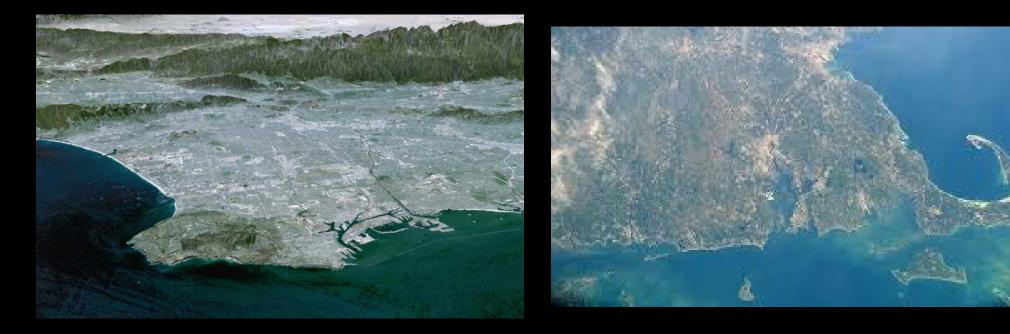
Optimizing Regional Systems of Care: Lessons from the Nation's Most Populous County

Jeffrey L. Saver, MD SA Vice-Chair and Professor of Neurology Director, UCLA Comprehensive Stroke and Vascular Neurology Program

JLS Disclosures

- Unpaid site investigator in multicenter trials run by Medtronic, Stryker, Cerenovus, and Rapid Medical for which the UC Regents received payments on the basis of clinical trial contracts for the number of subjects enrolled.
- Receives funding for services as a scientific consultant regarding trial design and conduct to Medtronic, Stryker, Cerenovus, BrainsGate, Rapid Medical, Boehringer Ingelheim (prevention only), and Abbott.
- Serves as an unpaid consultant to Genentech advising on the design and conduct of the PRISMS trial; neither the University of California nor Dr. Saver received any payments for this voluntary service
- Employee of the University of California. The University of California has patent rights in retrieval devices for stroke.

Los Angeles



Population and Resources

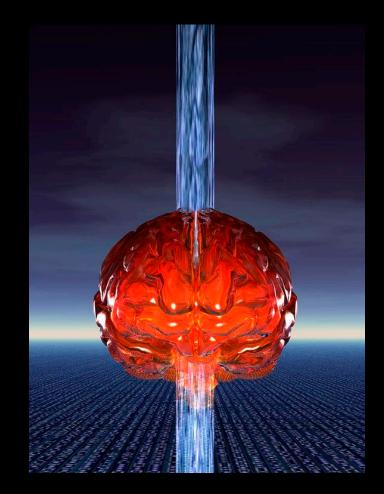
Population and Resources

Los Angeles County

- 10.1 million individuals
- 4,751 sq miles
- 31 EMS agencies
 - » 161 ambulances, 1 MSU
 - » Paramedic responders
- 52 designated stroke centers
 - » 16 CSC, 4 TSC, 30 PSC

Population and Resources

Los Angeles County

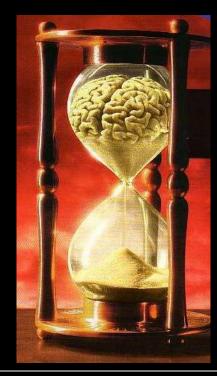

- 10.1 million individuals
- 4,751 sq miles
- 31 EMS agencies
 - » 161 ambulances, 1 MSU
 - » Paramedic responders
- 52 designated stroke centers
 - » 16 CSC, 4 TSC, 30 PSC

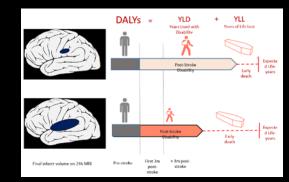
State of Massachusetts


- 6.4 million individuals
- 10,550 sq miles
- 322 EMS agencies
 - » Lots of ambulances
 - » Paramedic/EMT responders
- 68 designated stroke centers
 > 68 PSC

Talk Outline

- Stroke from the perspective of EMS Regional Systems of Stroke Care
 - » Types of stroke
 - » Types of emergency stroke treatments
 - » Types of emergency stroke centers
- Time is Brain
- Building Efficient Prehospital Care Systems
 - Calling 911
 - » Dispatch
 - » Prehosptial care
 - Standard Ambulances Paramedics/EMTs
 - » Stroke recognition
 - » LVO recognition
 - » Routing
 - » Neuroprotection
 - Mobile Stroke Units
- Future directions

