
HIGH-FREQUENCY UNDERWATER SOUND

INTRODUCTION

We are all familiar with sound effects such as the delay in
the echo from a far-off canyon wall, the continually chang-
ing pitch in the sound of a passing train, or the distinct
sound of an empty room versus one filled with furniture.
Such sounds carry information about the environment, ob-
jects within it, and sources of the sound. In the underwa-
ter environment, sound, which is energy in the form of a
pressure wave, replaces light and other forms of electro-
magnetic wave energy (such as microwaves or radar) as
the paramount means to gather information. Attenuation
of acoustic waves is relatively low in water allowing the
underwater environment to be more transparent to sound
energy. On the other hand, light and other electromagnetic
waves are absorbed strongly by water, and thus the un-
derwater environment is more opaque to electromagnetic
wave energy.

This article will focus on some applications of high-
frequency sound to probe the underwater environment.
We define high-frequency somewhat broadly, meaning fre-
quencies of order 104 Hz (10 kHz) up to about 107 Hz
(10 MHz). The nominal upper frequency limit again is cho-
sen from the applications point of view. Only a few appli-
cations of underwater sound use frequencies greater than
about 10 MHz, because underwater sound at these very
high frequencies will, like electromagnetic energy, be ab-
sorbed over a very short distance. Sound absorption re-
mains an important controlling factor for the 104–107-Hz
frequency band as well. For example, for a frequency of
10 kHz, sound travels in seawater about 10 km before its
amplitude is reduced significantly because of absorption;
when the frequency is 1 MHz, this distance reduces to
about 30 m.

The sound frequency f, wavelength λ, and phase speed
c are related by λf = c. Also, one can define a wavenumber
k and angular frequency ω with

ω = 2πf = kc (1)

In seawater, c is nominally 1500 m/s (but may vary con-
siderably with depth as discussed later), and the frequency
range 10 kHz to 10 MHz translates to underwater sound
wavelengths of order 10 to 10−3 cm.

Both sound wavelength and the distance over which
sound travels specify the manner in which sound is used
in the underwater environment. Just a few examples
of the diverse applications of high-frequency underwa-
ter sound include remote sensing of plankton, fish pop-
ulations, and other oceanographic properties (1); depth
sounding in coastal waters, high-resolution mapping of
the seafloor, and underwater navigation (2, 3); studies
concerning properties of the seafloor (4); and underwa-
ter communication and telemetry (5). Many of these ap-
plications are covered by the familiar acronym “sonar,”
which stands for sound navigation and ranging. Look-
ing ahead, this article’s emphasis is on remote sensing of
water column properties, but the topics introduced also

pertain to the broader use of high-frequency underwater
sound.

With this article limited to underwater at high frequen-
cies, we necessarily pass over the set of diverse appli-
cations that rely on lower frequency underwater sound.
For example, forward-looking sonars aboard military sub-
marines and ships, downlooking sonars to measure ocean
depths, and side-scan sonars used in large-scale bathymet-
ric surveys use frequencies in the 1-kHz to 10-kHz band.
When the frequency is less than about 1 kHz, sound can
travel several hundred kilometers before losing its energy
to the surrounding environment. At still lower frequencies
(∼100 Hz) the ocean becomes nearly transparent to sound.
Experiments in ocean acoustic tomography (6) are con-
ducted in this frequency band, wherein precise measure-
ments of the travel time for sound travel over thousands of
kilometers of ocean are used to infer the mean properties
of the intervening ocean, such as the average temperature
of the ocean. Low-frequency sound also penetrates deep
into the seabed (7, 8), and experiments using low-frequency
sound are designed specifically to measure properties of the
seabed (9).

In the sections ahead we discuss high-frequency un-
derwater sound in relation to the following topics: sound
waves in fluids; the decibel scale; underwater transducers,
calibration techniques and cavitation; propagation in het-
erogeneous media; absorption; reflection from boundaries;
scattering from bubbles, zooplankton, and turbulent mi-
crostructure; and underwater imaging.

SOUND WAVES IN FLUIDS

Sound waves in fluid are longitudinal (compressional)
waves, meaning that in the presence of a sound wave, a
parcel of fluid moves back and forth with a particle veloc-
ity u that is aligned with the direction of the propagat-
ing sound wave. A region of alternating pressure results in
slightly higher than the ambient static pressure p0 when
the parcels compress and slightly lower than p0 when the
parcels spread out. The sound pressure p is the pressure
difference from p0. Accompanying the changing pressure
is a minute change in density ρ equal to the density differ-
ence from the fluid’s ambient density ρ0. The three primary
acoustic field variables are thus p, ρ, and u.

The linear theory of sound waves (see, for example, Ref-
erences (10–12)) usually is sufficient to predict many of
the acoustical effects encountered in applications of high-
frequency underwater sound. The key assumption in lin-
ear theory concerns the relative smallness of the variables
p, ρ, and u, and that there is a linear relation among them.
The assumption that ρ/ρ0 � 1 leads to the linearized acous-
tic equation of state p = ρ0c2. For this linear approxima-
tion to apply, the restriction on the acoustic pressure is
such that p � ρ0c2 (13). Similarly, the restriction on u is
|u|/c � 1, where the ratio |u|/c is the acoustic Mach num-
ber. To see how the smallness assumption is easily satis-
fied, take the maximum acoustic pressure 1 m in front of
a typical research sonar to be 104 N/m2. Taking ρ0 for
seawater as 1025 kg/m3, then ρ0c2 = 2.3 × 109 N/m2,
and |p|/ρ0c2 ∼ 4 × 10−6. Moving farther away from the
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sonar by a factor of 10 reduces this ratio by a factor
of 10.

We remark that the main focus of this article con-
cerns the longitudinal sound waves that exist in fluids.
However, in reflection and scattering from solid objects, in-
cluding the seabed, there also can be transverse waves for
which u is perpendicular to the direction of the propagat-
ing sound wave. The relationship between the longitudi-
nal sound speed cL and transverse sound speed cT is given
by

cL

cT
=

√
2(1 − ν)
1 − 2ν

(2)

where ν is Poisson’s ratio, which lies in the range 0 to 0.5
for typical elastic materials (14). For a fluid ν = 0.5, for
aluminum ν = 0.3, and for steel ν = 0.23. For sound waves
in fluids, cT is zero; there is no need to employ the subscript
in cL , and instead we write just c for sound speed.

The acoustic variables p, ρ, and u are described by func-
tions that satisfy the acoustic wave equation plus boundary
conditions (e.g., see References 1, 7, and 11–18). In the un-
derwater environment, boundary conditions are imposed
by the sea surface, the seabed, and submerged objects from
which sound can be reflected.

A simple form of the wave equation describing the pres-
sure field in three dimensions is one that governs a spher-
ically symmetric wave. Such a field would result from a
harmonically pulsating sphere of radius a, with pressure
as a function of time t and range from source the origin of
the sphere r given by

p(t, r) = A

r
ei(kr−ωt) (3)

where the complex amplitude A is given by

A = a

(
ka

ka+ i

)
ρ0cuoe

−ika (4)

In equation 4, uo is the amplitude of the radial velocity
at the surface of the sphere, and a harmonic time depen-
dence of e−iωt is assumed. The real part of equation 3 is
taken to relate to physical measurements of pressure, e.g.,
as obtained by a transducer.

The ratio of acoustic pressure to acoustic particle veloc-
ity in the medium is the specific acoustic impedance Z. For
a spherical wave acoustic particle velocity is only in the ra-
dial direction, and so we drop the vector notation, u writing
as a scaler, i.e., u, and u (t, r) = p(t, r)/Z, where Z is given
by

Z = ρ0c
kr

kr + i
(5)

Notice that at ranges described by kr � 1, Z becomes
purely real and equal to the quantity ρ0c, which is the char-
acteristic acoustic impedance. This region is known as the
acoustic far field (11–13), and here p and u are in phase
with each other such that efficient sound radiation takes
place, with the “radiation load” presented by the under-
water medium being ρ0c. The analogy to electric fields is
evident where p corresponds to voltage, u to current, and
Z to electrical impedance.

Equations 3–5 provide much insight into the nature of
acoustics sources and propagation. First, a key property
shown in equation 4 is that the amplitude of the source is a
linear function of uo. Second, both non-dimensional param-
eters ka and kr have now entered the picture. The first rep-
resents the size of the acoustic source scaled by wavelength,
and the second represents a propagation range scaled by
wavelength. A remarkable amount of predictive informa-
tion can be determined from these parameters.

The acoustic intensity gives the time average of the
power flowing through a unit area and is given by
½ Real(p u*). For the spherical source and the case kr � 1,
the intensity I equals ½|A|2/(r2ρ0c) and this quantity goes
as ∼1/r2, which is known as the inverse-square law. The
total power radiated from the pulsating sphere is given
by 2π|A|2/(ρ0c). Looking at this quantity more closely, we
observe that the total power goes as 2πa2ρ0c|uo|2(ka)2 for
ka � 1 and, all else being equal, the radiated power is con-
siderably smaller for diminishing ka. It is for this reason
that it is difficult to radiate significant amounts of acoustic
power from a small acoustic source. For ka � 1, the radi-
ated power goes as 2πa2ρ0c|uo|2 and is independent of ka.

