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Motivation

K number field, ϱ : GK −→ Aut(V ) ≃ GLn(Q̄p) geometric Galois
representation.

L(ϱ∗(1), s) corresponding L-function.

Bloch–Kato conjecture:

ords=0 L(ϱ
∗(1), s) = dimH1

f (K , ϱ)− dimH0(K , ϱ).

(relation with other well-known problems in number theory, like the
Birch and Swinnerton-Dyer conjecture).

Iwasawa main conjecture: relation between the p-adic L-function and
a Selmer group (“equality between an algebraic and an analytic
p-adic L-function”).
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The Bloch–Kato conjecture: examples

V = Qp(1). Consider the different terms:

ords=0 L(V
∗(1), s) = ords=0 ζK (s) = r1 + r2 − 1.

dimH1
f (K ,V ) = dimQp (O×

K ⊗Qp) = r1 + r2 − 1 [Dirichlet’s unit
theorem].
dimH0(K ,V ) = 0.

V = Vp(E ).

ords=0 L(ϱ
∗(1), s) = ords=1 L(E/K , s).

The image under Kummer’s aplication lies in the Bloch–Kato Selmer
group

E (K )⊗Qp ↪→ H1
f (K ,V ),

with equality if and only if the p-part of Sha is finite.
dimH0(K ,Qp(1)) = 0.
We recover the Birch and Swinnerton-Dyer conjecture.
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Euler systems

V GQ-representation.

T ⊂ V stable lattice under the Galois action.

Σ finite set of primes containing p and the primes where V ramifies.

Definition

An Euler system for (T ,Σ) is a collection c = (cm)m≥1, with
cm ∈ H1(Q(µm),T ), and such that for m ≥ 1 and ℓ prime

NQ(µmℓ)/Q(µm)(cmℓ) =

{
cm if ℓ ∈ Σ or ℓ | m
Pℓ(V

∗(1), σ−1
ℓ ) · cm elsewhere,

with σℓ the image of Frobℓ in Gal(Q(µm)/Q).

Main application: bound Selmer groups.

Oscar Rivero (Warwick) Artin formalism and Euler systems 02/02/2022 4 / 25



Euler systems

V GQ-representation.

T ⊂ V stable lattice under the Galois action.

Σ finite set of primes containing p and the primes where V ramifies.

Definition

An Euler system for (T ,Σ) is a collection c = (cm)m≥1, with
cm ∈ H1(Q(µm),T ), and such that for m ≥ 1 and ℓ prime

NQ(µmℓ)/Q(µm)(cmℓ) =

{
cm if ℓ ∈ Σ or ℓ | m
Pℓ(V

∗(1), σ−1
ℓ ) · cm elsewhere,

with σℓ the image of Frobℓ in Gal(Q(µm)/Q).

Main application: bound Selmer groups.

Oscar Rivero (Warwick) Artin formalism and Euler systems 02/02/2022 4 / 25



The easiest case: cyclotomic units

V = Qp(1).

Kummer application

κp : K× −→ H1(K ,Zp(1)).

For L/K finite, the corestriction map corresponds to the norm.

Fix an embedding ι : Q̄ ↪→ C. Set ζm = ι−1(e2πi/m).

Let um = 1− ζm. Define

vm =

{
um if p | m
NQ(µmp)/Q(µm)(upm) if p ∤ m.

The classes κp(vm) form an Euler system for (Zp(1), {p}).
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Which Euler systems do we know?

Some examples (non-exhaustive list).

1 Circular units. V = Zp(χ)(1), where χ is an even Dirichlet
character.

2 Kato classes. V = Vp(f ), where Vp(f ) Galois representation
attached to a modular form.

3 Beilinson–Flach classes. V = Vp(f )⊗ Vp(g), convolution of two
modular forms.

4 Heegner points. Anticyclotomic classes coming from a geometric
construction.

In most of the cases, tools are based on the manipulation of modular units
over modular curves. The case of diagonal cycles just uses geometric
cycles.
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New trends

(A) The case of totally real fields.

