.  

 In the case of long range sound propagation in a downwards refracting atmosphere 

sound waves may be reflected more than once. The paths of the reflected waves are longer 

than the path of the direct wave. For continuous, time-invariant sound that shows as 

interference between the waves due to differences in phase. For an impulse noise there will be 

a sinusoidal pattern in the measured sound. 

 

Figure  3. A schematic figure showing sound rays in a refracting atmosphere. Upwind the sound 

is refracted upwards creating a silent shadow zone. Downwind the sound is refracted 

downwards and focused near the ground. Downward refraction is therefore enhancing  

long-range sound propagation. 
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1.2.1. Refractive index and effective sound speed 

The strength of the refraction can be described by the refractive index; n. To calculate the 

refracting index, the effective sound speed is defined as ceff = c + u, where u is the wind speed 

in the direction of sound propagation and c is the sound speed in the atmosphere. The sound 

speed c is related to the temperature as 00 /TTcc =  where c0 is 331 m/s, T is the current 

temperature and T0 is 273 K. The refractive index is then n = c0/ceff. 

 Using the effective sound speed is an easy way to include medium motion and 

refraction effects in sound propagation models. However, it can lead to errors. According to 

Ostashev (1997, p. 86), especially ray tracing are methods sensitive to it, since it leads to 

errors in the phase shifts. Nevertheless, keeping this in mind, the effective sound speed 

approximation is valid as long as the elevation angle to the ground is relatively small;  

22 yxzz s −<<−  (Salomons, 2001, p. 146). 

 

1.3. Effects of turbulence 

Turbulence can be regarded as random variations of the properties of the air. Since the sound 

speed is determined by these atmospheric properties; the sound speed will also vary 

correspondingly due to turbulence. The sound field will be diffracted by the turbulence eddies 

and will therefore become more diffuse than in a homogenous atmosphere. Turbulence can 

also scatter sound into shadow zones. Depending on the size of the turbulence eddies it will 

affect the sound in different ways. Large-scale turbulence mainly causes variations in phase, 

while turbulence of smaller scale causes variations in amplitude (Wilson et al., 1999). In weak 

turbulence theory the incoming sound wave is assumed to be undisturbed when it reaches the 

turbulence eddies. For such a case, the eddies distorts the sound amplitude and phase rather 

effectively. However, for strong turbulence or long range sound propagation, the incoming 

wave cannot be assumed to be undisturbed. Since it already has been randomly distorted the 

effect of turbulence seems to be saturated and further turbulence will not have much impact 

on the average sound amplitude (Daigle et al. 1983). 
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To include turbulence in sound propagation models it must first be properly described. Since 

it is a random phenomenon, the usual method is to describe it using statistics. Ostashev (1997, 

ch. 6) does this by calculating the structure function of the random fields (i.e. the temperature; 

T̃, the molecular concentration of some component of the air; C̃ and the wind; ui (i = 1, 2, 3)). 

Ostashev also expresses the cross-correlation function between T̃ and C̃ (the wind is assumed 

to be uncorrelated with the temperature and the concentrations) and their three-dimensional 

spectral densities (ΦT, ΦC, Φij and ΦCT). 

 There are three commonly used turbulence spectra that simplify the calculation of these 

statistical properties, the Kolmogorov, the Gaussian and the von Kármán spectrum. 

Expressions for these spectra can be found in Ostashev (1997, ch. 6) and Salomons (2001, ch. 

I.7). 

 These turbulence spectra describe turbulence of all scales and are not especially 

developed with sound propagation in mind. According to Wilson et al. (1999) it is 

unnecessary to try to model all parts of the turbulence accurately since only some of it affect 

sound propagation. Wilson et al. divide the turbulence length scale into three subranges, the 

energy-containing subrange, the inertial subrange and the dissipation subrange. Of these three, 

only the energy-containing subrange and the inertial subrange will affect sound propagation. 

The motions in the dissipation subrange are too small compared to most acoustic wavelengths 

to have any impact. Wilson et al. (1999) suggest that an acoustical filter should be chosen 

based on the actual propagation geometry and investigated frequencies. Then, the turbulence 

spectrum that best describes the turbulence within this acoustical filter should be chosen. 

Wilson (2000) has also developed a three-dimensional spectrum, based on the von Kármán 

spectrum, and suited for sound propagation calculations. 
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2. Meteorology  

Knowledge in meteorology is helpful when doing sound propagation calculations. Therefore, 

this chapter will describe some useful parts of boundary layer meteorology. The two by far 

most important properties of the atmosphere are the wind velocity profile and the temperature 

profile. Beside that, the density and the humidity of the air are needed for calculating 

absorption and the molar concentration of the different components of the air could be used 

when calculating turbulence. Absorption and turbulence have already been covered and are 

not included in the calculation model developed within this project so this chapter will only 

focus on wind velocity and temperature. 

 

2.1. Temperature 

When a small volume of air moves upwards in the atmosphere it will expand since the 

atmospheric pressure is decreasing with height. The work needed to perform this expansion is 

taken from the volume itself and hence, the temperature of the volume is decreased. The 

atmospheric pressure decreases linearly with height and the temperature of a small volume 

travelling upwards will therefore also decrease linearly with height. This decrease is 1°C/100 

m. 

 If also the temperature in the atmosphere surrounding the small volume of air is 

decreasing with 1°C/100 m there will always be temperature equilibrium between the small 

volume and the atmosphere. This kind of atmosphere is said to be neutrally stratified. On the 

other hand, if the temperature in the atmosphere is decreasing with more than 1°C/100 m, the 

small volume travelling upwards will be warmer and have lower density than the surrounding 

air. It will therefore be forced to move upwards even more. This kind of atmosphere enhances 

vertical movements and is said to have unstable stratification. Convective clouds like thunder 

clouds can be formed in an unstable atmosphere.  

 If the temperature is decreasing with less than 1°C/100 m, the small volume will be 

colder and heavier than the surrounding air. It will be forced back towards its original height. 

This kind of atmosphere prevents vertical movements and is said to have stable stratification.  
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Normally (at least at daytime) the temperature in the atmosphere is decreasing with height but 

sometimes there can be an inversion, a layer where the temperature is increasing instead. Such 

a layer is very stable and it prevents vertical movements in the atmosphere effectively. 

Inversions are common during cold winter days and are often visible as they work like lids 

keeping smoke or fog near the ground. 

 

2.2. Wind velocity 

The part of the atmosphere that is of interest for normal sound propagation is the so-called 

friction layer, which is the lowest kilometre of the troposphere. In this layer, the wind is 

affected by friction from the ground surface. The friction layer is divided into two sub-layers; 

the surface layer and the Ekman layer.  

 The thickness of the surface layer varies between just a few metres to about 100 metre 

above the ground, most often being around 10 – 20 metres. In the surface layer the wind 

speed profile usually follows the so-called logarithmic wind law: 

 









=

0

ln*)(
z
zuzu

κ
     (1) 

 

where u is the wind speed, u* is the friction speed which is a measure of the turbulent friction 

(a higher value of u* means that the sound speed is increasing faster with height), κ is the von 

Kármán constant which is dimensionless and has the value 0.4, z is the height and z0 is the 

roughness parameter of the surface. The roughness parameter is about one tenth of the 

roughness elements on the surface. For a shortly trimmed lawn; z0 ≈ 1 mm, and for a forest;  

z0 ≈ 1 m. Of course, undulations of the surface itself also affect the roughness parameter. A 

water surface has a very low roughness parameter, even when there are waves (Lange and 

Højstrup, 1999). 
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The Ekman layer is named after the Swedish oceanographer V. W. Ekman. He found that the 

direction of the ocean currents turns like a spiral with depth, and the same thing happens in 

the atmosphere. This phenomenon can be explained by studying the force balance in the 

atmosphere. Above the friction layer the forces affecting a small volume of air are only the 

gradient force, created by variations in atmospheric pressure, and the coriolis force, which is 

caused by the rotation of the earth. In the surface layer there is also a frictional force. The 

force balances are shown in figure 4. 

 In figure 4 the isobars (lines with constant pressure) are assumed to be parallel. Above 

the friction layer, the wind is blowing parallel to the isobars. This wind is called the gradient 

wind and it is created by differences in atmospheric pressure. Further down in the atmosphere 

the frictional force causes the wind to turn. Since the frictional force increases closer to the 

ground the wind will turn even more, thus creating the spiral shape of the wind direction 

profile that is characteristic for the Ekman layer. 

L

H

Fg

Fc

v

L

H

Fg

Fc

v
Fr

 
 

Figure  4a. Force balance above 

the friction layer. L and H 

represents low and high 

atmospheric pressure. The 

gradient wind is blowing parallel 

to the isobars. The gradient  

force (Fg) is equal to the coriolis 

force (Fc) which is always 

perpendicular to the wind 

direction (V) and pointing to the 

right.  

Figure 4b. Force balance in the 

friction layer. The gradient force 

is the same as in fig 4a but there 

is also a frictional force (Fr) 

pointing in the opposite direction 

of the wind. To obtain a balance 

between the forces the wind must 

cross the isobars. The coriolis 

force is still perpendicular and to 

the right of the wind direction. 
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2.2.1. Low-level jets 

Low level jets are strong winds blowing at a relatively low altitude. They can be caused by 

several factors and are observed over large flat areas, such as oceans, seas and deserts. In 

measurements over the Baltic Sea made by Källstrand (1998) during spring, low level jets 

occurred in 38 out of 52 observations. The two most common factors causing these low level 

jets were inertial oscillations and the sea breeze.  

 Low level jets due to inertial oscillations are created when warm inland air flows out 

over a cold water surface. In the atmospheric layers closest to the surface, turbulence dies out 

and the shear stress between these layers becomes almost zero, thus allowing the wind speed 

to increase drastically with height. Since the oscillation is driven by the difference in 

temperature between the air and the water surface, this type of low level jet is most common 

during spring. 

 It takes some time for the atmosphere to fully develop a low level jet like this. In that 

time, the layers of warm air will travel over the water surface. After about 5 – 7 hours the 

wind speed in the low level jet will have reached its maximum. With an initial wind speed of 

10 m/s the air can travel from one side of the Baltic Sea to the other in that time. A wind 

blowing from the Baltic States will therefore be at its maximum velocity when in reaches 

Gotland. The oscillation normally lasts about 14 hours (Källstrand 1998). Wind speed and 

direction profiles of a low level jet caused by inertial oscillation are given in figure 5. 

 

Figure  5. Typical wind speed and direction profiles for a low level jet caused by inertial 

oscillation (Källstrand 1998). 
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Another cause of low level jets is the sea breeze. Sea breeze is a very common phenomenon 

along the coasts of Sweden during spring and summer. It is created by the summer sun that 

warms the land along the coast. The warm ground will in its turn heat up the air just above it; 

which will rise. At a certain altitude the warm air will start flowing out over the sea. An 

empty space is created over land and air from just above the water surface will start blowing 

in, creating a circulation system along the coast.  