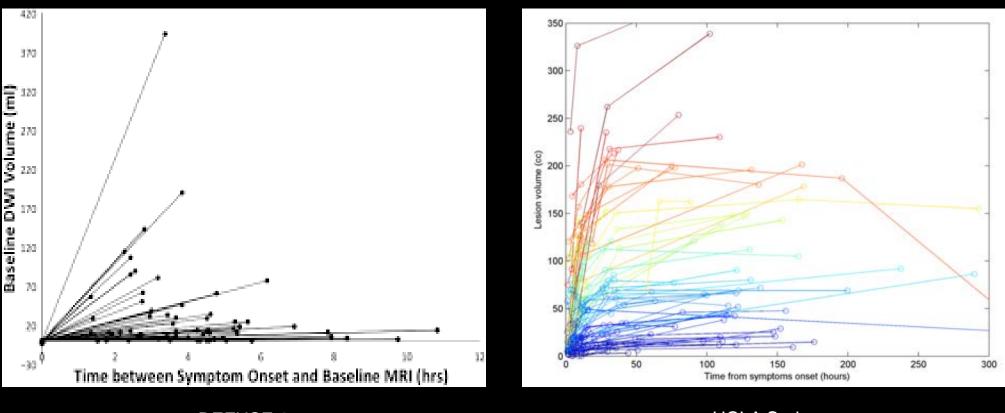



Time is Brain

Time is Patients

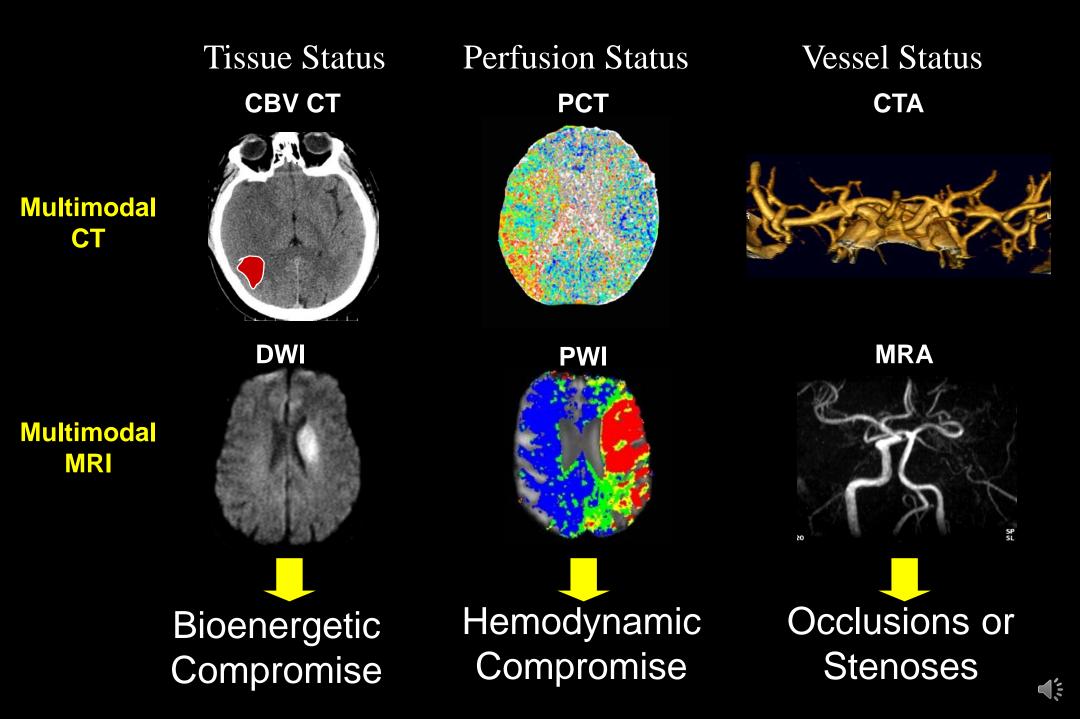
Time is Life



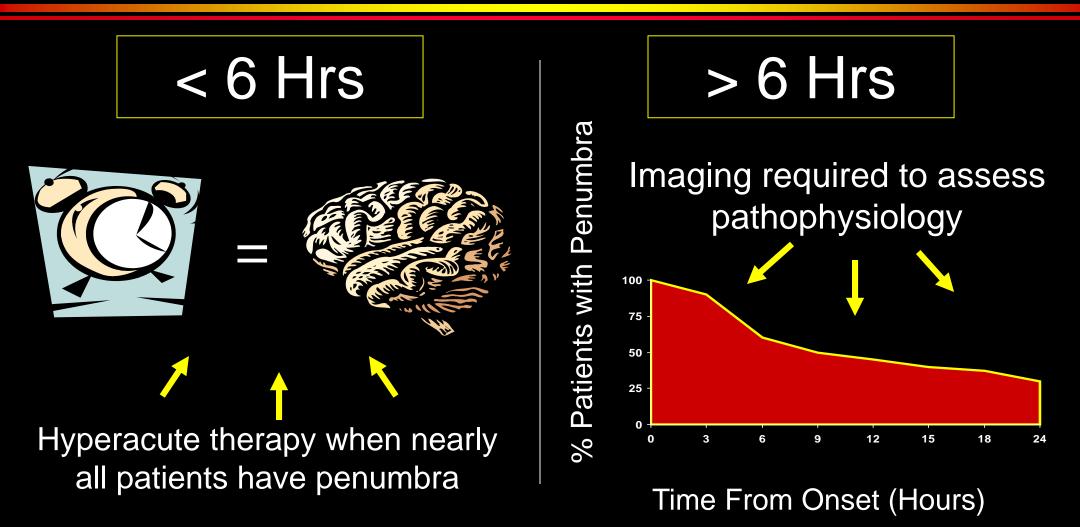

2 million neurons per minute

1 drop of brain, 1 week of life

1 worse outcome every 4 minutes Save 1 min, save 1 week of life*


--Saver, Stroke 2006 --Saver, Brain 2017 --Kawano et al, Brain 2017 --Saver et al, JAMA 2017

Progressors: Fast / Slow / Variable



DEFUSE 2 --Wheeler et al, Int J Stroke 2015

UCLA Series --Liebeskind, 2016

Strategies to Identify LVO Patients with Salvageable Ischemic Penumbra

Major Stroke Subtypes: A Prehospital Perspective

	Ischemic		Hemorrhagic		
	Small/Medium Vessel Occlusoin	Large Vessel Occlusion	Intraparenchymal	Subarachnoid	
	Skull Brain				
Typical Presentation	Focal Deficits	Focal Deficits	Focal Deficits	Non-Focal Deficits	
Major Treatments	 ≤4.5h: IV TPA >4.5-12h: IV TPA in imaging- selected subset 	 ≤4.5h: IV TPA plus ET ≤ 6h: ET 6-24h: ET in imaging- selected subset 	 Anticoag reversal BP moderation Ventriculostomy Surgical evac 	1) Coiling/ clipping 2) NICU vasospasm management	
Population Freq of Focal	65%	35%	10%	N/A	
EMS Freq of Forcal	40%	35%	25%	N/A	

Warning Signs and Activation of EMS System

UCLA Stroke Force and StrokeTeam

>107 languages spoken in LA

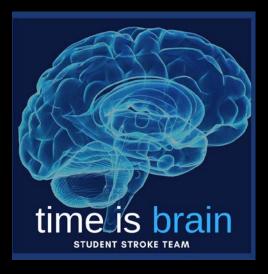
UCLA Stroke Team and Stroke Force Winter 2019

· Clinical experience in the ER Hospital Volunteering

 Community Outreach Student Research Program Credit

MON JAN 14


Recruitment Health · 234 people


Sessions: Monday 1/14 5-6PM

@ Tamkin Auditorium Tuesday 1/15 6-7PM @ CHS 13-105 Thursday 1/17 7-8 PM @ Tamkin Auditorium

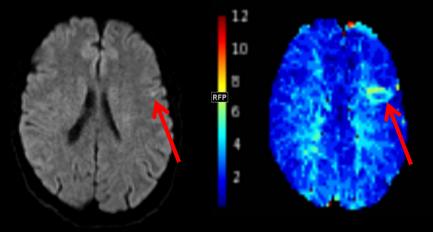
APPS DUE:

Who To Activate EMS for? Ubiquitous Monitoring and Ambient Intelligence Accelerated Stroke Onset Detection

Las Vegas Casinos

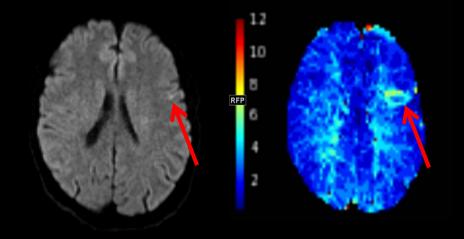
Home Cameras/Voice Assistants Home Health Robots Smart Phones

Acclerometer and Computer Vision -Fall Detection



--Example: Leone et al. Detecting falls with 3d range camera in ambient assisted living applications. Medical Engineering & Physics 2011