BSD over totally real fields?
Kato’s techniques do not generalize: lack of modular units.
Works of Barrera–Cauchi–Molina–Rotger. Use the geometry of
diagonal cycles and use deformation arguments with weight one
modular forms.
Analogues of Kato or Belinson–Flach classes?

(B) The case of abelian surfaces.

Loeffler and Zerbes proved some cases of BSD for abelian surfaces
under mild assumptions.
Use of Euler systems for symplectic groups (Lemma–Flach classes).

(C) Euler systems for unitary groups (Loeffler–Skinner–Zerbes).

(D) Anticyclotomic Euler systems (general theory of
Jetchev–Nekovar–Skinner, constructions of Graham–Shah and
Alonso–Castellà–R.).
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The big picture

A tale in two trilogies: six author’s paper where they discuss six
instances of Euler systems*.

Triple (f , g , h) of modular forms of weights (k , ℓ,m), with
2t = k − ℓ−m ≥ 0. f cuspidal. Rankin–Selberg p-adic L-functions
interpolate p-adically

⟨f , g × δtmh⟩

when (f , g , h) varies in families.

Reciprocity law connects that quantity with different Euler systems:

Beilinson–Kato classes when both g and h Eisenstein.
Beilinson–Flach classes when h is Eisenstein and g is cuspidal.
Diagonal cycles when all three are cuspidal.

The geometry of those Euler systems is very different. Connections
among them?
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Geometry of Euler systems

Beilinson–Kato classes. Two modular units u1, u2 ∈ H1(Y ,Zp(1)):

u1 ∪ u2 ∈ H2(Y ,Zp(2)).

Beilinson–Flach classes. Modular unit u. Consider the inclusion
Y ↪→ Y 2 and get

u ∈ H1(Y ,Zp(1)) ↪→ H3(Y 2,Zp(2)).

Diagonal cycles. Trivial class ∆ ∈ H0(Y ,Zp). Consider the inclusion
Y ↪→ Y 3 and get

∆ ∈ H0(Y ,Zp) ↪→ H4(Y 3,Zp(2)).
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Objectives

We discuss two different approaches to study that connection.

1 (Eisenstein) congruences between modular forms. One (or more)
of the modular forms is assumed to be Eisenstein modulo p. We
derive congruences between Euler systems.

2 Interpolation in Coleman families. Consider Euler systems
attached to (cuspidal) Coleman families specializing at a critical
Eisenstein series. Recover other Euler systems.

Possible applications:

Non-vanishing results?

Better comprehension of certain settings (BF classes over totally real
fields?).
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Artin formalism

V = V1 ⊕ V2. The Artin formalism asserts that

L(V , s) = L(V1, s) · L(V2, s).

Example: VE attached to E2(ψ, τ). Then, V = Zp(ψ)⊕Zp(τ)(1) and

L(E2(ψ, τ), s) = L(ψ, s) · L(τ, s − 1).

It appears in many settings. Study of the Birch and Swinnerton-Dyer
conjecture:

L(E/K , s) = L(E , s) · L(ED , s).

Slogan: look at analogue for the corresponding algebraic structures.
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Artin formalism modulo p

Modulo p versions. What happens if E2(ψ, τ) ≡ f modulo p. Subtler
point.

Algebraicity results at the level of L-functions. Need to normalize by
suitable periods to have algebraic values (Shimura).

Representations VE and Vf agree up to semisimplication. But Vf

modulo p is not a direct sum of two characters.

p-adic L-functions? It depends on the situation.

In some cases the interpolation regions match and it is straightforward.
In others, much more harder! Gross, Dasgupta...

Euler systems are the geometric realization of p-adic L-functions.
What does the Artin formalism mean at that level?
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Eisenstein series

Eisenstein series f = Er+2(ψ, τ), where ψ and τ Dirichlet characters

Er+2(ψ, τ) = (∗) +
∑
n≥1

qn
( ∑

n=d1d2

ψ(d1)τ(d2)d
r+1
2

)
.

