
978-1-7281-7436-5/21/$31.00 ©2021 IEEE

Applying Model-Based Ontology Coverage Analysis

to Mission Architectures
Yaniv Mordecai

Massachusetts Institute
of Technology

77 Massachusetts Ave.
Cambridge, MA 02139

yanivm@mit.edu

Aleksandra Markina-Khusid
The MITRE Corporation

202 Burlington Rd,
Bedford, MA 01730

amk@mitre.org

Greg Quinn
The MITRE Corporation

202 Burlington Rd,
Bedford, MA 01730
gquinn@mitre.org

Edward F. Crawley
Massachusetts Institute

of Technology
77 Massachusetts Ave.
Cambridge, MA 02139

crawley@mit.edu

Abstract—This paper introduces a method for Model-based

Ontology Coverage Analysis (MOCA) and applies it to SysML

models of mission architectures. An ontology is a set of concepts

that constitute a common language, standard terminology, and

consistent pattern reference across multiple models within an

organization, industry, or domain. The purpose of MOCA is to

assess the overlap between a system architecture model and a

given ontology, and thereby the architecture model’s

compliance with the ontology and the ontology’s utilization by

the architecture. We demonstrate MOCA on a SysML model of

a humanitarian airlift mission, using a conceptual mission

architecting SysML profile model that serves as the ontology.

MOCA automates and simplifies reasoning over models, and

creates digital model-based artifacts that support stakeholders

in concept validation, decision making, and system/mission

design. Thus, MOCA enhances digital systems engineering.

Keywords—Digital Engineering; Model-Based Systems

Engineering; MBSE; Mission Architecture; Mission

Engineering; Ontology; Ontological Analysis

TABLE OF CONTENTS

1. INTRODUCTION ... 1
ABBREVIATIONS AND ACRONYMS 1
2. ONTOLOGIES AND MODELING 3
3. MODEL-BASED ONTOLOGY COVERAGE

ANALYSIS (MOCA) .. 6
4. CASE STUDY: HUMANITARIAN AIRLIFT 11
5. DISCUSSION ... 13
6. CONCLUSION ... 15
ACKNOWLEDGEMENTS .. 16
REFERENCES... 16
BIOGRAPHY .. 18

1. INTRODUCTION

Model-based Mission Engineering (MBME) is the use of

formal models to capture and analyze complex operational

architectures, such as space exploration missions, defense

campaigns, dedicated operations, and enterprise activities.

MBME is a derivative of Model-based systems engineering

(MBSE), which applies formal modeling languages (FMLs)

to specify complex systems and processes. The Unified

Modeling Language (UML) [1], Systems Modeling

Language (SysML) [2], Business Process Modeling Notation

[3], Object Process Methodology (OPM) [4], [5], and Petri

Nets [6], [7] are common FMLs. MBME uses FMLs to

describe mission models [8]–[10]. Digital Systems

Engineering is the utilization of MBSE toolchains, models,

and model-based artifacts [11]–[13] to enhance engineering

and operational enterprise processes. Digital Mission

Engineering similarly draws on MBME.

FMLs can represent mission architectures, thanks to the

relatively domain-agnostic, general-purpose syntax and

semantics of the building blocks and constructs of FMLs. For

example, concepts like object, process, state, block, class,

activity, and actor constitute the vocabulary of FMLs. These

concepts are typically ascribed to unique geometrical shapes

that can be deployed and associated in diagrams. They have

a relatively broad scope of applicability.

An ontology is a set of concepts and patterns that are typical

to a domain. These include domain terminology, business

rules, organizational structures, professional jargon, and

cross-cutting aspects (e.g., communication, logistics,

security, and safety). General-purpose FML concepts are

often insufficient or inadequate for capturing enterprise and

operational contexts of mission architectures, from package

delivery to manned interplanetary exploration campaigns.

Mission architectures must comply with such domain

patterns. Accordingly, mission architecture models must

comply with ontological models.

ABBREVIATIONS AND ACRONYMS

Acronym Full Term

ACR Architecture Compliance Report

archifact architectural artifact

ASoT Authoritative Source of Truth

CMGVC Concept-Model-Graph-View Cycle

FML Formal Modeling Language

MBME Model-Based Mission Engineering

MBSE Model-Based Systems Engineering

MOCA Model-based Ontology Coverage Analysis

OAO Ontology-Architecture Overlap

OUR Ontology Utilization Report

SysML Systems Modeling Language

UML Unified Modeling Language

mailto:yanivm@mit.edu
mailto:amk@mitre.org
mailto:gquinn@mitre.org
mailto:crawley@mit.edu

2

Many reference frameworks, terminologies, vocabularies,

and pattern libraries can be encoded as ontologies, by clearly

listing the set of concepts and the set of relations among

concepts in each reference. Mission architecture references

that can be encoded as ontologies include: a) The Department

of Defense Architecture Framework (DoDAF) [14], [15]; b)

The Department of Defense Mission Engineering reference

[13], [16]; c) MITRE’s ATT&CK (pronounced: Attack)

Framework for cyber resilience [17]; d) Leveson’s System-

Theoretic Accident Model and Processes [18], [19]; e)

Systems Engineering and Conceptual Architecting

references, such as those suggested in [20]–[23]; and f)

standard, domain-specific, mission-specific, or problem-

driven performance criteria [24], [25].

We can significantly enhance our assessment, verification,

validation, and revision of mission architectures based on the

ontologies that govern them. This requires: a) encoding

concept and pattern references as ontologies; b) encoding

mission architectures as formal conceptual models;

c)_classifying mission architecture artifacts according to

ontological concepts; and d) applying ontological analysis to

the architectural and ontological models.

Ontology-based frameworks for conceptual model analysis

and validation have been shown to contribute to the reduction

of semantic vagueness and ambiguity in conceptual models.

Semantic vagueness is a common phenomenon that results

from subjective human perception, conceptualization, and

modeling decision-making [26], [27]. A formal model can be

syntactically correct-by-construction by using modeling

software tools that enforce syntax. However, enforcing

compliance with an ontology involves methodological and

computational challenges.

Manual or visual compliance analysis may be possible for

simple models, thanks to human intuition and cognition, but

it does not scale out for complex multi-model, multi-aspect

architectures, with multiple governing ontologies.

Automated compliance analysis, on the other hand, allows

the analyst to focus on sense-making, anomaly detection,

decision-making, and conclusion drawing, rather than

searching and matching, which are considered simpler

cognitive tasks. Some of the intuition and reasoning patterns

that we are able to apply as humans to representations can be

codified and automated, thereby reducing the cognitive load

on the analysts and allowing them to focus on the more

advanced and impactful cognitive tasks.

When we review a system or mission architecture, we

interpret and expect the elements and constructs that it

contains to resemble patterns and comply with ontologies we

may have in mind, due to familiarity, experience, or our own

adherence to well-defined specifications, international

standards, federal regulations, or professional jargon. For

instance, a communication engineer may expect to find items

in a system architecture that have the semantics of

communication: signal receiving and transmitting, often

denoted as Rx and Tx, encoding and decoding, modulating

and demodulating, etc. These can be reflected in the names

of components, functions, and signals. An operator who

studies a manual expects it to include steps and directions to

procedures (e.g., activation of a system), interfaces, controls,

indications, situations, and troubleshooting steps.

Complex representations and designs rely in many cases on

the perception and sense-making that stem from the author’s

or designer’s conception and interpretation. It is difficult to

guarantee that any reader or viewer will interpret these

representations exactly as intended by the author or designer.

And yet, as humans, we communicate orally, textually, and

graphically with other humans with more or less success as a

matter of fact. Unfortunately, we cannot rely on the best

effort of human cognition to guarantee correct, effective, and

efficient realization of our ideas, when we design complex

systems and missions. Bridging and closing the interpretation

gap is possible if we apply ontological semantics to

architecture and design artifacts.

To be more informed and constructive about the extent to

which an architecture complies with an ontology, we would

want to assess that compliance quantitatively, and iteratively

strive to improve it. The compliance of the architecture with

the ontology can be thought of as an overlap between two sets

of concepts: those that the ontology defines as patterns or

templates, and those that the architecture specifies as

instances, as shown in Figure 1. Moreover, we aspire to

maximize the overlap (Z2 in Figure 1) to improve that

compliance, and concurrently minimize uncovered

architecture (Z1) and uncovered ontology (Z3).

Figure 1. Maximizing the overlap between the

Architecture and the Ontology provides a) better

classification and compliance of architectural artifacts

and b) better utilization of standard concepts

There are two major problems to consider: a) determining the

coverage of an architecture by an ontology, which reflects the

compliance of the architecture with the ontology, and b)

determining the coverage of an ontology by an architecture,

which reflects the utilization of the ontology by the

architecture. These are not equivalent sets, as clearly

illustrated in Figure 1. The former, denoted as

𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒(𝐴𝑟𝑐ℎ, 𝑂𝑛𝑡) in (1), measures the value of the

overlap 𝑣(𝑍2) relative to the value of the architecture’s scope

– i.e. how much of the whole architecture (𝑍1 ∪ 𝑍2) is

classified (𝑍2). The latter, denoted and defined in (2) as

3

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑂𝑛𝑡, 𝐴𝑟𝑐ℎ) measures how much of the

ontology’s scope (𝑍2 ∪ 𝑍3) is utilized.

𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒(𝐴𝑟𝑐ℎ, 𝑂𝑛𝑡) = 𝑣(𝑍2)/𝑣(𝑍1 ∪ 𝑍2) (1)

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑂𝑛𝑡, 𝐴𝑟𝑐ℎ) = 𝑣(𝑍2)/𝑣(𝑍2 ∪ 𝑍3) (2)

Maximizing ontological compliance has a synergistic and

two-way effect of both better classification of architectural

artifacts, and better utilization of ontological concepts. It is a

win-win situation for both the stakeholders of the architecture

(customers, integrators or implementors, and operators) and

stakeholders of the ontology (national, professional, and

organizational regulators, quality assurers, certification

providers, and certified operators).

However, attempting to reach comprehensive ontological

compliance in the ever-spreading ontology quagmire may be

cumbersome, frustrating, and potentially Sisyphean. The

scope of ontologies that an architecture may have to comply

with is practically unbounded. Ontologies change all the time

and changes may be hard to catch up with. The scope of

applicable ontologies may result in redundancy, ambiguity,

conflict, or contradiction in conceptual classifications of

architectural artifacts. For example, the same architectural

artifact can be thought of as both a functional feature of the

system, a mechatronic technology application, an operational

asset, a safety hazard, an enabler of mission success, a cost

attractor, etc. Each one of these classifications comes from a

separate ontology, and trying to classify the same system

component according to all of these ontologies may be both

cumbersome, hard to appreciate in terms of added value, and

at times technically and cognitively difficult. A coherent

approach to the assessment of ontological compliance may

help resolve or reduce some of these challenges.

Mission architectures may consist of multiple models that use

a variety of general-purpose and domain-specific FMLs as

well as various, possibly overlapping, partial, or inconsistent

ontologies. A mission architecture may be expected to

comply with multiple ontologies to facilitate stakeholder

understanding, adherence to conventions and standards, and

architecture analysis. The challenge is in ensuring, assessing,

and utilizing the ontological compliance of the mission

architecture’s ensemble of models.

To conclude, the problem of model-based mission

architectures ontological coverage includes several aspects:

a. multiplicity of architecture models, conceptual modeling

approaches, and modeling languages;

b. multiplicity of applicable references and partial

formulation of such references as ontologies or

ontological models;

c. difficulty in classifying artifacts according to multiple

ontological concepts; and

d. lack of appropriate methodology for analyzing and

assessing ontological compliance.

We propose a method for Model-based Ontology Coverage

Analysis (MOCA). The purpose of MOCA is to provide

aggregate and detailed information about i) a given

architecture’s ontology coverage vis-à-vis an expected set of

ontologies, ii) each ontology’s architecture coverage, which

attests to the adoption and utilization of the ontology, and iii)

the overlap between the two. These outputs capture the

architectural and ontological artifacts in the three zones

illustrated in Figure 1. The MOCA report should highlight

specific issues in the mission architecture, such as

architectural artifacts (archifacts) that are not associated with

any ontology, or ontology concepts that are not instantiated

anywhere in the architecture.

2. ONTOLOGIES AND MODELING

Ontology Defined

The term Ontology has several meanings: as a branch of

philosophy, as an abstract theory, and as a practical artifact

[28]. Ontology as a science (and perhaps art) is the study,

categorization, and organization of the structure of nature,

reality, existence, and perception – of things that be or can

possibly be. Gruber asserted that “an ontology is an explicit

specification of a conceptualization” [29].

An ontology of some domain is a conceptual organization of

that particular domain. A vocabulary, a terminology of some

domain of the universe, and the set of relations among terms,

constitute a theory of the structure of the domain. Thus, an

ontology is a set of abstract concepts and patterns that bind

them, that exist or may exist in the domain that the ontology

describes. Finally, an ontology is a knowledge storing

artifact, which records the concept organization and can be

instantiated as a model or applied to one.

Ontologies differ in their applicability to reality. Several

levels of ontological precision determine the extent to which

an ontology is binding, indisputable, and unavoidable: a) a

catalog of items to choose from, b) a glossary that a

specification should adhere to, c) a taxonomy that a hierarchy

must adhere to, d) a Thesaurus, which provides a closed set

of terms to work with, e) a data structure, which binds a data

processing system to comply with, and f) an axiomatic

theory, which determines or governs the laws of the universe

[28]. Conceptualization schemes of types (e) and (f) are

respectively either computationally constraining entities that

reside and run in cyberspace (like the structure of a database),

or scientifically constraining for things that exist or operate

in reality (like the laws of Physics). They are therefore

indisputable and unavoidable from the implementation or

realization’s perspective – i.e., a given instantiation cannot

overcome them. The lower-precision grades of ontology are

essentially disputable, electable, and avoidable – subject to

will, belief, and perception – since they apply to conceptions

and ideations rather than to implementations and realizations.

4

The ability to mandate and enforce ontologies in the creation

and forming of ideas and conceptions is limited. Some may

also argue that this is undesired, as it restricts the creative

process. Ontologies mostly attempt to instill order into

conceptualizations of complex natural and artificial systems

as they are conceived, ideated, and designed. The adoption of

an ontology depends on the acceptance and motivation of the

people involved in the conceptualization process. For this

reason, it becomes imperative to ensure that documenting and

formulation of such concepts and designs also include the

application of ontologies that a) propose a valuable reference

for domain concepts, b) enrich the model with notions from

particular ontologies of relevance and interest, and c) restrict

model entities to adhere to the standard terminology and

patterns dictated by the ontology, such that they protect

designers from making mistakes or diverging from the

enacted design language.

Ontology-Driven Modeling

Ontology-driven modeling is the process of building

conceptual models using syntactically-finite modeling

languages, and reinforcing the semantics of the model by

classifying model elements and constructs according to

ontological classifiers. As conceptual modeling languages

provide syntactical certainty, the semantics of model

constructs, which are essentially instantiations of syntactical-

grammatical patterns, are unbounded due to the attribution of

meaning by human perception. Perception may vary across

model authors and readers, lead to ambiguity, and undermine

confidence in the model’s ability to serve as an Authoritative

Source of Truth (ASoT).

Essentially, any conceptual model is, to some extent, a

concept model, a meta-model, or an ontology of the solution

domain [30]. For example, a model of a specific banking

system could be considered as a representative and

characteristic specification of banking systems in general. It

is obvious that one specific banking system does not precisely

describes any other banking system, but it is a good starting

point. System models should be constructed as generic

representations of the domains in which the modeled systems

operate, to ensure solution rigor and robustness.

Metamodeling is the modeling of modeling languages [31],

[32]. Metamodeling received a significant boost due to the

availability of FMLs, particularly UML. Conceptual

modeling has been harnessed for ontology modeling, i.e. for

creating models that may constitute ontological, generic

domain representations [33]–[37]. Metamodeling and

ontology have some distinctions between them, but they are

potentially intertwined and complementary ideas.

Metamodeling addresses syntactical formality while

ontology concerns domain concept formality. Both can be

obtained separately, but a fusion of the two paradigms of

ontology and metamodeling as the emerging paradigm of

Ontology-Driven Systems Engineering has the potential to

generate significant synergy for the formality of system and

mission architectures [22], [38].

In some modeling systems, including UML, SysML, and

OPM, a metamodel, or profile, can constrain a model through

the classification of model elements as instances of profile

elements, or stereotypes. Profiles can be imported into

models, and the stereotypes defined in the former can classify

artifacts specified in the latter. UML was designed to allow

extensibility and adaptation through profiles and stereotypes

[39]. Thus, SysML is a UML profile: it contains original

UML types and some stereotypes like Block, Port, and

Requirement that can be instantiated as artifacts in system

models [2]. The Unified Profile for DoDAF and MoDAF –

the British counterpart of DoDAF (UPDM), and the Unified

Architecture Framework (UAF) are UML profiles [40], [41].

Additional UML-based profiles (or ontologies that can be

profiles) are available [13], [16]–[22].

Ensuring the validity, applicability, and usefulness of

ontologies, encoded as profiles in MBSE, has become a major

challenge. Evidently, no profile is comprehensive enough to

capture every aspect of a complex system. Specialized and

standardized ontologies must be used, wherever possible, to

create standardized architectures, facilitate stakeholder

engagement and communication, reduce ambiguity and

confusion, and enhance models’ and systems’ integration

and interoperability [38], [42].

Functional decomposition of complex systems is one of the

main activities that leverage conceptual modeling. An

Ontology of Functions (OF) – a functional decomposition

ontology [43], defines the function concept and the possible

relations among functions. The definition of each function F

should include a label Label(F), a set of requirements,

Req(F), a set of goals Goal(F), and a set of functional items

FItem(F). We add that each function’s definition should also

include a unique identifier UID(F) and a version identifier

Ver(F), for better identification and configuration

management of function specifications. Notably, the

proponents of OF chose a set-theoretic, functional

formulation, rather than an object-oriented one: F.Label,

F.Req, etc. Relations among functions include instantiation,

specialization, participation, and realization. Such relations

are explicitly defined in the UML-SysML and OPM syntax

[1], [2], [4], [5], so including them in OF only benefits

modeling languages that do not provide syntax for such

relations. An ontology for operational-functional unified

specification that uses OPM syntax was introduced in [44].

Structural relations such as those captured in UML Class

Diagram and SysML Block Definition Diagram are relatively

easy to convert to ontologies. However, the behavioral and

procedural aspects of the system, which are typically

captured in Activity Diagrams and Sequence Diagrams, are

more challenging to transform into ontologies or the

behavioral sections of an ontology, as they also require the

recording of order and precedence, as well as reasoning about

order consistency and variation [45].