 Wind speed and wind direction profiles a sea breeze are depicted in figure 6. A typical 

feature of this kind of low level jet is the significant change in the direction of the wind. The 

wind is always blowing onshore near ground, while it is reversed higher up due to the 

circulation process described above. Low level jets caused by inertial oscillation do not 

exhibit this change in wind direction.  

 

 
 

Figure  6. Typical wind speed and direction profiles for a sea breeze (Källstrand 1998). 

 

2.2.2. Winds in the Baltic Sea 

SMHI (the Swedish Meteorological and Hydrological Institute) continuously measures the 

wind speed and direction in several places in the Baltic Sea. According to Mårtensson and 

Bergdahl (1987) the average wind speed at 10 m height is 8.32 m/s at Ölands Södra Grund 

and 7.09 m/s at Hoburg (just south of Gotland). 
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Figure  7 Wind speed probability functions for Ölands Södra Grund (ÖSG) and Hoburg 

(Mårtensson and Bergdahl, 1987). 

 

2.3. Turbulence 

As mentioned earlier, turbulence can be regarded as random variations in the properties of the 

air, including the wind speed and the wind direction. Turbulence can either be mechanically 

or thermally created. Mechanical turbulence appears when the wind is blowing over uneven 

ground and the surface roughness causes small eddies of rotating air. Thermal turbulence is 

created by the radiation from the sun. The sun warms the ground which in its turn warms the 

air. If this heating is irregular (due to different properties of the surface for example) or if it is 

very rapid, the heated air will be surrounded by colder air. Since warm air is lighter than cold 

air it will travel upwards in eddies.  

 The turbulence eddies vary a lot in size. Generally the size of the eddies increases with 

height. The scale of the eddies is an important property which is described by an outer and an 

inner scale, where the outer scale, L, is the size of the largest eddies and the inner scale, l0, is 

the size of the smallest eddies. Salomons (2001, p. 207) find that it is quite possible that l0 can 

be of three orders of magnitude smaller than L.  
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3. Water waves 

A flat water surface can be regarded as totally reflecting for sound. It is, however, unrealistic 

to assume that a sea surface is flat. Since a rough surface has somewhat different reflecting 

properties than the corresponding flat surface (chapter 4.3); a calculation model for  

long-range sound propagation over a sea surface should include the effects of water waves. To 

do this, knowledge of water waves and the wave climate in the region of interest is of 

importance.  

 

3.1. A general description of water waves 

A sea surface has a spectrum of different kinds of water waves with different amplitudes and 

wavelengths. The largest waves are caused by the rotation of the earth - they can have a 

period of several months. The smallest waves are the capillary waves, which have a period of 

about a second and an amplitude of a couple of centimetres. Different wave types and their 

size are illustrated in figure 8. 

 

 

Figure  8. Different wave types and their period (Khandekar 1989). 
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3.2. Modelling water waves 

Due to the complexity of the water waves it is hard, not to say impossible, to exactly describe 

a water surface explicitly. Instead, water surfaces are most often described by their spectrum 

or by some other statistical method. The first attempts to describe the sea surface were done 

for the shipping industry and consisted of simple tables of expected wave heights at certain 

wind conditions. During the Second World War empirical diagrams were obtained for the 

relation between water wave frequency, amplitude and wind speed. 

 Today most wave models are based on the energy balance equation: 

 

),,,(),,,( tfSEtfE
t g xcx θθ =∇•+

∂
∂     (2) 

 

where E is the energy density of the wave field, f is the frequency, θ is the propagation angle, 

cg is the group speed of the waves (in deep water) and S is a source function. The effect of 

wind and other atmospheric conditions are included in S. Though this energy balance is an 

exact description of wave propagation, approximate methods must be used to obtain S 

(Khandekar 1989). 

 

3.3. Wind waves 

The wave type that is of interest when studying scattering of sound by a sea surface is the 

wind wave (also called gravity wave). Wind waves are created by the wind, hence their name. 

The damping forces acting on the waves are gravity and, to some extent, surface tension. 

 Wind waves can be described by linear theory which is based on a couple of 

simplifications: 

• The water is of constant depth and the depth is large compared to a wavelength 

• The wavelength is in its turn large compared to the wave height 

• The waves are two-dimensional and of constant form 

• The water is incompressible 

• Viscosity, surface tension and turbulence are neglected 

 

Linear theory yields sinusoidal waves for which the water surface can be modelled by a 

spectrum of waves with varying wavelengths and amplitudes (Bergdahl 2002). 



Sound propagation around off-shore wind turbines 

 

21(87) 

 The wind waves are not transporting any water, only the wave movement itself is 

propagating over the water surface. The water particles perform a circular movement when 

the wave is passing by. If the water depth is limited the circular movement is restricted and 

becomes elliptical (figure 9). 

 

Figure  9. Particle movements for a wave in shallow water (to the left) and deep water (to the 

right). The particle path is circular in deep waters while it for shallow waters is restricted and 

therefore elliptical (Bergdahl 2002). 

 

In wave measurements it is often the period that is measured rather than the wavelength. The 

relation between the period and the wavelength is therefore of importance and it varies with 

the depth of the water (Bergdahl 2002): 

 

In deep water, d>>L: 
π2

2gTL =     (3)  

In shallow water, d<<L: gdTL =     (4) 

  

where L is the wavelength, g the constant of gravity, T the period of the wave and d the depth 

of the water.  
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As long as the wind that creates the water waves is blowing in the same direction; the waves 

will grow until a balance is reached between the energy given by the wind and the energy lost 

due to gravity, inner friction and surface tension. Energy is given to the wave by two 

processes; from the friction between the wind and the water surface and from the pressure 

difference between the upwind and downwind side of the wave (Bergdahl 2002). 

 To begin with, the wind must have a certain speed to be able to create and maintain 

waves; this speed is about 1.1 m/s (Reinius, p 40, 1963). The waves can travel faster than the 

wind speed since the particle velocity in the wave is lower than the speed of the wave. 

Therefore, energy can still be transferred to the wave by friction even if the wind speed is 

slower than the wave (Reinius, p 40, 1963). Even so, for simplicity the maximum wave speed 

can be set as the speed of the wind (Bergdahl 2002). As the wave amplitude grows the speed 

of the wave increases as: LC 25.1=  (valid for deep water).  

 The size of the waves depends not only on the speed of the wind but also the duration of 

the wind and the distance in which the wind is blowing in the same direction (the fetch). Over 

smaller waters, the fetch is often the distance to the opposite shore. Over an ocean or a sea, 

the wind seldom blows in the same direction and speed from one shore to another so then the 

fetch is the estimated region with homogenous wind conditions. 

 Reinius (p 46, 1963) shows in a couple of diagrams of how the wave height and period 

varies with wind speed and fetch. (The diagrams are originally in Swedish but have been 

translated for this report.)  
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Figure  10. Diagrams showing for different wind speeds (U) the significant wave height as a 

function of fetch and the significant wave period as a function of fetch (Reinius, p 46, 1963). 

 

3.3.1. Waves in the Baltic Sea 

Long-term measurements of the wave climate at Ölands södra grund and Hoburg in the 

southern Baltic Sea have been presented by Mårtensson and Bergdahl (1987). The 

measurements were done during 1979 and 1980. They show that the wave climate is “rather 

mild”. The mean wave height at both Ölands Södra Grund and Hoburg is around 1 m and the 

mean period is around 4 s (Mårtensson and Bergdahl, 1987). (Note that the wave height, Hs, is 

the height from the bottom of the wave to the top of the wave; which equals 2B in figure 9.)  
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Figure  11 Wave period (Tz) and height (Hs) probability functions for Ölands Södra Grund (solid 

line) and Hoburg (dashed line) (Mårtensson and Bergdahl, 1987). 
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4. Surface interaction 

When a wave travels in a bounded atmosphere (that is, an atmosphere that is infinite in one 

direction but is restricted in the other by a surface) four different kinds of waves can appear; 

an undisturbed direct wave between the source and the receiver, a reflected wave, a ground 

wave and a surface wave. The three latter waves appear only if the travel path of the sound 

waves is cut off by a surface and they will be described in this chapter. 

 

4.1. Reflection 

Figure 12 describes the geometry of the case of a sound wave travelling from a source to a 

receiver in the vicinity of a reflecting surface. 

 

 

θ θ

Source
Receiver

Image source  
 

Figure  12 A sound wave reflected at a surface will have equal angles of incidence and reflection, 

θ (“law of mirrors”). The total field at the receiver will be the sum of the direct field and the 

reflected field where the reflected field can be seen as a field coming directly from a mirror 

source. 

 

The reflected sound wave can be regarded as a wave coming from an apparent image source. 

If the source is located at (0, 0, z0) and the reflecting surface is at z = 0, then the image source 

will be at (0, 0, -z0). The law of mirror holds so the reflected angle is always the same as the 

incident angle.  
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The amplitude of the image source is the reflection coefficient times the amplitude of the real 

source. If the surface impedance is finite, the reflection coefficient will be less than one and 

some sound energy will be lost at the reflection. The formula for the reflection coefficient 

depends on the wave type. In most cases the formula for plane wave reflection can be used: 

 

1cos
1cos

+
−

≅
θ
θ

Z
ZR      (5)  

 

where R is the reflection coefficient and θ is the angle of incidence. Z is the normalised 

surface impedance for which airs cZZ )/(ρ=  and Zs is the specific surface impedance. Zs 

equals the sound pressure divided by the fluid velocity normal to the surface; Zs = p/(v•n). 

Equation (5) is valid as long as the cumulative height of the source and the receiver is more 

than one wavelength. 

 It is quite a complex matter to describe a real surface and its impedance and several 

methods to do this are available. One method of calculating the normalised impedance Z 

using the effective flow resistivity as only parameter can be found in Embelton et al. (1983): 
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where f is the frequency and σ the effective flow resistivity of the ground. Equation (6) is 

originally from Delany and Bazley (1970) but a sign have been changed by Embelton et al. 

(1983) to make the model accurate for a time-dependence of (e-iωt). Values of σ for some 

common ground surfaces are given in table 2. 

 

Surface type Flow resistivity [csg rayls] 
(1 csg rayls = 1000 Pa s/m2) 

Dry, newly fallen snow, 10 cm deep 15 - 30 
In forest, pine or hemlock 20-80 
Grass covered fields 150 - 300 
Sandy, hard-packed silt 800 - 2 500 
Exposed, rain-packed earth 4 000 – 8 000 
Asphalt sealed by dust >20 000 

Table 2 Effective flow resistivity for different types of natural and artificial surfaces (Embelton 

et al.  1983). 