Altered Speech Detection by Al Voice Assistants


- 47 yo man wakes to Alexa alarm
- Voice assistant initially does not understand dysarthic, mildly dysfluent commands to turn alarm off
- Proceeds to read and send texts on iphone
 - » But speech still slurred
 - Slight right facial
- Diffusion and Tmax small lesion left frontal operculum

Altered Speech Detection by Al Voice Assistants

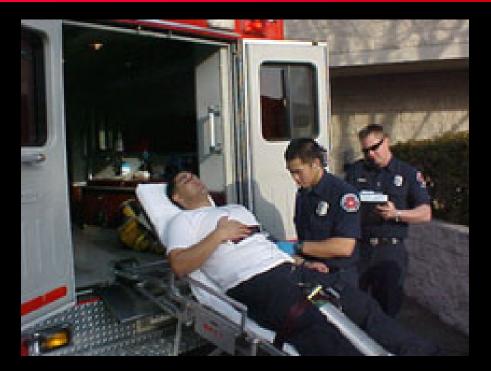
- 47 yo man wakes to Alexa alarm
- Voice assistant initially does not understand dream initially does mildly dream initially does mildly dream initially does
 Malexa without agraphia
- Proceeds to read and send texts on iphone
 - » But speech still slurred
 - Slight right facial
- Diffusion and Tmax small lesion left frontal operculum

Stroke and EMS

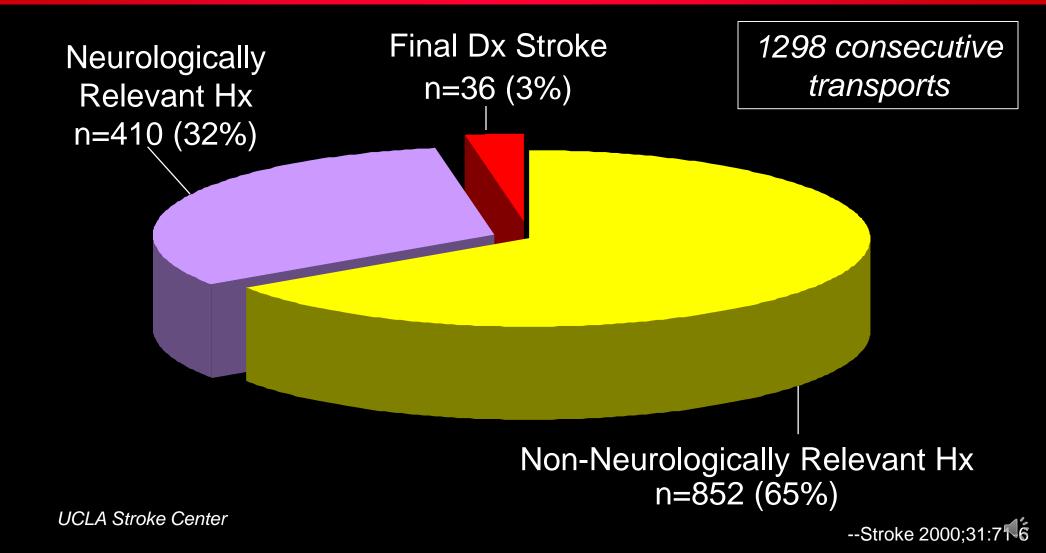
- Narrow therapeutic time window
- Early intervention critical for stroke care
- Prehospital personnel
 - » 35-70% of stroke patients arrive by ambulance
 - >> Unique position: first medical professional to come in contact with stroke patient

Goal of EMS Dispatch

To send the right things to the right people at the right time in the right way and to do the right thing until help arrives


Dispatch and Stroke

- Enhanced 911 systems automatically display caller's address
 - » Especially helpful for dysarthric/aphasic patients
- Dispatcher assesses complaint and determines
 - » Dispatch priority
 - » Level of expertise (ALS or BLS)
- Structured algorithms for caller interaction
 - » National Academy Medical Priority Dispatch System QA Dispatcher Guide
 - Protocols for 36 chief complaints, including stroke (28)



Prehospital Paramedic Stroke Recognition and Characterization: Applications

- Rapid prehospital care
 - » "Scoop and go"
- One-tier Stroke Center systems
 - » Route directly to designated Stroke Centers
 - » Pre- arrival notification
 - Activate stroke team
 - Clear head CT/MR scanner
 - Preregister and issue temporary medical record number
 - Direct to CT/MR transport
- Two-tier Stroke Center systems
 - Selective direct transport to Comprehensive Stroke Centers
- Treatment in the field
 - » Paramedic
 - Neuroprotectives
 - BP moderation
 - » Physician
 - Thrombolysis

Strokes Are Only 2-3% of Prehospital Transports

"Stroke Recognition" Tools Stroke vs Non-Stroke

"Stroke Severity" Tools LVO vs Non-LVO Stroke CSC Approp (LVO+ICH) vs not

- Los Angeles Prehospital Stroke Screen (LAPSS)* **
- Cincinnati Prehospital Stroke Scale (CPSS)*
- Face Arm Speech Test**
- Paramedic Quick Screen (San Diego)
- Miami Evaluation of Neurologic Deficit (MEND)
- UAB Stroke Observational Scale (SOS)
- Expanded LAPSS (Melbourne Acute Stroke Screen) **

- Los Angeles Motor Scale (LAMS)
- 3 Item Stroke Scale (3I-SS)
- Rapid Arterial OcClusion Evaluation Score (RACE)
- Cincinnati Prehospital Stroke Severity Scale (CPSSS)
- Field Assessment Stroke Triage for Emergency Destination (Fast-ED)
- Vision, Aphasia, Neglect (VAN)

. . .

*Endorsed in ACLS Cardiopulmonary Resuscitation Guidelines, Circulation 2010 **Prospectively validated in field testing

- History (4 items)
 - >> onset/duration of symptoms
 - » age
 - » history of seizure disorder
 - » baseline functional status
- Exam (3 items): identifies unilateral weakness
 - » facial weakness
 - » arm drift
 - » grip strength
- Fingerstick blood glucose (1 item)

 Symptom duration less than 24 hours History of seizures or epilepsy ABSENT Age ≥ 45 At baseline, patient is NOT wheelchair bound or bedridden 					Unknov [[] [] []	vn No] →[] [] []
5. Blood glucose: between 60 (80 if chemstrip) and 400					No [] →	STOP and follow appropriate treatment algorithm
6. Motor Exam: EXAMINE FC	Normal		Left	Ι		
Facial Smile/Grimace:	П	□ Droop	□ Droop			
Grip:	Ц	⊔ Weak Grip ⊔ No Grip	⊔ Weak Grip ⊔ No Grip			
Arm Strength:		□ Drifts Down □ Falls Rapidly	 Drifts Down Falls Rapidly 	↓ Yes	Na	
Based on exam, patient has o	only unil	ateral (and not bilat	eral) weakness:	[]	[] →	STOP and follow appropriate treatment algorithm
<u>Items 1-6 all YES's (or 2-4 u</u>	<u>nknown</u>)→ LAPSS screeni	ng criteria met:	Yes []	No [] →	STOP and follow appropriate treatment algorithm