Reference architectures can constitute ontologies that

specific solution architectures should or must adhere to. The

5

breadth of technologies and aspects in complex systems calls

for integrated, hybrid, or multidimensional ontologies. For

example, autonomous vehicles involve autonomy,

mechatronics, robotics, artificial intelligence, advanced

driver engagement concepts, communication, safety

assurance, etc. Ontology-driven modeling of autonomous

vehicle architectures can ensure that every aspect of the

system complies with its own vocabulary. Concurrently,

system-level interactions are specified by coherent abstract

representations of system functionality, behavior, and

modular structure. The OASys-driven Engineering

Methodology (ODEM) is an ontology-driven MBSE

approach that fuses an Autonomous Systems Ontology,

OASys, with a systems engineering ontology [46]. ODEM

uses a conceptual ontology layer where functional concepts

are used for representing the autonomous system’s elements,

and they are then being instantiated into concepts drawn from

an ontology of autonomy, consisting of such concepts as

Localization, Navigation, Scanning, Perception, and Motion.

In turn, these concepts are transformed into technology-

specific implementations, such as 3D-Mapping, Obstacle

detection, and Emergency Braking.

Mission Architecture Ontologies

Mission architecture ontologies are of particular interest for

operating, acquiring, architecting, and building solutions

with a clear mission statement in mind. Mission supporting

ontologies may span the entire scope of science, engineering,

business, and operations. Researchers at the Jet Propulsion

Lab (JPL) pioneered the formulation and utilization of

ontologies in model-based space mission architectures, as

part of the Integrated Model-Centric Engineering (IMCE)

initiative [47]–[52]. Ontologies for modeling and analyzing

system states, behaviors, mission plans, and system failures,

were found to be of particular interest. JPL’s SysML-

underpinned Behavior Ontology includes concepts like

Behaving_Element, Element Behavior, Interaction Behavior,

Interaction, State, and State Variable . These are captured as

syntactical SysML elements with stereotypes. For example,

Element Behavior is captured as a SysML Component’s

Constraint Block. The Behavior Ontology also encodes

special relations between concepts, such as characterizes,

constrains, and uses. A model-based formulation of

DoDAF’s Operational Viewpoint as a reference ontology for

an operational architecture was suggested in [53].

Ontology Coverage

Ontological analysis is important and sometimes critical for

assuring, measuring, verifying, validating, and enforcing

ontological compliance of system models. It is quite difficult

to measure and evaluate the extent of adoption and utilization

of ontologies by large-scale system models, and therefore

automated algorithms must be used.

Ontological analysis includes measurement and estimation of

metrics like coverage, correctness, and similarity between

reference ontologies and ontology instances or adaptations

[54], [55]. Serial reference keyword similarity search as an

estimator of coverage was also proposed in [54], using the a

similarity index 𝑆𝑖𝑚(𝑂1, 𝑂2) that assesses similarity between

two ontologies 𝑂1, 𝑂2 as a function of the number of pairs of

items in each ontology. The similarity index is valid if the

two ontologies have the potential to be identical.

Matching ontologies to an existing and evolving body of

knowledge may be a significant challenge. An ontology-

driven study of Earth-Scientific literature found inconclusive

results, particularly in tracking the coverage of domain-

specific ontology-defined axioms [55]. The study focused on

four types of coverage: a) class coverage (CC), b) subclass

coverage (SC), c) equivalence coverage (EC), and d) breadth

coverage (BC), which is a linear combination of CC, SC, and

EC. Coverage is calculated as the fraction of terms from the

reference ontology that are present in a scientific article. As

such, it expresses a 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑂𝑛𝑡, 𝐴𝑟𝑐ℎ) coverage type.

It was initially difficult to automatically detect semantic

similarity, although the assertions were intuitively similar.

Synonym Synergy, an enhanced method that uses thesauri to

capture subclass relations, improves coverage detection.

The multiplicity, hierarchy, and need for integration of

ontologies in the analysis of models and more broadly

knowledge bases has been discussed in [56]. During early

conceptual design, e.g., of a new aircraft or component,

designers may benefit from the integration of semantic search

within existing knowledge bases. A two-dimensional

framework for classifying ontologies by Generality and

Coverage was suggested in order to improve the precision of

such semantic search. We found the suggested classification

a bit ambiguous: the Coverage axis, which includes

Documentation, Modeling, and Design Ontologies, included

several confusing overlaps among these ontology types. This

may imply that it is difficult to distinguish between

ontologies according to their contribution to these activities,

as the boundaries among them are blurry to begin with. The

authors highlighted the importance of ontology coverage

assessment, but did not introduce a solution.

Category-Theoretic Analysis of System Models

Previous studies on robust methods for model analysis found

Applied Category Theory and Applied Graph Theory as ideal

mechanisms for the generic representation and

transformation of models [57]. A graph data structure (GDS)

is a highly-robust data representation format that is amenable

to a variety of analyses [57]–[59]. Since the GDS is a

relational data structure, it is possible to store and analyze it

as both a relational database [57], [60] and as a graph

database [61], [62].

The Concept→Model→Graph→View Cycle (CMGVC) is a

cognitive-computational representation transformation cycle

defined in [57], and applied in [58]. The CMGVC utilized

Category Theory to capture the different representation

methods as categories, and the mappings between

representation methods as functors – mappings between

categories. Concepts (C) – systems, ontologies, needs, and

ideas – are encoded as models in various modeling languages

6

(M). the graph data structure (G) is an intermediate layer that

helps extract information from models. Analytical views (V)

are extracted from G rather than from M. This approach

yields multiple benefits such as the linearization of the

number of transformations from multiple modeling notations

to multiple information visualizations, and the abstraction of

modeling languages in the process of decision-supporting

visualization, insight generation, and concept validation.

A rigorous model-based ontology coverage approach is

apparently necessary. Model-based mission architecting,

which draws on ontologies, and not only on syntax, is an

emerging approach, as evident in the literature. However, the

ability to analyze ontological coverage and derive value of

such analysis is limited. Particularly, the dual role of ontology

coverage in both architectural compliance and ontology

utilization must be explored in more depth. Novel model

analysis approaches, based on category theory and applied

graph theory, enables us to study the ontology coverage

problem and provide significant added value to ontology and

architecture stakeholders alike.

3. MODEL-BASED ONTOLOGY COVERAGE

ANALYSIS (MOCA)

MOCA is a model-based method that provides: i) the overlap

between an ontology model and an architecture model, ii) the

overlap relative to the set of architectural artifacts, which

indicates the architecture’s compliance with the ontology,

and iii) the overlap relative to the set of ontology stereotypes,

which indicates the ontology’s utilization by the architecture.

Ontologies and architectures are both, essentially, collections

of models. Model-based ontologies are models that include

elements that constitute stereotypes. A profile is a model that

includes stereotypes. A stereotype is an element that can be

applied to elements in other models. An architecture consists

of one or more models that describe the structure and

behavior of a system. In some FMLs, models can include

profiles next to architecture constructs. Table 1 provides a

glossary of the primary concepts we use, and our intention

when we use them. Interestingly, this glossary can be an

ontology for ontology-driven mission architectures, but

reflective ontological analysis of MOCA is not our goal.

Stereotyping

We denote ontological concepts or stereotypes using the

double-angle quotation marks: «Concept». This convention

distinguishes concepts from their instances. We refer to

elements defined in the architectural model as architectural

artifacts, or archifacts. An archifact can be stereotyped.

When a stereotype is applied to an archifact, the applied

stereotype is recorded in the architecture model as a pointer

to the master stereotype. The architectural model must

include references to predefined profile models, or packages

that constitute profiles. Stereotypes from these profiles can

be applied to archifacts. Stereotyping may be subject to

syntactical matching: an archifact may assume a stereotype

only if there is a match between the syntactical type of the

archifact and the syntactical type of the stereotype. This

constraint may be overcome by defining stereotypes as the

most abstract concept in the language, e.g., the UML Element

type, or by removing the prior classification of the archifact.

Stereotyping is a more rigorous mechanism to classify model

elements, compared to the embedding of topical keywords in

element names. For example, it is wiser to classify a block

named ‘Obstacle Detection Sensor’ as a «Sensor», and

optionally rename it to ‘Obstacle Detector’. Furthermore, if

we have a more fine-grained ontology where specific types

of sensors are specified, we can also apply a stereotype like

«Object Detector», which may differ, for example, from

«Light Sensor», or «Motion Sensor». If a device has multiple

roles, it can adopt multiple stereotypes and keep basic name.

Ontology-agnostic or ontology-skeptic engineers may prefer

implicit stereotyping through naming. However, reducing the

ontological classification problem to textual similarity may

seriously hinder architecture analyzability. It may be a good

starting point to generate recommended classifications for

legacy, ontology-agnostic architecture models.

Extracting Archifacts and Stereotypes from Models

Stereotypes must be classified as stereotypes in the profile

models that contain them. They must be compliant with the

stereotype retrieval mechanism’s logic so that the stereotypes

in a profile will appear as classifiers in the model where the

profile is used. It is recommended that profiles will not be

mixed with architecture models for two reasons: i) to avoid

confusion between concepts and instances, and ii) to allow

for the reuse of the profile across multiple architectures.

A set of optionally classified model items may be extracted

from any model, whether it is an architecture, ontology, or

hybrid model. When the model is referred to as part of the

ontology, model items that are stereotypes are the ontological

reference. When the model is referred to as part of the

architecture, model items that are classified as anything but

stereotypes (not to be confused with items classified by

applied stereotypes) make up the architectural reference.