Sound propagation around off-shore wind turbines 

 

27(87) 

Three more elaborate models are compared by Raspet and Sprague (1990): 

• the so-called rigid back layer which assumes that the surface consists of a rigid layer 

covered with a porous material.  

• a method by Donato where the material’s porosity times the wave number is decreasing 

exponentially with depth. 

• a model where the material’s porosity is decreasing with depth, developed by 

Attenborough. 

Raspet and Sprague (1990) found that the three different methods gave more or less similar 

results. 

 

4.2. Ground and surface waves 

Ground waves and surface waves can be created if certain conditions regarding the surface 

impedance are fulfilled. Even though both wave types have been theoretically accepted for 

some time, they can be difficult to measure. Daigle and Embelton (1990) explain that ground 

waves are created when a curved wave is incident on a surface and hits the surface at an 

angle. The wave will strike the surface with different phase at different places. The ground 

waves propagate in the ground itself. They can only appear in surfaces that have finite 

impedance. Ground waves are of rather little importance for long range sound propagation. 

 

4.2.1. Surface waves 

Surface waves might appear when a sound wave is travelling over a surface with finite 

impedance. They are mainly a low-frequency phenomenon and they are created by the 

horizontal movements of the incoming wave and the vertical movements of either a ground 

wave or of air in the pores of the surface. For rigid surfaces, surface waves can exist if the 

surface is porous enough. The primary condition for the creation of surface waves is that the 

reactance of the surface (the imaginary part of the surface impedance) must be larger than the 

resistance (the real part of the surface impedance). The reactance must also be positive so that 

the surface acts in a spring-like manner.  

  



Sound propagation around off-shore wind turbines 

 

28(87) 

According to Stinson and Daigle (1997) most natural ground surfaces have the properties 

needed for the creation of surface waves. They are, however, most pronounced when the 

surface consists of a thin porous layer over hard ground, for example a thin layer of newly 

fallen snow over an otherwise hard surface. The air in the porous layer will act as a spring 

enhancing the vertical movements of the surface (figure 13). Stinson and Daigle (1997) found 

that the surface waves are to be expected when the reactance of the surface is larger than the 

resistance and in the range 2 < Im(Z)/ρc < 6. If these condition holds, energy from the sound 

wave will be trapped near the surface and create a surface wave that propagates cylindrically 

and independently of the body wave in the atmosphere.  

 

Ground

Atmosphere

Surface wave

 

Figure  13 A surface wave, created by vertical oscillations of the ground and horizontal 

oscillations of the atmosphere. 

 

The surface wave has a phase speed that is less than the speed of sound in the air. It can 

therefore be visible when measuring acoustic pulses as an echo arriving to the receiver 

slightly after the direct pulse. Such measurements have been made by Daigle et al. (1996). For 

continuous sound the surface wave is not explicitly visible but it gives a contribution to the 

sound level near the ground. 

 

4.3. Rough surfaces 

When a sound wave is reflected at a smooth surface, all incoming rays of the wave field will 

be reflected at the same angle. An incoming plane wave will also be reflected as a plane wave. 

The phase difference between different parts of the wave will be the same as before the 

reflection and the reflected sound field will therefore be coherent.  
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If the surface is rough however, the incoming rays will be reflected at different angles. The 

travel times before reflection will also vary and there will be varying phase shifts for different 

rays. Because of this, the reflected rays will interfere with each other and with the incoming 

rays. The reflected field will have a coherent part, smaller than for smooth surface reflection, 

and an incoherent, or diffuse, part. As the roughness of the surface increases the diffuse field 

will become larger than the coherent field (Ogilvy, 1991). 

 

 

Figure  14 Figure showing how the coherent reflected field is decreasing and the diffuse field is 

increasing when the roughness of a surface grows larger (Ogilvy, 1991). 

 

Boulanger et al. (1998) explain that at a receiver, all broadband sound that has been reflected 

by a surface (smooth or rough) will show a sound level minimum at a certain frequency. A 

soft surface will yield a minimum at a lower frequency than a hard. Surface roughness will 

also move the sound level minimum towards a lower frequency. Hence, roughness tends to 

make a surface acoustically softer. 
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5. Sound propagation models 

There are three commonly used methods for calculating sound propagation; the Parabolic 

Equation method (PE), the Fast Field Program (FFP) and ray tracing. The PE and the FFP are 

numerical methods while ray tracing is analytical. Nevertheless, except for quite simple cases, 

numerical methods must still be used to solve the equations in ray theory. A good review and 

comparison of these models with extensive references can be found in an article by 

Attenborough et al. (1995). 

 

5.1. The Fast Field Program 

Salomons (2001, p. 49) explains the fundamental method of the Fast Field Program: “The 

Fast Field Program (FFP method) is based on a Fourier transformation of the wave equation 

from the horizontal spatial domain to the horizontal wave number domain. The transformed 

wave equation is solved numerically, and the solution is transformed back to the spatial 

domain by an inverse Fourier transformation.”  

 This transformation from the spatial domain to the wave number domain demands that 

the atmospheric and ground conditions are independent of range. That means that the 

atmosphere must be layered and each layer must be constant. It also means that the 

atmospheric properties and the ground surface cannot change along the propagation path.  

 One way of doing the transformation is to start with the wave equation for an 

inhomogeneous atmosphere: 
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and 
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Dt
D

p v
av

φ
ρ−=      (8)  

 

where ρav is the average atmospheric density (as a function of height), φv is the velocity 

potential, c is the sound speed and p the sound pressure. D/Dt is the total derative for a frame 

moving with the medium; D/Dt = ∂/∂t + vav⋅∇ (Salomons 2001, p. 144). 

 Doing a double Fourier transform of (7) and (8) from the spatial domain (x, y, z) to the 

horizontal wave number domain (kx, ky, z) and neglecting small terms, the homogeneous 

Helmholtz equation in the wave number domain is derived: 
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where P is the transformed sound pressure, the wave number km = k – kxvx/c – kyvy/c and the 

wave number kmz
2 =  km

2 – kx
2 – ky

2.  

 Since the wave number is constant in each layer (9) can be simplified before solving. 

After doing that and defining the boundary conditions, (9) can be solved stepwise from the 

ground surface and upwards (Salomons 2001). 

 As said above this basic form of the FFP has a major drawback since it cannot handle 

range-dependent atmosphere or ground. This also means that this FFP cannot include 

turbulence since that is a kind of range dependence. However, L’Espérance et al. (1995) have 

developed an alternative version of the fast field program called CERL-FFP which can 

include turbulence in a mildly refracting atmosphere. Also Raspet and Wu (1995) have to 

some extents managed to include turbulence in the FFP.  

 Quite recently a kind of range dependence has been made possible by combining the 

FFP with boundary element methods. The calculations are made stepwise in range and the 

boundary conditions between two steps are set to match each other. Schmidt et al. (1995) use 

such a combination of the FFP and boundary element methods to introduce range dependence 

for underwater acoustics. For atmospheric acoustics, Taherzadeh et al. (2001) have developed 

a similar method for predicting barrier effects.  
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5.2. The Parabolic Equation method 

The PE method is another numerical method, or rather a family of methods, for calculating 

sound propagation. The solution is valid in the far field only. In the PE method, the 

approximation of the wave equation leads to a parabolic equation, hence its name. Two 

versions of the PE method will be described here: the Cranck-Nicholson PE (CNPE) and the 

Green’s function PE (GFPE). The CNPE is the older of these two. 

 In the PE method, the sound field is calculated step-wise along the direction of 

propagation. This allows for including range dependence in both the atmospheric and the 

ground conditions. Robertson et al. (1996) have investigated long range, low-frequency sound 

propagation over impedance discontinuities with the PE method and found that it is well 

adapted to handle such cases.  

 In both the CNPE and the GFPE the ground surface is assumed to be flat. Small scale 

roughness can be incorporated directly into the model by modifying the surface impedance 

(see chapter 11.3). Large scale roughness such as a smooth undulating terrain can be taken 

into account by using the generalized terrain PE (GTPE) which is based on the CNPE. 

However, the angle restriction of the wide-angle PE still holds so the gradient of the terrain 

profile cannot be too steep (Sack and West, 1995). 

 

5.2.1. Crank-Nicholson PE 

For the CNPE, as for all PE methods, the sound speed and the ground conditions can vary 

with range. Axial symmetry is often assumed in sound propagation calculations. It means that 

only a plane in the x,z-domain is being studied; which reduces the calculation from a  

three-dimensional problem to a two-dimensional problem. PE methods can be used in three 

dimensions as well, though it would lead to quite time consuming calculations.  

 The original formulation of the CNPE was limited to quite small propagation angles, 

giving restrictions on the relation between the source and the receiver height. Later a so-called 

wide-angle PE was developed, which increased the possible propagation angle, but it is still 

restricted to around 30 degrees.  

 Thorough descriptions of the development of the CNPE can be found in Lee and 

McDaniel (1987) and West et al. (1992). 
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5.2.1.1. Low-angle CNPE 

For the two-dimensional case, the starting point is the Helmholtz equation in two dimensions: 
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where k is the wave number and xp=Ψ  which includes the assumption of axial symmetry.  

 Introducing the operator Q as Q = ∂2/∂z2 + k2, and only considering outgoing waves 

yields: 
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for which a solution can be written as 

 
xikezxzxΨ 0),(),( ϕ=      (12) 

 

where φ is the velocity potential (proportional to the sound pressure) which works like an 

envelope for the sound pressure. The wave number k0 is a reference value which can be 

chosen as k0=ω/c0, c0 being a reference sound speed. The standard low-angle PE is obtained 

by inserting this into (10) and omitting second order deratives (West et al. 1992): 
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5.2.1.2. Wide-angle PE 

Introducing another operator, q, as 
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Now qkQ += 1(0 . Expanding q+1  and omitting q2 and higher powers of q will lead to 

equation (13). However, the wide-angle PE can be obtained by using a more accurate 

expansion:  

 

4

4
3

q

q

q
+

+
≅+

1

1
1      (15) 

 

which is quadrically accurate in q and gives the wide-angle CNPE: 
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5.2.1.3. Ground boundary condition 

The surface impedance is equal to the ratio between the sound pressure and the normal 

particle velocity: 
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If the second order CNPE is used, the boundary condition should also be of second order. The 

second order finite form of (17) is (West et al. 1992): 
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5.2.1.4. Upper boundary condition 

The upper boundary condition must be written so that the sound waves are not reflected back 

into the calculation region. This can be solved by creating an absorbing layer in the upper 

region where the absorption increases with height. This is suggested both by West et al. 

(1992) and Salomons (2001, p. 172).  