Considering now some small region of interest located in
the far field, the acoustic wave fronts assume the properties
of a plane wave (15), insofar as the spherical wave fronts
become locally planar. The amplitude is decreasing with r,
but at a rate much slower than the phase, and the local
amplitude is set by the range r associated with the region
of interest. The expression for such a plane wave traveling
at angle θ with respect to the x-axis is

p = Aei(kxcosθ+kzsinθ−ωt) (6)

Here, complex constant A assumes the dimensions of
pressure (and dependence on a third dimension is sup-
pressed for simplicity). For a plane wave, acoustic par-
ticle velocity and pressure again are related through Z,
but Z is now real and equal to ρ0c. A propagation vector
k is identified with x, z components equal to k cos θ and
k sin θ, respectively, pointing in the plane wave’s single
direction of propagation and normal to the wave’s planar
wave fronts. Later, in the context of propagation in media
with a gradually changing sound speed, we will see how the
wave vector may change its direction, and the trajectory of
these changes defines an acoustic ray.

THE DECIBEL SCALE

Acoustic variables ordinarily will vary over several orders
of magnitude, and it is often convenient to express this
huge variation through a logarithmic scale. The decibel
(abbreviated as dB) scale for intensity is defined by

Value in dB = 10 log (I/Iref ) (7)

where log is base 10 and Iref is a reference intensity used to
relate the decibel equivalent of intensity I back to absolute
linear intensity units. In underwater acoustics, it is stan-
dard practice to set Iref equal to the intensity of a plane
wave with an rms pressure of 1 micropascal (µPa), which
is equivalent to 10−5 dynes/cm2. When we take ρ0c of sea-
water to be 1.5 × 105 dynes s/cm3, this sets Iref equal to
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0.67 × 10−22 W/cm2. Were the intensity I to equal Iref , then
its decibel value would be given formally as 0 dB re 1 µPa,
which is shorthand for 0 dB with reference to the intensity
of a plane wave with a rms pressure of 1 µPa.

The decibel scale can be used for any acoustic vari-
able proportional to either power or intensity. Thus, to find
the decibel equivalent of acoustic pressure, one must first
square the pressure or equivalently compute

Lp = 20 log(p/pref ) (8)

where Lp means “pressure level.” (It is standard prac-
tice to use capital letters for decibel variables and refer
to them as a “level.”) The reference pressure is again 1
µPa rms, and therefore, p also must be rms and not, say,
peak pressure. For example, using the previous example
of peak pressure equal to 104 N/m2 at range 1 m from the
sonar, then the equivalent rms pressure expressed inµPa is
0.707 × 1010 µPa, and thus, Lp = 197 dB re 1 µPa. At a
range of 10 m, the pressure amplitude is reduced by a factor
of 10 compared with the amplitude at 1 m because of spher-
ical spreading, and Lp decreases to 177 dB re 1 µPa. Often
the decibel is used just to relate two quantities, without
regard to reference. For example, the difference between
two pressures, say pA and pB, is expressed through 20 log
of the ratio, pA/pB, giving the difference in these pressures
in terms of decibels.

UNDERWATER TRANSDUCERS

An acoustic transducer is a device that converts an elec-
tric signal, such as voltage, into a pressure signal that
propagates as a sound wave. Transducers are reciprocal
devices, so they also carry out the reverse task of sound-to-
electric conversion. (The term “hydrophone” applies to a de-
vice used only for sound-to-electric conversion.) The most
common conversion mechanism in underwater transduc-
ers is the piezoelectric effect, in which the transducer ma-
terial is deformed slightly when a voltage is applied across
attached electrodes. These deforming vibrations produce
a time-dependent pressure field in the water p(t), which
propagates as a sound wave. In a like manner, a voltage
signal v(t) is produced by the transducer (or hydrophone)
when it is subjected to the pressure fluctuations of a sound
field, which also slightly deforms the transducer material.

Modern piezoelectric materials used in transducers
most often consist of ceramic compositions such as bar-
ium titanate (BaTiO3), lead zirconate titanate (PZT), and
PVDF (16, 17). A typical configuration for the piezoelec-
tric ceramic material is a thin circular plate of thickness L,
where L is between λ/2 and λ/4 (16). The transducer vibra-
tions occur in the thickness dimension, with the resonant
frequency of the transducer (f0) being approximately pro-
portional to L−1. The exact f0 depends on the particular
piezoelectric material, how it is encased in the transducer
housing, and how the transducer is networked together
with system electrical components such as the driving am-
plifier and possible tuning circuitry. The transducer op-
erates most efficiently within a frequency band centered
around f0, and the transducer’s operational bandwidth is
defined by f2 − f1, where f1 and f2 are, respectively, the

frequencies below and above f0 at which the transducer
output acoustic power has fallen to 50% of maximum. The
transducer Q value is defined as f0/(f2 − f1), with a typical
Q value being about 10.

Ultimately, the transducer converts electric power �E

to acoustically radiated power �A with a degree of effi-
ciency ε (a typical ε ranges between 0.4 and 0.8), such that
�A = ε�E . If the transducer were to radiate acoustic power
uniformly in all directions, then

�A = I04πr2
0 (9)

where I0 is acoustic intensity (W/m2) at range r0 (m) from
the transducer face. We set r0 equal to 1 m, which is
the standard reference distance in underwater acoustics.
Transducers that operate in this manner are known as om-
nidirectional transducers. For example, a spherical source
would radiate as an omnidirectional transducer. However,
most applications of underwater ultrasound require direc-
tional transducers that concentrate the transmitted acous-
tic power into a specific direction, as into an approximate
cone of solid angle 	. Given that the transducer is recip-
rocal, then it also will preferentially receive sound com-
ing from within this same directional cone and will largely
be insensitive to sound coming from other directions. This
property is described by the transducer’s intensity pattern
function b(θ,φ) (or beam pattern for short), which is propor-
tional to the sound intensity transmitted into, or received
from, directions described by angles θ and φ. For a circu-
lar piston transducer of diameter d, the theoretical beam
pattern is (17)

b(θ) =
∣∣∣∣2J1[(πd/λ)sinθ]

(πd/λ)sinθ

∣∣∣∣
2

(10)

For such transducers, b is symmetric about a central
axis normal to the transducer face, or acoustic axis, and
thus, the beam pattern is described completely by only one
angle. Figure 1 shows the measured b(θ) for a circular pis-
ton transducer with a diameter d of 43 mm and a center
frequency of 108 kHz plotted against the theoretical b(θ)
based on equation 10. Note that both curves are plotted in
a decibel scale, since b(θ) is equal to the ratio of intensity
transmitted at angle θ to the intensity transmitted along
the acoustic axis, or I(θ)/I(0). In this example, good agree-
ment between the two curves occurs only in the main-lobe
region. Within the side-lobe region, deviation from ideal,
theoretical behavior is common because the beam pattern
in this region is more sensitive to the precise mechani-
cal coupling between the piezoelectric disk material and
its mounting within the transducer housing. However, the
main lobe is by far the most important, and transducers are
often classified by the angular width of their main lobe. A
common definition is that of the beam pattern’s angular
width between points that are reduced by 3 dB from that
of the maximum on the acoustic axis. For the circular pis-
ton transducer, this width in degrees is well approximated
by

θ3dB ≈ 60 λ/d (11)

The important parameter ka discussed in the context of
the radiating spherical source emerges here as well. For
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Figure 1. Measured (dashed line) and theoretical (solid line)
curves representing b(θ) for a circular piston transducer with a
diameter of 43 mm and a center frequency of 108 kHz.

example, call a the radius of piston and an equivalent ex-
pression for beam pattern angular width is readily found,
with the width going as 1/ka. Thus, for ka � 1, any trans-
ducer behaves as a spherically symmetric source insofar as
the angular width now becomes very large.

The beam pattern as shown in Fig. 1 is valid only at
ranges r from the transducer that are in the transducer’s
far field or Fraunhofer zone. For a circular piston trans-
ducer of radius a, the far field is delimited by the critical
range π a2/λ (15, 17), which also is known as the Rayleigh
range. The zone at ranges less than π a2/λ is called the
near field, or Fresnel zone, of the transducer. Here, sound
intensity varies rapidly with distance because of the inter-
ference of sound radiation coming from different surface
elements of the transducer (1, 18).

The concentration, or focusing, of acoustic power into a
beam is quantified by the ratio sometimes called the direc-
tivity factor (3, 17)

Directivity factor = 4π/
∫
b(θ, φ)d� (12)

The numerator in equation 12 represents b(θ, φ) for an
omnidirectional transducer, integrated over 4π steradians
of solid angle. The denominator represents the same oper-
ation using b(θ, φ) from a directive transducer. If we use
b from a circular piston transducer of diameter d, the de-
nominator reduces to the evaluation of

2π

π/2∫
−π/2

b(θ)cosθ dθ ≈ 4λ2

πd2
(13)

and thus, the directivity factor is approximately (πd/λ)2.
Urick (3) provides useful approximate expressions for the
directivity factor of common transducer geometries. The
directivity index, DI, is defined as 10 log of the directiv-
ity factor and is therefore equivalent to 10 log of the ratio
(Id /Iomni), where Id is the intensity radiated from a directive
transducer along its acoustic axis and Iomni is the inten-
sity radiated from an omnidirectional transducer with the
same total acoustic power. A typical DI is 30 dB, meaning
that the concentration of acoustic power by the directive
transducer has produced a 1000-fold increase in acoustic
intensity.