Calculating the Ontology—Architecture Overlap

The overlap between an architecture Α and an ontology Ω,

𝑍2(Α, Ω) is defined in Error! Reference source not found.

as the set of archifacts Αi , such that each Αi is classified by

another architecture item 𝐴𝑗 (the applied stereotype), which

matched a profile item, Ω𝑘, which is classified as a

stereotype. Accordingly, the uncovered portion of the

architecture, 𝑍1(Α, Ω), is defined in (4) as the subset or

architecture items that are not covered at all, or not covered

by applied stereotypes that match items in the reference

ontology, or not matched by profile stereotypes. Finally, the

uncovered portion of the ontology, 𝑍3(Α, Ω), is defined in

Error! Reference source not found. as the set of stereotypes

in the ontology that are not matched with applied stereotypes,

or matched with applied stereotypes that are not applied to

any archifact.

7

𝑍2(Α, Ω) =

{

Αi|

∃𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(«𝐴𝑗», Ai), 𝑖 ≠ 𝑗 ∧

∃𝑀𝐴𝑇𝐶𝐻(«𝐴𝑗», «Ω𝑘») ∧

∃𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑜𝑛(Ω𝑘 , «𝑆𝑡𝑒𝑟𝑒𝑜𝑡𝑦𝑝𝑒»)}

 (3)

𝑍1(Α, Ω) =

{

Αi|

 ∄𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(«𝐴𝑗», Ai), 𝑖 ≠ 𝑗 ∨

 ∄𝑀𝐴𝑇𝐶𝐻(«𝐴𝑗», «Ω𝑘») ∨

∄𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑜𝑛(Ω𝑘 , «𝑆𝑡𝑒𝑟𝑒𝑜𝑡𝑦𝑝𝑒»)}

 (4)

𝑍3(Α, Ω) =

{

Ω𝑘|

∄𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑜𝑛(Ω𝑘 , «𝑆𝑡𝑒𝑟𝑒𝑜𝑡𝑦𝑝𝑒») ∨

∄𝑀𝐴𝑇𝐶𝐻(«Ω𝑘», 𝐴𝑗) ∨

∄𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(«𝐴𝑗», Ai), 𝑖 ≠ 𝑗 }

 (5)

The rules of finding members of Z1, Z2, and Z3 are illustrated

in Figure 2: archifacts (rectangles) must be classified by

applied stereotypes in the architecture models (flipped

trapezoids with lowercase letters), which must be matched

with stereotypes in any of the profiles in the ontology

(trapezoids with capital letters).

The rules of inclusion in the three zones use the language-

agnostic relation patterns: «classification» and «MATCH»

(which are denoted as stereotypes because they pertain to an

ontology of types of relations in models). Specifications of

classification relations in models may not be immediately

available in the form 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑜𝑛(𝑋, Y). This is FML-

specific. The 𝑀𝐴𝑇𝐶𝐻(𝑋, Y) mapping is defined between

models, not within a model, and requires suitable logic. It

could be a simple comparison or something more elaborate.

Having defined the zones in the architecture-ontology map,

𝑍1(Α, Ω), 𝑍2(Α, Ω), 𝑍3(Α,Ω) we are able to derive metrics of

overlap, compliance, and utilization. The simplest metrics are

based on counting the number of items in each zone, as

defined in equations (6), (7), and (8), respectively.

𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝐴𝑟𝑐ℎ, 𝑂𝑛𝑡) = |𝑍2| (6)

𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒(𝐴𝑟𝑐ℎ, 𝑂𝑛𝑡) = |𝑍2|/(|𝑍1| + |𝑍2|) (7)

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑂𝑛𝑡, 𝐴𝑟𝑐ℎ) = |𝑍2|/(|𝑍2| + |𝑍3|) (8)

Table 1. Glossary for a Model-based Ontology Coverage Analysis Framework

Term Definition Relation to other terms

architectural

artifact (archifact)

object in a model, which has a formal syntactical type in

the FML, and semantics of a conceptual, logical, or

physical component in a system or mission architecture

An architecture model includes many

archifacts.

architecture
conceptual organization of the structure and behavior of

a system in order to fulfill its functionality

An architecture includes one or more

architectural model.

architecture

compliance with R

extent of coverage of an architecture by R, which may be

an ontology or another reference (e.g., requirements)

An architecture may partially or fully

comply with multiple ontologies

capability
attribute or operation [of someone or something] that

represents solution-neutral value delivery

Capabilities enables missions;

missions enable capabilities

concept
idea that maps meaning to structure, function to form, or

concept to concept

An ontology consists of concepts.

An architecture consists of concepts.

graph data

structure (GDS)

Set of tuples that represent directed relations between

nodes in a graph
A GDS represents a model

mission
set of operational goals to be accomplished by a system,

person, or organization

A mission model specifies a mission

architecture

model

formal specification of a part of a system, built according

to the syntax of a FML, stored as an alphanumeric data

structure (e.g., XML file), which represents a concept

A model represents an architecture or

an ontology.

ontology
conceptual organization of a domain, based on a set of

concepts and relations among them

An ontology consists of one or more

profiles.

ontology utilization extent of coverage of an ontology by an architecture
An ontology may be partially or fully

utilized by multiple architectures

profile

model that includes objects that represent concepts,

which are specified as stereotypes according to the

syntax of the FML

A profile is any model or part of a

model where stereotypes are defined

stereotype

object in a profile model, which represents a concept,

and which can be applied to other objects in other

models (e.g. archifacts) in order to give additional

semantics to these objects according to the concept

A stereotype is defined in a profile.

A stereotype can have multiple

applied stereotypes.

stereotype, applied

object in a model, which points to a stereotype, and

serves as the mediating object between a stereotype and

archifacts in the model

An applied stereotype maps one

stereotype to one archifact

8

Figure 2. Mapping Applied Stereotypes (flipped

trapezoids) of Artifacts (rectangles) in the

Architecture (left blue shield) to Stereotypes

(trapezoids) in Profiles that Compose the Ontology

(shields to the right).

A more sophisticated assessment scheme may assign

different importance factors to different architecture elements

(e.g., by their connectivity in the architecture) and to different

stereotypes (e.g., by their connectivity in the ontology), and

weigh each match accordingly. We leave the exploration of

such assessment schemes to future research.

Application of MOCA to SysML Models

Applying MOCA requires transition from abstract theory to

a specific modeling environment, with existing modeling and

analysis capabilities. The application presented here is not the

exclusive way for conducting MOCA, and other approaches

may be found suitable in the future.

The modeling and analysis process consists of two phases:

• Phase I: Preparation: building an ontology, adopting, or

customizing or a given profile for implementation and

analysis.

• Phase II: Application: building the mission architecture

model, applying stereotypes to archifacts, and analyzing

its growing compliance using the MOCA algorithm.

Phase I: Building a reference ontology profile model.

We need a SysML profile model for mission architectures.

Such a profile must be based on a set of acceptable concepts

in the field. For this purpose, we adapted a profile from a

conceptual architecting framework that was introduced in

[23] and enhanced in [20]. We also included internal jargon

elicited from discussions with mission engineering subject

matter experts (SMEs) at the MITRE Corporation.

The original conceptual architecture reference model in [20]

consists of five domains : D1) Stakeholders, D2) Solution-

Neutral Environment, D3) Solution-Specific Environment,

D4) Integrated Solution, and D5) Concept of Operations

(ConOps). We transformed this set of conceptual domains

into a set of UML package stereotypes using the

«uml:package» type. A package in UML (and SysML) is a

conceptual container that helps organize the model.

Packages, like diagrams, are constructs that pertain to the

model – not to the architecture it represents. In other words –

there are no packages and diagrams in the actual architecture

but we use these constructs to help us manage the complexity

of the architecture. Accordingly, our profile model consists

of five package stereotypes, as summarized in Table 2. The

profile diagram is defined in Figure 3.

Table 2. Package Stereotypes for a Conceptual

Architecture Profile Model and Contained Stereotypes

Package

Stereotype

Original Concept

Domain

Stereotypes

«Stakeholders

Domain»
D1) Stakeholders

«Stakeholder»

«Need»

«Mission

Domain»

D5) Concept of

Operations

«Mission»

«Goal»

«Operator»

«Capability

Domain»

D2) Solution-Neutral

Environment

«Capability»

«Operand»

«Tradespace

Domain»

D3) Solution-Specific

Environment

«SpecificFunctionality»

«SpecificForm»

«SpecificOperand»

«PerformanceAttribute»

«Solution

Domain»

D4) Integrated

Solution

«Component»

«Function»

The «Tradespace Domain» package captures «Tradespace»

elements. The architecting process involves the discovery

and analysis of solution candidates (that make up the

tradespace), consideration of candidate solutions according

to «PerformanceAttribute» and the selection of the most

suitable one to elaborate into a solution architecture. That is

also what the original D3 focused on – the derivation of

solution-specific function and structure to accommodate the

solution-neutral functionality—capability defined in D2.

The «Solution Domain» specifies one or more aspects of the

«Solution» is equivalent to the integrated solution concept

defined in D4 as the high-level conceptual design that

addresses the solution-specific functionality defined in D3.

The «Mission Domain» defines the «Mission», «Goal», and

«Operator» stereotypes. Mission artifacts specify missions to

be performed, goals to be achieved, and operators:

organizations, individuals, and technologies. This clearly

maps to ConOps, but underscores the expectation that this

domain will include a mission-oriented specification with

specific goals and suitable operational configuration in mind.