Cincinnati Prehospital Stroke Scale

Normal: Abnormal:

Facial Droop

Both sides of face move equally One side of face does not move at all

Arm Drift

Normal: Abnormal: Both arms move equally or not at all One arm drifts compared to the other

<u>Speech</u>

Normal: Abnormal: Patient uses correct words with no slurring Slurred or inappropriate words or mute

Motor Deficits in Acute Stroke

LAPSS and CPSS emphasize motor deficits:

- Present in 83-90% of all strokes
- » Major determinant of long-term disability
- > Testing performed reliably and briefly by health personnel not specifically trained in neurology

LAPSS: Prospective Field Performance

LAPSS Completed Runs (Neuro Sx Runs)

Sensitivity Specificity Positive Predictive Value Negative Predictive Value

91% (76-98%)
99% (97-99%)
97% (84-99%)
98% (96-99%)

--Stroke 2000;31:71-6

Prehospital Stroke Management

Perform

- Determine and document time of onset
- Initiate cardiac monitoring
- » Insert intravenous line
- » Perform serum glucose measure
- » Administer oxygen
- Notify ED quickly
- Transport as soon as possible ("scoop and go")

Avoid

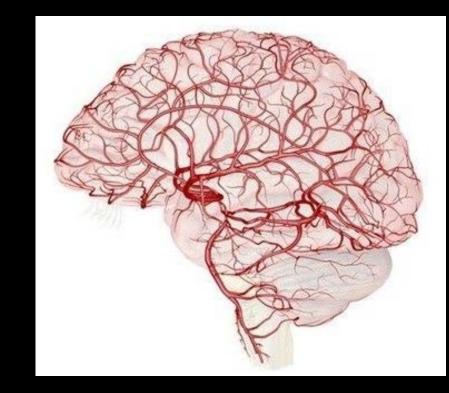
- » Delay transport
- » Give large volumes of fluid
- » Give dextrose (unless hypoglycemic)

Regional Stroke Systems of Care: Four Tier US Model

• <u>EMS</u>

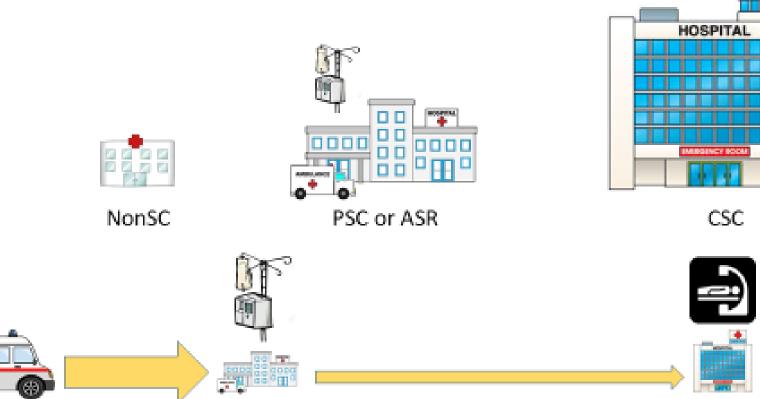
- --Trained dispatchers, high priority triage
- --Paramedics trained in stroke recognition (e.g. LAPSS)
- --Deliver patients to nearest stroke capable hospital
- --Pre-arrival notification
- <u>Spokes</u>
 - Acute Stroke Ready Hospitals
 - --Able to provide initial, ED care, often via telemedicine
 - --Able to use rt-PA and other acute therapies safely and efficiently
 - Primary Stroke Centers
 - --Able to provide initial, ED care
 - --Able to use rt-PA and other acute therapies in a safe and efficient manner
 - --Have Stroke Units and can admit patients

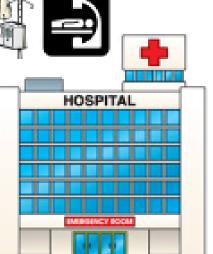
• <u>Hubs</u>


- Thrombectomy Stroke Centers
 - --PSC level care, plus
 - --Endovascular thrombectomy
- Comprehensive Stroke Centers
 - --Able to care for complex patients
 - --Advanced treatments (i.e. coils, stents, IA recanalization, etc)
 - --Trained specialists in key areas (Vascular neurology, Neurointerventional procedures, Neurocritical Care, Vascular Neurosurgery)

Key Treatment Capabilities of TJC Stroke-Designated Hospitals

	IV Therapies in ED (tPA, Kcentra, etc)	Stroke Unit Inpt Management	Endovascular Thrombectomy	Neurosurgery Coiling NeuroICU Care
Non-Stroke Hospital				
Acute Stroke Ready Hospitals (ASRH)	\checkmark			
Primary Stroke Centers (PSC)	\checkmark	\checkmark		
Thrombectomy Stroke Centers (TSC)	\checkmark	\checkmark	\checkmark	
Comprehensive Stroke Centers	\checkmark	\checkmark	\checkmark	\checkmark

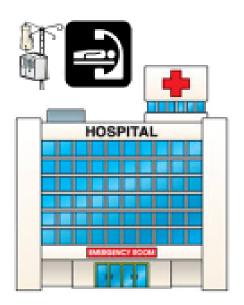

Identifying Likely Large Vessel Occlusion Patients in Field


- Medium (distal) vessel and small (penetrator) occlusions
 » IV tPA - works well, want asap
 - Thrombectomy not an option
 - » → Primary Stroke Center or Acute Stroke Ready Hospital
- Large vessel occlusions
 - » IV tPA works poorly
 - Thrombectomy works well
 - ➤ Thrombectomy Stroke Center or Comprehensive Stroke Center