 At the top of the calculation grid a boundary condition is placed with an impedance of 

Zs = 1. This impedance will cause vertically travelling plane waves to vanish. Waves that hit 

the surface with an angle will be somewhat reflected though, and these must be taken care of 

before reaching the essential parts of the calculation area. The absorbing layer in the upper 

part of the calculation grid will eliminate such reflected waves. The absorption is added as an 

imaginary term to the wave number: 
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where ka(z) is the modified wave number, k(z) the original wave number, At is a constant, zt is 

the height where the absorbing layer begins and zM is the top of the calculation area. At varies 

with frequency. According to Salomons (2001, p. 172), good results are obtained by choosing 

At=[1, 0.5, 0.4, 0.2] for f = [1000, 500, 120, 30] Hz.  

 The thickness of the absorbing layer must be chosen carefully. If the layer is too thin it 

will not remove all unwanted reflections while a too thick layer will unnecessarily increase 

the computation time. West et al. (1992) says that ten wavelengths is the minimum thickness 

while Salomons (2001, p. 172) says that fifty wavelength is on the safe side. 

 The height where the absorbing layer begins is also of importance. Salomons states that 

in a downward refracting atmosphere, the absorbing layer must be placed over the highest 

turning point of the sound rays. For an atmosphere with a typical logarithmic wind speed 

profile the maximum height of a sound ray is in the order of h ≈ 0.02r where r is the range 

(Salomons 2001, p. 172). 
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5.2.2. The Green’s Function PE 

The GFPE is an alternative formulation of the PE method. The GFPE can use longer 

calculation steps in the horizontal direction and is therefore faster than the CNPE. For the 

CNPE the maximum step size in both the horizontal and the vertical direction is a tenth of a 

wavelength while for the GFPE the step size in the horizontal direction can be as large as 50 

wavelengths. The GFPE is on the other hand not as accurate as the CNPE for sound 

propagation with wide-angle propagation and large sound speed gradients (Salomons 2001, p. 

164). 

 The GFPE starts with the Helmholtz equation in two dimensions: 
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where xpq =  is the sound pressure taking axial symmetry into account, note that Salomons 

(2001) and West et al. (1992) use different annotations for this term.  The atmosphere is as a 

first approximation assumed to be homogenous, non-refracting and unbounded; hence the 

wave number k is a constant. A Fourier transform is applied on (20) (Salomons 2001, p. 182): 
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Equation (21) can be rewritten as 
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where the first term represents waves travelling in the positive r-direction and the second term 

represents waves travelling in the negative r-direction. The second term is omitted, since only 

forward-propagating waves are of interest. The first term has the solution (written in finite 

differential form): 
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 An inverse Fourier transform of (24) yields: 
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For an atmosphere that is bounded by an impedance plane the equation (25) will be more 

complicated. There will be three waves to take into account, the direct wave, the reflected 

wave and also a surface wave (Salomons 2001, p. 191). 

 

5.2.2.1. The GFPE for refracting atmosphere 

There are different ways to obtain the GFPE for a refracting atmosphere with a surface 

boundary. One of the formulations given by Salomons (2001, p. 191) will be described briefly 

here.  Equation (20) can be rewritten as 
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where the operator H2(z) = k2(z) + ∂z
2.  
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For one-way propagation: 
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where H1 is another operator that satisfies H1
2 = H2. If the wave number is written as  

k2(z) = ka
2 + δk2(z) where ka is a constant, equation (27) can be expressed as the sum of two 

terms: 
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where the first term represents the wave propagation in the corresponding non-refracting 

atmosphere and the second term is due to the effect of refraction. The finite difference form of 

(28) is obtained by integrating from r to r + ∆r: 
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The first term in this expression is the refraction term. The GFPE for refracting atmosphere is 

hence obtained by multiplying the solution at each range step with a phase factor (Salomons 

2001, p 192). 

 

5.2.3. Incorporating turbulence in the PE-method 

Since both the CNPE and the GTPE can handle range depending variations in the sound speed 

they are well fit to include turbulence. Salomons (2001, p. 221-229) gives a method of how to 

include turbulence in the PE-method by using the statistical properties of the fluctuating 

refraction index. The easiest and least time-consuming way to incorporate turbulence is to 

multiply the sound field with a phase factor at each range step. The value of this phase factor 

is determined from the appropriate turbulence spectrum (chapter 1.3). 
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5.3. Ray theory 

Ray theory, or geometrical acoustics, is, unlike the FFP and the PE methods, an analytical 

method. The basic method consists of two steps; finding the sound rays that goes from the 

source to the receiver (ray tracing) and calculating the sound pressure at the receiver by 

adding the contributions from each ray. A sound ray follows a fundamental law called 

Fermat’s principle. “Fermat’s principle is that the actual ray path connecting xA and xB is such 

that it renders the travel-time integral TAB stationary with respect to small virtual changes in 

the path.” (Pierce 1991, p. 376) Fermat’s principle is valid also for abrupt changes in the paths 

and predicts both the law of mirrors and Snell’s law. 

 The ray tracing equations are given by Pierce (1991, p. 375): 
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where x is the path of the ray, v is the velocity of the medium if it is in motion, s is the ray’s 

slowness vector defined as s = n/(c + v·n), n is the normal of the wave front and Ω = 1 - v·s.  

 For a stratified moving medium, Ostashev (1997, p. 73) expresses the ray tracing 

equations as  
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where r is the horizontal path of the curve, a is the horizontal part of the wave vector, q is the 

vertical part of the wave vector, v⊥ is the horizontal velocity of the medium, vz is the vertical 

velocity of the medium and k is the magnitude of the three-dimensional wave vector  

k = (a2+q2)½. By substituting (32) into (33) the ray path can be solved numerically. 
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When all rays from the source to the receiver have been found, the total sound pressure at the 

receiver can be calculated as the sum of the sound pressure (phase included) from each 

contributing ray: 

 

∑=
m

i
m

meAp φ        (34) 

 

where 
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is the amplitude of ray m, fm is a focusing factor, Cm is the reflection coefficient of the ground 

and Nm is the number of reflections ray m has undergone. The phase of the ray is given by 

φm=ωtm where ω is the angular frequency and tm is the travel time for the ray (Salomons 2001, 

p. 242). This way of adding contributions from single rays makes it possible to easily include 

the effects of turbulence. Since turbulence will cause variations in the sound pressure a 

fluctuating term is simply added to the sound pressure in (34). Hence 
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The term ψm is determined by the appropriate turbulence spectra (Salomons 2001, p. 260).  

 In ray theory, the sound amplitude of a ray is calculated by assuming that a certain 

amount of sound energy is passed along a tube surrounding the ray. The area of this tube is 

decided by the normal distance between two adjacent rays. At some points, for example 

where two rays intersect, the area of the tube goes towards zero, thus theoretically creating an 

infinite sound pressure at that point. These points form surfaces which are called caustics. 

 In reality, the sound pressure is high at caustic surfaces but not infinite. To obtain the 

real sound field, a caustic diffraction field needs to be added to the theoretical field. Another 

effect of caustics is that the rays touching a caustic surface undergo a phase shift of –π/2. 

Salomons (1998) have presented a ray tracing method that can handle caustics in an arbitrary 

downward refracting atmosphere. A thorough description of caustics as well as ray theory can 

also be found in Salomons (2001, app. L). 
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At long ranges and with the presence of wind and temperature gradients as well as a finite 

impedance ground it can be difficult to maintain a strictly geometrical approach to ray tracing. 

L’Espérance et al. (1992) have developed a method based on geometrical ray tracing often 

referred to as the heuristic model. The model takes refraction from a linear sound speed 

profile into account as well as geometrical spreading, absorption, ground effect and 

turbulence. The heuristic model has been shown to give good agreement with other 

propagation models at long ranges (Attenborough et al., 1995). It was believed that diffraction 

effects due to caustics were to distort the results at long ranges, but that seems not to be the 

case. Raspet et al. (1995) compared the heuristic model with FFP for long ranges using a 

realistic ground impedance. They also found good agreement and showed that the sound rays 

that are subject to strong caustic diffraction will be absorbed by the ground and can therefore 

not affect the result. The heuristic model has had quite a large impact on ray tracing since it 

was presented and several models based on or similar to the heuristic model has been 

developed since then (Li, 1996 and Li et al., 1998). It is also used in the Nordic 

Environmental Noise Predicion Methods; Nord2000 (Kragh et al. 2002). 
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6. Scattering models 

Modelling scattering of waves by rough interfaces is of interest not only in acoustics but also 

in optics and more general electromagnetics. Even though the waves are very different in 

these fields, the wave theory remains the same in many aspects. In Ogilvy (1991), in-depth 

explanations of different scattering theories are given. Two of these (perturbation theory and 

Kirchhoff theory) are discussed in the beginning of this chapter since they deal with some of 

the fundamentals concerning scattering theory. In the latter part of the chapter some more 

acoustic-oriented scattering models are described. 

 

6.1. Perturbation theory 

The basis of all kinds of perturbation theory is to develop a model for a normal state and then 

make small additions (perturbations) to this state. In this case it means that the reflected field 

is calculated as if the surface was smooth and then adding perturbations. There are the 

following restrictions on the roughness of the surface and the wave number of the sound: 

 

k | h(x,y) | << 1     (37) 

|∇ h(x,y) | << 1     (38) 

 

where h(x,y) is a function describing the surface, ∇h(x,y) its gradient and k is the wave 

number (Ogilvy 1991, p. 39). The surface function h(x,y) is assumed to have a mean normal 

plane at z = 0. These restrictions mean that the height (or depth) of the roughness should be 

small compared to the wavelength (expressed as the wave number), and that the steepness of 

the roughness should be small compared to one. 

 In perturbation theory there are two commonly used boundary conditions, the Dirichlet 

and the Neumann boundary condition. The Dirichlet boundary condition is that the field is 

zero on the surface: 

 

0)( =Ψ r   when z = h    (39) 
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The reflected field is expanded as a sum of terms: 

 

L+Ψ+Ψ+Ψ+Ψ=Ψ scscscsc
sc 3210      (40) 

 

Equation (40) shows the perturbation procedure, the term ψ0
sc is in fact the reflected field in 

the case with a smooth surface (the coherent field) and the remaining terms are perturbation 

terms. Only considering terms of the first order, the first scattering term can be calculated as 
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where G(r,r0) is the half-space Green’s function and SM is the reflecting surface (Ogilvy 1991, 

pp 40-41). 

 If the surface mean height is zero, that is if 〈h〉 = 0, the first scattering term will also 

have a zero mean value; 〈ψ1
sc〉 = 0. This is because the phase shifts are equally distributed so 

that the mean amplitude of the diffuse field will be zero. Hence, with this model, the coherent 

field will be the same as in the case of a smooth surface. On top of this there will be a diffuse 

field so, when calculating the intensity of the total reflected field, this model (to the first 

order) is not energy conserving. However, if the roughness is small, this error will be 

negligible. The intensity of the diffuse field is calculated as 

 
scscI 11)1( ψψ=      (42) 

 

where the second term in the parenthesis is the complex conjugate of ψ1
sc (Ogilvy 1991, p. 