The «Mission» package has been promoted to be the second

one, right after identifying the stakeholders and their needs.

The intention was to start with a formal specification of the

initial mission architecture, and establish a clear context for

the necessary operational and technological capabilities – as

9

opposed to the situation in which stakeholder needs drive the

formulation of solution-neutral functions which are later

integrated into an operational architecture, concept, or

application. Although the conceptual architecting process is

iterative, the order of the first iteration is critical. Therefore,

the order of the packages was modified.

Figure 3. A UML Mission Architecture Profile Diagram

defining five conceptual architecture domain packages

as stereotypes, derived from the Package type.

The architect may choose to utilize only some packages and

some stereotypes, generate multiple instances of specific

stereotypes, and specify packages and archifacts that do not

adhere to our profile. For instance, a particular mission

architecture model may include a Safety package, which is

typed «Package» but not stereotyped as any of the above

reference packages. This means that it is explicitly or

implicitly drawn from another ontology, e.g., an ontology of

Systems Safety & Security. Similarly, the architect may

define packages with names like “Missions” and “Services”.

This is an example of implicit stereotyping where the names

of the packages imply a terminology that the architect had in

mind. It may not be sufficient even one level down the

hierarchy where the specification takes shape. For example,

packages with the names “Humanitarian Airlift” or

“Perimeter Defense” may not be identifiable as the names of

a mission or a service (capability) unless they are properly

stereotyped as «Mission» and «Capability».

Template models include the instantiated packages with

proper stereotyping, which ensures that at least the initial

model is stereotyped. An example is shown in Figure 4. This

approach resembles template creating for a system

specification document or even for this IEEE Aerospace

Conference article. While it may help guide the author—

modeler about what needs to be included in the specification,

there is a caveat: a template model cannot enforce the

preservation of headings, items, their order, their internal

structure, or their content. It is still a good practice to start

with a template model, and ensure through training and usage

monitoring that the template is adhered to.

Figure 4. A UML Package Diagram in a Mission

Architecture Template Model defining five conceptual

packages and stereotyping them according to the

corresponding package stereotypes.

Model Transformation

The generic relations we rely on call for a transformation

mechanism that can robustly identify and apply mappings

within models and between models. This gives rise to the

adoption of a category-theoretic, graph-data-based approach.

MOCA is a category-theoretic and graph-based approach: it

applies the concepts of transformation from the model

category to a graph data structure (GDS) category where it

operates on a representation of the model as a set of relation-

source-target (RST) tuples. The ontology is also encoded as

a model (a profile) and then transformed into a GDS. MOCA

maps the architectural GDS to the ontological GDS. Thanks

to this rigorous approach, MOCA can apply to models from

any FML with a valid GDS transform. We work with a

relational GDS implementation, which utilizes a SQL Server

database and SQL queries to create the necessary datasets for

presentation and further analysis.

A CMGV Cycle of MOCA, which extends the general

CMGV pattern [57], includes the following mappings:

a) C→M: from ontological and architectural concepts to

ontology and architecture models.

b) M→G: from ontology and architecture models to

ontology and architecture graphs.

10

c) G→V: from ontology and architecture graphs to

ontology coverage reports.

d) V→C: from ontology coverage reports to concept

review or revision, triggering another cycle.

The MOCA CMGV Cycle is illustrated in Figure 5.

C→M: We observe two parallel and intertwining cycles –the

ontological and the architectural. The ontology model stems

from a problem domain concept, while the architecture model

stems from a solution architecture concept and from the

ontology model. Thus, the generation of an architecture is in

fact a 𝐶 ⊗𝑀 → 𝑀 functorial mapping, where the cartesian

product operator ⊗ abstracts the fusion of concepts with a

reference ontology model (the ontological profile model) to

create the architecture model.

M→G: Each model is converted into a GDS, which is stored

in a GDS Table in the database. This step relies on existing

algorithms to transform models based on their modeling

notation to a set of relation-source-target (RST) tuples.

G→V: generating the MOCA views is based on several

mappings from G to V. First, the Ontology-Architecture

Overlap (OAO) is a cartesian product of two graphs, hence it

adheres to the form 𝐺 ⊗ 𝐺 → 𝑉. This type of fusion of model

graphs extends the linear CMGVC model defined in [57].

OAO is fused with the architecture graph to create the

Architecture Compliance Report (ACR), and with the

ontology graph to create the Ontology Utilization Report

(OUR). Both ACR and OUR adhere to the transformation

form 𝐺 ⊗ 𝑉 → 𝑉. ACR is aggregated to create an

Architecture Compliance Score (ACS), while OUR data is

aggregated to create an Ontology Utilization Score (OUS).

V→C: In the conceptual phase of the cycle, model

stakeholders revise the concept and the architecture model

according to MOCA results. They may consider the adoption

of more stereotypes, replace stereotypes, or even define an

underlying ontology for the domain, as a reference for the

solution architecture. This is another example of the notion

that reasoning about solution architectures may result in a

domain ontology that substantiates the architecture.

The algorithm for retrieving OAO, ACR, and OUR is

illustrated as a SysML Activity Diagram in Figure 6. The two

inputs are the Architecture Tuple Set and Ontology Tuple Set.

The outputs include eight sets, of which three are byproducts

and five are views.

The algorithm includes the following steps:

1. Retrieve the archifacts from the architecture GDS.

2. Retrieve the stereotypes from the profile GDS.

3. Match the applied stereotypes of archifacts to

ontology stereotypes; return the intersection as the

Ontology-Architecture Overlap (OAO)

4. Match the archifacts with OAO; return the item set

with/without stereotypes as the Architecture

Compliance Report (ACR)

5. Calculate the proportion of compliant archifacts out

of the number of all archifacts as the Architecture

Compliance Score (ACS).

6. Match the stereotypes with OAO; return the item set

with/without instances as the Ontology Utilization

Report (OUR)

7. Calculate the proportion of utilized stereotypes out of

the number of all stereotypes as the Ontology

Utilization Score (OUS).

Figure 5. A UML Class Diagram specifying the CMGV Cycle for MOCA: domain ontology and solution

architecture (concepts) are encoded as models (M). The models are converted to Graph Data Structures (G). The

GDS representations are fused in order to create three views: Ontology-Architecture Overlap (OAO), Ontology

Utilization Report (OUR), and Architecture Compliance Report (ACR)

11

 Phase II: Applying MOCA to a Mission Architecture

Phase II consists of the following steps:

a. Build an ontology-agnostic architecture model.

b. Apply the ontology profile to the architecture model

and apply some stereotypes to archifacts.

c. Verify that the ontology-architecture overlap now

includes a set of compliant architecture model

elements, and that the scores for architecture

compliance and ontology utilization are growing.

d. Review the ontology coverage reports. Determine the

best way to revise or enhance the architecture.

e. Consider an extension or modification of the ontology

to account for absent general concepts [this step is part

of the ontological process, rather than the architecting

process, but it has potential impact on the architecture].

New concepts may emerge bottom-up from work on a

specific architecture. However, it may be impossible to

update a given ontology with more concepts that the profile

designers did not think of, or decided to exclude from the

profile. We may wish to define a separate profile with

important emerging concepts as stereotypes that we will be

able to apply to our architecture. This will allow for

classifying archifacts as part of some terminology, even if

only temporarily. We can also use the emerging profile to

generalize concepts for other architectures at present or in the

future. This step substantiates the ontological aspect of the

architect’s work and makes it part of a knowledge base

building activity that benefits the enterprise. The new

stereotypes should not be included in the architecture model,

but in a separate profile model that will be available for both

the current architecture and other architectures.

The implementation of MOCA is explained and discussed in

the context of a specific case model in section 4.

4. CASE STUDY: HUMANITARIAN AIRLIFT

We study a hypothetical humanitarian airlift mission, in

which the enterprise is tasked with providing airlift services
to a threatened community. Humanitarian airlifts, although

not common, have been challenging missions with many

operational complexities, risks, military and diplomatic

aspects, and a significant operational planning and execution

portion, but also a significant technological dimension.

Model-based mission engineering can be a key success factor

Figure 6. A UML Activity Diagram specifying the MOCA Report Calculation Algorithm. The two input sets at

the top left are the GDS tuple sets. The five outputs at the bottom right are the MOCA results.

12

in the preparation for a humanitarian airlift, particularly

regarding those aspects that require the design, development,

or deployment of technological solutions to support the

mission, when such solutions may not be immediately

available, appropriate, or interoperable.

Operation Solomon, May 24-25, 1991, is a famous example

of a humanitarian airlift, in which the State of Israel, in

coordination with the United States and Russia, airlifted over

14,300 Ethiopian Jews from Addis Ababa to Israel, as

Ethiopia was on the brink of civil war (see Figure 7). As we

were working on this research and studying the operational

and technological characteristics of humanitarian airlifts, in

Summer 2021 the United States and its allies terminated their

20 years of presence in Afghanistan and evacuated over

82,000 American nationals, allies, and collaborators amid the

Taliban’s takeover of the country. The events in Afghanistan

suggested a reality check and brought the humanitarian airlift

mission back to the front of the stage.

Building an ontology-agnostic architecture model.

We have built an ontology-agnostic SysML model of

Humanitarian Airlift as a Use Case Diagram (UCD) where

the primary mission and capability includes multiple

operational capabilities, as discussed above. The initial,

ontology-agnostic model is shown in Figure 8Error!