Organizing Regional Stroke Systems

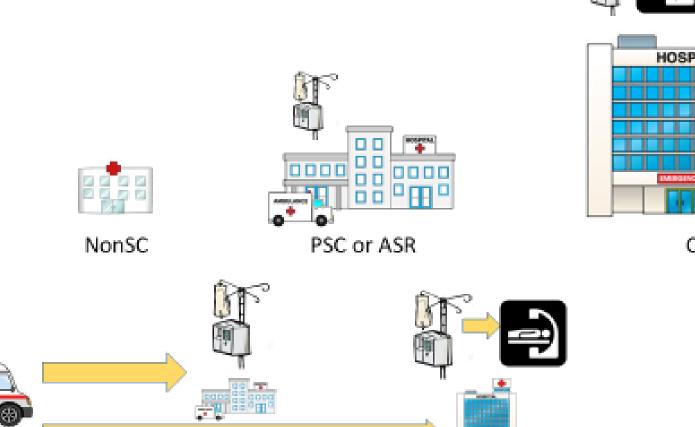
One Tier EMS Stroke Routing

Organizing Regional Stroke Systems


One Advanced Tier EMS Stroke Routing

NonSC

PSC or ASR



CSC

Organizing Regional Stroke Systems

Two Tier EMS Stroke Routing

Examples of Prehospital Stroke Scales to Identify LVO / CSC-Approp

- Los Angeles Motor Scale (LAMS)
 - >> 3 elements
 - » Facial droop, arm drift, grip weakness
- 3 Item Stroke Scale (3I-SS)
 - 6 elements
 - >> Level of consciousness, gaze deviation, facial droop, arm drift, R/L leg weakness
- Rapid Arterial OcClusion Evaluation Score (RACE)
 - > 7 elements
 - Facial droop, arm drift, R/L leg weakness, gaze deviation, aphasia, denial of hemiparesis
- Cincinnati Prehospital Stroke Severity Scale (CPSSS)
 - > 4 elements
 - » Gaze deviation, arm drift, LOC command, LOC questions
- Field Assessment Stroke Triage for Emergency Destination (Fast-ED)
 - » 5 elements
 - » Face, Arm weakness, speech, eye deviation, Denial/Neglect
- VAN
 - > 3 elements
 - » Vision, Aphasia, Neglect

Variations in Scale Complexity KISS Principle in Prehospital Care

LAMS				
Facial Droop				
Absent	0			
Present	1			
Arm Drift				
Absent	0			
Drifts Down	1			
Falls Rapidly	2			
Grip Strength				
Normal	0			
Weak Grip	1			
No Grip	2			

RACE				
Facial Palsy				
Absent	0			
Mild	1			
Mod-severe	2			
Arm Motor Fxn				
Normal to mild	0			
Moderate	1			
Severe	2			
Leg Motor Fxn				
Normal to mild	0			
Moderate	1			
Severe	2			
Head + Gaze Dev				
Absent	0			
Present	1			
Aphasia (if right HP)	1			
Normal to mild	0			
Moderate	1			
Severe	2			
Agnosia (if left HP)	1			
Normal to mild	0			
Moderate	1			
Severe	2			

LAMS Comparable to or Better than 6 Other Proposed Prehospital LVO Scales and the Full NIHSS

LVO among All Acute Cerebral Ischemia Transports

	Sensitivity	Specificity	PPV	NPV	Accuracy
Prehospital					
LAMS	0.74	0.63	0.79	0.56	0.70
ED					
LAMS	0.63	0.79	0.85	0.53	0.69
CPSSS	0.54	0.88	0.89	0.50	0.66
FAST-ED	0.54	0.83	0.86	0.49	0.64
PASS	0.57	0.83	0.87	0.50	0.66
RACE	0.54	0.79	0.83	0.48	0.63
VAN	0.57	0.71	0.79	0.46	0.61
3i-SS	0.41	0.96	0.95	0.46	0.60
NIHSS ≥ 7	0.65	0.67	0.79	0.50	0.66
NIHSS ≥ 10	0.54	0.83	0.86	0.49	0.64

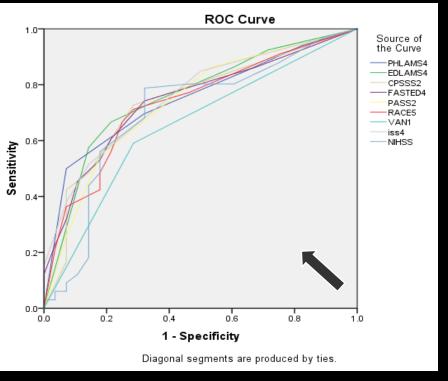
CSC-Appropriate (LVO+ICH) among All Suspected Stroke Transports

	Sensitivity	Specificity	PPV	NPV	Accuracy
Prehospital					
LAMS	0.70	0.68	0.84	0.49	0.69
ED					
LAMS	0.67	0.79	0.88	0.50	0.70
CPSSS	0.48	0.86	0.89	0.41	0.60
FAST-ED	0.53	0.82	0.88	0.43	0.62
PASS	0.55	0.82	0.88	0.43	0.63
RACE	0.56	0.79	0.86	0.43	0.63
VAN	0.59	0.71	0.83	0.43	0.63
3i-SS	0.38	0.93	0.93	0.39	0.54
NIHSS ≥7	0.71	0.68	0.84	0.50	0.70
NIHSS ≥ 10	0.56	0.82	0.88	0.44	0.64

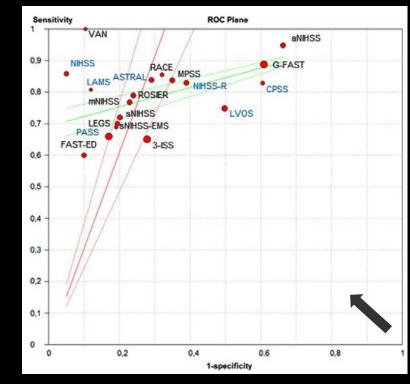
--Noorian et al, Stroke 2018

LAMS Comparable to or Better than 6 Other Proposed Prehospital LVO Scales and the Full NIHSS

LVO among All Acute Cerebral Ischemia Transports


	Sensitivity	Specificity	PPV	NPV	Accuracy
Prehospital					
LAMS	0.74	0.63	0.79	0.56	0.70
FD					
LAMS	0.63	0.79	0.85	0.53	0.69
CPSSS	0.54	0.88	0.89	0.50	0.66
FAST-ED	0.54	0.83	0.86	0.49	0.64
PASS	0.57	0.83	0.87	0.50	0.66
RACE	0.54	0.79	0.83	0.48	0.63
VAN	0.57	0.71	0.79	0.46	0.61
3i-SS	0.41	0.96	0.95	0.46	0.60
NIHSS ≥ 7	0.65	0.67	0.79	0.50	0.66
NIHSS ≥ 10	0.54	0.83	0.86	0.49	0.64

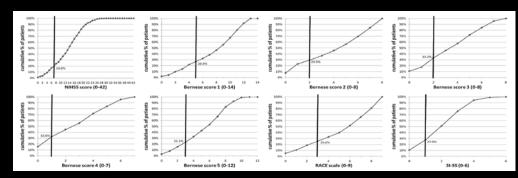
CSC-Appropriate (LVO+ICH) among All Suspected Stroke Transports