41). Another suitable boundary condition is the Neumann boundary condition: 

 

0
0

=
∂
∂
n
ψ   when z = h    (43) 

 

that is that the gradient of the field with respect to the surface normal, n0, should be zero on 

the surface.  
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If the boundary condition is expressed in terms of rectangular coordinates, the expression for 

the field using the Neumann boundary condition will be more complicated than when using 

the Dirichlet boundary condition. However, the method of solving the problem is more or less 

the same. The reflected field is written as a sum of terms where term zero is the coherent 

field. This field will again not be affected by the rough surface; instead the roughness only 

creates an additional diffuse field. The roughness must therefore be small or the error caused 

by not conserving energy will be too large (Ogilvy 1991, pp. 43-46). 

 The accuracy of perturbation theory can be increased by using more terms in the 

expansion of the reflected field. Doing so will also to some extents include the effect of 

multiple reflections. Having said that, if the gradient of the surface (that is the steepness of the 

roughness) is small and the incoming angle of the sound also is small, perturbation theory to 

the first or second order is often accurate enough (Ogilvy 1991, pp. 59-63). 

 

6.2. Kirchhoff theory 

Ogilvy (1991, ch. 4) describes a method based on Kirchhoff theory that can be used to 

calculate the reflected field from a random rough surface. The method can be applied to 

roughness larger than kh < kb << 1 where h is the height of the roughness and b the distance 

between them, but the roughness must be smooth and the reflection must take place in the far 

field. Since it is assumed that the roughness is random, Ogilvy uses statistical methods to 

describe the surface. The calculated reflected field will therefore also be described by its 

statistics and the mean intensity is calculated rather than the exact value of the sound pressure 

amplitude.  

 The coherent and the diffuse field are calculated separately and later added to obtain the 

total field. The coherent field is obtained from the average amplitude of the scattered field. It 

can be calculated knowing the phase differences between the incoming and the reflected field 

(which depend on the surface statistics). 
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where 〈ψe〉 is the contribution from the edges of the reflecting surface, F is a coefficient 

depending on the angle between the incoming field and the surface (SM), φ(x0,y0) is the phase 

function and p(h) the probability function of the surface (Ogilvy 1991, p. 85). 

 In the diffuse field the phase differences are such that the mean amplitude would be 

zero so instead, the mean intensity is calculated: 
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where scψ  is the complex conjugate of the scattered field and A, B, C and F are coefficients 

that depend on the angle between the incoming field and the surface. These formulas are valid 

for a plane, monochromatic incoming wave )( ik inci
inc e=ψ . The reflection coefficient of the 

surface is assumed to be constant (Ogilvy 1991, p. 87). 

 If the surface is motionless, isotropic and has a Gaussian probability function, equation 

(44) and (45) leads to an exact analytical solution of the reflected field.  

 

6.3. Boss theory 

Boss theory applies to surfaces that can be described as a flat surface covered with a 

distribution of bosses (hemispheres, half-cylinders, half-ellipsoids etc). In boss theory, the 

roughness is included in the boundary condition most often as a modification of the surface 

impedance. 

 

6.3.1. Early boss theory 

Modern boss theory is mainly based on the parallel work done by Twersky and Biot during 

the 1950’s and 1960’s. They will be discussed here as an introduction to boss theory. 
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6.3.1.1. Twersky’s work 

Twersky developed a boss theory which yields an approximation of the power reflection 

coefficient and the phase change after the reflection for a random distribution of bosses on a 

rigid or free plane. His work is presented in a number of papers. Two different ways, 

depending on frequency, to calculate the variables stated above are presented by Burke and 

Twersky (1966). 

 Burke and Twersky (1966) give a general case where a plane wave is incident on a base 

plane, which has “uniformly random distribution of parallel arbitrary, identical cylindrical 

protuberances”. The power reflection coefficient for the coherent field becomes: 
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where 
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n is the average number of scattering elements per length and ϕ0 is the direction of 

observation. For low frequencies, f is calculated as a sum of the scattering amplitude of a 

single protuberance, which will be correct to the eighth and sixth power of the real and the 

imaginary part of the frequency, respectively. For high frequencies, Burke and Twersky 

(1966) uses a “Kirchhoff-type” approximation.  

 The incoherent scattering in a direction ϕ is specified by the scattering cross-section, σ: 
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where s = icosϕ + jsinϕ.  
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When combining the coherent and incoherent fields the total reflected power, averaged over 

one period, is obtained: 
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P is here normalised by the time-averaged incident power density, s is a unit vector as above, 

pointing from the point ys on the plane to the observation point r. 

 The expressions for R and σ are approximations but follows expected behaviours like  

R → 1 when ϕ0 → π/2. It is observed that the power reflection coefficient only depends on the 

boss dimension perpendicular to the reflected plane for high frequencies while it for low 

frequencies depends on the dimension in both directions (Burke and Twersky 1966). 

 

6.3.1.2. Biot’s work 

At the same time, another boss theory was developed by Biot (1968). Biot represents the 

scattering by roughness as a boundary condition and after expressing this boundary condition 

the surface can be regarded as smooth. It is valid for roughness small compared to a 

wavelength. Except for that condition, the roughness can have arbitrary shape and distribution 

over the surface.  

 The scattered field is represented as a continuous distribution of sources and dipoles 

(sources = monopoles). Biot considers first the case where the scatterer is a single solid sphere 

of radius a. The scattered field can be represented as the sum of the fields from a dipole and a 

monopole .The dipole field has the velocity potential ϕd: 

 

Fad ∇⋅
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2
1 Uϕ      (50) 

 

where U0 is the velocity of the incident wave at the origin, F = e/R-ikR and R = (x2+y2+z2)1/2. 
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The monopole field has the velocity potential ϕs: 

 

FDas 0
3)3/1(=ϕ      (51) 

 

where D0 = ∇ ⋅ U and U is the velocity field of the incident wave in the absence of the sphere.  

The total scattered field is the sum of the dipole and the monopole. It is shown by Biot (1968) 

that these two terms are of the same order and both must therefore be considered.  

 As said above, a rough surface can be represented by a distribution of monopoles and 

dipoles over the surface and this distribution of sources can be included in a boundary 

condition. According to Biot the boundary condition will be ∂φ/∂z = ∂φs/∂z (for a smooth 

surface the corresponding boundary condition is ∂φ/∂z = 0). φs is the velocity potential for the 

total field scattered by a rough surface and 

 

πµ
µµ

π
φφ 2)(2 −

∂

∂
+

∂
∂

−=
∂

∂
=

∂
∂

yxzz
yxs     (52) 

 

Here µx and µy are the densities of the dipole magnitudes and µ is the density of the monopole 

magnitude. These densities are what must be determined from the properties of the rough 

surface. 

 If the bosses on a rough surface are closely packed, the scattered field from the 

individual bosses will interact with each other, which must be taken into account. It is mainly 

the field from the dipoles that interact. Biot introduces a coefficient κ = 1+π2a3/4b3 where a is 

the size of the bosses and b the distance between them. It is obvious that this term quickly 

goes towards 1 as b increases. κ is included in the formulas by µx’=(1/κ)µx and µy’=(1/κ)µy 

where µx’ and µy’ are the dipole densities corrected for the interference between the dipoles.  

 Different boss shapes will of course affect the scattered field. A shape factor σ is 

therefore introduced where σ = 1 for hemispherical bosses, σ > 1 for sharp roughness and  

σ < 1 for flat roughness. The shape factor is included in the dipole densities as µx’=σµx and 

µy’=σµy. In a similar manner, Biot’s model can also easily include the effects of non-uniform 

roughness where the boss density, spacing or shape varies over the surface.  

 Biot (1968) also shows that the roughness can induce a surface wave, which propagates 

along the surface and dies out exponentially away from the surface (see chapter 4.2.1).  
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6.3.2. Modern boss theory 

Tolstoy (1984) has expanded the theories of Biot for low-frequency scattering. Tolstoy also 

gives a description of Twersky’s boss model (which is valid also outside the low-frequency 

domain) but thinks that it is over-elaborate for the low-frequency case and, most importantly, 

cannot include scattering motion.  

 The low-frequency constraint of Tolstoy’s boss model is: kb ≅ kh ≤ 1. That is that the 

height of the bosses (b) as well as the distance between them (h) should be small compared to 

the wavelength. The boundary condition used in this domain is 

  

ηφ
φ

=
∂

∂
z

s       (53)

      

where φs is the potential of the scattered field and φ is the total acoustic potential (if φ0 is the 

velocity potential of the field in the absence of roughness φ = φ0 + φs). The main problem here 

is to determine η which Tolstoy (1984) does for some different kinds of boss shapes. 

 Medwin et al. (1984) compares Tolstoy’s theories with experiment. They find good 

agreement for closely packed spherical and cylindrical bosses. However, with steep-sloped 

roughness elements and when the bosses are separated, there are significant differences 

between theoretical values and measurement results. Boulanger et al. (1998) find that 

Twersky’s theories are more complete than Tolstoy’s and that they include the effects of 

incoherent scattering and interactions between the scatters. Boulanger et al. generalise 

Twersky’s semi-cylindrical theory to include other geometrical forms like triangular bosses 

and bricks. The general form for the surface admittance is 

 

ξηβ i−=       (54) 

 

where the imaginary part ξ is constant for all forms. 
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( )[ ] )(sinsincos1 3222 kOkV +++−= αϕϕδξ    (55) 

 

where k is the wave number, V is the raised cross-sectional area of the bosses, ϕ is the 

horizontal angle between the normal axis of the bosses and the propagation direction, α is the 

angle of the incoming sound wave (α=π/2 for grazing incidence) and δ is a measure of the 

dipole coupling which depends on the shape of the bosses (Boulanger et al. 1998). 

 The real part, η, is zero for periodic scattering. Otherwise it depends on the shape of the 

bosses. For semi-cylinders η becomes 
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where n is the number of bosses per unit length, a is the radius of the semi-cylinders and the 

term (1-W2) is a packing factor for randomly distributed bosses. W = b*/b where b* is the 

minimum period and b is the mean period of the bosses. For triangular and semi-elliptical 

bosses: 
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      (57) 

 

where b is the base of the triangle or semi-ellipse. (Note the difference to Tolstoy who uses b 

as the height of the bosses.) The theory is compared with measurements and good agreement 

is found for small wooden slats and rods (Boulanger et al. 1998). 

 So far, all the theories considered here have been concerned with hard surfaces. 

