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Abstract—This paper introduces a method for Model-based 

Ontology Coverage Analysis (MOCA) and applies it to SysML 

models of mission architectures. An ontology is a set of concepts 

that constitute a common language, standard terminology, and 

consistent pattern reference across multiple models within an 

organization, industry, or domain. The purpose of MOCA is to 

assess the overlap between a system architecture model and a 

given ontology, and thereby the architecture model’s 

compliance with the ontology and the ontology’s utilization by 

the architecture. We demonstrate MOCA on a SysML model of 

a humanitarian airlift mission, using a conceptual mission 

architecting SysML profile model that serves as the ontology. 

MOCA automates and simplifies reasoning over models, and 

creates digital model-based artifacts that support stakeholders 

in concept validation, decision making, and system/mission 

design. Thus, MOCA enhances digital systems engineering. 
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1. INTRODUCTION 

Model-based Mission Engineering (MBME) is the use of 

formal models to capture and analyze complex operational 

architectures, such as space exploration missions, defense 

campaigns, dedicated operations, and enterprise activities. 

MBME is a derivative of Model-based systems engineering 

(MBSE), which applies formal modeling languages (FMLs) 

to specify complex systems and processes. The Unified 

Modeling Language (UML) [1], Systems Modeling 

Language (SysML) [2], Business Process Modeling Notation 

[3], Object Process Methodology (OPM) [4], [5], and Petri 

Nets [6], [7] are common FMLs. MBME uses FMLs to 

describe mission models [8]–[10]. Digital Systems 

Engineering is the utilization of MBSE toolchains, models, 

and model-based artifacts [11]–[13] to enhance engineering 

and operational enterprise processes. Digital Mission 

Engineering similarly draws on MBME. 

FMLs can represent mission architectures, thanks to the 

relatively domain-agnostic, general-purpose syntax and 

semantics of the building blocks and constructs of FMLs. For 

example, concepts like object, process, state, block, class, 

activity, and actor constitute the vocabulary of FMLs. These 

concepts are typically ascribed to unique geometrical shapes 

that can be deployed and associated in diagrams. They have 

a relatively broad scope of applicability. 

An ontology is a set of concepts and patterns that are typical 

to a domain. These include domain terminology, business 

rules, organizational structures, professional jargon, and 

cross-cutting aspects (e.g., communication, logistics, 

security, and safety). General-purpose FML concepts are 

often insufficient or inadequate for capturing enterprise and 

operational contexts of mission architectures, from package 

delivery to manned interplanetary exploration campaigns. 

Mission architectures must comply with such domain 

patterns. Accordingly, mission architecture models must 

comply with ontological models. 

ABBREVIATIONS AND ACRONYMS 

Acronym Full Term 

ACR Architecture Compliance Report 

archifact architectural artifact 

ASoT Authoritative Source of Truth 

CMGVC Concept-Model-Graph-View Cycle 

FML Formal Modeling Language 

MBME Model-Based Mission Engineering 

MBSE Model-Based Systems Engineering 

MOCA Model-based Ontology Coverage Analysis 

OAO Ontology-Architecture Overlap 

OUR Ontology Utilization Report 

SysML Systems Modeling Language 

UML Unified Modeling Language 
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Many reference frameworks, terminologies, vocabularies, 

and pattern libraries can be encoded as ontologies, by clearly 

listing the set of concepts and the set of relations among 

concepts in each reference. Mission architecture references 

that can be encoded as ontologies include: a) The Department 

of Defense Architecture Framework (DoDAF) [14], [15]; b) 

The Department of Defense Mission Engineering reference 

[13], [16]; c) MITRE’s ATT&CK (pronounced: Attack) 

Framework for cyber resilience [17]; d) Leveson’s System-

Theoretic Accident Model and Processes [18], [19]; e) 

Systems Engineering and Conceptual Architecting 

references, such as those suggested in [20]–[23]; and f) 

standard, domain-specific, mission-specific, or problem-

driven performance criteria [24], [25]. 

We can significantly enhance our assessment, verification, 

validation, and revision of mission architectures based on the 

ontologies that govern them. This requires: a) encoding 

concept and pattern references as ontologies; b) encoding 

mission architectures as formal conceptual models; 

c)_classifying mission architecture artifacts according to 

ontological concepts; and d) applying ontological analysis to 

the architectural and ontological models.  

Ontology-based frameworks for conceptual model analysis 

and validation have been shown to contribute to the reduction 

of semantic vagueness and ambiguity in conceptual models. 

Semantic vagueness is a common phenomenon that results 

from subjective human perception, conceptualization, and 

modeling decision-making [26], [27]. A formal model can be 

syntactically correct-by-construction by using modeling 

software tools that enforce syntax. However, enforcing 

compliance with an ontology involves methodological and 

computational challenges.  

Manual or visual compliance analysis may be possible for 

simple models, thanks to human intuition and cognition, but 

it does not scale out for complex multi-model, multi-aspect 

architectures, with multiple governing ontologies. 

Automated compliance analysis, on the other hand, allows 

the analyst to focus on sense-making, anomaly detection, 

decision-making, and conclusion drawing, rather than 

searching and matching, which are considered simpler 

cognitive tasks. Some of the intuition and reasoning patterns 

that we are able to apply as humans to representations can be 

codified and automated, thereby reducing the cognitive load 

on the analysts and allowing them to focus on the more 

advanced and impactful cognitive tasks. 

When we review a system or mission architecture, we 

interpret and expect the elements and constructs that it 

contains to resemble patterns and comply with ontologies we 

may have in mind, due to familiarity, experience, or our own 

adherence to well-defined specifications, international 

standards, federal regulations, or professional jargon. For 

instance, a communication engineer may expect to find items 

in a system architecture that have the semantics of 

communication: signal receiving and transmitting, often 

denoted as Rx and Tx, encoding and decoding, modulating 

and demodulating, etc. These can be reflected in the names 

of components, functions, and signals. An operator who 

studies a manual expects it to include steps and directions to 

procedures (e.g., activation of a system), interfaces, controls, 

indications, situations, and troubleshooting steps. 

Complex representations and designs rely in many cases on 

the perception and sense-making that stem from the author’s 

or designer’s conception and interpretation. It is difficult to 

guarantee that any reader or viewer will interpret these 

representations exactly as intended by the author or designer. 

And yet, as humans, we communicate orally, textually, and 

graphically with other humans with more or less success as a 

matter of fact. Unfortunately, we cannot rely on the best 

effort of human cognition to guarantee correct, effective, and 

efficient realization of our ideas, when we design complex 

systems and missions. Bridging and closing the interpretation 

gap is possible if we apply ontological semantics to 

architecture and design artifacts. 

To be more informed and constructive about the extent to 

which an architecture complies with an ontology, we would 

want to assess that compliance quantitatively, and iteratively 

strive to improve it. The compliance of the architecture with 

the ontology can be thought of as an overlap between two sets 

of concepts: those that the ontology defines as patterns or 

templates, and those that the architecture specifies as 

instances, as shown in Figure 1. Moreover, we aspire to 

maximize the overlap (Z2 in Figure 1) to improve that 

compliance, and concurrently minimize uncovered 

architecture (Z1) and uncovered ontology (Z3).  

 

Figure 1. Maximizing the overlap between the 

Architecture and the Ontology provides a) better 

classification and compliance of architectural artifacts 

and b) better utilization of standard concepts 

There are two major problems to consider: a) determining the 

coverage of an architecture by an ontology, which reflects the 

compliance of the architecture with the ontology, and b) 

determining the coverage of an ontology by an architecture, 

which reflects the utilization of the ontology by the 

architecture. These are not equivalent sets, as clearly 

illustrated in Figure 1. The former, denoted as  

𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒(𝐴𝑟𝑐ℎ, 𝑂𝑛𝑡)  in (1), measures the value of the 

overlap 𝑣(𝑍2) relative to the value of the architecture’s scope 

– i.e. how much of the whole architecture (𝑍1 ∪ 𝑍2) is 

classified (𝑍2). The latter, denoted and defined in (2) as 
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𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑂𝑛𝑡, 𝐴𝑟𝑐ℎ) measures how much of the 

ontology’s scope  (𝑍2 ∪ 𝑍3)  is utilized. 

𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒(𝐴𝑟𝑐ℎ, 𝑂𝑛𝑡) =  𝑣(𝑍2)/𝑣(𝑍1 ∪ 𝑍2) (1) 

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑂𝑛𝑡, 𝐴𝑟𝑐ℎ)  =  𝑣(𝑍2)/𝑣(𝑍2 ∪ 𝑍3) (2) 

Maximizing ontological compliance has a synergistic and 

two-way effect of both better classification of architectural 

artifacts, and better utilization of ontological concepts. It is a 

win-win situation for both the stakeholders of the architecture 

(customers, integrators or implementors, and operators) and 

stakeholders of the ontology (national, professional, and 

organizational regulators, quality assurers, certification 

providers, and certified operators). 

However, attempting to reach comprehensive ontological 

compliance in the ever-spreading ontology quagmire may be 

cumbersome, frustrating, and potentially Sisyphean. The 

scope of ontologies that an architecture may have to comply 

with is practically unbounded. Ontologies change all the time 

and changes may be hard to catch up with. The scope of 

applicable ontologies may result in redundancy, ambiguity, 

conflict, or contradiction in conceptual classifications of 

architectural artifacts. For example, the same architectural 

artifact can be thought of as both a functional feature of the 

system, a mechatronic technology application, an operational 

asset, a safety hazard, an enabler of mission success, a cost 

attractor, etc. Each one of these classifications comes from a 

separate ontology, and trying to classify the same system 

component according to all of these ontologies may be both 

cumbersome, hard to appreciate in terms of added value, and 

at times technically and cognitively difficult. A coherent 

approach to the assessment of ontological compliance may 

help resolve or reduce some of these challenges. 

Mission architectures may consist of multiple models that use 

a variety of general-purpose and domain-specific FMLs as 

well as various, possibly overlapping, partial, or inconsistent 

ontologies. A mission architecture may be expected to 

comply with multiple ontologies to facilitate stakeholder 

understanding, adherence to conventions and standards, and 

architecture analysis. The challenge is in ensuring, assessing, 

and utilizing the ontological compliance of the mission 

architecture’s ensemble of models. 

To conclude, the problem of model-based mission 

architectures ontological coverage includes several aspects: 

a. multiplicity of architecture models, conceptual modeling 

approaches, and modeling languages; 

b. multiplicity of applicable references and partial 

formulation of such references as ontologies or 

ontological models; 

c. difficulty in classifying artifacts according to multiple 

ontological concepts; and 

d. lack of appropriate methodology for analyzing and 

assessing ontological compliance. 

We propose a method for Model-based Ontology Coverage 

Analysis (MOCA). The purpose of MOCA is to provide 

aggregate and detailed information about i) a given 

architecture’s ontology coverage vis-à-vis an expected set of 

ontologies, ii) each ontology’s architecture coverage, which 

attests to the adoption and utilization of the ontology, and iii) 

the overlap between the two. These outputs capture the 

architectural and ontological artifacts in the three zones 

illustrated in Figure 1. The MOCA report should highlight 

specific issues in the mission architecture, such as 

architectural artifacts (archifacts) that are not associated with 

any ontology, or ontology concepts that are not instantiated 

anywhere in the architecture.  

2. ONTOLOGIES AND MODELING 

Ontology Defined 

The term Ontology has several meanings: as a branch of 

philosophy, as an abstract theory, and as a practical artifact 

[28]. Ontology as a science (and perhaps art) is the study, 

categorization, and organization of the structure of nature, 

reality, existence, and perception – of things that be or can 

possibly be. Gruber asserted that “an ontology is an explicit 

specification of a conceptualization” [29].  

An ontology of some domain is a conceptual organization of 

that particular domain. A vocabulary, a terminology of some 

domain of the universe, and the set of relations among terms, 

constitute a theory of the structure of the domain. Thus, an 

ontology is a set of abstract concepts and patterns that bind 

them, that exist or may exist in the domain that the ontology 

describes. Finally, an ontology is a knowledge storing 

artifact, which records the concept organization and can be 

instantiated as a model or applied to one. 

Ontologies differ in their applicability to reality. Several 

levels of ontological precision determine the extent to which 

an ontology is binding, indisputable, and unavoidable: a) a 

catalog of items to choose from, b) a glossary that a 

specification should adhere to, c) a taxonomy that a hierarchy 

must adhere to, d) a Thesaurus, which provides a closed set 

of terms to work with, e) a data structure, which binds a data 

processing system to comply with, and f) an axiomatic 

theory,  which determines or governs the laws of the universe 

[28]. Conceptualization schemes of types (e) and (f) are 

respectively either computationally constraining entities that 

reside and run in cyberspace (like the structure of a database), 

or scientifically constraining for things that exist or operate 

in reality (like the laws of Physics). They are therefore 

indisputable and unavoidable from the implementation or 

realization’s perspective – i.e., a given instantiation cannot 

overcome them. The lower-precision grades of ontology are 

essentially disputable, electable, and avoidable – subject to 

will, belief, and perception – since they apply to conceptions 

and ideations rather than to implementations and realizations. 
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The ability to mandate and enforce ontologies in the creation 

and forming of ideas and conceptions is limited. Some may 

also argue that this is undesired, as it restricts the creative 

process. Ontologies mostly attempt to instill order into 

conceptualizations of complex natural and artificial systems 

as they are conceived, ideated, and designed. The adoption of 

an ontology depends on the acceptance and motivation of the 

people involved in the conceptualization process. For this 

reason, it becomes imperative to ensure that documenting and 

formulation of such concepts and designs also include the 

application of ontologies that a) propose a valuable reference 

for domain concepts, b) enrich the model with notions from 

particular ontologies of relevance and interest, and c) restrict 

model entities to adhere to the standard terminology and 

patterns dictated by the ontology, such that they protect 

designers from making mistakes or diverging from the 

enacted design language. 

Ontology-Driven Modeling 

Ontology-driven modeling is the process of building 

conceptual models using syntactically-finite modeling 

languages, and reinforcing the semantics of the model by 

classifying model elements and constructs according to 

ontological classifiers. As conceptual modeling languages 

provide syntactical certainty, the semantics of model 

constructs, which are essentially instantiations of syntactical-

grammatical patterns, are unbounded due to the attribution of 

meaning by human perception. Perception may vary across 

model authors and readers, lead to ambiguity, and undermine 

confidence in the model’s ability to serve as an Authoritative 

Source of Truth (ASoT). 

Essentially, any conceptual model is, to some extent, a 

concept model, a meta-model, or an ontology of the solution 

domain [30]. For example, a model of a specific banking 

system could be considered as a representative and 

characteristic specification of banking systems in general. It 

is obvious that one specific banking system does not precisely 

describes any other banking system, but it is a good starting 

point. System models should be constructed as generic 

representations of the domains in which the modeled systems 

operate, to ensure solution rigor and robustness. 

Metamodeling is the modeling of modeling languages [31], 

[32]. Metamodeling received a significant boost due to the 

availability of FMLs, particularly UML. Conceptual 

modeling has been harnessed for ontology modeling, i.e. for 

creating models that may constitute ontological, generic 

domain representations [33]–[37]. Metamodeling and 

ontology have some distinctions between them, but they are 

potentially intertwined and complementary ideas. 