In particular,
aℓ(f ) = ψ(ℓ) + ℓr+1τ(ℓ),

and
α = ψ(p), β = pr+1τ(p).

May consider either fα or fβ. The former gives rise to family of Eisenstein
series. Not interesting for us.
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Galois representations and Eisenstein series
A result of Soulé

If f = Er+2(ψ, τ) is a p-decent Eisenstein series, there are exactly three
isomorphism classes of continuous Galois representations ρ : GQ → GL2(L)
which are unramified at primes ℓ ∤ Np and satisfy tr ρ(Frobℓ) = aℓ(f ).
These are as follows:

1 The semisimple representation ψ ⊕ τϵr+1.

2 Exactly one non-split representation having τϵr+1 as a
subrepresentation. This representation splits locally at ℓ for every
ℓ ̸= p, and is crystalline at p.

3 Exactly one non-split representation having ψ as a subrepresentation.
This representation splits locally at ℓ for every ℓ ̸= p, but does not
split at p, and is not crystalline (or even de Rham).
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The open and closed modular curve

Take f ≡ E2(ψ, 1) modulo pt .

TY (f )
∗ maximal quotient of H1

et(Y ,Zp(1)) where the (adjoint) action
is via the Hecke eigensystem attached to f . Define similarly TX (f )

∗.

Let I be the Eisenstein ideal. Chain

TY (f )
∗ ⊃ TX (f )

∗ ⊃ I · TY (f )
∗ ⊃ I · TX (f )

∗ ⊃ . . .

Short exact sequence

0 → Z/pt(1) → TY (f )
∗ ⊗ Z/pt → Z/pt(ψ) → 0.

Similarly,

0 → Z/pt(ψ) → TX (f )
∗ ⊗ Z/pt → Z/pt(1) → 0.

Most of our constructions will happen in the open modular curve.
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∗ ⊗ Z/pt → Z/pt(1) → 0.

Most of our constructions will happen in the open modular curve.
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The case of Beilinson–Kato

Beilinson–Kato class in

κf ∈ H1(Q,TY (f )
∗(1)).

When f ≡ E2(ψ, 1), may project TY (f )
∗ ⊗ Z/pt → Z/pt(ψ) and get

a class
κf ,1 ∈ H1(Q,Z/pt(ψ)(1)).

Canonical class cψ ∈ H1(Q,Z/pt(ψ)(1)). This is the circular unit
attached to ψ (weighted combination of cyclotomic units).

Explicit comparison between both of them:

Factorization formula of p-adic L-functions (Greenberg–Vatsal,
Fukaya–Kato).
Comparison of Perrin-Riou maps.
Local to global statement (Gras).
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An exceptional zero phenomenon

The class κf may be lift to H1(Q,TX (f )
∗(1)) if and only if κf ,1

vanishes.

In this case, we may consider then the projection
TX (f )

∗ ⊗ Z/pt → Z/pt(1) and get a class in

κf ,2 ∈ H1(Q,Z/pt(2)).

Interpretation on the realm of Sharifi’s conjectures, as the cup
product of two circular units.

Mazur–Wiles isomorphism.
Use of Fukaya–Kato results relating this projection with evaluation at
infinity.
Transition map between H2(Q,Z/pt(2)) and H1(Q,Z/pt(2)). It
involves L′p(ψ̄,−1) (note that L′p(ψ̄,−1) is a multiple of p).
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Galois representations of critical Eisenstein series

Weight two fβ = E crit
2 (ψ, τ).

Define V (fβ)
∗ as the maximal quotient of H1

et(Y ,Zp(1)) where the
action is via the Hecke eigensystem attached to fβ.

2-dimensional vector space, de Rham representation of GQ.
Fits into an exact sequence

0 → Qp(τ)(1) → V (fβ)
∗ → Qp(ψ) → 0.