Calibration Techniques

Transducer calibration usually means quantifying in ab-
solute terms the transducer’s ability to convert voltage to
pressure (transmit voltage response) and convert pressure
to voltage (receive voltage response), plus determining the
transducer’s beam pattern b(θ,φ). (There are other descrip-
tors of transducer performance, such as input current-to-
pressure response and overall transducer efficiency. De-
pending on the transducer application, these may or may
not be determined explicitly.) It is very difficult to obtain
reliable estimates of key transducer properties from theo-
retical calculations. The one exception is the beam pattern,
where for simple transducer shapes, such as a circular pis-
ton, equations like equation 10 provide a good approxima-
tion. But, as Fig. 1 illustrates, equation 10 represents an
idealized beam pattern for a circular aperture, and a real
transducer beam pattern will show differences particularly
in the side-lobe region that are revealed only through an
actual measurement.

The transducer’s transmit voltage response, or TVR, re-
lates the input voltage to the output acoustic pressure
of a transducer, which usually will be a function of fre-
quency. The TVR is expressed in decibels; for example, at
a given frequency, say 50 kHz, a typical value is 180 dB re
µPa/Vrms, which means that when a 1-V rms sinusoidal
signal of frequency 50 kHz is applied to the transducer
leads, a pressure signal of the same frequency is gener-
ated that will have an rms pressure of 180 dB re 1 µPa
at a distance 1 m from the transducer face. Similarly, The
transducer’s receiving voltage sensitivity, or RVS, relates
the input acoustic pressure signal to transducer output
voltage. A RVS for a typical research sonar at frequency
50 kHz is −120 dB re Vrms/µPa. The interpretation here
is that an acoustic pressure signal of rms amplitude equal
to 1 µPa produces an output rms voltage equal to 10−6 V
or −120 dB re 1 Vrms. Such a small pressure would never
be recorded, as underwater ambient noise in the neighbor-
hood of 50 kHz would place the rms voltage closer to 10−3

V or greater (for 1-kHz bandwidth). Still, the RVS number
applies to higher acoustic pressures as we assume a lin-
ear relation between pressure and voltage just as with the
TVR number.

Transducer calibration techniques fall into three basic
categories; the first two are discussed at length by Bobber
(19) [see also Urick (3) and Stansfield (17)], and the third
is discussed by Foote (20).

1. Comparison Method
Properties of the unknown transducer are compared
with those of a previously calibrated, or standard,
transducer. The U.S. Navy maintains several stan-
dard transducers for calibration that can be leased to
other facilities. For example, the University of Wash-
ington’s Applied Physics Laboratory acoustic test fa-
cility uses Navy standard transducers for calibration
standards.

2. Reciprocity Method
The principle of reciprocity states that the trans-
ducer’s receiving response in terms of pressure-
to-output voltage is related to the transducer’s
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transmitting response in terms of input current to
pressure. Use of reciprocity thus allows calibration
of transducers without use of a standard transducer.

3. Calibration Sphere Method
The echo from a solid sphere is used to calibrate
the transducer. It is well known that accurate val-
ues for the echo amplitude from a sphere can be
obtained through theoretical computations. For cali-
bration purposes, the key is using a proper sphere di-
ameter and material to avoid having strong resonant
scattering effects included in the sphere’s echo. For
example, to calibrate 38-kHz echo sounders such as
those used in fisheries research, a 60-mm-diameter
copper sphere is recommended. Spheres made of
tungsten carbide also are used for frequencies be-
tween 50 kHz and 500 kHz.

Continuing with the above example for which TVR
equals 180 dB re µPa/Vrms, if the transducer is driven by
a 10-Vrms signal, then the pressure level Lp equals 200 dB
re 1 µPa at range of 1 m were this measurement to be on
the transducer maximum response axis (MRA), i.e., where
b(θ, φ) is maximal. Along this same axis we anticipate Lp

to be 194 dB at a range of 2 m from the transducer. The
pressure level measured at the standard range of 1 m is
known as the transducer’s source level (21), abbreviated as
SL. Recapitulating the foregoing remarks on decibel quan-
tities and references, a source level of 200 dB means the
rms pressure is 1010 µPa (104 Pa) at range of 1 m from the
transducer along its MRA, and intensity is (104 Pa)2/ρ0c,
or 67 W/m2.

Extra care must be taken to ensure consistency in the
units when examining the acoustic power �A radiated by
the transducer. Note first that an intensity I0 defined at
range 1 m (r0) of (1 µPa)2/ρ0c equates to 0.67 10−18 W/m2.
If this intensity were radiated omnidirectionally, then the
total radiated power would be I04πr2

0 equivalent to −170.8
dB re 1 W. Recall that for a directive transducer, the power
is concentrated within a beam as quantified by the direc-
tivity index DI. The total power radiated by a directive
transducer given the same I0 is −170.8 – DI in dB re 1 W.
We thus arrive at the very handy decibel relation between
radiated acoustic power �A (which also can be found by
ε �E ) and source level:

SL = 10 log(�A) +DI + 170.8 (14)

Cavitation

Cavitation will occur if the peak amplitude of the acoustic
pressure p approaches the hydrostatic pressure p0. With
the acoustic pressure being sinusoidal, then p + p0 can take
on negative values. Bubbles, or cavities, form in the evac-
uated negative pressure regions, causing the transducer
performance to degrade significantly in terms of linearity
and radiation efficiency (3, 17). Erosion damage can occur
at the transducer face where bubbles preferentially form.

The onset of cavitation is determined by the cavitation
threshold pressure. Close to the sea surface, p0 is about to 1
atm or 1011 µPa; thus, a very rough estimate of the cavita-
tion pressure threshold pc is when the peak acoustic pres-

sure amplitude reaches 1 atm or a pressure level of about
217 dB re 1 µPa based on rms pressure. In fact this thresh-
old will be somewhat higher. The cavitation threshold must
increase as the operating depth increases because of the
increase in hydrostatic pressure. But also a time scale is
involved for the onset of cavitation; with increasing fre-
quency, the actual time of the negative pressure decreases,
which also pushes up the cavitation threshold. Smith (22)
summarizes these two effects into an empirical formula
based on published data from various experiments to mea-
sure the cavitation threshold versus frequency (see also
References 3 and 15). The result is

Lc = 20 log[1 + (z/10) + ( f/36)2] + 220 (15)

where Lc is the cavitation threshold in dB re 1 µPa, z is
depth in m, and f is frequency in kHz. As a specific example,
Lc is about 229 dB re 1 µPa for a 30-kHz sonar operating
within about 10 m from the sea surface, and therefore, the
sonar’s SL should not exceed this value.

PROPAGATION IN HETEROGENEOUS MEDIA

Thus far we have assumed a constant, 1500 m/s, to repre-
sent a nominal speed of sound underwater. This number
is representative of the sound speed in the upper 10 m of
ocean at mid-latitudes. Nominal values for sound speed
often are sufficient to handle many applications of high-
frequency underwater sound involving short range, say on
the order of 10 m. But when longer ranges are involved, it is
necessary to account for the spatial and sometimes tempo-
ral variation in sound speed. The speed of sound underwa-
ter varies with temperature, salinity, and static pressure.
A simplified empirical expression relating these quantities
is (1)

c = 1449.2 + 4.6T − 0.055T 2 + 0.00029T 3

+ (1.34 − 0.01T )(S − 35) + 0.016z (16)

where T is temperature (◦C), S is salinity (parts per thou-
sand), and z is depth (m). The depth-varying sound speed
caused by temperature and salinity variation, plus the in-
fluence of increasing pressure with depth, determines in
large part the nature of underwater sound propagation.

Ray theory (3,7,8) is an approximate approach for han-
dling wave propagation in heterogeneous media, and it is
well suited for high-frequency underwater sound. The va-
lidity of the ray theory hinges on the medium being slowly
varying with respect to a spatial coordinate. For example,
taking the variation in c with depth, a necessary but not
sufficient condition (8) for the medium to be slowly varying
is

1
ω

∣∣∣∣dc(z)dz

∣∣∣∣ � 1 (17)

For increasing frequency, this condition becomes easier to
satisfy.