Metamodeling addresses syntactical formality while 

ontology concerns domain concept formality. Both can be 

obtained separately, but a fusion of the two paradigms of 

ontology and metamodeling as the emerging paradigm of 

Ontology-Driven Systems Engineering  has the potential to 

generate significant synergy for the formality of system and 

mission architectures [22], [38].  

In some modeling systems, including UML, SysML, and 

OPM, a metamodel, or profile, can constrain a model through 

the classification of model elements as instances of profile 

elements, or stereotypes. Profiles can be imported into 

models, and the stereotypes defined in the former can classify 

artifacts specified in the latter. UML was designed to allow 

extensibility and adaptation through profiles and stereotypes 

[39]. Thus, SysML is a UML profile: it contains original 

UML types and some stereotypes like Block, Port, and 

Requirement that can be instantiated as artifacts in system 

models [2]. The Unified Profile for DoDAF and MoDAF – 

the British counterpart of DoDAF (UPDM), and  the Unified 

Architecture Framework (UAF) are UML profiles [40], [41]. 

Additional UML-based profiles (or ontologies that can be 

profiles) are available [13], [16]–[22].  

Ensuring the validity, applicability, and usefulness of 

ontologies, encoded as profiles in MBSE, has become a major 

challenge. Evidently, no profile is comprehensive enough to 

capture every aspect of a complex system. Specialized and 

standardized ontologies must be used, wherever possible, to 

create standardized architectures, facilitate stakeholder 

engagement and communication, reduce ambiguity and 

confusion, and enhance models’ and systems’ integration  

and interoperability [38], [42]. 

Functional decomposition of complex systems is one of the 

main activities that leverage conceptual modeling. An 

Ontology of Functions (OF) – a functional decomposition 

ontology [43], defines the function concept and the possible 

relations among functions. The definition of each function F 

should include a label Label(F), a set of requirements, 

Req(F), a set of goals Goal(F), and a set of functional items 

FItem(F). We add that each function’s definition should also 

include a unique identifier UID(F) and a version identifier 

Ver(F), for better identification and configuration 

management of function specifications. Notably, the 

proponents of OF chose a set-theoretic, functional 

formulation, rather than an object-oriented one: F.Label, 

F.Req, etc. Relations among functions include instantiation, 

specialization, participation, and realization. Such relations 

are explicitly defined in the UML-SysML and OPM syntax 

[1], [2], [4], [5], so including them in OF only benefits 

modeling languages that do not provide syntax for such 

relations. An ontology for operational-functional unified 

specification that uses OPM syntax was introduced in [44]. 

Structural relations such as those captured in UML Class 

Diagram and SysML Block Definition Diagram are relatively 

easy to convert to ontologies. However, the behavioral and 

procedural aspects of the system, which are typically 

captured in Activity Diagrams and Sequence Diagrams, are 

more challenging to transform into ontologies or the 

behavioral sections of an ontology, as they also require the 

recording of order and precedence, as well as reasoning about 

order consistency and variation [45]. 

Reference architectures can constitute ontologies that 

specific solution architectures should or must adhere to. The 
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breadth of technologies and aspects in complex systems calls 

for integrated, hybrid, or multidimensional ontologies. For 

example, autonomous vehicles involve autonomy, 

mechatronics, robotics, artificial intelligence, advanced 

driver engagement concepts, communication, safety 

assurance, etc. Ontology-driven modeling of autonomous 

vehicle architectures can ensure that every aspect of the 

system complies with its own vocabulary. Concurrently, 

system-level interactions are specified by coherent abstract 

representations of system functionality, behavior, and 

modular structure. The OASys-driven Engineering 

Methodology (ODEM) is an ontology-driven MBSE 

approach that fuses an Autonomous Systems Ontology, 

OASys, with a systems engineering ontology [46]. ODEM 

uses a conceptual ontology layer where functional concepts 

are used for representing the autonomous system’s elements, 

and they are then being instantiated into concepts drawn from 

an ontology of autonomy, consisting of such concepts as 

Localization, Navigation, Scanning, Perception, and Motion. 

In turn, these concepts are transformed into technology-

specific implementations, such as 3D-Mapping, Obstacle 

detection, and Emergency Braking. 

Mission Architecture Ontologies 

Mission architecture ontologies are of particular interest for 

operating, acquiring, architecting, and building solutions 

with a clear mission statement in mind. Mission supporting 

ontologies may span the entire scope of science, engineering, 

business, and operations. Researchers at the Jet Propulsion 

Lab (JPL) pioneered the formulation and utilization of 

ontologies in model-based space mission architectures, as 

part of the Integrated Model-Centric Engineering (IMCE) 

initiative [47]–[52]. Ontologies for modeling and analyzing 

system states, behaviors, mission plans, and system failures, 

were found to be of particular interest. JPL’s SysML-

underpinned Behavior Ontology includes concepts like 

Behaving_Element, Element Behavior, Interaction Behavior, 

Interaction, State, and State Variable . These are captured as 

syntactical SysML elements with stereotypes. For example, 

Element Behavior is captured as a SysML Component’s 

Constraint Block. The Behavior Ontology also encodes 

special relations between concepts, such as characterizes, 

constrains, and uses. A model-based formulation of 

DoDAF’s Operational Viewpoint as a reference ontology for 

an operational architecture was suggested in [53]. 

Ontology Coverage 

Ontological analysis is important and sometimes critical for 

assuring, measuring, verifying, validating, and enforcing 

ontological compliance of system models.  It is quite difficult 

to measure and evaluate the extent of adoption and utilization 

of ontologies by large-scale system models, and therefore 

automated algorithms must be used. 

Ontological analysis includes measurement and estimation of 

metrics like coverage, correctness, and similarity between 

reference ontologies and ontology instances or adaptations 

[54], [55]. Serial reference keyword similarity search as an 

estimator of coverage was also proposed in [54], using the a 

similarity index 𝑆𝑖𝑚(𝑂1, 𝑂2) that assesses similarity between 

two ontologies 𝑂1, 𝑂2 as a function of the number of pairs of 

items in each ontology. The similarity index is valid if the 

two ontologies have the potential to be identical. 

Matching ontologies to an existing and evolving body of 

knowledge may be a significant challenge. An ontology-

driven study of Earth-Scientific literature found inconclusive 

results, particularly in tracking the coverage of domain-

specific ontology-defined axioms [55]. The study focused on 

four types of coverage: a) class coverage (CC), b) subclass 

coverage (SC), c) equivalence coverage (EC), and d) breadth 

coverage (BC), which is a linear combination of CC, SC, and 

EC. Coverage is calculated as the fraction of terms from the 

reference ontology that are present in a scientific article. As 

such, it expresses a 𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑂𝑛𝑡, 𝐴𝑟𝑐ℎ) coverage type. 

It was initially difficult to automatically detect semantic 

similarity, although the assertions were intuitively similar. 

Synonym Synergy, an enhanced method that uses thesauri to 

capture subclass relations, improves coverage detection. 

The multiplicity, hierarchy, and need for integration of 

ontologies in the analysis of models and more broadly 

knowledge bases has been discussed in [56]. During early 

conceptual design, e.g., of a new aircraft or component, 

designers may benefit from the integration of semantic search 

within existing knowledge bases. A two-dimensional 

framework for classifying ontologies by Generality and 

Coverage was suggested in order to improve the precision of 

such semantic search. We found the suggested  classification 

a bit ambiguous: the Coverage axis, which includes 

Documentation, Modeling, and Design Ontologies, included 

several confusing overlaps among these ontology types. This 

may imply that it is difficult to distinguish between 

ontologies according to their contribution to these activities, 

as the boundaries among them are blurry to begin with. The 

authors highlighted the importance of ontology coverage 

assessment, but did not introduce a solution.  