Reference source not found.. This model contains no

ontological stereotyping, but only syntactical classification

by built-in types (block, actor, etc.).

Figure 8. An Ontology-Agnostic UML Use Case

Diagram of a Humanitarian Airlift Mission.

The absence of stereotyping in the model causes ambiguity

and vagueness about the meaning of model artifacts. For

example – we cannot be sure if the UCD defines missions or

capabilities, since a use case can describe both, and in fact, to

some extent, they are interchangeable concepts. The

distinction is in referring to the mission as the process of

achieving goals and objectives, while the capability is

considered a “black-box” service provided to or by the

mission – or more precisely an outcome or effect of a mission

that generates the capability. From the capability provider’s

perspective, performing the necessary activities to generate

the outcomes that enable the mission is their mission (e.g.,

aerial refueling, medical treatment, or perimeter defense).

Humanitarian airlift is intended to transport people and

equipment out of a place – not to provide perimeter or air

defense to the airfield. This distinction sharpens the

understanding of the role of the mission and the clear

difference between supporting capabilities and added-value

ones. We are already seeing how an ontological discussion

shapes our perception of the mission even before we have

applied ontological scaffolding to our model.

Applying profile stereotypes to architecture elements.

We now add stereotyping to the SysML model. The profile

model must be imported into the architecture model. This

step allows for stereotyping archifacts according to profile

stereotypes that are valid for the syntactic type of the

archifact. For example – package stereotypes can be applied

to packages, use case stereotypes like «Capability» and

«Mission» can be applied to use cases, and actor stereotypes

like «Stakeholder» can be applied to actors. A revised and

partially-stereotyped model is illustrated in Figure 9. We

have also applied a layout that places enabling capabilities to

the left of the mission, and enabled capabilities to the right.

Furthermore, we used different association stereotypes for

Enabling Capability-Mission and Mission-Enabled

Capability relations.

Figure 7. Ethiopian Jews disembarking C-130

Hercules carriers at Ben Gurion International Airport

after being evacuated from Ethiopia, May 24-25, 1991

(credit: Israel Government Press Office)

https://www.flickr.com/photos/government_press_office/6388395699/

13

The ACR is shown in Error! Reference source not found..

The list of architecture items consists of 35 items in total,

using 4 syntactical types (i.e., UML primitive types):

«Actor», «Class», «Package», and «Use Case». The

syntactical types aid the distinction between architecture

resources that may have ambiguous semantics. For example,

Air Traffic Control is both an organization and a process. In

this case, we have clearly defined the ATC Unit as an «Actor»

and Air Traffic Control as a «Use Case». The ACS is the

number of stereotyped items divided by the number of items

in the architecture: 17/35=~48.5%. The ontology-

architecture overlap (OAO), is summarized in the bottom of

the ACR. The overlap, architecture compliance, and ontology

utilization have started growing. The complete list of

ontological concepts, captured as profile stereotypes, can be

extracted from the profile model as the set of elements typed

as «uml:stereotype». In this example, as we have only utilized

2 out of 21 concepts, the utilization rate is only 9.5%.

5. DISCUSSION

Ontological compliance impacts architectural decisions

MOCA’s ACR maps the architecture’s compliance with the

ontology, and measures compliance as the proportion of

stereotyped items out of the architecture. Missing stereotypes

are clearly visible in the ACR. The compliance map and score

guide the architect to complete, reconsider, or validate the

stereotyping, with a quantitative estimate of progress made.

Considering and validating applied stereotypes is based on

the bundling and grouping of items under stereotypes and

syntactical types. If some items are stereotyped in a way that

is inconsistent with the stereotyping of other items with the

same syntactical type, it alerts the architect to reconsider the

stereotyping. For instance, if an item that is syntactically

defined as an «Actor» is stereotyped as a «Capability», while

all other actors are stereotyped as «Stakeholder» and all other

capabilities are based on «Use Case», this is clearly

inconsistent with the modeling convention.

The architect may use the ACR to determine how to

iteratively enhance the architecture. For example, the

architect may consider stereotyping another syntactical group

of artifacts – actors or packages. Another step could be

adding items to the architecture, like additional capabilities

or resources, while carefully classifying the new items as

appropriate. This will prevent the accrual of an ontological

debt, i.e., a growing number of untyped items that will need

to be stereotyped later. Another approach could be to let a

colleague analyze the architecture and classify artifacts, as a

quality assurance and concept validation step. The colleague

may be more proficient with ontological classification and

analysis and may use this process to highlight discrepancies

in perception and concept specification. We suggest

comparing these two approaches in a future study.

In our example, we have gone from zero compliance to

almost 50% compliance by stereotyping the use case artifacts,

Figure 9. Structured stereotyping of the mission, supporting capabilities, and provided capabilities.

Stakeholders, Solution-Neutral Operands, and Architecture packages are not yet stereotyped.

14

distinguishing the «Mission» artifact from the «Capability»

ones, and enabling further analysis such as the distinction

between enabling and enabled capabilities. This analysis has

architectural ramifications as it affects the perception,

consideration, and prioritization of mission ingredients

according to their impact and criticality to mission success.

For example, by asserting that activities like Population

Management are critical capabilities delivered to the mission

by the appropriate specialists, we shape the mission.

Ontological mindset facilitates abstraction and emergence

The association of multiple enabling capabilities with the

mission UC and the decomposition of the mission itself into

a set of added-value capabilities highlight the notion that the

mission is an abstract concept, which represents the

emergence of value from the individual capabilities that

compose it. The mission UC provides a compact way of

describing how multiple enabling capabilities support

multiple added-value capabilities. This abstraction layer

means that the «capability»→«mission»→«capability»

pattern can translate to an indirect relation «capability» →

«capability». We can then derive a capability mapping matrix

that shows how each capability enables other capabilities. We

can define an interface between two capabilities directly

using «directed association» between use cases. We must

make sure, however, that mission and capability UCs are

different from each other through stereotyping.

Enriching both the architecture and the ontology

The MOCA utilization report shows utilization of ontological

concepts (represented as stereotypes) by architectural

artifacts. This utilization map measures the proportion of

instantiated stereotypes out of the ontology. The ontology

utilization report helps both mission architects and ontology

architects. Mission architects learn about unutilized and

underutilized concepts and can reconsider the conceptual

scaffolding of the architecture. Ontology experts can evaluate

underutilized concept usability, relevance, validity and

understandability, and revise the ontology to better match the

needs of the mission architects who are expected to use it.

In our example, the absence of, say, Solution-Neutral

Operands from the architecture, calls the architect to consider

referring to such transferrable and transformable items in the

context of the mission and enrich the architecture by

clarifying what inputs are provided to the mission and what

outputs are generated by the mission. For instance,

considering the steady flow of medication into the airlift

perimeter – regardless of the actual means of transporting the

medication – may funnel into a discussion on the type of

Table 3. Architecture Compliance Report (ACR) for Humanitarian Airlift Mission Model

Syntactical Type Profile Stereotype Name Archifact F T Total

uml:Actor (blank) (blank) Aerial Refueler 1

1

Airborne Medic 1

1

ATC Unit 1

1
Loadmaster 1

1

Meteorologist 1

1

Mission Manager 1

1
Operational Benficiary 1

1

Operator 1

1

OpsCom 1

1
Passenger 1

1

SAM 1

1

Security Force 1

1

uml:Class (blank) (blank) Airfield 1

1
Airlift-capable Aircraft 1

1

Mission Commands 1

1

Supplies 1

1

uml:Package (blank) (blank) Capabilities 1

1

Stakeholders 1

1

uml:UseCase Mission

Architecture

Profile

Capability Aerial Refueling

1 1
Air Defense

1 1

Air Traffic Control

1 1

Equipment Evacuation

1 1
Loading

1 1

Medical Services

1 1

Medical Treatment

1 1
Mission Management

1 1

Mission OVersight

1 1

Passenger Documentation

1 1
Passenger Evacuation

1 1

Perimeter Defense

1 1

Population Management

1 1
Reporting

1 1

System Management

1 1

Weather Forecasting

1 1

Mission Humanitarian Airlift

1 1

Grand Total

18 17 35

15

relevant medication, the storing, issuance, and administering

of medication, the disposal of medical waste, and the

assessment of medical treatment as part of the humanitarian

aspects of the mission. In Operation Solomon, for instance,

medical crews delivered newborns on the ground and in

midair, and such an activity requires a variety of medical

devices and medications for both the mother and the child.

The adapted conceptual architecture ontology did not

distinguish enabling from enabled capabilities. We can

reduce ambiguity in the model by providing suitable

specialized sub-stereotypes of «Capability». We can add

these specialized concepts to the base profile or to a dedicated

profile. However, we must maintain backward-compatibility

and ensure that the new stereotypes are not misused: we

should prevent the specifying of enabled capabilities as use

cases that feed the mission use case and enabling capabilities

as use cases that are included in the mission. This can be

achieved with design rules – a topic for additional research.

6. CONCLUSION

Ontology coverage is inherently a dual concept: the ontology

is the covering and covered artifact. In this paper we

dismantled this duality through the coverage analysis of the

ontology by the architecture, and the architecture by the

ontology. The coverage of the architecture by the ontology

has compliance semantics: the portion of the architecture that

is covered by a set of concepts indicates the extent of

adherence of the architecture to the conceptualization that the

ontology suggests. The coverage of the ontology by the

architecture has utilization semantics: the portion of the

ontology that is covered by the architecture indicates the

extent of adoption of the suggested conceptualization.