To understand ray theory, we first invoke the afore-
mentioned plane wave approximation and assume that the
acoustic pressure is described by a plane wave as in equa-
tion 6. Let this plane wave be initially propagating in a
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Figure 2. Example of Snell’s law showing a ray rep-
resenting a plane wave in region with sound speed
c0 (black arrow) entering a second region with sound
speed c1. Depending on the relation between c0 and the
ray will undergo downward refraction (red arrow), up-
ward refraction (blue arrow), or no refraction (dashed,
black arrow). A reflected ray (green arrow) also is
shown.

medium with sound speed c0 and then cross into another re-
gion of water with sound speed c1. The ray representing the
plane wave in the c0 medium is shown by the solid, black
arrow in the upper half of Fig. 2. Upon crossing the bound-
ary separating the two media, θ0 changes to θ1 according
to Snell’s law

cosθ0

c0
= cosθ1

c1
(18)

which is one of the most useful expressions in the study
of wave propagation. Upward refraction of the plane wave
occurs if c1 > c0 (blue arrow), downward refraction occurs
if c1 < c0 (red arrow), and no refraction occurs if c1 = c0

(dashed, black arrow).
Note that Snell’s law applies exactly to the situation in

Fig. 2, which also shows a ray reflected from the interface
(green arrow), and is discussed in the following section.
We assume that such reflections are negligible in the fol-
lowing illustration of wave propagation through a medium
of depth-varying sound speed, which is a very reasonable
assumption provided that the sound speed undergoes grad-
ual change in the manner of equation 17.

Consider next a continuously varying sound speed as a
function of depth approximated by layers of differing con-
stant speed. Snell’s law in this case governs the refraction
at the interface between each layer, and in the limit of van-
ishingly small layer thickness, Snell’s law for a continuous
sound speed profile c(z) becomes

cosθ(z)
c(z)

= ray parameter (19)

In ray theory, a ray follows the trajectory of a wave
vector, whose direction may vary continuously within a
medium of continuously varying sound speed. The constant
in equation 19 is known as the ray parameter, which is a
value conserved by an individual ray as it refracts within
a horizontally stratified medium. It is the basis for com-
puting ray diagrams that show the paths taken by sound
as it propagates through a medium with spatially varying
sound speed.

If the sound speed profile c(z) contains a local minimum,
an acoustic channel is formed at the depth corresponding to
the minimum sound speed. If a sound source were placed
at or near this depth, then a ray issued from the source
with negative launch angle with respect to horizontal re-
fracts upward, conserving its ray parameter according to
equation 19. For example, if the initial angle θ0 is a small
angle, then θ(z) can eventually reach 0◦, and the ray will be-
gin upward travel back toward the sound speed minimum.
Upon reaching the ray’s starting depth, its angle is now
the same absolute value as θ0 but now positive and the ray
arches back toward the sound speed minimum in the same
manner. The result is alternating downward and upward
refraction, which traps, or channels, the ray as it cycles be-
tween the upper and the lower boundaries of the channel.
With sound energy now confined, it diverges cylindrically,
as ∼1/r, rather than spherically as ∼1/r2, allowing sound
to travel to much longer ranges. The depth at which the
minimum sound speed occurs is the sound channel axis. A
striking example of this effect is the deep sound channel, or
SOFAR channel (e.g., see References 3–8). It is formed at
a depth of roughly 1000 m, where the ocean’s temperature
approaches a constant of about 4 ◦C. The sound speed is de-
creasing with increasing depth to this point, and at ∼1000
m, it begins increasing from the influence of hydrostatic
pressure.

The SOFAR channel represents one example of the be-
havior of underwater acoustic channels, or waveguides (7,
8). Another consequence of refraction is the focusing and
defocusing of sound energy, which can modify further ei-
ther cylindrically or spherically decaying acoustic fields.
To see how this occurs, consider the sound speed versus
depth profile:

c(z) = 1501, z ≤ 65m
c(z) = 1522 − gz z>65m

(20)

where the sound speed gradient g equals 0.323 s−1. This
equation is an approximate fit to sound speed measure-
ments made during an experiment conducted about 400
nautical miles off the California coastline during winter
conditions (23) (the equation applies only to depths less



High-Frequency Underwater Sound 7

than about 200 m). The upper isospeed layer is known as a
mixed layer; here turbulent mixing from winter storm ac-
tivity has homogenized the temperature and salinity of the
water column, producing a more uniform sound speed that
we represent as a constant. Underneath the mixed layer
starting at about 65 m, the thermocline leads to a steady
decrease in sound speed modeled by a linear function with
rate g. These two canonical sound speed regimes, isospeed
and linear gradient, illustrate many of the key effects of
sound refraction in the ocean.

Now consider a sound source placed at depth 150 m and
a receiver at depth 60 m that is 1000 m downrange. By
simple application of equations 19 and 20, a ray originally
leaving the source with a grazing angle of 10◦ will have
assumed a grazing angle of 5.4◦ when it reaches a depth of
100 m, and 0◦ at 80 m. At this point the ray curves down-
ward, having reached a vertex, and will begin a steady
downward travel causing it to miss the receiver completely.
It is easy to show (e.g., see References 1, 3, and 7) that the
ray’s trajectory is exactly circular while traveling within a
linear gradient, with radius of curvature Rc = cv/g, where
cv is the vertex sound speed of the ray, equal to 1496.28 m/s
for the ray with 10◦ launch angle.

A collection of rays issuing from the source is shown
in Fig. 3 (called a “ray fan”); these rays show the direc-
tion of energy propagation for this combination of source
depth, range, and c(z). Shown in Fig. 3 are the subset of rays
with launch angles between 9◦ and 16◦ (every 0.5◦). Refrac-
tion within the linear gradient region has turned rays with
launch angle less than about 11◦ downward, with trajecto-
ries that miss the receiver completely. Rays with launch
angles greater than about 12◦ eventually reach the upper
isospeed layer, and they continue propagating within this
layer with unchanging direction until they reach the sea
surface, at which point they reflect downward at the same
angle. Finally, for rays with launch angles between about
10.5◦ and 11.5◦, the spreading between them as a function
of range happens at a much greater rate, which reduces
the sound intensity in this region (yellow area). A shadow
zone would exist here were it not for the contribution of
rays that have been reflected from the sea surface.

Still, there is a reduced sound intensity near the re-
ceiver and this can be quantified with more careful com-
putations of spacing between rays. At the source, a pair of
rays launched at θ0 ± �θ form a ray tube, which contains a
fraction of the total radiated power, say��A. The intensity
at range r0 within the space defined by the pair of rays is
I0 and equals��A /A0, where A0 is the cross-sectional area
of the ray tube. The cross-sectional area in fact will be a
strip (Fig. 4) if the source were radiating omnidirectionally.
Without loss of generality we proceed on this assumption
and compute

A0 = 2πr2
0cosθ0�θ (21)

Energy conservation in the context of ray theory states that
��A must remain constant for the pair of rays over the
course of their propagation path (7). The same pair of rays
in the vicinity of the receiver assumes a vertical separation
�z. At the receiver the sound speed is c1, the local grazing

Figure 3. Ray fan corresponding to the sound speed profile of
equation 20, with the source at 150 m and the receiver at 60 m
and 1000 m downrange. Shown are rays launched from the source
with angles between 9◦ and 16◦ (every 0.5◦). Rays that reach the
sea surface will be reflected downward at the same angle; rays
with launch angles between about 10.5◦ and 11.5◦ spread apart
at a greater rate, which reduces the sound intensity in the yellow-
colored region.

angle is θ1, and the cross-sectional area of the ray tube is

A1 = 2πr�zcosθ1 (22)

where r is the horizontal distance between source and re-
ceiver. Since A1I1 equals A0I0, the transmission loss (TL),
defined as 10 log (I0/I1), is found to be

TL = 10log
r�zc1

r2
0�θc0

(23)

The direct path is defined by the bundle of rays that prop-
agate directly from source-to-receiver without reflecting or
scattering from the sea surface, and the transmission loss
for this path, which is within the shadow zone in Fig. 3,
is approximately 65 dB. If refraction effects were absent,
then the transmission loss for this approximately 1000-m
path would be, based on spherical spreading, about 20 log
1000, or 60 dB. The additional 5 dB caused by refraction is
a very significant effect in terms of sonar performance.

Our simple example illustrates how ray theory can iden-
tify the key propagation characteristics associated with a
particular sound speed environment and source/receiver
geometry. Numerical propagation codes based on ray the-
ory are used heavily in high-frequency sonar performance
evaluations, particularly where computational speed is a
critical factor. But, as mentioned, ray theory is an approx-
imation, providing an ever more accurate solution to the
wave equation as the frequency increases [thus, ray the-
ory often is called a high-frequency approximation (7, 8)].
Two major deficiencies of ray theory are (1) caustics, where
the area defined by a pair of rays vanishes (and thus in-
tensity goes to infinity) and (2) shadow zones. Our simple
approach for computing transmission loss as outlined in
equation 23 will become less accurate for field points well
inside the shadow zone. Here, more exact solutions to the
wave equation are required, and they show that the sound
pressure field decays exponentially with perpendicular dis-
tance from the shadow boundary, with a decay constant
proportional to cubed root of frequency (10).