Category-Theoretic Analysis of System Models 

Previous studies on robust methods for model analysis found 

Applied Category Theory and Applied Graph Theory as ideal 

mechanisms for the generic representation and 

transformation of models [57]. A graph data structure (GDS) 

is a highly-robust data representation format that is amenable 

to a variety of analyses [57]–[59]. Since the GDS is a 

relational data structure, it is possible to store and analyze it 

as both a relational database [57], [60] and as a graph 

database [61], [62].  

The Concept→Model→Graph→View Cycle (CMGVC) is a 

cognitive-computational representation transformation cycle 

defined in [57], and applied in [58]. The CMGVC utilized 

Category Theory to capture the different representation 

methods as categories, and the mappings between 

representation methods as functors – mappings between 

categories. Concepts (C) – systems, ontologies, needs, and 

ideas – are encoded as models in various modeling languages 
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(M). the graph data structure (G)  is an intermediate layer that 

helps extract information from models. Analytical views (V) 

are extracted from G rather than from M. This approach 

yields multiple benefits such as the linearization of the 

number of transformations from multiple modeling notations 

to multiple information visualizations, and the abstraction of 

modeling languages in the process of decision-supporting 

visualization, insight generation, and concept validation. 

A rigorous model-based ontology coverage approach is 

apparently necessary. Model-based mission architecting, 

which draws on ontologies, and not only on syntax, is an 

emerging approach, as evident in the literature. However, the 

ability to analyze ontological coverage and derive value of 

such analysis is limited. Particularly, the dual role of ontology 

coverage in both architectural compliance and ontology 

utilization must be explored in more depth. Novel model 

analysis approaches, based on category theory and applied 

graph theory, enables us to study the ontology coverage 

problem and provide significant added value to ontology and 

architecture stakeholders alike. 

3. MODEL-BASED ONTOLOGY COVERAGE 

ANALYSIS (MOCA) 

MOCA is a model-based method that provides: i) the overlap 

between an ontology model and an architecture model,  ii) the 

overlap relative to the set of architectural artifacts, which 

indicates the architecture’s compliance with the ontology, 

and iii) the overlap relative to the set of ontology stereotypes, 

which indicates the ontology’s utilization by the architecture. 

Ontologies and architectures are both, essentially, collections 

of models. Model-based ontologies are models that include 

elements that constitute stereotypes. A profile is a model that 

includes stereotypes. A stereotype is an element that can be 

applied to elements in other models. An architecture consists 

of one or more models that describe the structure and 

behavior of a system. In some FMLs, models can include 

profiles next to architecture constructs. Table 1 provides a 

glossary of the primary concepts we use, and our intention 

when we use them. Interestingly, this glossary can be an 

ontology for ontology-driven mission architectures, but 

reflective ontological analysis of MOCA is not our goal. 

Stereotyping 

We denote ontological concepts or stereotypes using the 

double-angle quotation marks: «Concept». This convention 

distinguishes concepts from their instances. We refer to 

elements defined in the architectural model as architectural 

artifacts, or archifacts. An archifact can be stereotyped. 

When a stereotype is applied to an archifact, the applied 

stereotype is recorded in the architecture model as a pointer 

to the master stereotype. The architectural model must 

include references to predefined profile models, or packages 

that constitute profiles. Stereotypes from these profiles can 

be applied to archifacts. Stereotyping may be subject to 

syntactical matching: an archifact may assume a stereotype 

only if there is a match between the syntactical type of the 

archifact and the syntactical type of the stereotype. This 

constraint may be overcome by defining stereotypes as the 

most abstract concept in the language, e.g., the UML Element 

type, or by removing the prior classification of the archifact. 

Stereotyping is a more rigorous mechanism to classify model 

elements, compared to the embedding of topical keywords in 

element names. For example, it is wiser to classify a block 

named  ‘Obstacle Detection Sensor’ as a «Sensor», and 

optionally rename it to ‘Obstacle Detector’. Furthermore, if 

we have a more fine-grained ontology where specific types 

of sensors are specified, we can also apply a stereotype like  

«Object Detector», which may differ, for example, from 

«Light Sensor», or «Motion Sensor». If a device has multiple 

roles, it can adopt multiple stereotypes and keep basic name. 

Ontology-agnostic or ontology-skeptic engineers may prefer 

implicit stereotyping through naming. However, reducing the 

ontological classification problem to textual similarity may 

seriously hinder architecture analyzability. It may be a good 

starting point to generate recommended classifications for 

legacy, ontology-agnostic architecture models.  

Extracting Archifacts and Stereotypes from Models 

Stereotypes must be classified as stereotypes in the profile 

models that contain them. They must be compliant with the 

stereotype retrieval mechanism’s logic so that the stereotypes 

in a profile will appear as classifiers in the model where the 

profile is used. It is recommended that profiles will not be 

mixed with architecture models for two reasons: i) to avoid 

confusion between concepts and instances, and ii) to allow 

for the reuse of the profile across multiple architectures. 

A set of optionally classified model items may be extracted 

from any model, whether it is an architecture, ontology, or 

hybrid model. When the model is referred to as part of the 

ontology, model items that are stereotypes are the ontological 

reference. When the model is referred to as part of the 

architecture, model items that are classified as anything but 

stereotypes (not to be confused with items classified by 

applied stereotypes) make up the architectural reference. 

Calculating the Ontology—Architecture Overlap 

The overlap between an architecture Α and an ontology Ω, 

𝑍2(Α, Ω) is defined in Error! Reference source not found. 

as the set of archifacts Αi , such that each Αi is classified by 

another architecture item 𝐴𝑗 (the applied stereotype), which 

matched a profile item, Ω𝑘, which is classified as a  

stereotype. Accordingly, the uncovered portion of the 

architecture, 𝑍1(Α, Ω), is defined in (4) as the subset or 

architecture items that are not covered at all, or not covered 

by applied stereotypes that match items in the reference 

ontology, or not matched by profile stereotypes. Finally, the 

uncovered portion of the ontology, 𝑍3(Α, Ω), is defined in 

Error! Reference source not found. as the set of stereotypes 

in the ontology that are not matched with applied stereotypes, 

or matched with applied stereotypes that are not applied to 

any archifact. 
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𝑍2(Α, Ω) =

{
 
 

 
 

Αi|  

∃𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(«𝐴𝑗», Ai), 𝑖 ≠ 𝑗  ∧ 

∃𝑀𝐴𝑇𝐶𝐻(«𝐴𝑗», «Ω𝑘») ∧

∃𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑜𝑛(Ω𝑘 , «𝑆𝑡𝑒𝑟𝑒𝑜𝑡𝑦𝑝𝑒»)}
 
 

 
 

 (3) 

𝑍1(Α, Ω) =

{
 
 

 
 

Αi|

 ∄𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(«𝐴𝑗», Ai), 𝑖 ≠ 𝑗  ∨

 ∄𝑀𝐴𝑇𝐶𝐻(«𝐴𝑗», «Ω𝑘»)  ∨

∄𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑜𝑛(Ω𝑘 , «𝑆𝑡𝑒𝑟𝑒𝑜𝑡𝑦𝑝𝑒»)}
 
 

 
 

 (4) 

𝑍3(Α, Ω) =

{
 
 

 
 

Ω𝑘|

∄𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑜𝑛(Ω𝑘 , «𝑆𝑡𝑒𝑟𝑒𝑜𝑡𝑦𝑝𝑒») ∨

∄𝑀𝐴𝑇𝐶𝐻(«Ω𝑘», 𝐴𝑗)  ∨

∄𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑖𝑜𝑛(«𝐴𝑗», Ai), 𝑖 ≠ 𝑗 }
 
 

 
 

 (5) 

The rules of finding members of Z1, Z2, and Z3 are illustrated 

in Figure 2: archifacts (rectangles) must be classified by 

applied stereotypes in the architecture models (flipped 

trapezoids with lowercase letters), which must be matched 

with stereotypes in any of the profiles in the ontology 

(trapezoids with capital letters). 