	Sensitivity	Specificity	PPV	NPV	Accuracy
Prehospital					
LAMS	0.70	0.68	0.84	0.49	0.69
ED					
LAMS	0.67	0.79	0.88	0.50	0.70
CPSSS	0.48	0.86	0.89	0.41	0.60
FAST-ED	0.53	0.82	0.88	0.43	0.62
PASS	0.55	0.82	0.88	0.43	0.63
RACE	0.56	0.79	0.86	0.43	0.63
VAN	0.59	0.71	0.83	0.43	0.63
- 3i-SS	0.38	0.93	0.93	0.39	0.54
NIHSS ≥7	0.71	0.68	0.84	0.50	0.70
NIHSS ≥ 10	0.56	0.82	0.88	0.44	0.64

--Noorian et al, Stroke 2018

Comparative Scale Performance in Identifying LVO among All Acute Cerebral Ischemia Patients

--Noorian et al, Stroke 2018


--Vidale et al, Acta Neurologica Scand 2018

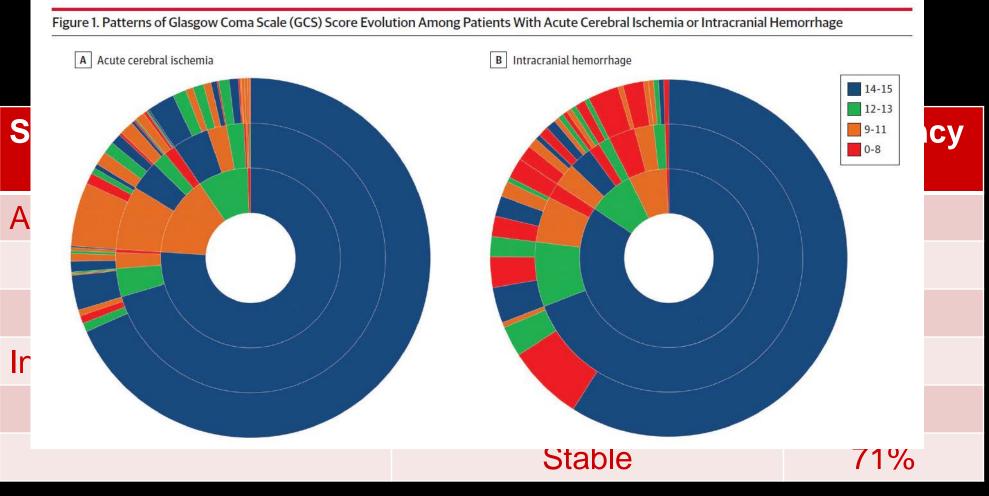
Clinical prediction of large vessel occlusion in anterior circulation stroke: mission impossible?

--Heldner et al, J Neurol 2016

- 1085 consecutive patients
 - >> Within 6h of LKW
 - » CTA or MRA
- Derived 5 data-driven NIHSS LVO patternspecific scores
 - > Total NIHSS outperformed all pattern-specific scores
 - Best NIHSS cutoff \geq 7
 - Sens 81%, Spec 77%

	Odds r
Best Gaze	9.60
Motor arms	7.60
Aphasia/neglect	7.13
Visual fields	7.00
Motor legs	5.78
LOC ^a altertness	5.64
Facial palsy	5.50
LOC ^a commands	4.50
LOC ^a questions	4.23
Dysarthria	3.20
Sensation	2.40
Limb ataxia	0.87

UCLA Stroke Center


Hyperacute Course Fluctuations -Constraint on All Prehospital Evaluations 1690 FAST-MAG Patients

Median LKW to Paramedic exam: 25 min Median LKW to ED Study Nurse exam: 149 min

Stroke Type	Evolution from Ambulance to ED	Frequency
Acute Cerebral Ischemia	Substantial Improvement	31%
	Substantial Worsening	7%
	Stable	62%
Intracranial Hemorrhage	Substantial Improvement	5%
	Substantial Worsening	24%
	Stable	71%

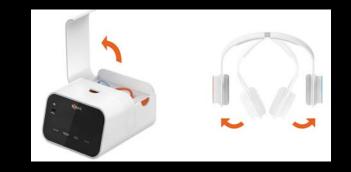
--Tipirneni et al, ISC 2017; Shkirkova et al, JAMA Neurol 2018

Hyperacute Course Fluctuations -Constraint on All Prehospital Evaluations 1690 FAST-MAG Patients

--Tipirneni et al, ISC 2017; Shkirkova et al, JAMA Neurol 2018

Stroke

Figure 1 iTREAT ambulance setup with cradled iPad and suction mounting



Learn and Live

λ

Mobile Stroke Diagnosis Emerging Helmet Technologies

- Ultrasound
 - » Burl Sonas
 - » Neural Analytics
- EEG
 - Samsung EDSAP
- Near infra-red
 » B+W Tek i-Spec
- Microwave
 - » Australia Strokefinder helmet

UCLA Stroke Center

Routing Protocols in Tiered Systems: ASRHs, PSCs, CSCs (AHA-ASA 2013)

Tiered routing options

- » None
- » Time (e.g. 3.5-6-24h)
- » Severity (e.g. LAMS 4-5)
- » Type (H/A, ICH)

Considerations

- » Urban v rural
- » Geography
- >> Traffic
- > Resources
- Minimize time out of service area

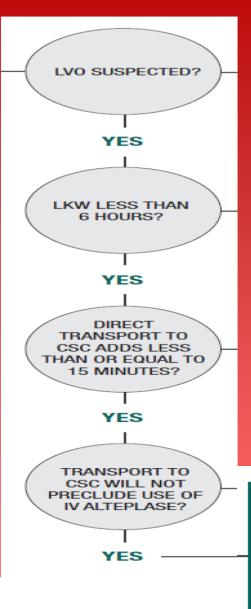
AHA/ASA Policy Statement

Interactions Within Stroke Systems of Care A Policy Statement From the American Heart Association/American Stroke Association

Randall Higashida, MD, FAHA, Chair*; Mark J. Alberts, MD, FAHA, Co-Chair*; David N. Alexander, MD; Todd J. Crocco, MD; Bart M. Demaerschalk, MD; Colin P. Derdeyn, MD, FAHA; Larry B. Goldstein, MD, FAHA;
Edward C. Jauch, MD, MS, FAHA; Stephan A. Mayer, MD, FAHA; Neil M. Meltzer, MPH;
Eric D. Peterson, MD, FAHA; Robert H. Rosenwasser, MD, FAHA; Jeffrey L. Saver, MD, FAHA; Lee Schwamm, MD, FAHA; Debbie Summers, RN, MSN, ACNS-BC, FAHA; Lawrence Wechsler, MD, FAHA; Joseph P. Wood, MD, JD; on behalf of the American Heart Association Advocacy Coordinating Committee

Severity-Based Stroke Triage Algorithm for EMS

* What It Is:



Evidenced-based best-practice, multi-specialty review of currently available data for EMS Stroke Triage

* What It Is Not:

Prescription or EXACT template to be followed wordfor-word in every region

Go Directly to CSC IF:

Severity Screen(++)