Attenborough and Waters-Fuller (2000) expand the theories of Twersky and Tolstoy for 

surfaces with finite impedance. The basis is Tolstoy and Biot’s expression for the surface 

admittance but results from Twersky are also used to include incoherent scattering.  
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The normalised surface admittance becomes: 
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       (59) 

 

where ε01 is a factor depending on the cross-sectional area V, the densities of the atmosphere 

and the ground and the shape of the bosses, β  is the normalised admittance for the 

corresponding smooth surface. Other variables are defined according to equation (56) and 

(57). The model is valid for bosses that are small compared to a wavelength, such as kh < kb 

<< 1. Theoretical calculations are compared with measurements in the paper and they show 

fairly good agreement (Attenborough and Waters-Fuller 2000). 

 Tolstoy (1984) compares the boss theory with perturbation theory, saying that 

perturbation theory is useful when the exact contours of the surface is not known, only its 

statistics, and it is valid for both low and high frequencies. It is restricted though, to random, 

gently undulating roughness. Hence there are restrictions not only on roughness size but also 

on the steepness of the roughness.  

 

6.4. Boundary element integrals  

In the paper by Boulanger et al. (1998) they use a boundary integral equation method (BIE) 

by Chandler-Wilde and Hothersall (1985) for roughness that exceeds the domain  

kh < kb << 1. The BIE is originally developed for flat surfaces with varying impedance but 

can be used for rough surfaces as well though the discretisation of the surface must be finer 

than for a corresponding flat surface.  
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The BIE method begins with the inhomogeneous Helmholtz equation for an acoustic field 

above an impedance plane: 

 

)()()( 22 rr fk =+∇ φ      (60) 

 

where φ(r) is the velocity potential. The boundary conditions are the ground surface and the 

Sommerfeld radiation condition: 
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where n is the normal to D, β is either 0 (for a rigid surface) or Re β > 0 (for a locally reacting 

surface) and ε is ½ for two-dimensional and 1 for three-dimensional sound propagation. The 

solution for this boundary problem can be expressed by the following integral: 
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and 

 

)(),()()( 0000 rrrrr dVGf
D∫=φ     (64) 

 

where ∂D is the surface and G(r,r0) is the Green’s function to the corresponding source (line 

or point source) at r0 (Chandler-Wilde and Hothersall, 1985). The surface ∂D can now be 

divided into segments of different surface impedances or different surface elevations 

(Boulanger et al. 1998). 
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7. Method 

7.1. Calculation model 

The calculation model developed in this project is the wide-angle CNPE such as it is 

described by West et al. (1992) with some adjustments; the upper and lower boundary 

conditions are somewhat differently expressed as well as the formulation of the source. These 

adjustments all follow Salomons (2001, App G).  

 The ground boundary condition is of second order using the normalised surface 

impedance (Salomons 2001, p. 171): 
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where ∆z is the step size in the vertical direction and p0, p1 and p2 are the sound pressure in 

three subsequent calculation points. The upper boundary condition is set as thick as fifty 

wavelengths as advised by Salomons (2001, p. 172). This is probably more than enough but 

due to the long calculation ranges even minor reflections from the upper boundary might 

accumulate and create significant errors, so, it is seems best to be on the safe side when it 

comes to the thickness of the absorbing layer. The absorbing layer is described by: 
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where At is a frequency-dependent constant. Here At = 0.242 (Salomons 2001, p. 172). 
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The starting field is a unit point source located at the source height zs.  
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where: 
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A0 = 1.3717, A2 = -0.3701 and B = 3 are constants. C = (Z-1)/(Z+1) is the reflection 

coefficient and k0 is the vertical wave number which is assumed to be constant (Salomons 

2001, pp 178-179). 

 Having expressed the boundary conditions, the starting field and knowing the sound 

speed profile, the finite form of the wide-angle CNPE can be expressed. First, the wide-angle 

PE, equation (16), is repeated: 
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The expression within the brackets in equation (69) is restated as 
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for which E = aT + D where: 
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T is a sparse matrix:  
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Where s1 and s2 introduce the ground boundary condition: 
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An equivalent boundary condition is placed at the top of the calculation grid with Z = 1. D is a 

diagonal matrix: 
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is the variable that introduces refraction. Two matrices, M1 and M2, are created as: 
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Now the finite difference form of the sound field can be expressed: 
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The result of the PE model is the sound pressure “envelope” term ϕ at each point in the 

calculation grid. To obtain the pressure, ϕ is divided by the square root of the distance to the 

source )( x  (which takes into account geometrical spreading in the horizontal range) and 

multiplied with the source strength (in this case the source strength is one, so this term is 

omitted). The relative sound pressure level is calculated as 

 











=

0

log20
p
p

Lp      (78) 

 

where p0 is the sound pressure one calculation step away from the source (West et al., 1992). 

 

7.2. Impedance model 

To include the roughness of the water waves, the boss model suggested by Boulanger et al. 

(1998) is used. The semi-elliptical boss profile or the triangular profile seems to be the best 

representation of a water surface since they can be expanded in width in a way a semi-

cylindrical profile cannot. The impedance of a surface is: Z = (1/β) = 1/(η + ξi). For a surface 

covered with triangular or semi-elliptical bosses the real and the imaginary part of the relative 

admittance, β, become: 
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where α is the angle of the incoming sound wave (α=π/2 for grazing incidence), ϕ is the 

horizontal angle between the normal axis of the bosses and the propagation direction, k is the 

horizontal wave number, b is the period of the bosses, V is the raised cross-sectional area of 

the bosses, (1-W2) s a packing factor and δ is a measure of the dipole coupling which depends 

on the shape of the bosses (Boulanger et al., 1998). 
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The dimensions of the bosses are chosen to resemble the wave conditions of the Baltic Sea. 

According to Mårtensson and Bergdahl (1987) the mean wave height at Ölands Södra Grund 

and Hoburg is 1 m and the mean period is 4 s. Using equation (3) and (4) this corresponds to a 

wavelength of about 25 m for deep water conditions and somewhat more for shallow waters.   

 A Fourier analysis has been made to relate the height of the bosses with the height of 

the water waves. The amplitude of the first cosine term in the Fourier expansion is assumed to 

correspond to half the wave height. This is, of course, a simplification but the method still 

gives realistic results. One-metre high waves correspond to semi-ellipses of 0.89 m and 

triangles of 1.25 m height.  

 The profile geometry is shown in figure 15. If nothing else is stated, the properties of 

the surface profiles are as defined in table 3. The period of the profiles is assumed to vary 

randomly.  
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Figure  15 Geometry of the semi-elliptical boss profile. 

 

Surface name Height (b) Base (L) Mean period (2L) Min period (1.8L) 
Semi-elliptical 0.89 m 14 m 28 m 25.2 m 
Triangular 1.25 m 14 m 28 m 25.2 m 

 

Table 3 Definition of surface profiles. 
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It should be noted that the boss model by Boulanger et al. (1998) has a low-frequency 

constraint. The height of the roughness (b) must be small compared to a wave length such as  

kb < 1. This gives that the semi-elliptical boss profile of height 0.89 m is valid for frequencies 

below 60 Hz and the triangular profile of height 1.25 m is valid for frequencies below 43 Hz. 

Using the triangular boss profile for 50 Hz is to exceed the limitation of the model slightly. 

The semi-elliptical boss profile is therefore used in most of the calculations. 

 Calculations are also made using natural ground surfaces. The impedance model 

suggested by Embleton et al. (1983) is used for surfaces with flow resistivity of σ = 50 rayls 

(which corresponds to a forest floor) and for σ = 500 rayls (hard grass surface).  
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The impedance of the surfaces used is shown in table 4. 

 

Surface Impedance Equation 
Flat, totally reflecting Infinite  
Semi-elliptical 172.92070 + 108.74228i  (79) & (80) 
Triangular 50.600603 +24.030437i (79) & (80) 
Forest floor 10.0800 +11.9000i (81) 
Grass surface 52.0606+63.9068i (81) 

 

Table 4 Calculated impedances at 50 Hz of the different surface types used in the calculations. 

 

7.3. Sound speed profile 

The model includes the effect of refraction by using the effective sound speed. Calculations 

are made for a logarithmic wind profile with varyingly strong refraction and a low level jet 

constructed after measurements by Källstrand (1998).  
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The sound speed profiles with logarithmic wind are expressed as: 
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where c0 is the nominal sound speed set to 340 m/s, b is a refraction constant and z0 is a 

reference height. Note that (82) differs slightly from (1) and that z0 in this case does not 

correspond to the surface roughness parameter. 

 Using b = 2.5 m/s and z0 = 0.5 m leads to a wind speed of 8 m/s at 10 m height, which is 

roughly the mean wind speed at Ölands Södra Grund and Hoburg (see chapter 3.3.1). This 

profile is therefore used to represent normal conditions for the Baltic Sea. 

 The low level jet profile is defined step-wise: 
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where b = 1 m/s and z0 = 0.5 m. The sound speed profiles used in the calculations are defined 

in table 5. 

 

Profile name Description 
Profile 1 – weak refraction Logarithmic profile; z0 = 0.5, b = 1.0 
Profile 2 – normal refraction Logarithmic profile; z0 = 0.5, b = 2.5 
Profile 3 – strong refraction Logarithmic profile; z0 = 0.5, b = 5.0 
Profile 4 – low level jet See equation 83 
Profile 5 – over land Logarithmic profile; z0 = 1.0, b = 1.0 
Profile 6 – modified LLJ See equation 84 

 

Table 5 Sound speed profiles used in the calculations. 
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Profiles 2, 4 and 6 are shown in fig 16. 
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Figure  16 Sound speed profiles used in the calculations. From the left a logarithmic profile with 

b = 2.5 m/s, z0=0.5 m (profile 2), a profile with a low level jet (profile 4) and finally a profile with 

a modified LLJ (profile 6). 

 

7.4. Shore line 

For the first set of calculations the atmospheric and the ground boundary conditions are 

assumed to be constant. For the second set of calculations a shoreline is introduced. 

Calculations with a shore are made for both logarithmic and low level jet sound speed profiles 

over the sea (profile 1, 2 and profile 4). Over land a logarithmic sound speed profile is 

assumed as defined in equation (82) with b = 1 m/s and z0 = 1.0 m (profile 5). 

 For the case with a logarithmic wind over both the sea and over land, the sound speed 

profile and the ground properties are changed at the shore line. For the case with a low level 

jet over the sea the sound speed profile is changed in two steps. At the shore line a modified 

LLJ profile is assumed (defined in equation (84)). 500 m inland, the profile is changed to the 

logarithmic inland profile (profile 5). The ground boundary condition is changed at the shore 

line. 
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with b = 1.0 m/s and z0 = 1.0 m.  