The rules of inclusion in the three zones use the language-

agnostic relation patterns: «classification» and «MATCH» 

(which are denoted as stereotypes because they pertain to an 

ontology of types of relations in models). Specifications of 

classification relations in models may not be immediately 

available in the form 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑐𝑎𝑡𝑜𝑛(𝑋, Y). This is FML-

specific. The 𝑀𝐴𝑇𝐶𝐻(𝑋, Y) mapping is defined between 

models, not within a model, and requires suitable logic. It 

could be a simple comparison or something more elaborate. 

Having defined the zones in the architecture-ontology map, 

𝑍1(Α, Ω), 𝑍2(Α, Ω), 𝑍3(Α,Ω)  we are able to derive metrics of 

overlap, compliance, and utilization. The simplest metrics are 

based on counting the number of items in each zone, as 

defined in equations (6), (7), and (8), respectively.  

𝑂𝑣𝑒𝑟𝑙𝑎𝑝(𝐴𝑟𝑐ℎ, 𝑂𝑛𝑡) =  |𝑍2| (6) 

𝐶𝑜𝑚𝑝𝑙𝑖𝑎𝑛𝑐𝑒(𝐴𝑟𝑐ℎ, 𝑂𝑛𝑡) =  |𝑍2|/(|𝑍1| + |𝑍2|) (7) 

𝑈𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛(𝑂𝑛𝑡, 𝐴𝑟𝑐ℎ)  =  |𝑍2|/(|𝑍2| + |𝑍3|) (8) 

 

Table 1.  Glossary for a Model-based Ontology Coverage Analysis Framework 

Term Definition Relation to other terms 

architectural 

artifact (archifact) 

object in a model, which has a formal syntactical type in 

the FML, and semantics of a conceptual, logical, or 

physical component in a system or mission architecture 

An architecture model includes many 

archifacts. 

architecture 
conceptual organization of the structure and behavior of 

a system in order to fulfill its functionality 

An architecture includes one or more 

architectural model. 

architecture 

compliance with R 

extent of coverage of an architecture by R, which may be 

an ontology or another reference (e.g., requirements) 

An architecture may partially or fully 

comply with multiple ontologies 

capability 
attribute or operation [of someone or something] that 

represents solution-neutral value delivery 

Capabilities enables missions; 

missions enable capabilities 

concept 
idea that maps meaning to structure, function to form, or 

concept to concept 

An ontology consists of concepts. 

An architecture consists of concepts. 

graph data 

structure (GDS) 

Set of tuples that represent directed relations between 

nodes in a graph 
A GDS represents a model 

mission 
set of operational goals to be accomplished by a system, 

person, or organization 

A mission model specifies a mission 

architecture 

model 

formal specification of a part of a system, built according 

to the syntax of a FML, stored as an alphanumeric data 

structure (e.g., XML file), which represents a concept 

A model represents an architecture or 

an ontology. 

ontology 
conceptual organization of a domain, based on a set of 

concepts and relations among them 

An ontology consists of one or more 

profiles. 

ontology utilization extent of coverage of an ontology by an architecture 
An ontology may be partially or fully 

utilized by multiple architectures 

profile 

model that includes objects that represent concepts, 

which are specified as stereotypes according to the 

syntax of the FML 

A profile is any model or part of a 

model where stereotypes are defined 

stereotype 

object in a profile model, which represents a concept, 

and which can be applied to other objects in other 

models (e.g. archifacts) in order to give additional 

semantics to these objects according to the concept 

A stereotype is defined in a profile. 

A stereotype can have multiple 

applied stereotypes. 

stereotype, applied 

object in a model, which points to a stereotype, and 

serves as the mediating object between a stereotype and 

archifacts in the model 

An applied stereotype maps one 

stereotype to one archifact 
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Figure 2. Mapping Applied Stereotypes (flipped 

trapezoids) of Artifacts (rectangles) in the 

Architecture (left blue shield) to Stereotypes 

(trapezoids) in Profiles that Compose the Ontology 

(shields to the right). 

A more sophisticated assessment scheme may assign 

different importance factors to different architecture elements 

(e.g., by their connectivity in the architecture) and to different 

stereotypes (e.g., by their connectivity in the ontology), and 

weigh each match accordingly. We leave the exploration of 

such assessment schemes to future research. 

Application of MOCA to SysML Models 

Applying MOCA requires transition from abstract theory to 

a specific modeling environment, with existing modeling and 

analysis capabilities. The application presented here is not the 

exclusive way for conducting MOCA, and other approaches 

may be found suitable in the future.  

The modeling and analysis process consists of two phases:  

• Phase I: Preparation: building an ontology, adopting, or 

customizing or a given profile for implementation and 

analysis. 

• Phase II: Application: building the mission architecture 

model, applying stereotypes to archifacts, and analyzing 

its growing compliance using the MOCA algorithm. 

Phase I: Building a reference ontology profile model. 

We need a SysML profile model for mission architectures. 

Such a profile must be based on a set of acceptable concepts 

in the field. For this purpose, we adapted a profile from a 

conceptual architecting framework that was introduced in 

[23] and enhanced in [20]. We also included internal jargon 

elicited from discussions with mission engineering subject 

matter experts (SMEs) at the MITRE Corporation. 

The original conceptual architecture reference model in [20] 

consists of five domains : D1) Stakeholders, D2) Solution-

Neutral Environment, D3) Solution-Specific Environment, 

D4) Integrated Solution, and D5) Concept of Operations 

(ConOps). We transformed this set of conceptual domains 

into a set of UML package stereotypes using the 

«uml:package» type.  A package in UML (and SysML) is a 

conceptual container that helps organize the model. 

Packages, like diagrams, are constructs that pertain to the 

model – not to the architecture it represents. In other words – 

there are no packages and diagrams in the actual architecture 

but we use these constructs to help us manage the complexity 

of the architecture. Accordingly, our profile model consists 

of five package stereotypes, as summarized in Table 2. The 

profile diagram is defined in Figure 3. 

Table 2. Package Stereotypes for a Conceptual 

Architecture Profile Model and Contained Stereotypes 

Package 

Stereotype 

Original Concept 

Domain 

Stereotypes 

«Stakeholders 

Domain» 
D1) Stakeholders 

«Stakeholder» 

«Need» 

«Mission 

Domain» 

D5) Concept of 

Operations 

«Mission» 

«Goal» 

«Operator» 

«Capability 

Domain» 

D2) Solution-Neutral 

Environment 

«Capability» 

«Operand» 

«Tradespace 

Domain» 

D3) Solution-Specific 

Environment 

«SpecificFunctionality» 

«SpecificForm» 

«SpecificOperand» 

«PerformanceAttribute» 

«Solution 

Domain» 

D4) Integrated 

Solution 

«Component» 

«Function» 

 

The «Tradespace Domain» package captures «Tradespace» 

elements. The architecting process involves the discovery 

and analysis of solution candidates (that make up the 

tradespace), consideration of candidate solutions according 

to «PerformanceAttribute»  and the selection of the most 

suitable one to elaborate into a solution architecture. That is 

also what the original D3 focused on – the derivation of 

solution-specific function and structure to accommodate the 

solution-neutral functionality—capability defined in D2.  

The «Solution Domain» specifies one or more aspects of the 

«Solution» is equivalent to the integrated solution concept 

defined in D4 as the high-level conceptual design that 

addresses the solution-specific functionality defined in D3. 

The «Mission Domain» defines the «Mission», «Goal», and 

«Operator» stereotypes. Mission artifacts specify missions to 

be performed, goals to be achieved, and operators: 

organizations, individuals, and technologies. This clearly 

maps to ConOps, but underscores the expectation that this 

domain will include a mission-oriented specification with 

specific goals and suitable operational configuration in mind. 

The «Mission» package has been promoted to be the second 

one, right after identifying the stakeholders and their needs. 