Define V c(fβ)
∗ as the analogous space with compactly-supported

rather than non-compactly-supported cohomology.

0 → Qp(ψ) → V c(fβ)
∗ → Qp(τ)(1) → 0.

Both sequences are non-split (classes (2) and (3) with the previous
notations).
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The eigencurve at critical Eisenstein points

The form fβ is an overconvergent cuspidal eigenform of finite slope.
Defines a point on the cuspidal eigencurve.

Belläıche: the eigencurve is smooth at fβ and locally étale over weight
space.

Differences with other cases of critical slope (recent work of Benois
and Büyükboduk).

May consider families of representations V (f)∗ and V c(f)∗.

Let X be a uniformizer at the Eisenstein point. Then,

V (f)∗ ⊃ V c(f)∗ ⊃ XV (f)∗ ⊃ XV c(f)∗ ⊃ . . .
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Beilinson–Flach elements

Beilinson–Flach Euler system: attached to two Coleman families f
and g.

Rank 4 module V (f, g)∗(−j) such that for any integers (k , ℓ, j) we
recover V (fk)⊗ V (gℓ)(−j).

Cohomology class of Beilinson–Flach elements

dκ(f, g) ∈ H1(Q,V (f, g)(−j)).

3-variable p-adic L-function Lfp(f, g) interpolating L(fk , gℓ, 1 + j)
along critical region (ℓ+ 1 ≤ j ≤ k).

Reciprocity law

Colηf⊗ωg(locp(dκ(f, g))) = Cd(f, g, j) · Lfp(f, g).
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Beilinson–Flach vs Beilinson–Kato

Three-variable BF class: two weight variables (corresponding to two
Coleman families) and a cyclotomic variable. Class

κ(f, g) ∈ H1(Q,
1

X
V c(f, g)).

Recall that 1
X V (f) ⊃ 1

X V c(f) ⊃ V (f).

Slogan: the class has a simple pole at the critical Eisensteint point

Take projection to the quotient
1
X
V c (f,g)

V (f,g) .

Hence, we can lift it to a class

dκ(fβ, g) ∈ H1(Q,Qp(ψ)⊗ V (g)⊗HΓ(−j)).
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Vanishing of the class

Why does the previous projection of κ(f, g) vanish?

Local properties of Beilinson–Flach elements. Both V (f) and V (g)
admit local filtrations

0 → F+D(f)∗ → D(f)∗ → F−D(f)∗ → 0.

“At least one plus” (3 dimensional subspace).

In the projection, we are taking “the minus quotient” por f . Then,
the projection must lie in the plus subspace for g .

Bloch–Kato known in this case. The space where the projected class
lives is one-dimensional and spanned by the Kato class.

The Kato class does not lie in the plus subspace: its projection to the
minus quotient is the p-adic L-function.

We conclude that the projection of the BF class must be zero.
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Beilinson–Flach vs Beilinson–Kato

Theorem (Loeffler-R)

We have

d κ̂(fβ, g) =

(
C · Cd(fβ, g, j) log

[r+1] ·Lp(g ⊗ τ, j− 1− r)
)

Lp(Ad g)
· κ(g × ψ)

for some nonzero constant C ∈ L×.

Key ingredients.

1 Behaviour of cohomology classes (leading term argument).

2 Artin formalism for L-series.

3 Eichler–Shimura isomorphisms at critical Eisenstein points.

4 Bloch–Kato conjecture.
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Beilinson–Flach vs Beilinson–Kato

Other instances:

Diagonal cycles degenerate to Beilinson–Flach elements.

Works in a similar way.
Must be more careful in the study of the local condition.

Heegner cycles degenerate to elliptic units.

Anticyclotomic analogue.
Heenger points satisfy a rather strong local condition.

Beilinson–Kato classes degenerate to circular units (subtler).

We plan to explore this in the future.
No local conditions.
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