Notwithstanding the deficiencies caused by caustics,
shadow zones, and other effects, ray theory has great intu-
itive appeal, as illustrated by the ray fan in Fig. 3. Another
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Figure 4. Sketch showing how transmission loss is
calculated from the spacing between rays. A sphere of
radius r0 = 1 m surrounds the source; and a pair of ad-
jacent rays, initially separated by �θ, form a ray tube
that either expands or contracts depending on the sound
speed of the intervening medium.

example of the intuition provided by ray theory is a compu-
tation of the subset of rays that connect an acoustic source
to a receiver; these are called eigenrays. Figure 5 shows a
set of five eigenrays for a source at depth 25 m, separated

by a receiver at range 500 m; these are computed using
the sound speed profile shown in Fig. 5a measured in the
East China Sea (24). In Fig. 5b, the receiver depth is 25 m,
in Fig. 5c, the receiver depth is 52 m, and the eigenrays

Figure 5. (a) Sound speed profile for site in the East China Sea measured 31 May 2001, 1030
UTC. (b) First five eigenrays based on sound speed profile in (a) between a source at depth 25 m
and receiver at depth 25 m, range 500 m. (c) Same as (b) but receiver at depth 52 m. The travel
time in ms for the first-arriving eigenray is listed in (b) and (c) with differential travel times for
the later arriving eigenrays listed below for each case. (From Reference (24), with permission.)
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can be identified by the degree to which they have inter-
acted with the sea surface or seabed, e.g., direct (no inter-
action), surface, bottom, surface-bottom, or bottom-surface.
The direct ray arrives first, with acoustic travel time (in
ms) listed in the figure, with differential travel times (in
ms) of the later arriving eigenrays listed below each direct
ray travel time. The difference in arrival time between the
first-arriving direct ray and the last-arriving ray is 30–35
ms, which represents the time spread for this channel.

Jensen et al. (8) outline methods to improve ray the-
ory calculations, as well as other, more exact approaches
to computing the acoustic field in inhomogeneous media
based on wave theory, and Frisk (7) provides a detailed
discussion on the relation between solutions derived from
ray theory and those derived from the more exact wave
theory. Finally, we emphasize that the ocean is neither
perfectly horizontally stratified nor frozen in time. Ocean
salinity fronts can be crossed, and ocean dynamic processes
such as tides and internal waves impart temporal variabil-
ity. Apel et al. (25) provide telling examples of these effects,
placed in the context of a shallow water acoustic propaga-
tion experiment, and Flatté et al. (26) provide a compre-
hensive review on this subject.

SOUND ABSORPTION

As discussed, sound intensity can decay spherically as
∼1/r2, with r being the range (in meters) from the source;
in this case the transmission loss is given by 20 log r in dB
re 1 m. Transmission loss in excess of this value is possible
as demonstrated in the previous example involving refrac-
tion effects as evaluated with ray theory. Transmission loss
also can be significantly reduced if, for example, sound is
confined to two-dimensional, cylindrical spreading within
an acoustic channel and the transmission loss is given by
10 log r. Let us collectively refer to such losses as spreading
loss, and regardless of the form it takes, we now must add
to it an additional loss due to sound absorption in water.

Two mechanisms exist for absorption loss. One is a
chemical relaxation in response to the passing sound wave
(1). In seawater, the presence of both boric acid and mag-
nesium sulfate is largely the cause of this absorption loss.
The other is associated with viscosity and affects sound
propagation in both seawater and freshwater. Absorption
loss usually is expressed by α in dB/m. Francois and Garri-
son (27) developed a now widely used empirical model for α
shown in Fig. 6 for the 10-kHz to 104-kHz band. The compo-
nent of α associated with boric acid is significant only for
frequencies ≤10 kHz (being hardly noticeable in Fig. 6),
whereas the component associated with magnesium sul-
fate dominates absorption in seawater between roughly 10
kHz and 500 kHz. Beyond about 500 kHz, viscous effects
begin to dominate over chemical relaxation effects and α
increases with decreasing temperature at the same rate
for both fresh- and seawater. Note that the reverse depen-
dence for seawater occurs between about 40 kHz and 400
kHz and that α increases with increasing temperature.

The total transmission loss is the sum of spreading and
absorption losses, with the latter (in dB) given by α r.
It is important to notice that once the absorption loss

Figure 6. Attenuation rate α (in dB/m) as computed from the
François–Garrison empirical formula, at 10 ◦C and 1 ◦C. Solid
lines are for seawater, and dashed lines are for freshwater. The
salinity of seawater is 35 ppt.

approaches a significant value, it soon will dominate the to-
tal transmission loss. For example, when a range is reached
such that α r = 10 dB, then a doubling of this range results
in another 10 dB of absorption loss, whereas only a 6-dB
additional loss is caused by spherical spreading for each
doubling of range. Thus, α r = 10 dB is a useful guideline
to the maximum range for a given frequency; for example,
at 10 kHz, α≈ 1 dB/km, giving the 10 km mentioned at the
beginning of this article as the nominal propagation range
for 10 kHz.

REFLECTION FROM BOUNDARIES

Let us return to Fig. 2 and now include differing densi-
ties ρ0 and ρ1 on each side of the boundary along with the
differing sound speeds c0 and c1. Let Z0 equal ρ0c0/sinθ0,
and let Z1 equal ρ1c1/sinθ1. These variables are acoustic
impedances, being equal to the ratio of acoustic pressure
to particle velocity in the direction normal to the boundary,
evaluated at the boundary. The plane wave, or Rayleigh, re-
flection coefficient defined as

R(θ0) = Z1 − Z0

Z1 + Z0
(24)

gives the magnitude and phase of the reflected pressure
wave, with the reflected wave having the same grazing
angle as the incident wave. The transmission coefficient
T = 1 + R gives the amplitude and phase of the pressure
wave transmitted into the medium characterized by ρ1 and
c1, with new grazing angle θ1 (governed by Snell’s law).
Reflection from the boundary between these two media
clearly depends on the ratio between the two character-
istic acoustic impedances involved, ρ0c0 and ρ1c1, but also
on the grazing angle as contained in Z0 and Z1.
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Figure 7. Magnitude of the reflection coefficient |R| versus graz-
ing angle θ0 defined relative to the horizontal. The solid line is for
δ = 0, and the dashed line is for δ = 0.0116.

The air–sea interface represents a boundary where the
characteristic acoustic impedance goes from its seawater
value of about 1.54 × 106 kg m−2 s−1, or 1.54 × 106 rayls
(the standard MKS unit for characteristic impedance is
a rayl equal to 1 kg m−2 s−1), to the substantially lesser
value in air of about 430 rayls, based on a sound speed in
air of 331 m/s and a density of 1.29 kg/m3. For such an
extremely high contrast in characteristic impedance, it is
easy to show that R ≈ −1, or |R| ≈ 1, and that the phase of
R is π. The transmission coefficient T ≈ 0, and a negligible
amount of sound is transmitted from water into the air.
It usually is assumed in acoustic modeling that R for the
air–sea interface is precisely −1.

Reflection from the seabed is more varied and interest-
ing. The ratio of seabed sediment to seawater characteris-
tic impedance can range from nearly unity for muddy-type
seabeds to ∼10 for extremely hard, rocky seabeds. Now let
ρ0c0 and ρ1c1 represent seawater and seabed media, respec-
tively. Figure 7 shows the reflection coefficient modulus |R|
for a seabed characterized by ρ1/ρ0 = 1.97 and c1/c0 = 1.126,
representing seabed sediments off Panama City, Florida
(28). Absorptive losses in the seabed also typically will
be high relative to that of seawater alone; and δ, known
as the loss tangent (29, 30), includes this effect by mak-
ing the sound speed in the seabed complex; i.e., c1 goes to
c1/(1 + i δ). The solid line is computed with δ set to zero, and
the dashed line is computed with δ = 0.0166 (28), which is
equivalent to about 20-dB/m attenuation in the sediment
when the frequency is 40 kHz.

For the case of δ = 0, |R| = 1 for all grazing angles less
than about 27.36◦. For this range of incident grazing an-
gles, the seabed reflects all the energy back into the sea-
water medium (total internal reflection occurs). At exactly
θc = 27.36◦, known as the critical angle, a transmitted wave
propagates into the seabed sediment, thereby reducing the
amplitude of R. The critical angle is given by Snell’s law:

θc = cos−1(c0/c1) (25)

defining the point at which θ1 transitions from an imagi-
nary to a real angle. Flow of acoustic energy into the seabed
only can occur when θ1 contains a real component; when
θ1 is purely imaginary, the acoustic field in the seabed is
evanescent and cannot transport energy (7). The critical
angle is one of the most important acoustic parameters of
the seabed; the higher the ratio of c1/c0, the higher the criti-
cal angle. When a nonzero δ is used, the results are modified
slightly, and the complex sound speed in the seabed makes
θ1 complex for all incident grazing angles θ0. Thus, a small
amount of energy is lost into the seabed even for θ0 � θc ,
as shown by the dashed line.