 

7.5. Validation of the model 

The model has been tested against benchmark cases defined by Attenborough et al. (1995) 

and show good agreement with these. Case 2, downward refraction with a sound speed 

gradient of +0.1 s-1 and a constant surface impedance of Z = 12.81+11.62i, is shown in figure 

17 and 18. The frequency is 100 Hz. 
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Figure  17 Calculations (to the left) compared with benchmark case 2 for 100 Hz by 

Attenborough et al. (1995) (to the right). 
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Figure  18 Calculations (to the left) compared with benchmark case 2 for 100 Hz by 

Attenborough et al. (1995) (to the right). Note the difference in range. 

 

The long range calculation (figure 18) was terminated at 3000 m since further calculations 

under these conditions made the program run out of memory. 
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8. Calculations 

The following quantities are used in all calculations (unless else is stated): 

 

frequency:  50 Hz 

source:  unit point source according to equation (67) 

source height: 65 m 

calculation step size: 2/3 m 

calculation grid: 650 x 8110 m  

 

Absorption and turbulence are not included in the calculations.  

 

As explained in the previous chapter, the result from the calculations is the sound pressure 

level relative to the sound pressure level one calculation step away from a point source. Using 

a step size of 2/3 m, this corresponds to a source with a sound power level of  

10log(4π) + 20log(2/3) = 7.5 dB. 

 The coding is made in Matlab and an example code can be found in Appendix 1. Using 

a computer with a 2.4 GHz Pentium IV processor, the calculations take about 10 minutes for 

homogenous conditions and somewhat longer for calculations with a shore line. It should be 

noted that little effort has been made to optimise the code and it is possible that the calculation 

time can be reduced.  

 

8.1. Varying surface properties 

First, the difference in relative sound pressure level between a flat, totally reflecting surface, 

the semi-elliptical and the triangular boss surfaces is investigated. As can be seen in figure 19 

the sound pressure level is almost identical for the flat surface and the semi-elliptical boss 

surface. The triangular boss profile gives slightly lower sound pressure levels, which is 

expected since the bosses have a higher profile; hence the impedance is lower. The same 

behaviour can be seen if comparing the flat surface with several semi-elliptical boss surfaces 

with varying height of the bosses (figure 20). A logarithmic sound speed profile with weak 

refraction (profile 1) has been used in these calculations to give attention to the differences 

between the surfaces.  
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Figure  19 Relative sound pressure level calculated for a flat, totally reflecting surface (infinite 

impedance), the semi-elliptical boss surface (Z = 172.92070 + 108.74228i) and the triangular boss 

surface (Z = 50.600603 +24.030437i). The sound speed profile is logarithmic with weak 

downwards refraction (profile 1) and the receiver height is 1.33m.  

 

 

0 1000 2000 3000 4000 5000 6000 7000 8000
-100

-90

-80

-70

-60

-50

-40

Range [m]

R
el

at
iv

e 
so

un
d 

pr
es

su
re

 le
ve

l [
dB

] Flat surface
Semi-elliptical surface b = 0.45 m
Semi-elliptical surface b = 0.95 m
Semi-elliptical surface b = 1.20 m

 

Figure  20 Relative sound pressure level calculated for different semi-elliptical boss surfaces 

with increasing height. The receiver height is 1.33 m and there is a logarithmic sound speed 

profile with weak downwards refraction (profile 1). 

 

These results indicate that water waves that are small compared to the wave length of the 

sound (1 m or less for 50 Hz) have little impact on the sound pressure level.  
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The sound pressure level maximum at about 6000 m range is a result of interference. This 

becomes clear when comparing calculations at 50 Hz, 40 Hz and 20 Hz (figure 21). The same 

step size (2/3 m) has been used in all three calculations. 
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Figure  21 Relative sound pressure level calculated for a flat, totally reflecting surface at 50 Hz, 

40 Hz and 20 Hz. The receiver height is 1.33 m and there is downwind conditions using a 

logarithmic sound speed profile with weak downward refraction (profile 1).  

 

For a sound source emitting a pure tone, the locations of the sound pressure level maxima and 

minima due to interference are of great importance. However, for a broadband sound source 

the effects of interference are reduced since these maxima and minima will be at different 

places for different frequencies. 

 Calculations are also made for natural ground surfaces. Figure 22 shows a comparison 

between a flat, totally reflecting surface, the semi-elliptical boss surface and two natural 

ground surfaces.  
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Figure  22 Relative sound pressure level calculated for a flat, totally reflecting surface, the semi-

elliptical boss surface (Z = 172.92070 + 108.74228i), a flat, hard, grass surface (Z = 

52.0606+63.9068i)  and a forest floor (Z = 10.0800 +11.9000i). The sound speed profile is 

logarithmic with weak downward refraction (profile 1) and the receiver height is 1.33m 

 

A colour plot of the calculation area for the totally reflecting surface, the semi-elliptical boss 

surface and the forest floor surface can be seen in figure 23, 24 and 25 respectively. Note that 

the angle restriction of the wide-angle CNPE gives unrealistic results in the upper left part of 

the calculation area. 

 

 

Figure  23 Calculation of the relative sound pressure level for a weak downwards refracting 

atmosphere (profile 1) and a flat, totally reflecting surface (infinite impedance).  
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Figure  24 Calculation of the relative sound pressure level for a weak downwards refracting 

atmosphere (profile 1) and the semi-elliptical boss surface.  

 

 

Figure  25 Calculation of the relative sound pressure level for a weak downwards refracting 

atmosphere (profile 1) and a forest floor surface. 

 

As can be seen in figure 23 to 25, the different surfaces yield rather similar results even 

though the sound pressure level is decreasing somewhat faster in figure 25 due to the lower 

impedance of that surface.  



Sound propagation around off-shore wind turbines 

 

69(87) 

Looking carefully, figure 23 to 25 all show a concentration of sound near the ground surface. 

This is even clearer in figure 26 that depicts the sound pressure level in the lower part of the 

atmosphere at different ranges from the source. 
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Figure  26 Relative sound pressure level at 2000 and 7000 m from the source for a flat, totally 

reflecting surface, the semi-elliptical boss surface (Z = 172.92070 + 108.74228i) and a forest floor 

(Z = 10.0800 +11.9000i). The sound speed profile is logarithmic with weak downward refraction 

(profile 1) in all cases. The graphs show how the sound pressure level is at a maximum at the 

surface. 

 

One important feature of the boss surfaces and the natural ground surfaces used in these 

calculations is that the imaginary part of the impedance is positive. As said in chapter 4.2.1, 

positive reactance is one of the criteria for the existence of surface waves. While the reactance 

in theses cases is too high to develop a surface wave, the spring-like behaviour of a surface 

with positive reactance still causes a sound pressure level maximum at the ground level.  

 

8.2. Varying sound speed profiles 

The effects of refraction are examined by doing calculations with varying sound speed 

profiles, using the semi-elliptical boss surface to model the water surface. The sound speed 

profiles are described in chapter 7.3. 
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In figure 27 logarithmic sound speed profiles with varying refraction strengths are compared.  
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Figure  27 The relative sound pressure level calculated in downwind conditions using varying 

logarithmic sound speed profiles (profile 1, 2 and 3) and the semi-elliptical boss surface (Z = 

172.92070 + 108.74228i). The receiver height is 1.33 m. 

 

As can be seen in figure 27, stronger refraction leads to a more complex interference pattern. 

This is expected since increased refraction leads to smaller radius of the sound rays and more 

reflections for each ray. In figure 28, the logarithmic sound speed profiles 1 and 2 are 

compared with the low level jet profile (profile 4) 
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Figure  28 The relative sound pressure level calculated in downwind conditions using 

logarithmic sound speed profiles (1 and 2) and a sound speed profile with a low level jet (profile 

4). The ground surface is the semi-elliptical boss surface (Z = 172.92070 + 108.74228i) and the 

receiver height is 1.33 m. 
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The low level jet gives rise to a strong interference pattern and the sound pressure level is at 

some points more than 10 dB higher than for the logarithmic profiles. Disregarding the most 

extreme values, the LLJ generally leads to sound pressure levels that are a couple of decibels 

higher than for the normal logarithmic profile (profile 2). 

 The interference is clearly visible in a colour plot. Figure 29 shows the propagation with 

the normal logarithmic sound speed profile (profile 2) and the semi-elliptical boss surface. It 

is easy to see how channelling occurs during these conditions. 

 

 
 

Figure  29 Calculation of the relative sound pressure level for a logarithmic sound speed profile 

with downwards refraction (profile 2) and the semi-elliptical boss surface (Z = 172.92070 + 

108.74228i). 

 

If a low level jet is present the channelling becomes even more obvious. The sound rays are 

effectively bended downwards by the layer at 200 m height where the sound speed is at its 

maximum (figure 30). 
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Figure  30 Calculation of the relative sound pressure level for a downwards refracting 

atmosphere with a low level jet (profile 4) and the semi-elliptical boss surface (Z = 172.92070 + 

108.74228i). 

 

8.3. Introducing a shore line 

When a shore line is introduced, two major things happen; the sound speed is reduced due to 

greater friction from the ground surface and the ground boundary condition is changed. These 

two aspects shall first be considered separately. 

 In figure 31 a low level jet reaches a shore line at 4000 m range. The low level jet is 

assumed to slow down, first to the modified LLJ profile (profile 6) at 4000 m range, and then, 

at 4500 m range, to the logarithmic profile for inland conditions (profile 5). 
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Figure  31 The relative sound pressure level calculated for a case where a LLJ reaches a shore 

line at 4000 m, the semi-elliptical boss surface is used for the whole calculation range (Z = 

172.92070 + 108.74228i). 

 

Figure 31 shows how the channelling is dissolved when the low level jet slows down. A 

similar pattern appears for the logarithmic sound speed profile 2 and 3 (normal and strong 

refraction). Figure 32 shows how the relative sound pressure level at 1.33 m height is reduced 

compared to a case with a constant low level jet throughout the whole calculation range. 
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Figure  32 Calculation of relative sound pressure level for a case with a sound speed profile with 

a low level jet (profile 4) that reaches a shore line at 4000 m and slow down in two steps, (first to 

a modified LLJ (profile 6) and then, at 4500 m, to a logarithmic sound speed profile (profile 5)) 

compared with a case with a constant low level jet. The semi-elliptical boss surface is used for 

the whole calculation range (Z = 172.92070 + 108.74228i). 
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As can be seen in figure 32, the sound pressure level is decreased quite significantly after the 

sound speed profile is changed.  

 Changing the ground conditions, from a water surface covered with waves to a natural 

ground surface, also creates a reduction of the sound level. Figure 33 depicts the sound 

pressure level at 1.33 m height with normal downwards refraction. At 4000 m the ground is 

changed from the semi-elliptical boss surface to a forest floor. This is compared to the case 

with constant ground conditions. 
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Figure  33 Calculation of relative sound pressure level for two cases with a logarithmic sound 

speed profile (profile 2). In one case the ground conditions change at 4000 m from the semi-

elliptical boss surface (Z = 172.92070 + 108.74228i) to a forest floor (Z = 10.0800 +11.9000i), in 

the other case the ground conditions are kept constant (Z = 172.92070 + 108.74228i).  