The intention was to start with a formal specification of the 

initial mission architecture, and establish a clear context for 

the necessary operational and technological capabilities – as 
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opposed to the situation in which stakeholder needs drive the 

formulation of solution-neutral functions which are later 

integrated into an operational architecture, concept, or 

application. Although the conceptual architecting process is 

iterative, the order of the first iteration is critical. Therefore, 

the order of the packages was modified. 

 

Figure 3. A UML Mission Architecture Profile Diagram 

defining five conceptual architecture domain packages 

as stereotypes, derived from the Package type. 

The architect may choose to utilize only some packages and 

some stereotypes, generate multiple instances of specific 

stereotypes, and specify packages and archifacts that do not 

adhere to our profile. For instance, a particular mission 

architecture model may include a Safety package, which is 

typed «Package» but not stereotyped as any of the above 

reference packages. This means that it is explicitly or 

implicitly drawn from another ontology, e.g., an ontology of 

Systems Safety & Security. Similarly, the architect may 

define packages with names like “Missions” and “Services”. 

This is an example of implicit stereotyping where the names 

of the packages imply a terminology that the architect had in 

mind. It may not be sufficient even one level down the 

hierarchy where the specification takes shape. For example, 

packages with the names “Humanitarian Airlift” or 

“Perimeter Defense” may not be identifiable as the names of 

a mission or a service (capability) unless they are properly 

stereotyped as «Mission» and «Capability». 

Template models include the instantiated packages with 

proper stereotyping, which ensures that at least the initial 

model is stereotyped. An example is shown in Figure 4. This 

approach resembles template creating for a system 

specification document or even for this IEEE Aerospace 

Conference article. While it may help guide the author—

modeler about what needs to be included in the specification, 

there is a caveat: a template model cannot enforce the 

preservation of headings, items, their order, their internal 

structure, or their content. It is still a good practice to start 

with a template model, and ensure through training and usage 

monitoring that the template is adhered to. 

 

Figure 4. A UML Package Diagram in a Mission 

Architecture Template Model defining five conceptual 

packages and stereotyping them according to the 

corresponding package stereotypes. 

Model Transformation 

The generic relations we rely on call for a transformation 

mechanism that can robustly identify and apply mappings 

within models and between models. This gives rise to the 

adoption of a category-theoretic, graph-data-based approach. 

MOCA is a category-theoretic and graph-based approach: it 

applies the concepts of transformation from the model 

category to a graph data structure (GDS) category where it 

operates on a representation of the model as a set of relation-

source-target (RST) tuples. The ontology is also encoded as 

a model (a profile) and then transformed into a GDS. MOCA 

maps the architectural GDS to the ontological GDS. Thanks 

to this rigorous approach, MOCA can apply to models from 

any FML with a valid GDS transform. We work with a 

relational GDS implementation, which utilizes a SQL Server 

database and SQL queries to create the necessary datasets for 

presentation and further analysis. 

A CMGV Cycle of MOCA, which extends the general 

CMGV pattern [57], includes the following mappings: 

a) C→M: from ontological and architectural concepts to 

ontology and architecture models. 

b) M→G: from ontology and architecture models to 

ontology and architecture graphs. 
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c)  G→V: from ontology and architecture graphs to 

ontology coverage reports. 

d) V→C: from ontology coverage reports to concept 

review or revision, triggering another cycle. 

The MOCA CMGV Cycle is illustrated in Figure 5.  

C→M: We observe two parallel and intertwining cycles –the 

ontological and the architectural. The ontology model stems 

from a problem domain concept, while the architecture model 

stems from a solution architecture concept and from the 

ontology model. Thus, the generation of an architecture is in 

fact a 𝐶 ⊗𝑀 → 𝑀 functorial mapping, where the cartesian 

product operator ⊗ abstracts the fusion of concepts with a 

reference ontology model (the ontological profile model) to 

create the architecture model.  

M→G: Each model is converted into a GDS, which is stored 

in a GDS Table in the database. This step relies on existing 

algorithms to transform models based on their modeling 

notation to a set of relation-source-target (RST) tuples. 

G→V: generating the MOCA views is based on several 

mappings from G to V. First, the Ontology-Architecture 

Overlap (OAO) is a cartesian product of two graphs, hence it 

adheres to the form 𝐺 ⊗ 𝐺 → 𝑉. This type of fusion of model 

graphs extends the linear CMGVC model defined in [57]. 

OAO is fused with the architecture graph to create the 

Architecture Compliance Report (ACR), and with the 

ontology graph to create the Ontology Utilization Report 

(OUR). Both ACR and OUR adhere to the transformation 

form 𝐺 ⊗ 𝑉 → 𝑉. ACR is aggregated to create an 

Architecture Compliance Score (ACS), while OUR data is 

aggregated to create an Ontology Utilization Score (OUS). 

V→C: In the conceptual phase of the cycle, model 

stakeholders revise the concept and the architecture model 

according to MOCA results. They may consider the adoption 

of more stereotypes, replace stereotypes, or even define an 

underlying ontology for the domain, as a reference for the 

solution architecture. This is another example of the notion 

that reasoning about solution architectures may result in a 

domain ontology that substantiates the architecture. 

The algorithm for retrieving OAO, ACR, and OUR is 

illustrated as a SysML Activity Diagram in Figure 6. The two 

inputs are the Architecture Tuple Set and Ontology Tuple Set. 

The outputs include eight sets, of which three are byproducts 

and five are views. 

The algorithm includes the following steps: 

1. Retrieve the archifacts from the architecture GDS. 

2. Retrieve the stereotypes from the profile GDS. 

3. Match the applied stereotypes of archifacts to 

ontology stereotypes; return the intersection as the 

Ontology-Architecture Overlap (OAO) 

4. Match the archifacts with OAO; return the item set 

with/without stereotypes as the Architecture 

Compliance Report (ACR) 

5. Calculate the proportion of compliant archifacts out 

of the number of all archifacts as the Architecture 

Compliance Score (ACS). 

6. Match the stereotypes with OAO; return the item set 

with/without instances as the Ontology Utilization 

Report (OUR) 

7. Calculate the proportion of utilized stereotypes out of 

the number of all stereotypes as the Ontology 

Utilization Score (OUS). 

 

Figure 5. A UML Class Diagram specifying the CMGV Cycle for MOCA: domain ontology and solution 

architecture (concepts) are encoded as models (M). The models are converted to Graph Data Structures (G). The 

GDS representations are fused in order to create three views: Ontology-Architecture Overlap (OAO), Ontology 

Utilization Report (OUR), and Architecture Compliance Report (ACR) 
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 Phase II: Applying MOCA to a Mission Architecture 

Phase II consists of the following steps: 

a. Build an ontology-agnostic architecture model. 

b. Apply the ontology profile to the architecture model 

and apply some stereotypes to archifacts. 

c. Verify that the ontology-architecture overlap now 

includes a set of compliant architecture model 

elements, and that the scores for architecture 

compliance and ontology utilization are growing. 

d. Review the ontology coverage reports. Determine the 

best way to revise or enhance the architecture. 

e. Consider an extension or modification of the ontology 

to account for absent general concepts [this step is part 

of the ontological process, rather than the architecting 

process, but it has potential impact on the architecture]. 

New concepts may emerge bottom-up from work on a 

specific architecture. However, it may be impossible to 

update a given ontology with more concepts that the profile 

designers did not think of, or decided to exclude from the 

profile. We may wish to define a separate profile with 

important emerging concepts as stereotypes that we will be 

able to apply to our architecture. This will allow for 

classifying archifacts as part of some terminology, even if 

only temporarily. We can also use the emerging profile to 

generalize concepts for other architectures at present or in the 

future. This step substantiates the ontological aspect of the 

architect’s work and makes it part of a knowledge base 

building activity that benefits the enterprise. The new 

stereotypes should not be included in the architecture model, 

but in a separate profile model that will be available for both 

the current architecture and other architectures. 