Bottom reflection loss (7) is defined as −20 log |R| and is
a measure of the energy lost by sound propagating into the
seabed. When |R| = 1, the loss is 0 dB, and all the energy is
trapped in the upper water layer. For the example shown
in Fig. 7, the loss increases to about 8.5 dB for grazing an-
gles greater than θc ; and “bottom bounce” ray paths, which
are common in a shallow water environment (as shown in
Fig. 5), are attenuated substantially if their grazing an-
gles exceed θc (31). Note that in most seabeds, the picture
will be more complicated than that depicted in Fig 7. For
example, if there are sediments layers with thickness on
the order of an acoustic wavelength, bottom reflection loss
will be a function of frequency. An example is Fig. 8 show-
ing measurements of bottom reflection loss made in the
East China Sea (24) as a function grazing angle and fre-
quency. The measurements are compared with a model for
reflection loss based on a sediment layer that overlays a
homogeneous sediment half-space.

REVERBERATION AND SCATTERING PHENOMENA

Consider a plane wave incident on a small bubble having
radius a with ka � 1; the bubble will scatter a fraction of
the incident plane wave sound energy into a continuous
distribution of scattering angles. We contrast this process
with that of reflection from a smooth planar boundary dis-
cussed in the previous section; in that case, there was only
one reflected angle equal to the direction of specular reflec-
tion (not including the refracted wave that penetrates the
boundary). Generally, specular reflection predominates if
the object being ensonified has a local radius of curvature
that is large compared with the wavelength of the inci-
dent sound field (as in the case for a planar-like bound-
ary). Sound scattering can occur whenever sound waves
traverse a region of inhomogeneities in the medium, such
as a region of suspended scatterers consisting of partic-
ulate matter, biota in the form of zooplankton or fish, or
bubbles. The inhomogeneities also may take the form of
fluctuations in the physical properties of water such as
its temperature or salinity, or fluctuations in fluid velocity
associated with patches of turbulence.

Volume Reverberation

Volume reverberation is the term used to describe scatter-
ing from the total volume of water ensonified by an incident
sound field. The scattering from entities entrained in the
water provides one basis for remote sensing of water col-
umn properties using high-frequency underwater sound.
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Figure 8. Measured bottom reflection loss as a function
of grazing angle and frequency compared with a model
for −20 log|R| based on sediment layering overlaying a
homogeneous half-space. (From Reference (24), with per-
mission.)

Similarly, there can be either seafloor or sea surface re-
verberation, each of which pertains to the scattering con-
tribution from the total area of ensonified sea surface or
seafloor. Total reverberation is the incoherent sum of the
volume and area contributions. For a source and receiver
that are colocated, such as a typical transducer configura-
tion for remote sensing applications, the reverberation is
monostatic; and if source and receiver locations differ, the
reverberation is bistatic.

To understand volume reverberation, we continue with
the example of a small bubble with ka � 1. The bubble in
fact scatters sound equally in all directions, or isotropically,
and the total sound power �s intercepted and scattered is
given by

�s = Iincσs (26)

where Iinc is the sound intensity incident on the bubble
and σs is the bubble’s total scattering cross section in m2.
Note that�s is the solid angle integral of�(θ,φ), where the
latter represents the sound power scattered in directions

[θ, φ] away from the bubble. For isotropic scattering,�(θ, φ)
is the same in all directions, say ��, in units of power per
steradian and �s is 4 π ��. For the monostatic case, the
quantity actually measured is the backscattered intensity
from the bubble Ibs , which is given by

Ibs = �s

4πr2
= Iinc

r2

σs

4π
(27)

For a bubble, or any other isotropic scatterer, we can
write σbs = σs /4π, where σbs is the bubble’s backscattering
cross section. This is the power per unit intensity per stera-
dian scattered in the direction toward the transducer (i.e.,
back toward the source of the incident sound). For an ar-
bitrary scatterer, such as a zooplankton, which does not
scatter isotropically, σbs thus is defined by its relation to
Ibs using

Ibs = Iinc

r2
σbs (28)

In remote sensing measurements, often there is need to
compare relative levels of scattering, say between bubbles
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and zooplankton. Therefore, if the measurements repre-
sent backscattering, then it is best to report σbs . If the scat-
terer is known to scatter isotropically, then one can report
σs = 4π σbs if need be. The target strength (3) TS is the
decibel equivalent of σbs , i.e., equal to 10 log σbs in dB re 1
m2. Note that whenever target strength is evaluated, then
σbs must be used and expressed in m2.

Now consider a cloud of scatterers at range r correspond-
ing to the cloud’s center. An elemental volume dV produces
a backscattered intensity dIbs at the receiver given by

dIbs = Iinc

r2
sV dV (29)

The quantity sVdV assumes the role of σbs for an as-
semblage of scatters within a volume dV, where sV is the
backscattering cross section per unit cubic meter of wa-
ter with dimension m−1 (and, like σbs , also must be con-
sidered as “per steradian”). The scattering strength SV is
10 log sV in dB re 1 m−1. Sometimes the symbol mV is used,
with the meaning mVdV being total sound power scattered
into all directions by volume dV. Analogous to the forego-
ing remarks on σbs , if it can be assumed that scattering is
isotropic, then one can write mV = 4πsV.

The total backscattered intensity results from summing
all dV, some of which are away from the acoustic axis. For
these contributions, the incident and backscattered inten-
sity need to be compensated for the effects of the beam pat-
tern b(θ, φ). The results leads to the concept of an effective
volume, or reverberation volume (3), based on integration
of the two-way intensity pattern b2(θ, φ). If ψ is defined
as the integral of b2(θ, φ) over all directions θ and φ, then
the effective volume at range r for a pulse of length τ, is
ψ (c τ/2) r2, and the total backscattered intensity is

Ibs = I0r
2
0

r4
sV
cτ

2
r2	 (30)

where the incident intensity is referenced back to I0 via
spherical spreading with Iinc = I0(r0/r)2.

Upon adding attenuation, equation 30 can be recast into
the sonar equation that expresses this concept in decibels,

RL = SL− 40logr − 2αr + SV + 10 log
cτ

2
r2	 (31)

where the reverberation level, RL, is 10 log Ibs and the effect
of two-way absorption loss is now included as 2α r. (Since
r0 = 1 m, the reference term 10 log r2

0 usually is ignored.)
Urick (3) also provides useful approximations toψ for stan-
dard transducer shapes. Continuing with the example of
circular piston transducer of diameter d,ψ ≈ 1.87(λ2/π d2),
which is a factor of about 2 less than the same integral over
the one-way pattern as in equation 13. This result is ex-
pected because the equivalent two-way beam necessarily
must be narrower than its one-way counterpart.

Scattering from Bubbles. Bubbles must be recognized for
their particularly important role in high-frequency under-
water sound. They are sources of scattering and attenua-
tion (32–38), can produce changes in the speed of sound
of sound (39–41), and are contributors to ambient under-
water noise (42–44). Such effects are most evident in the
vicinity of the sea surface, where bubble concentration is
highest, and their numbers continually are replenished by

the action of surface breaking waves. Medwin and Clay (1)
summarize a portion of recent experimental work on am-
bient ocean bubble populations, which suggests that most
bubbles near the sea surface have radii within the range
10 µm to 1000 µm. To be sure, larger bubbles exist, but
their increased buoyancy would bring them quickly to the
surface. At 30 kHz, the acoustic wavenumber k ≈ 125 m−1,
and thus, ka � 1 over this entire range of bubble radii. In
the ka � 1 regime, the incident sound field essentially is
uniform over the bubble’s surface, and there will be a large
monopole resonance response by the bubble to an incident
sound field if the sound frequency matches the bubble’s
resonant frequency. The backscattering cross section for a
bubble in the ka � 1 regime is given by

σbs = a2

[(fR/ f )2 − 1]2 + δ2
(32)

where in this equation δ represents a damping coefficient
associated with thermal and viscous damping effects, and
all units are in MKS (1, 3). Scattering is maximal at fre-
quency f equal to the resonant frequency fR for a bubble
radius aR, as given by approximately

aR = 3.25
√

1 + 0.1z
fR

(33)

where z is the depth.
Recall from the previous discussion that since bub-

bles scatter isotropically, σs = 4π σbs . In backscattering
measurements, the influence of a single bubble’s total scat-
tering cross section σs is to incrementally weaken the
incident, interrogating sound beam caused by the power
scattered isotropically by the bubble. An absorption cross
section σa similarly quantifies this incremental weakening
of the incident sound beam from a single bubble caused
by the thermal and viscous damping effects (15). The sum
σs + σa gives the extinction cross section σe that combines
the effects of absorption and scattering, and it can be shown
that σe = σs (δ/ka). A compensation for this effect, called
bubble-mediated attenuation (38), often is necessary in the
interpretation of field measurements.

Figure 9 shows the target strength of a bubble versus
bubble radius a for bubbles near the sea surface, when
they are ensonified by frequencies of 30 kHz, 60 kHz, and
120 kHz. Taking 30 kHz, the maximum resonant response
is produced by a bubble with a radius of 109 µm. It is inter-
esting to compare σbs for a rigid sphere of the same radius
when it also is ensonified at 30 kHz. Provided ka � 1, then
σbs for a rigid sphere is

σbs = 25
36
a2(ka)4 (34)

that goes as (ka)4, characteristic of Rayleigh scattering
(1). For the rigid sphere, σbs = 1.6 × 10−16 compared
with σbs = 1.9 × 10−6 for the same-sized bubble. Such a
huge scattering advantage for bubbles when ensonified at
their resonance frequency is the basis for using multifre-
quency acoustical backscattering techniques to sense re-
motely oceanic bubbles (35,37,45).