+

LKW < 6 Hours

+

Transport to CSC Add < 15 min

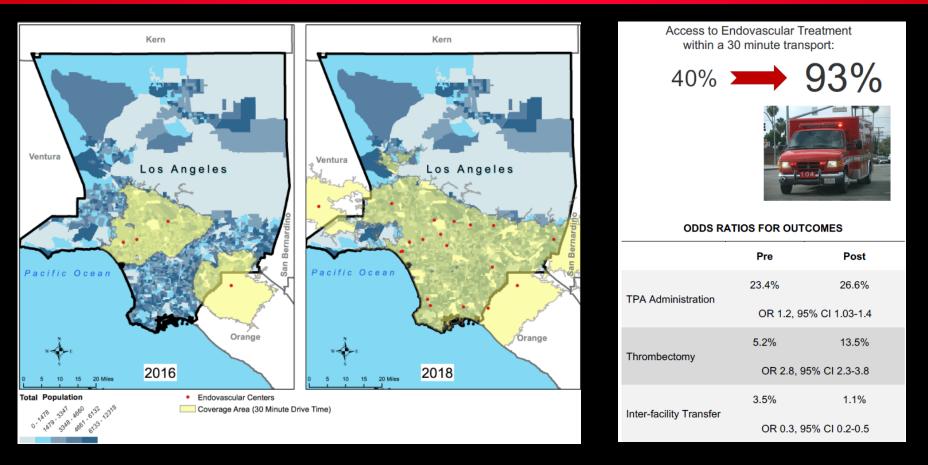
+

Transport to CSC Does Not Place Patient Outside Thrombolysis Window

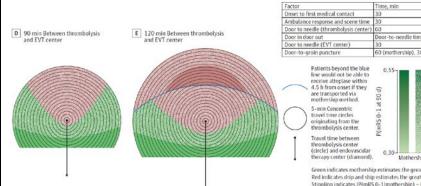
Call Stroke Alert, pre-notify receiving facility and transport directly to an appropriately certified CSC that is within the acceptable transport time, if no CSC meets the criteria then transport to the nearest designated EVT-capable center, or closest appropriate stroke center (ASRH,PSC) per your regional stroke system of care plan

Any 'NO' then Go to Nearest/Closest Appropriate Facility Per Regional Plan

Los Angeles County Two-Tier EMS Stroke Routing

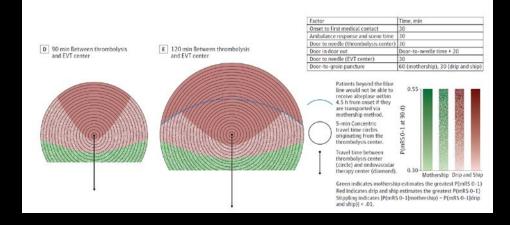

Population and Resources

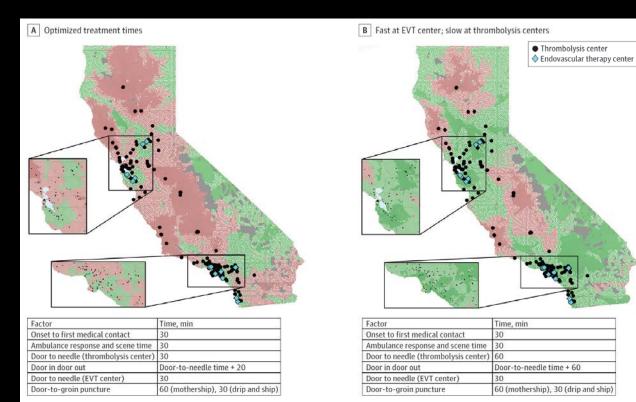
- > 10.1 million individuals
- » 31 EMS agencies, 161 ambulances (1 MSU)
- 50 designated stroke hospitals (~30 PSC, 5 TSC, 15 CSC)
- New routing policy 2018
 - If suspected stroke (mLAPSS positive)
 - » Direct to nearest CSC or TSC, if
 - \gg 24, likely LVO if ACI, AND,
 - » Last known well is within 24h, AND
 - » TSC or CSC is within 30 mins
 - » Otherwise, direct to PSC
 - Accelerated inter-facility transfer if needed



Initial Impact of Two-Tiered Routing in a Major Metropolitan Region (LA)

--Bosson et al, ISC 2019


Optimal workflows all sites



ance response and scene time	30			
needle (thrombolysis center)	60			
i door out	Door-to-needle time + 60			
needle (EVT center)	30			
o-groin puncture	60 (mothership), 30 (drip and ship)			
	0.55 (00) 0.30 Mothership Drip and Ship pestimates the greatest P(mRS 0-1) pestimates the greatest P(mRS 0-1)			

Stippling indicates (P(mRS 0-1)mothership) – P(mRS 0-1)drip and ship)(<.01.

Slower workflow at PSCs

- Horizontal over land
 » Most regions
 - Ground/air ambulance

Horizontal over land
 Most regions

 Ground/air ambulance

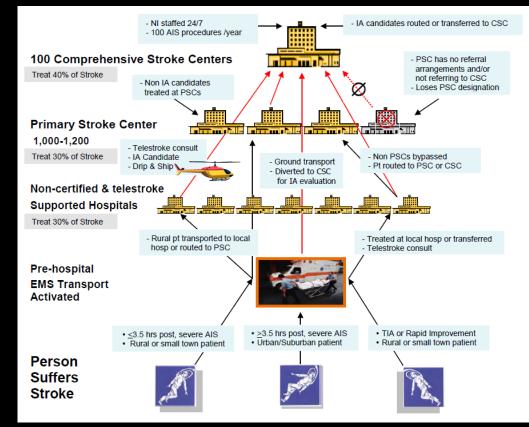
 Vertical over land

 Norway/Colorado/Bavaria
 Helicopter

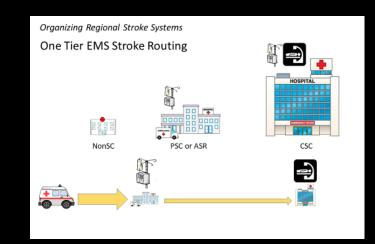
- Horizontal over land
 » Most regions
 Ground/air ambulance
 Vertical over land
 » Norway/Colorado/Bavaria
 - Helicopter
- Subterranean under traffic
 - » Manhattan
 - Subway

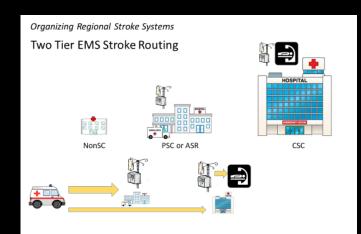
- Horizontal over land
 Most regions
 Ground/air ambulance
 Vertical over land
 - Norway/Colorado/Bavaria
 Helicopter
- Subterranean under traffic
 - » Manhattan
 - Subway
- Horizontal over water
 - » Hawaii
 - Boat/air ambulance