The implementation of MOCA is explained and discussed in 

the context of a specific case model in section 4. 

4. CASE STUDY: HUMANITARIAN AIRLIFT 

We study a hypothetical humanitarian airlift mission, in 

which the enterprise is tasked with providing airlift services  
to a threatened community. Humanitarian airlifts, although 

not common, have been challenging missions with many 

operational complexities, risks, military and diplomatic 

aspects, and a significant operational planning and execution 

portion, but also a significant technological dimension. 

Model-based mission engineering can be a key success factor 

 

Figure 6. A UML Activity Diagram specifying the MOCA Report Calculation Algorithm. The two input sets at 

the top left are the GDS tuple sets. The five outputs at the bottom right are the MOCA results. 



12 

 

in the preparation for a humanitarian airlift, particularly 

regarding those aspects that require the design, development, 

or deployment of technological solutions to support the 

mission, when such solutions may not be immediately 

available, appropriate, or interoperable. 

Operation Solomon, May 24-25, 1991, is a famous example 

of a humanitarian airlift, in which the State of Israel, in 

coordination with the United States and Russia, airlifted over 

14,300 Ethiopian Jews from Addis Ababa to Israel, as 

Ethiopia was on the brink of civil war (see Figure 7). As we 

were working on this research and studying the operational 

and technological characteristics of humanitarian airlifts, in 

Summer 2021 the United States and its allies terminated their 

20 years of presence in Afghanistan and evacuated over 

82,000 American nationals, allies, and collaborators amid the 

Taliban’s takeover of the country. The events in Afghanistan 

suggested a reality check and brought the humanitarian airlift 

mission back to the front of the stage. 

Building an ontology-agnostic architecture model. 

We have built an ontology-agnostic SysML model of 

Humanitarian Airlift as a Use Case Diagram (UCD) where 

the primary mission and capability includes multiple 

operational capabilities, as discussed above. The initial, 

ontology-agnostic model is shown in Figure 8Error! 

Reference source not found.. This model contains no 

ontological stereotyping, but only syntactical classification 

by built-in types (block, actor, etc.). 

 

Figure 8. An Ontology-Agnostic UML Use Case 

Diagram of a Humanitarian Airlift Mission. 

The absence of stereotyping in the model causes ambiguity 

and vagueness about the meaning of model artifacts. For 

example – we cannot be sure if the UCD defines missions or 

capabilities, since a use case can describe both, and in fact, to 

some extent, they are interchangeable concepts. The 

distinction is in referring to the mission as the process of 

achieving goals and objectives, while the capability is 

considered a “black-box” service provided to or by the 

mission – or more precisely an outcome or effect of a mission 

that generates the capability. From the capability provider’s 

perspective, performing the necessary activities to generate 

the outcomes that enable the mission is their mission (e.g., 

aerial refueling, medical treatment, or perimeter defense). 

Humanitarian airlift is intended to transport people and 

equipment out of a place – not to provide perimeter or air 

defense to the airfield. This distinction sharpens the 

understanding of the role of the mission and the clear 

difference between supporting capabilities and added-value 

ones. We are already seeing how an ontological discussion 

shapes our perception of the mission even before we have 

applied ontological scaffolding to our model. 

Applying profile stereotypes to architecture elements. 

We now add stereotyping to the SysML model. The profile 

model must be imported into the architecture model. This 

step allows for stereotyping archifacts according to profile 

stereotypes that are valid for the syntactic type of the 

archifact. For example – package stereotypes can be applied 

to packages, use case stereotypes like «Capability» and 

«Mission»  can be applied to use cases, and actor stereotypes 

like «Stakeholder» can be applied to actors. A revised and 

partially-stereotyped model is illustrated in Figure 9. We 

have also applied a layout that places enabling capabilities to 

the left of the mission, and enabled capabilities to the right. 

Furthermore, we used different association stereotypes for 

Enabling Capability-Mission and Mission-Enabled 

Capability relations. 

 

Figure 7. Ethiopian Jews disembarking C-130 

Hercules carriers at Ben Gurion International Airport 

after being evacuated from Ethiopia,  May 24-25, 1991 

(credit: Israel Government Press Office) 

https://www.flickr.com/photos/government_press_office/6388395699/
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The ACR is shown in Error! Reference source not found.. 

The list of architecture items consists of 35 items in total, 

using 4 syntactical types (i.e., UML primitive types): 

«Actor», «Class», «Package», and «Use Case». The 

syntactical types aid the distinction between architecture 

resources that may have ambiguous semantics. For example, 

Air Traffic Control is both an organization and a process. In 

this case, we have clearly defined the ATC Unit as an «Actor» 

and Air Traffic Control as a «Use Case». The ACS is the 

number of stereotyped items divided by the number of items 

in the architecture: 17/35=~48.5%. The ontology-

architecture overlap (OAO), is summarized in the bottom of 

the ACR. The overlap, architecture compliance, and ontology 

utilization have started growing. The complete list of 

ontological concepts, captured as profile stereotypes, can be 

extracted from the profile model as the set of elements typed 

as «uml:stereotype». In this example, as we have only utilized 

2 out of 21 concepts, the utilization rate is only 9.5%. 

5. DISCUSSION 

Ontological compliance impacts architectural decisions 

MOCA’s ACR maps the architecture’s compliance with the 

ontology, and measures compliance as the proportion of 

stereotyped items out of the architecture. Missing stereotypes 

are clearly visible in the ACR. The compliance map and score 

guide the architect to complete, reconsider, or validate the 

stereotyping, with a quantitative estimate of progress made. 

Considering and validating applied stereotypes is based on 

the bundling and grouping of items under stereotypes and 

syntactical types. If some items are stereotyped in a way that 

is inconsistent with the stereotyping of other items with the 

same syntactical type, it alerts the architect to reconsider the 

stereotyping. For instance, if an item that is syntactically 

defined as an «Actor» is stereotyped as a «Capability», while 

all other actors are stereotyped as «Stakeholder» and all other 

capabilities are based on «Use Case», this is clearly 

inconsistent with the modeling convention. 

The architect may use the ACR to determine how to 

iteratively enhance the architecture. For example, the 

architect may consider stereotyping another syntactical group 

of artifacts – actors or packages. Another step could be 

adding items to the architecture, like additional capabilities 

or resources, while carefully classifying the new items as 

appropriate. This will prevent the accrual of an ontological 

debt, i.e., a growing number of untyped items that will need 

to be stereotyped later. Another approach could be to let a 

colleague analyze the architecture and classify artifacts, as a 

quality assurance and concept validation step. The colleague 

may be more proficient with ontological classification and 

analysis and may use this process to highlight discrepancies 

in perception and concept specification. We suggest 

comparing these two approaches in a future study. 

In our example, we have gone from zero compliance to 

almost 50% compliance by stereotyping the use case artifacts, 

 

Figure 9. Structured stereotyping of the mission, supporting capabilities, and provided capabilities. 

Stakeholders, Solution-Neutral Operands, and Architecture packages are not yet stereotyped. 
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distinguishing the «Mission» artifact from the «Capability» 

ones, and enabling further analysis such as the distinction 

between enabling and enabled capabilities. This analysis has 

architectural ramifications as it affects the perception, 

consideration, and prioritization of mission ingredients 

according to their impact and criticality to mission success. 

For example, by asserting that activities like Population 

Management are critical capabilities delivered to the mission 

by the appropriate specialists, we shape the mission. 