Acoustic backscattering from a cloud of bubbles also is
interpreted in terms of sV , which is defined in this case as
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Figure 9. The target strength 10 log σbs of a bubble versus bubble
radius a when ensonified by 30 kHz, 60 kHz, and 120 kHz.

the integral over bubbles of many sizes:

sV =
∫
σbs(a)N(a)da (35)

where N(a) is the bubble size distribution giving the num-
ber of bubbles per unit volume per unit radius, with radii
between a and a + da.

For inverting and interpreting acoustic backscattering
data from bubbles, an accounting also must be made for
the added loss in intensity associated with propagating dis-
tance dr into the interior of a bubble cloud. The result is a
bubble attenuation coefficient αb (in dB/m) given by (1)

αb = 4.34
∫
σe(a)N(a)da (36)

The combined effects of scattering and absorption from
bubbles can have an enormous impact on sound propaga-
tion. Recent measurements (46) made within a coastal surf
zone region show that αb can often exceed 4 dB/m at fre-
quencies near 60 kHz (compare this with 60-kHz absorp-
tion in seawater of about 0.02 dB/m). Whenever such high
αb are in effect, the water essentially is opaque to acoustic
transmission.

Bubbles also can influence the sound speed in addition
to their scattering and absorption effects. The re-
sult is a frequency-dependent change in sound speed,
�c(f ) = c0 − cb (f ), where in this case c0 and cb(f ) are the
speed of sound in bubble-free water and bubbly water, re-
spectively. Lamarre and Melville (47) measured�c(f ) near
the ocean surface at a wind speed of about 8 m/s. Their
results show �c(f ) can reach about 20 m/s for frequencies
between 10 and 20 kHz, whereas for higher frequencies,
�c(f) decreases, going slightly negative to about −5 m/s
for their highest frequency of 40 kHz. Ultimately,�c(f) ap-
proaches zero as the ensonification frequency is increased
well beyond the resonant frequencies associated with the
population of bubbles. It is for this reason that acoustic
devices for measuring the speed of sound underwater op-
erate in the MHz frequency range and are insensitive to
the effects of bubbles on sound speed (1).

Scattering from Fish and Zooplankton. Underwater
acoustic surveys using high-frequency sound have been
used to assess and manage fisheries and zooplankton
stocks since the 1960s (48). In rivers of Alaska (49) and
western Canada (50), sonars operating in the 100-kHz to
500-kHz range are used to count migratory salmon. Count-
ing individual echoes from salmon is the basis for enumer-
ation, and the sonar beams usually are oriented perpendic-
ular to the river flow (side-scan) and approximately paral-
lel to the river bottom. Trevorrow (50) discusses the issues
in recognizing fish echoes from background reverberation
characteristic of the riverine environment.

For more dense aggregations as found in pelagic stocks
of fish and zooplankton, measurements of sV are converted
(51) to biomass in kg/m3, or animals per m3. For an acousti-
cally homogeneous population of marine life with density N
(number per m3), each having the same σbs , then, accord-
ing to single scattering theory (52), the observed sV will
equal Nσbs . For an acoustically heterogeneous population
with differing σbs , for example Ni characterized by σibs, the
relation becomes sV = �Niσibs.

Thus, it is clear that accurate estimates of single fish
or zooplankton target strength are essential for obtaining
quantitative estimates of animal abundance. As is the case
with bubbles, schools of fish also can attenuate the sound.
Masahiko et al. (53) measured the attenuation of sound by
schooling fish at frequencies between 25 kHz and 200 kHz,
for typical fish school densities encountered in field obser-
vations. Their results, however, suggest that sound atten-
uation by schooling fish would have a negligible effect on
abundance estimates. (This is not the case at frequencies
less than 10 kHz, as here a resonance associated with the
swimbladders of fish can produce significant attenuation).

The sound scattering properties of a single fish at high
frequencies still depends in large part on whether the fish
has a swimbladder. Foote (54) demonstrated experimen-
tally that the swimbladder contribution to σbs is approxi-
mately 90% for some combinations of fish size and acoustic
frequency. For example, at 38 kHz, the target strength for
a 30–35 cm length cod (swimbladdered) is about −30 dB.
The target strength for a similar-sized mackerel (non-
swimbladdered) is about −40 dB. The large difference is
not from a resonance effect; instead, it is from the large
acoustic impedance contrast between water and the air-
filled swimbladder.

Fish orientation, or aspect, also is an important factor.
For surveys of pelagic fish stocks, measurements of the
dorsal aspect target strength are needed to quantify the
data. For counting migratory salmon in rivers using side-
scan sonars, the side aspect target strength is of interest.
Dahl and Mathisen (55) studied target strength variabil-
ity from aspect by rotating a fish in the yaw plane while
making backscattering measurements. The side aspect tar-
get strength of a 50-cm-length salmon at 420 kHz is about
−25 dB, and when the fish was rotated to be head-on the
target strength fell to about −45 dB, or scattering was re-
duced by a factor of 100.

For zooplankton, target strength depends in large part
on kasr , where asr is the animal’s equivalent spherical ra-
dius equal to about 20% of its total length (51, 56). For
kas � 1, Rayleigh scattering predominates; and therefore
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for a given-sized animal, σbs goes as acoustic frequency to
the fourth power. The optimum frequency for zooplank-
ton studies, thus, clearly represents a balance between
stronger scattering afforded by higher frequency and the
effects of increasing absorption with frequency. Frequen-
cies equivalent to kasr = 0.8 to 1.8 are suggested by Hol-
liday and Pieper (51). Stanton et al. (57) developed a ray
theory solution to the problem of sound scattering by a
deformed fluid cylinder, which serves as a model for zoo-
plankton. This work was extended (58) to handle the case
of random orientation of zooplankton with respect to the
sonar beam, and formulas for σbs compare favorably with
measurements made over the kasr range 0.25 to 7.50.

The Doppler shift of the backscattered signal provides
the component of the scatterer’s velocity parallel to the
sonar beam, which is estimated at different ranges along
the sonar beam with a range resolution of �r ≈ cτ/2. If
it can be assumed that the scatterers are passive trac-
ers of the fluid velocity, then such estimates represent the
actual water velocity. These scattering-based estimates of
velocity are weighted by the σbs of the individual scatter-
ers within the sonar beam (59), and on occasion, they can
be contaminated by the passage of stronger-scattering and
actively moving fish targets. Pinkel (60) reviews Doppler
sonar backscattering methods used in the study of internal
wave fields, for which zooplankton are the primary source
of backscatter. Plueddemann and Pinkel (61) also used
Doppler sonar to study the daily migration pattern of zoo-
plankton within the mesopelagic zone (100 m to 1000 m).
Vertical migration of a sound scattering layer of zooplank-
ton was observed moving toward shallower depths around
sunset and toward deeper depths around sunrise, with
Doppler shifts indicating a migration rate between 1 cm/s
and 4 cm/s. Smith (22) discusses Doppler sonar in the con-
text of studying near-surface dynamics, for which bubbles
are the primary source of scatter and, therefore, tracers of
velocity.

Scattering from Turbulent Microstructure. Fluctuations
in the physical properties of water may produce significant
scattering if the spatial scale of these fluctuations is sim-
ilar to the acoustic wavelength. In particular, fluctuations
in the index of refraction η(x) = c0/c(x) are related to sV via
(62, 63)

sV = 2πk4�η(κB) (37)

where �η(κB) is the three-dimensional wavenumber spec-
trum of η evaluated at its Bragg wavenumber κB , which for
backscattering reduces to two times the acoustic wavenum-
ber k (63). For 100 kHz, fluctuation scales in η that are
of order 1 cm are responsible for scattering; such scales
are classified loosely as microstructure. An important is-
sue concerns the potential ambiguities in remote sens-
ing of zooplankton in the presence of strong turbulent
fields. This was examined experimentally by Stanton et
al. (64), who concluded that when zooplankton and strong
turbulent fields are colocated, their separate scattering
contributions can be of similar magnitude. They suggest
discrimination between these two scattering mechanisms
is possible through spectral analysis of echoes using broad-
band sonars.

Acoustic Images of Volume Reverberation

In this section we present three examples of acous-
tic remote sensing of water column properties, illustrat-
ing scattering from bubbles, zooplankton, and turbulent
microstructure. The examples are from separate ocean
experiments, all of which used vertically oriented sonars
operating at high frequency. Such measurements have the
distinct advantage of being both noninvasive and capable
of giving an unaliased picture of both biological and phys-
ical oceanographic processes.

Figure 10 is an image of SV made with a 240-kHz up-
looking sonar. The data are from an experiment conducted
from the research platform Flip, which was designed to
study the evolution of bubble clouds produced by breaking
waves (37). The measurements were made with a sonar
mounted on the end of a subsurface boom, attached to Flip’s
hull 28.5 m below the water line. With this configuration,
the sonar had an unobstructed view looking up toward the
surface, whereas Flip served as a very stable platform and
was subjected to minimal heave motion. The wind speed is
10 m/s, and the peak period of ocean swell is 14 s. The time
origin for this 2-minute display of SV is established by an
abrupt increase in background noise. This noise, called a
noise emission, and the increased scattering to the right of
time origin are both postulated to originate from a break-
ing wave observed directly above the sonar with a video
camera.