We have discussed the importance of an ontological mindset

in MBSE, and particularly in mission models. The scope of

generic modeling languages is intentionally minimal and

meant to capture the largest possible space of specifiable

systems and concepts. Terminological extensibility is

inherent in MBSE: SysML is an engineering systems

ontology that is implemented as a UML profile. The extended

SysML vocabulary is still insufficient for describing basic

aspects of complex systems, such as missions and operations,

safety and security, or risk and uncertainty. Additional

conceptual scaffolding is needed to reduce ambiguity,

increase understandability, and facilitate automated analysis,

verification, and validation of system models. The

appreciation for model-based ontologies in supporting

digitalization and scaling-out of MBSE is growing. However,

suggesting ontologies is insufficient – we must enforce them.

In this paper, we have integrated several model analytic

thrusts into one coherent theme and practical outcome that is

meant to facilitate digital systems engineering: ontological

analysis, category-theoretic graph-based analysis, and

mission-oriented analysis. We have founded our discussion

scientifically on the formality of models on the one hand and

ontologies on the other hand. We have harnessed robust and

rigorous model transformation and analysis methods. We

have also weighed in on mission architecting challenges,

particularly in a model-based mission engineering mindset.

The convergence of model analytical approaches culminated

in the creation of a model-based ontology coverage analysis

(MOCA) framework. As shown, running and utilizing

MOCA during the system/mission architecting process has

significant impacts on the quality, scope, content, and validity

of the architecture, as well as critical validation of the

ontology as a reference vocabulary of concepts and patterns.

MOCA provides the critical insight that informs stakeholders

and decision makers about the architecture’s ontological

merit. This approach is far more reliable and scalable than

visual reviews or assessment schemes that exist next to the

model. In turn, MOCA reinforces the model’s status as an

Authoritative Source of Truth. MOCA is therefore a critical

enabler and facilitator of MBSE, MBME, and DE.

This paper discusses one aspect of a broader program for the

facilitation of digital mission engineering capabilities.

Additional aspects include information visualization through

an architect dashboard, integration of outcomes with other

forms of analysis, and application of machine learning

algorithms to the datasets generated by MOCA and other

analysis methods. Future research in the context of MOCA

concerns the scalability and performance of MOCA on large-

scale mission models and model ensembles in an enterprise

environment, the extension of MOCA to the analysis of

complex conceptual constructs, starting with concept

relations, integration of MOCA as an online design aid,

whereas at the moment it is an offline tool, and the empirical

study of MOCA’s impact on architects and stakeholders’

managerial, engineering, and operational decisions.

The set of performance attributes or Figures of Merit (FoMs)

for solution architectures: capacity, precision, mass, response

time, energy consumption, cost, reliability, etc. – can be

encoded as an ontology. Solution attributes must be

appropriately matched with stakeholder-defined FoMs and

solution FoM values must be equal to or better than

stakeholder-required FoM values. FoM value comparison

can be done solution-wise or attribute-wise. In future

research, we plan to use MOCA for architecture assessment,

by comparing ontologically-classifiable architecture FoMs to

their reference performance assessment ontologies.

ITAR Compliance.

The authors state that this paper does not violate the

International Traffic in Arms Regulations (ITAR).

Organizational Approval

The MITRE Corporation has approved the publication of this

article in the IEEE Aerospace Conference 2022 and in the

IEEEXplore Conference Proceedings.

The MIT-affiliated authors are qualified to determine that this

paper is suitable for publication.

16

ACKNOWLEDGEMENTS

This research was sponsored by the MITRE Corporation

under Grant Agreement No. 136887. The authors thank

Michael L. Curry from MITRE for his useful comments.

REFERENCES

[1] Object Management Group (OMG), OMG Unified

Modeling Language (OMG UML), Version 2. Needham,

MA: OMG, 2015.

[2] Object Management Group, “OMG Systems Modeling

Language Version 1.6,” Needham, MA, USA, 2019.

[3] S. A. White, “Introduction to BPMN,” 2004.

[4] D. Dori, Model-Based Systems Engineering with OPM

and SysML. New York: Springer, 2016.

[5] D. Dori, Object-Process Methodology: A Holistic Systems

Approach. Berlin, Heidelberg: Springer-Verlag, 2002.

[6] J. L. Peterson, “Petri Nets,” Comput. Surv., vol. 9, no. 3,

pp. 223–252, 1977.

[7] T. Murata, “Petri Nets : Properties , Analysis and

Applications,” Proc. IEEE, vol. 77, no. 4, pp. 541–580,

1989.

[8] P. Beery and E. Paulo, “Application of model-based

systems engineering concepts to support mission

engineering,” Systems, vol. 7, no. 3, 2019.

[9] D. Zwemer, “Integrated Model-Based Mission

Engineering | Part 1,” 2021. [Online]. Available:

https://intercax.com/2021/01/07/integrated-model-based-

mission-engineering-part-2/. [Accessed: 29-Apr-2021].

[10] J. Dahmann, “Mission Engineering: An Implementation

Approach,” in 22nd Annual National Defense Industrial

Association Systems and Mission Engineering

Conference, 2019.

[11] P. Zimmerman and J. Dahmann, “Digital Engineering

Support to Mission Engineering,” in 21st Annual National

Defense Industrial Association Systems and Mission

Engineering Conference, 2018.

[12] J. P. Hale et al., “Digital Model-based Engineering:

Expectations, Prerequisites, and Challenges of Infusion,”

NASA, Hampton, VA, NASA/TM—2017–219633, 2017.

[13] P. Zimmerman, T. Gilbert, and J. Dahmann, “Extending

the DoD Digital Engineering Strategy to Missions,

Systems of Systems, and Portfolios,” in 22nd Annual

National Defense Industrial Association Systems and

Mission Engineering Conference, 2019.

[14] United States Department of Defense (DoD), “The

DoDAF Architecture Framework Version 2.02,” 2010.

[Online]. Available:

https://dodcio.defense.gov/Library/DoD-Architecture-

Framework/. [Accessed: 03-Dec-2020].

[15] J. Colombi, John M.; Miller, Michael E.; Schneider,

Michael; McGrogan, Jason; Long, David S.; Plaga and C.

Piaszczyk, “Model Based Systems Engineering with

Department of Defense Architectural Framework,” Syst.

Eng., vol. 14, no. 3, pp. 305–326, 2011.

[16] Office of the Under Secretary of Defense for Research and

Engineering, Mission Engineering Guide. Washington,

DC, USA, 2020.

[17] B. E. Strom, D. P. Miller, K. C. Nickels, A. G. Pennington,

and C. B. Thomas, “MITRE ATT&CK (R): Design and

Philosophy,” 2018.

[18] N. G. Leveson, Engineering a Safer World. Cambridge,

MA, USA: MIT Press, 2011.

[19] D. P. Pereira, C. Hirata, and S. Nadjm-Tehrani, “A

STAMP-based ontology approach to support safety and

security analyses,” J. Inf. Secur. Appl., vol. 47, pp. 302–

319, 2019.

[20] Y. Menshenin, Y. Mordecai, E. F. Crawley, and B. G.

Cameron, “Model-Based System Architecting and

Decision-Making,” in Handbook of Model-Based Systems

Engineering, A. M. Madni and N. Augustine, Eds.

Springer, 2021.

[21] D. Orellana and W. Mandrick, “The Ontology of Systems

Engineering: Towards a Computational Digital

Engineering Semantic Framework,” Procedia Comput.

Sci., vol. 153, pp. 268–276, 2019.

[22] L. Yang, K. Cormican, and M. Yu, “Ontology-based

systems engineering: A state-of-the-art review,” Comput.

Ind., vol. 111, no. October, pp. 148–171, 2019.

[23] Y. Menshenin and E. Crawley, “A system concept

representation framework and its testing on patents, urban

architectural patterns, and software patterns,” Syst. Eng.,

vol. 23, no. 4, pp. 492–515, 2020.

[24] A. Renault, “A Model for Assessing UAV System

Architectures,” Procedia Comput. Sci., vol. 61, pp. 160–

167, 2015.

[25] A. M. Ross, D. E. Hastings, J. M. Warmkessel, and N. P.

Diller, “Multi-Attribute Tradespace Exploration as Front

End for Effective Space System Design,” J. Spacecr.

Rockets, vol. 41, no. 1, pp. 20–28, 2004.

[26] I. Hadar and P. Soffer, “Variations in Conceptual

Modeling: Classification and Ontological Analysis,” J.

Assoc. Inf. Syst., vol. 7, no. 8, pp. 568–592, 2006.

17

[27] P. Soffer and I. Hadar, “Applying ontology-based rules to

conceptual modeling: A reflection on modeling decision

making,” Eur. J. Inf. Syst., vol. 16, no. 5, pp. 599–611,

2007.

[28] N. Guarino, “Ontology-Driven Conceptual Modelling.”

Italian National Research Council, Laboratory of Applied

Ontology, 2005.

[29] Gruber, “A translation approach to portable ontology

specifications,” Knowl. Acquis., vol. 5, 1993.

[30] C. Partridge, C. Gonzalez-Perez, and B. Henderson-

Sellers, “Are conceptual models concept models?,” Lect.

Notes Comput. Sci. (including Subser. Lect. Notes Artif.

Intell. Lect. Notes Bioinformatics), vol. 8217 LNCS, pp.