Ontological mindset facilitates abstraction and emergence 

The association of multiple enabling capabilities with the 

mission UC and the decomposition of the mission itself into 

a set of added-value capabilities highlight the notion that the 

mission is an abstract concept, which represents the 

emergence of value from the individual capabilities that 

compose it. The mission UC provides a compact way of 

describing how multiple enabling capabilities support 

multiple added-value capabilities. This abstraction layer 

means that the «capability»→«mission»→«capability»  

pattern can translate to an indirect relation «capability» → 

«capability». We can then derive a capability mapping matrix 

that shows how each capability enables other capabilities. We 

can define an interface between two capabilities directly 

using «directed association» between use cases. We must 

make sure, however, that mission and capability UCs are 

different from each other through stereotyping. 

Enriching both the architecture and the ontology 

The MOCA utilization report shows utilization of ontological 

concepts (represented as stereotypes) by architectural 

artifacts. This utilization map measures the proportion of 

instantiated stereotypes out of the ontology. The ontology 

utilization report helps both mission architects and ontology 

architects. Mission architects learn about unutilized and 

underutilized concepts and can reconsider the conceptual 

scaffolding of the architecture. Ontology experts can evaluate 

underutilized concept usability, relevance, validity and 

understandability, and revise the ontology to better match the 

needs of the mission architects who are expected to use it. 

In our example, the absence of, say, Solution-Neutral 

Operands from the architecture, calls the architect to consider 

referring to such transferrable and transformable items in the 

context of the mission and enrich the architecture by 

clarifying what inputs are provided to the mission and what 

outputs are generated by the mission. For instance, 

considering the steady flow of medication into the airlift 

perimeter – regardless of the actual means of transporting the 

medication – may funnel into a discussion on the type of 

Table 3. Architecture Compliance Report (ACR) for Humanitarian Airlift Mission Model 

Syntactical Type Profile Stereotype Name Archifact F T Total 

uml:Actor (blank) (blank) Aerial Refueler 1 
 

1 

Airborne Medic 1 
 

1 

ATC Unit 1 
 

1 
Loadmaster 1 

 
1 

Meteorologist 1 
 

1 

Mission Manager 1 
 

1 
Operational Benficiary 1 

 
1 

Operator 1 
 

1 

OpsCom 1 
 

1 
Passenger 1 

 
1 

SAM 1 
 

1 

Security Force 1 
 

1 

uml:Class (blank) (blank) Airfield 1 
 

1 
Airlift-capable Aircraft 1 

 
1 

Mission Commands 1 
 

1 

Supplies 1 
 

1 

uml:Package (blank) (blank) Capabilities 1 
 

1 

Stakeholders 1 
 

1 

uml:UseCase Mission 

Architecture 

Profile 

Capability Aerial Refueling 
 

1 1 
Air Defense 

 
1 1 

Air Traffic Control 
 

1 1 

Equipment Evacuation 
 

1 1 
Loading 

 
1 1 

Medical Services 
 

1 1 

Medical Treatment 
 

1 1 
Mission Management 

 
1 1 

Mission OVersight 
 

1 1 

Passenger Documentation 
 

1 1 
Passenger Evacuation 

 
1 1 

Perimeter Defense 
 

1 1 

Population Management 
 

1 1 
Reporting 

 
1 1 

System Management 
 

1 1 

Weather Forecasting 
 

1 1 

Mission Humanitarian Airlift 
 

1 1 

Grand Total 
   

18 17 35 
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relevant medication, the storing, issuance, and administering 

of medication, the disposal of medical waste, and the 

assessment of medical treatment as part of the humanitarian 

aspects of the mission. In Operation Solomon, for instance, 

medical crews delivered newborns on the ground and in 

midair, and such an activity requires a variety of medical 

devices and medications for both the mother and the child. 

The adapted conceptual architecture ontology did not 

distinguish enabling from enabled capabilities. We can 

reduce ambiguity in the model by providing suitable 

specialized sub-stereotypes of «Capability». We can add 

these specialized concepts to the base profile or to a dedicated 

profile. However, we must maintain backward-compatibility 

and ensure that the new stereotypes are not misused: we 

should prevent the specifying of enabled capabilities as use 

cases that feed the mission  use case and enabling capabilities 

as use cases that are included in the mission. This can be 

achieved with design rules – a topic for additional research. 

6. CONCLUSION  

Ontology coverage is inherently a dual concept: the ontology 

is the covering and covered artifact. In this paper we 

dismantled this duality through  the coverage analysis of the 

ontology by the architecture, and the architecture by the 

ontology. The coverage of the architecture by the ontology 

has compliance semantics: the portion of the architecture that 

is covered by a set of concepts indicates the extent of 

adherence of the architecture to the conceptualization that the 

ontology suggests. The coverage of the ontology by the 

architecture has utilization semantics: the portion of the 

ontology that is covered by the architecture indicates the 

extent of adoption of the suggested conceptualization. 

We have discussed the importance of an ontological mindset 

in MBSE, and particularly in mission models. The scope of 

generic modeling languages is intentionally minimal and 

meant to capture the largest possible space of specifiable 

systems and concepts. Terminological extensibility is 

inherent in MBSE: SysML is an engineering systems 

ontology that is implemented as a UML profile. The extended 

SysML vocabulary is still insufficient for describing basic 

aspects of complex systems, such as missions and operations, 

safety and security, or risk and uncertainty. Additional 

conceptual scaffolding is needed to reduce ambiguity, 

increase understandability, and facilitate automated analysis, 

verification, and validation of system models. The 

appreciation for model-based ontologies in supporting 

digitalization and scaling-out of MBSE is growing. However,  

suggesting ontologies is insufficient – we must enforce them. 

In this paper, we have integrated several model analytic 

thrusts into one coherent theme and practical outcome that is 

meant to facilitate digital systems engineering: ontological 

analysis, category-theoretic graph-based analysis, and 

mission-oriented analysis. We have founded our discussion 

scientifically on the formality of models on the one hand and 

ontologies on the other hand. We have harnessed robust and 

rigorous model transformation and analysis methods. We 

have also weighed in on mission architecting challenges, 

particularly in a model-based mission engineering mindset.  

The convergence of model analytical approaches culminated 

in the creation of a model-based ontology coverage analysis 

(MOCA) framework. As shown, running and utilizing 

MOCA during the system/mission architecting process has 

significant impacts on the quality, scope, content, and validity 

of the architecture, as well as critical validation of the 

ontology as a reference vocabulary of concepts and patterns. 

MOCA provides the critical insight that informs stakeholders 

and decision makers about the architecture’s ontological 

merit. This approach is far more reliable and scalable than 

visual reviews or assessment schemes that exist next to the 

model. In turn, MOCA reinforces the model’s status as an 

Authoritative Source of Truth. MOCA is therefore a critical 

enabler and facilitator of MBSE, MBME, and DE.  

This paper discusses one aspect of a broader program for the 

facilitation of digital mission engineering capabilities. 

Additional aspects include information visualization through 

an architect dashboard, integration of outcomes with other 

forms of analysis, and application of machine learning 

algorithms to the datasets generated by MOCA and other 

analysis methods. Future research in the context of MOCA 

concerns the scalability and performance of MOCA on large-

scale mission models and model ensembles in an enterprise 

environment, the extension of MOCA to the analysis of 

complex conceptual constructs, starting with concept 

relations, integration of MOCA as an online design aid, 

whereas at the moment it is an offline tool, and the empirical 

study of MOCA’s impact on architects and stakeholders’ 

managerial, engineering, and operational decisions. 

The set of performance attributes or Figures of Merit (FoMs) 

for solution architectures: capacity, precision, mass, response 

time, energy consumption, cost, reliability, etc. – can be 

encoded as an ontology. Solution attributes must be 

appropriately matched with stakeholder-defined FoMs and 

solution FoM values must be equal to or better than 

stakeholder-required FoM values. FoM value comparison 

can be done solution-wise or attribute-wise. In future 

research, we plan to use MOCA for architecture assessment, 

by comparing ontologically-classifiable architecture FoMs to 

their reference performance assessment ontologies. 
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