Figure 11 is an echogram from Mathisen and Macaulay
(65) showing a dense aggregation of Antarctic krill
(Euphausia superba). The measurements were made dur-
ing the austral summer near Elephant Island in the Wed-
dell Sea, using a 120-kHz downlooking sonar towed behind
a ship at a depth of 10 m. The horizontal axis in this case
represents range, and based on the ship’s speed of 11 km/h,
the 40 minutes of data shown here cover a 7.3-km transect.
The seabed is shown on the lower left-hand side initially
at a depth of 180 m, with depth slowly decreasing over the
course of the transect. The data represent a synoptic visu-
alization of an enormous biomass of Antarctic krill. Upon
remaining congregated continuously for days, as was in
the case shown here, the congregation is known as super
swarm.

The third example (Fig. 12) is from Pinkel et al. (66)
and shows the passage of internal solitary waves (solitons)
as recorded by a 167-kHz downlooking sonar in the west-
ern equatorial Pacific. The soliton wave packet consists of
three downward pointing crests, the first approximately
60 m in amplitude with reduced amplitudes for the second
and third crests. The backscattered intensity (proportional
to SV ) increases during the passage of each crest, while de-
creasing slightly between crests. The authors have calcu-
lated flow streamlines (for which the tangent is parallel
to the flow) shown as superscribed black lines. Upon pas-
sage of the third crest, the high scattering levels persist for
approximately 4 hours. The authors postulate that Bragg
scattering from turbulent microstructure associated with
the passage of the solitons is responsible for the enhanced
scattering. The 167-kHz frequency thus implies that fluc-
tuation scales of about 0.5 cm are responsible for the
scattering.
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Figure 10. Acoustic volumetric backscattering from
near the surface of the ocean (expressed in decibels as
SV) made with a 240-kHz uplooking sonar, 2 minutes
of data shown. The noise emission that defines the time
origin is shown as a faint vertical streak between the
dashed white lines. The time origin denotes the start
of a breaking wave event occurring directly above the
sonar as confirmed with video analysis. The black line
to the right of t = 0 follows the SV = −50 dB contour.
(From Reference (37) with permission.)

Figure 11. Echogram of super swarm of Antarctic krill,
made with 120-kHz downlooking sonar on March 23,
1981 from 0423 to 0504 (GMT) near Elephant Island.The
echogram pixel density is proportional to SV. The hori-
zontal axis is range, with total range of transect equal to
7.3 km based on total time (40 minutes) and speed of ship
(11 km/h). The bottom is observed on the left-hand side
beginning at 180 m, with depth slowly decreasing over
the course of the transect. (From Reference (65), with
permission.)

Figure 12. Acoustic scattering in the form of relative
backscattered intensity (proportional to SV ) as recorded
by a 167-kHz downlooking sonar in the western equa-
torial Pacific, showing the passage of internal solitary
waves. Calculated flow streamlines are shown as super-
scribed black lines. Squares indicate regions of the water
column with unstable density gradient. (From Reference
(66), with permission.)

Sea Surface and Seabed Reverberation

A contribution to reverberation level associated with scat-
tering from the sea surface, seafloor, or both, can often be
identified. This contribution is SS + 10 log A, where SS

is the surface or seabed scattering strength and A is the
effective area of sea surface or seabed that is the source of
backscattering. Whenever surface scattering is operative,
SS + 10 log A would be added to the right side of equa-
tion 31. Here SS = 10 logσ, where σ is the backscattering
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cross section per unit area of sea surface or seabed (3) and
thus a dimensionless quantity (unlike the σbs that applies
to the scattering by discrete underwater objects or marine
life).

The effective scattering area A depends on the grazing
angle θ with respect to the scattering surface, sonar pulse
length τ, range r, and the sonar beam pattern. Two simple
examples are given using the conical beam pattern from a
circular piston transducer in equation 10. First, the effec-
tive area can be pulse length-limited; in which case, it is
given approximately as Aτ = (c τ/2)r�, where� is the angle
in radians between the −3 dB points of b(θ) given in degrees
by equation 11. Second, the effective area can be indepen-
dent of pulse length and instead beam-limited; in which
case, it is given approximately as Ab ≈ (π/4)�2r2/sin(θ).
The effective scattering area is the lesser of Aτ and Ab .
Careful estimates of the effective scattering area are crit-
ical to recovering reliable estimates of SS from field data.
Jackson et al. (67) summarize an accurate approach to es-
timating scattering area that accounts for practical real-
ities such as non-conical beams and seafloor slope, and
Dahl et al. (68) discuss issues pertaining to beam-limiting
versus pulse length-limiting estimates of the scattering
area.

Volume scattering from the water column clearly affords
many opportunities to invert ultrasonic measurements of
SV to gain information about the water column. With sur-
face scattering, on the other hand, greater emphasis is
placed on modeling SS to determine its effect on the per-
formance of sonar systems. Note that for high frequencies
greater than about 10 kHz, bubbles residing just beneath
the sea surface are in fact the major source of sea surface
reverberation (68). Variability of high-frequency acoustic
backscatter from the region near the sea surface was stud-
ied by Dahl and Plant (69), who developed a model proba-
bility density function for SS . Their study also suggested a
link between acoustic variability and the passage of bubble
clouds advecting through an ensonified region close to the
sea surface.

Jackson et al. (28) present a model for high-frequency
backscattering from the seabed and its comparison with
data. The bottom reflection coefficient, as in equation 24, is
an essential part to any model for predicting backscatter-
ing from the seabed, and the influence of the critical angle
in equation 25 is often observed in measurements. In ad-
dition to sonar performance evaluation, physically based
models for bottom scattering now are being used in the
bottom classification problem, for which acoustic scattering
data from the seabed are inverted to estimate seabed prop-
erties (70) or to relate temporal changes in bottom scatter-
ing to benthic changes (71).

ACOUSTIC IMAGING

We conclude this article on high-frequency underwater
sound with a brief introduction to acoustic imaging. Fig-
ures 10–12 give an interesting visual display and provide
valuable quantitative information on water column proper-
ties. But they are not both truly two-dimensional (or three-
dimensional) and relatively instantaneous. (Figure 11 has

Figure 13. Illustration of a line-focus system. (a) A focused line
of sound is made by the combination of cylindrical lens and curved
transducer element. The lens forms the azimuthal pattern (solid
lines), and the curved element forms the elevation pattern (dashed
lines). (b) A pulse from a line-focus system generates a series of
echoes returning from the ensonified line on the bottom. (From
Reference (72), with permission.)

true two-dimensional features, but it was gathered over a
40-minute period.)

Underwater acoustic imaging systems that use acous-
tic lenses and operate at frequencies in the MHz range can
produce truly two-dimensional images in near real-time.
Like an optical lens, an acoustic lens refracts and focuses
sound to within a limited space. The primary function of
an acoustic lens is to move the far field closer to the trans-
ducer, as well as to provide additional focusing gain (16).
The object plane refers to the surface to be imaged, and
the image plane refers to the surface upon which the im-
age is formed (such as the retina of our eye). An example
of an acoustic lens is illustrated in Fig. 13, which shows a
line-focus system that maps a line in the object plane to a
line on the image plane (72). In practice, the object plane
is slanted with respect to the beam axis, and the acoustic
imaging system thus interrogates the object plane along
the line as a function of time as in Fig. 13b.

An example of a lens-based acoustic imaging system is
the dual-frequency identification sonar or DIDSON (73)
that gives near-video-quality images in turbid and dark
water. The standard DIDSON operates at 1.8 MHz and
1.1 MHz, with beam resolutions of 0.3◦ and 0.6◦, respec-
tively, and provides images of objects from 1 m to over 30
m in range. A longer range DIDSON operates at 1.2 MHz
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Figure 14. Single frame from a DIDSON video showing a shark
(length 2.4 m) in Oceanopolis, an aquarium in Brest, France. The
data were collected with a Diver Held DIDSON, and the numbers
indicate the range in m of the shark from the DIDSON. (Image
provided to author by Sound Metrics Corp. and was obtained by
Jean-Yves Cueff, NEOTEK.)

Figure 15. Single frame from a DIDSON video showing two
SCUBA divers in Lake Union,Seattle. Numbers indicate the range
in m of the divers from the DIDSON. (Image provided to author
by Sound Metrics Corp.)

and 0.7 MHz, with beam resolutions of 0.6◦ and 0.8◦, re-
spectively, and can image objects out to 80 m.

Two example images from the DIDSON (each repre-
senting a single frame from a video record) are shown in
Figs. 14 and 15. The image of a 2.4-m-length shark taken
in an aquarium in France by a diver-held DIDSON (Fig.
14) illustrates how such imaging can be used for marine
species identification, and the image of two divers in Lake
Union, Seattle (Fig. 15), illustrates how such technology
can be applied to surveillance.
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