 

Figure 33 show how the change in impedance at 4000 m causes a reduction of the sound 

pressure level. There is a distinct minimum just after the shore line and then the sound 

pressure level stays a couple of decibel lower than for the constant case. This behaviour is 

even clearer when looking at the results from a calculation with the same ground conditions 

but with weak downwards refraction (profile 1). 
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Figure  34 Calculation of relative sound pressure level for two cases with a logarithmic sound 

speed profile (profile 1). In one case the ground conditions change at 4000 m from the semi-

elliptical boss surface (Z = 172.92070 + 108.74228i) to a forest floor (Z = 10.0800 +11.9000i), in 

the other case the ground conditions are kept constant (Z = 172.92070 + 108.74228i).  

 

Figure 35 shows a colour plot of the sound pressure level in the whole calculation area for the 

case with normal refraction (profile 2) and a shore line at 4000 m.  

 

 

Figure  35 Relative sound pressure level calculated for a constant logarithmic sound speed 

profile (profile 2). The ground is changed from a semi-elliptical boss surface (Z = 172.92070 + 

108.74228i) to a forest floor (Z = 10.0800 +11.9000i) at 4000 m. 
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The impedance discontinuity at 4000 m creates diffraction. This is expected but the 

diffraction pattern visible straight above the discontinuity is outside the angle restriction of the 

PE-model and might therefore be unrealistic. The sound field should nevertheless be accurate 

close to the ground.  

 In figure 30 both the sound speed and the ground is changed at the shore line. The sound 

speed over the sea is assumed to be logarithmic with normal refraction (profile 2) and the 

water surface is represented by the semi-elliptical boss surface. Over land the sound speed 

profile is changed slightly (profile 5) and the ground is changed to a forest floor. 

 

 
 

Figure  36 Relative sound pressure level calculated for a logarithmic sound speed profiles 

(profile 2 and, from 6000 m, profile 5). The ground is changed from the semi-elliptical boss 

surface (Z = 172.92070 + 108.74228i) to a forest floor (Z = 10.0800 +11.9000i) at 6000 m. 

 

The sound pressure level at 1.33 m height for this case is shown in figure 37, compared to the 

case with a constant sound speed profile (profile 2) and constant ground conditions (semi-

elliptical boss profile). 
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Figure  37 Relative sound pressure level for a case with a shore line at 6000 m where the sound 

speed profile is changed from profile 2 to profile 5 and the ground is changed from the semi-

elliptical boss surface (Z = 172.92070 + 108.74228i) to a forest floor (Z = 10.0800 +11.9000i), 

compared with a case with constant conditions (profile 2 and semi-elliptical boss surface). 

 

The same calculations are made for a case with a low level jet over the sea (figure 32). The 

sound speed profile is changed again in two steps, at 6000 m it is changed to the modified LLJ 

profile (profile 6) and at 6500 m it is changed to the logarithmic profile used for inland 

conditions (profile 5). The ground properties are changed at 6000 m from the semi-elliptical 

boss surface to a forest floor. 
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Figure  38 The relative sound pressure level is calculated for low level jet conditions over the sea. 

At the shore line the ground conditions are changed from the semi-elliptical boss surface (Z = 

172.92070 + 108.74228i)  to a forest floor (Z = 10.0800 +11.9000i). 

 

The interference pattern is quite complex for this case due to both strong downwards 

refraction over the sea and the diffraction from the impedance discontinuity. Looking at 1.33 

m height a sound level reduction is still apparent after introducing the shore line. 
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Figure  39 Relative sound pressure level for a case with a shore line at 6000 m where the sound 

speed profile is changed from profile 4 to profile 5 in two steps and the ground is changed from 

the semi-elliptical boss surface (Z = 172.92070 + 108.74228i)  to a forest floor (Z = 10.0800 

+11.9000i), compared with a case with constant conditions (profile 4 and the semi-elliptical boss 

surface). 
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8.4. Comparison with cylindrical propagation 

In figure 40 the relative sound pressure levels using logarithmic and low level jet sound speed 

profiles are compared to the sound pressure level obtained assuming cylindrical propagation.  
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Figure  40 Calculations compared to cylindrical propagation.  

The expression for the cylindrical propagation used here is: 

 

200
log*10log*208 xxLL wp +−−=     (76) 

 

which gives spherical propagation up to 200 m from the source and then cylindrical 

propagation. 1 In figure 35 Lw is set to 7.5 dB according to chapter 8.  

 The desert measurements presented in Hubbard and Shepherd (1991) (see figure 2) also 

show cylindrical propagation at long ranges. In their case the spherical propagation seems to 

end at 300 m from the source. This would lead to sound pressure levels that are  

10*log(300/200) = 1.8 dB lower than equation (76).  

 Disregarding the interference pattern, cylindrical propagation seems to be a very good 

approximation for both normal downward refraction and low level jet conditions at long 

ranges from the source.  

                                                 
1 This kind of propagation model is suggested by The Swedish Environmental Protection Agency (report 6241) 

to be used when calculating noise from off-shore wind turbines. 
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9. Conclusions 

In order to predict sound pressure levels from off-shore wind turbines, sound propagation 

mechanisms have been thoroughly investigated as well as relevant meteorology. An important 

aspect has been to investigate the effects of water waves on sound propagation; scattering by 

rough surfaces has therefore been studied as well as water wave theory.  

 A wide-angle CNPE model has been developed and validated against benchmark cases. 

To include water wave roughness, a boss model has been used which incorporates roughness 

in the impedance of the ground. Even though the boss model has a size restriction, the wave 

climate of the Baltic Sea is such that the boss model can be used frequently.    

 Calculations have been made for varying surface conditions and sound speed profiles. 

The effect of the water waves has been found to be small and the sea surface behaves more or 

less like a flat, hard surface. This means that the sound pressure level is at a maximum at the 

ground surface.  

 In downwind conditions there will be channelling of the sound which supports  

long-range sound propagation. Low level jets create especially strong downward refraction 

and the sound propagation in these cases will become cylindrical, which leads to a sound level 

decrease of only 3 dB per distance doubling. Logarithmic wind speed profiles with normal 

refraction strength also leads to cylindrical propagation even though the sound pressure levels 

will be somewhat lower than for low level jet conditions.  

 When the sound reaches a shore line the sound pressure level is generally decreased 

with a couple of decibels compared to continuing propagation over the sea. This is due both to 

changing ground conditions and generally lower wind speed. 

 The calculations agree well with existing measurements. These measurements are 

however somewhat incomplete and it is still unclear how common cylindrical propagation is. 

Long term measurements of sound from off-shore wind turbines including meteorological 

conditions would therefore be much helpful for the continuing work.  
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Appendix 1  

 

Matlab code: CNPEWIDE.M 

 

%-- Wide-angle PE - from Tutorial by M. West 

 

clear; 

%-- f - frequency 

f = 50; 

 

%-- dz – calculation step in z-direction 

%-- dx – calculation step in x-direction 

dz = 2/3; 

dx = 2/3; 

 

%-- nx – calculation range in x-direction 

%-- nz – calculation range in z-direction 

nx = 8110/dx; 

nz = 650/dz; 

 

%-- allocation of large matrises (saves computer time) 

 

p = zeros(nz,nx+1); 

pp = zeros(nz,nx); 

Lp1 = zeros(nz,nx); 

 

%-- zs - Source height (in meters) 

zs = 65; 

nzs = round(zs/dz); 

 

%-- (logarithmic) sound speed gradient 
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b = 1; 

z0 = 0.5; 

c = 340 + b*log(1+dz*[0:nz-1]/z0); 

 

%-- wave number 

k0 = 2*pi*f/340; 

km = 2*pi*f./c; 

 

%-- surface impedance 

Zg = 172.92070 + 108.74228i 

 

%-- ground boundary condition 

if isinf(Zg) == 1 

    s1 = 4/3; 

    s2 = -1/3; 

else 

    s1 = 4/(3-2*i*k0*dz/Zg); 

    s2 = -1/(3-2*i*k0*dz/Zg); 

end 

 

%-- attenuation in the upper region  

natt = round(50*340/f); 

At = 0.242; 

 

for n = nz-natt:nz 

    km(n) = km(n) + i*At*((n-nz+natt)^2/natt^2); 

end 

 

%-- Upper boundary condition 

Zu = 1; 

su1 = 4/(3 - 2*i*k0*dz/Zu); 

su2 = -1/(3 - 2*i*k0*dz/Zu); 
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%-- creation of matrises 

 

e=ones(nz,1); 

B=[e -2*e e]; 

T=spdiags(B, -1:1,nz,nz); 

T(1,1)=T(1,1)+s1; 

T(1,2)=T(1,2)+s2; 

T(nz,nz)=T(nz,nz)+su1; 

 

I=spdiags(e,0,nz,nz); 

 

a=i/(2*k0*dz^2); 

b=i*(km.^2-k0^2)/(2*k0); 

 

D=spdiags(conj(b'),0,nz,nz); 

 

M1=I+dx/2*(a*T+D)+(a*T+D)/(2*i*k0); 

M2=I-dx/2*(a*T+D)+(a*T+D)/(2*i*k0); 

 

M=full(inv(M2)*M1); 

 

%-- Generation of point source 

A0 = 1.3717; 

A2 = -0.3701; 

B = 3; 

 

if isinf(Zg) == 1 

    C = 1; 

else 

    C = (Zg-1)/(Zg+1); 

end 

 

for n=1:nz 
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p(n,1)=sqrt(i*k0)*(A0+A2*k0^2*(n*dz-zs)^2)*exp(-k0^2*(n*dz-zs)^2/B)+ 

C*sqrt(i*k0)*(A0+A2*k0^2*(n*dz+zs)^2)*exp(-k0^2*(n*dz+zs)^2/B); 

end 

 

%-- Calculation of sound pressure  

for n = 2:nx+1 

    xx = (n-1)*dx; 

    p(:,n) = M*p(:,n-1); 

    pp(:,n-1) = p(:,n)/sqrt(xx); 

end 

 

clear p M M1 M2 

 

%-- Calculation of sound pressure level relative to source strength and 

%-- limitation of sound level to -120 dB 

 

psinv = 1/abs(pp(nzs,1)); 

 

for m = 1:nz 

    for n = 1:nx 

        if abs(pp(m,n))<=1e-6 

            pp(m,n)=1e-6; 

        end 

        Lp1(m,n)=20*log10(psinv*abs(pp(m,n))); 

    end 

end 

 

%-- saving data 

save('D:\matlab\data\test.dat','Lp1','-ASCII'); 