96–105, 2013.

[31] J. P. van Gigch, System Design Modeling and

Metamodeling, vol. 1. 1991.

[32] J. P. van Gigch, “Metamodeling: The epistemology of

system science,” Syst. Pract., vol. 6, no. 3, pp. 251–258,

1993.

[33] R. Lukyanenko, K. R. Larsen, J. Parsons, D. Gefen, and

R. M. Mueller, “Toward creating a general ontology for

research validity,” in CEUR Workshop Proceedings,

2019, vol. 2469, no. November, pp. 133–137.

[34] Y. Mordecai, C. Chapman, and D. Dori, “Conceptual

Modeling Semantics for the Physical-Informatical

Essence Duality Problem,” in IEEE International

Conference on Systems, Man, and Cybernetics - SMC,

2013.

[35] Y. Mordecai, “Model-based protocol specification,” Syst.

Eng., vol. 22, no. 2, 2019.

[36] D. Dori and I. Reinhartz-Berger, “An OPM-based

metamodel of system development process,” in Lecture

Notes in Computer Science, vol. 2813, Springer Berlin

Heidelberg, 2003, pp. 105–117.

[37] Object Management Group, Unified Architecture

Framework Profile (UAFP) Version 1.1, no. April.

Object Management Group (OMG), 2020.

[38] D. Ernadote, “An ontology mindset for system

engineering,” 1st IEEE Int. Symp. Syst. Eng. ISSE 2015 -

Proc., pp. 454–460, 2015.

[39] L. Favre, UML and the Unified Process. IRM Press, 2003.

[40] M. Hause, “The Unified Profile for DoDAF/MODAF

(UPDM) enabling systems of systems on many levels,” in

2010 IEEE International Systems Conference, 2010, pp.

426–431.

[41] F. Dandashi and M. C. Hause, “UAF for System of

Systems Modeling,” in 10th System of Systems

Engineering Conference (SoSE), 2015, pp. 199–204.

[42] Y. Mordecai and D. Dori, “I5: A Model-Based

Framework for Architecting System-of-Systems

Interoperability, Interconnectivity, Interfacing,

Integration, and Interaction,” in INCOSE International

Symposium, 2013, vol. 23, pp. 1234–1255.

[43] P. Burek, H. Herre, and F. Loebe, “Ontological analysis

of functional decomposition,” Proc. 8th Int. Conf. New

Trends Softw. Methodol. Tools Tech. SoMeT_09, 2009.

[44] Y. Mordecai and D. Dori, “Model-Based Operational-

Functional Unified Specification for Mission Systems,” in

10th Annual IEEE International Systems Conference

(SysCon), 2016.

[45] M. Noguera, M. V. Hurtado, M. L. Rodríguez, L. Chung,

and J. L. Garrido, “Ontology-driven analysis of UML-

based collaborative processes using OWL-DL and CPN,”

Sci. Comput. Program., vol. 75, no. 8, pp. 726–760, 2010.

[46] J. Bermejo-Alonso, C. Hernandez, and R. Sanz, “Model-

based engineering of autonomous systems using

ontologies and metamodels,” IEEE Int. Symp. Syst. Eng.,

2016.

[47] J. F. Castet et al., “Ontology and modeling patterns for

state-based behavior representation,” AIAA Infotech

Aerosp., 2015.

[48] J. C. Day, K. Donahue, M. Ingham, A. Kadesch, A. K.

Kennedy, and E. Post, “Modeling off-nominal behavior in

SysML,” AIAA Infotech Aerosp. Conf. Exhib. 2012, pp. 1–

10, 2012.

[49] D. A. Wagner, M. B. Bennett, R. Karban, N. Rouquette,

S. Jenkins, and M. Ingham, “An ontology for state

analysis: Formalizing the mapping to SysML,” IEEE

Aerosp. Conf. Proc., no. February 2015, 2012.

[50] S. J. Herzig, D. Velez, B. Nairouz, B. Weatherspoon, R.

Tikidjian, and B. Muirhead, “A Model-based Approach to

Developing the Concept of Operations of the Proposed

Mars Sample Return Mission,” 2018 AIAA Sp. Astronaut.

Forum Expo., no. September, pp. 1–15, 2018.

[51] N. A. Stanton, G. Walker, D. Jenkins, P. Salmon, M.

Young, and A. A. Aujla, “Models of Command and

Control,” in Engineering Psychology and Cognitive

Ergonomics, vol. LNAI 4562, no. July, D. Harris, Ed.

Springer-Verlag Berlin Heidelberg, 2007.

[52] S. Jenkins, “Introduction to System Modeling and

Ontologies,” Pasadena, CA, 2011.

18

[53] Y. Mordecai, N. K. James, and E. F. Crawley, “Object-

Process Model-Based Operational Viewpoint

Specification for Aerospace Architectures,” in IEEE

Aerospace Conference Proceedings, 2020.

[54] R. Mohamad and N. Mohd-Hamka, “Similarity algorithm

for evaluating the coverage of domain ontology for

semantic Web services,” 2014 8th Malaysian Softw. Eng.

Conf. MySEC 2014, no. September, pp. 189–194, 2014.

[55] N. DiGiuseppe, L. C. Pouchard, and N. F. Noy, “SWEET

ontology coverage for earth system sciences,” Earth Sci.

Informatics, vol. 7, no. 4, pp. 249–264, 2014.

[56] J. Lehmann, M. Shamiyeh, and S. Ziemer, “Towards

integration and coverage assessment of ontologies for

knowledge reuse in the aviation sector,” in SEMANTiCS

Workshop Proceedings: LIDARI, 2017.

[57] Y. Mordecai, J. P. Fairbanks, and E. F. Crawley,

“Category-Theoretic Formulation of the Model-Based

Systems Architecting Cognitive-Computational Cycle,”

Appl. Sci., vol. 11, no. 4 (1945), 2021.

[58] Y. Mordecai and E. F. Crawley, “Conceptual State

Analysis,” in Complex Adaptive Systems (CAS), 2021.

[59] U. Shani, S. Jacobs, N. Wengrowicz, and D. Dori,

“Engaging ontologies to break MBSE tools boundaries

through semantic mediation,” in Conference on Systems

Engineering Research.

[60] D. I. Spivak and R. E. Kent, “Ologs: A categorical

framework for knowledge representation,” PLoS One, vol.

7, no. 1, 2012.

[61] Jim Webber and R. Van Bruggen, Graph Databases,

Neo4j Spec. Hoboken, New Jersey, USA: John Wiley &

Sons, Inc., 2020.

[62] D. Medvedev, U. Shani, and D. Dori, “Gaining Insights

into Conceptual Models: A Graph-Theoretic Querying

Approach,” Appl. Sci., vol. 11, no. 2, p. 765, 2021.

BIOGRAPHY

Yaniv Mordecai (SM’18) is a post-

doctoral researcher at the Massachusetts

Institute of Technology. He holds a Ph.D.

in information systems engineering from

Technion – Israel Institute of Technology,

Israel (2016), and M.Sc. (2010, cum

laude) and B.Sc. (2002) degrees in

industrial engineering & management

from Tel-Aviv University, Israel. His research interests

include model-based systems engineering, model analytics,

cybernetics, interoperability, and operations research. Dr.

Mordecai is a senior member of IEEE and chairperson of the

IEEE Systems Council’s Israel Chapter. He won the IEEE

Systems, Man, and Cybernetics Society Outstanding Ph.D.

Diploma Award in Systems Science and Engineering (2017)

and the OmegaAlpha Association’s Exemplary Systems

Engineering Dissertation Award.

Aleksandra Markinda-Khusid received the

B.S. degree in physics, M.S. and Ph.D.

degrees in electrical engineering, and the

M.S. degree in engineering and

management, all from the Massachusetts

Institute of Technology, Cambridge, MA,

USA 1999, 2001, 2005, and 2015

respectively. She leads the Systems and

Mission Analysis Department, MITRE

Corporation, McLean, VA, USA. Her research interests include

analytical and quantitative systems engineering and mission

engineering, including systems of systems engineering,

tradespace analysis, and decision support as enabled by the

modern digital engineering approaches.

Greg Quinn is a Principal Software Systems

Engineer with more than 20 years of

experience, including 13 years at MITRE.

Mr. Quinn’s current work is on the Standard

Health Record for Oncology project, which

is targeting the ability to capture structured

treatment data for all cancer patients, to

support a learning health system for cancer.

Greg leads the Flux Notes task that

demonstrates the low burden and incentivized collection of

high-quality treatment data at the point of care.

Edward F. Crawley is the Ford Professor

of Engineering, and a Professor of

Aeronautics and Astronautics at MIT. He

served as the founding President of the

Skolkovo Institute of Science and

Technology (Skoltech) in Moscow,

founding Director of the MIT Gordon

Engineering Leadership Program,

Director of the Cambridge (UK) MIT Institute, and Head of

the Department of Aeronautics and Astronautics at MIT. Dr.

Crawley is a Fellow of the AIAA and the Royal Aeronautical

Society (UK), a member of the International Academy of

Astronautic, and a member of five national academies:

Sweden, UK, China, Russia, and USA. He received an S.B.

(1976) and an S.M. (1978) in aeronautics and astronautics

and a Sc.D. (1981) in aerospace structures from MIT, and

has been awarded two degrees of Doctor Honoris Causa.

Prof. Crawley’s research focuses on the architecture, design,

decision support and optimization in complex technical

systems subject to economic and stakeholder constraints.