- Horizontal over land
 Most regions
 Ground/air ambulance
 Vertical over land
 - Norway/Colorado/Bavaria
 Helicopter
- Subterranean under traffic
 - Manhattan
 - Subway
- Horizontal over water
 - » Hawaii
 - Boat/air ambulance
- Horizontal over snow
 - » Alaska
 - Dogsled



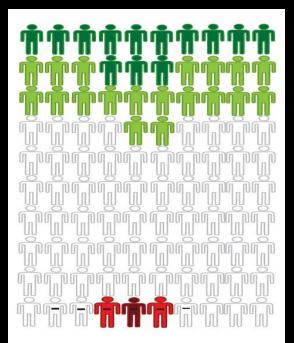
Systems of Care Trials


- Systems of care
 - Drip and ship
 - Faster IV TPA, slower cath
 - » Mothership
 - Slower IV TPA, faster cath
 - » BATmobile trip (mobile CT)
 - Fastest IV TPA, fast cath
- Trial designs
 - » Cluster Control
 - » Stepped wedge



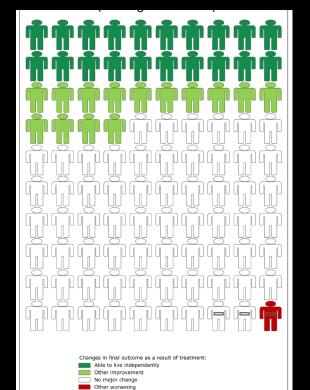
--Saver et al, The Stroke Interventionalist 2013

RACECAT Trial


- Cluster-control RCT Spain
 » 12 hospitals, 1754 patients
- Key entry criteria
 - LVO by RACE and teleneurology
 - Can reach an EVT-SC within 7h of onset
- Randomized strata
 - » Daytime vs evening
 - » Weekday vs weekend
 - » Urban vs rural
- Outcome: mRS 0-2
- Timeline: 2017-2020

Patient/Family Decision Aids

IV TPA vs Control

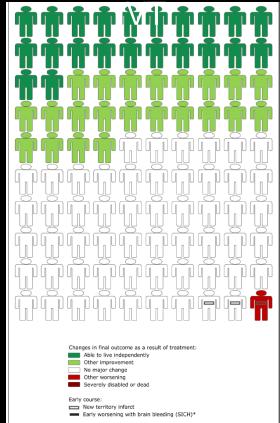

Changes in final outcome as a result of treatment:

- Normal or nearly normal
 Better
- No major change
- Worse
- Severely disabled or dead

Early course:

No early worsening with brain bleeding
 Early worsening with brain bleeding

EVT+IVT vs IVT

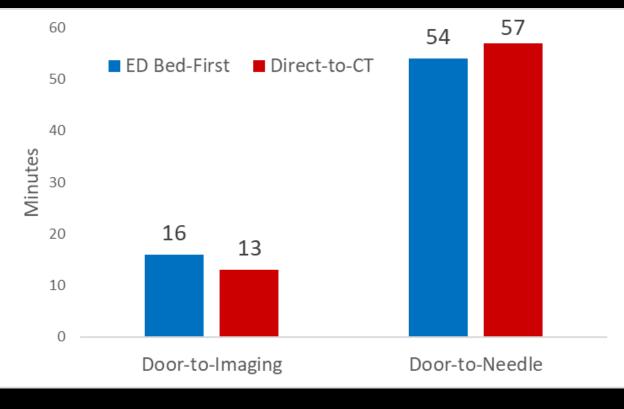

Severely disabled or dead

Early worsening with brain bleeding (SICH)*

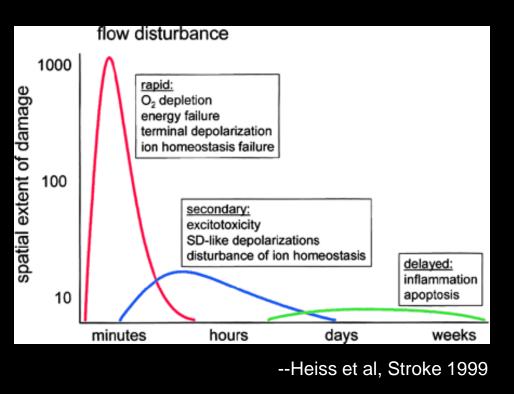
(*No differences observed in the rate of SICH due to thrombectomy)

Early course:

EVT vs Control


(*No differences observed in the rate of SICH due to thrombectomy)

--Gadhia et al, Stroke 2010 --Tokunboh et al, Stroke 2010


Does "Direct-to-CT" Routing Shorten Door-to-Needle Times?

LA EMS stroke transports 5/15-4/16 > 46 receiving ASCs TPA treatment » 789/6315 (13%) » ED-Bed-First 681 (78%) » Direct-to-CT 171 (22%)

--Sloane et a, JSCVD 2019, In Press

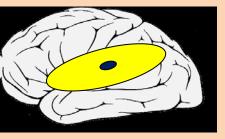
The Ischemic Cascade and Neuroprotective Interventions

--Sanossian + Saver, In Press

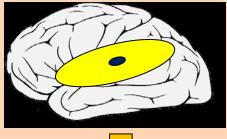
Category	Agents
	Hypothermia – profound*
Metabolism Suppressors	Hypothermia – mild-moderate*
	Transcranial direct current stimulation
Promoters of Genetically Programmed	Ischaemic per-conditioning*
Hypoxia/Injury Tolerance and Repair	Ischaemic post-conditioning*
	Growth factors*
	Uric acid*
Free Radical Scavengers and	Edaravone*
Antioxidants	Tirilazad*
	Disufenton sodium (NXY-059)* Ebselen
Promoters of Membrane Repair	Citicoline*
	NMDA receptor antagonists*
	Dextrorphan*
	Ketamine
Modulators of Excitatory Amino Acids	Xenon
modulators of Excitatory Animo Acids	Postsynaptic scaffolding proteins*
	NA-1*
	AMPA and other receptor antagonists
Madulators of Calaium Influe	Nimodipine*
Modulators of Calcium Influx	Flunarazine*
Sodium Channel Blockers	Fosphenytoin*
	Lidocaine
Modulators of GABA Inhibition	Clomethiazole*
	Diazepam*
Nitric Oxide Donors	Glyceryl trinitrate*
Modulators of Carnitine + Mitochondrial	L-arginine Mildronate
Function	Coenzyme Q10
	Enlimomab*
Anti-Inflammatory	Neutrophil inhibitory factor*
	Normobaric hyperoxemia
	Hyperbaric hyperoxemia*
Oxygen Delivery Enhancers	Aqueous oxygen
	Trans sodium crocetate*
	Hemoglobin based oxygen carriers*
	Statins*
	Minocycline*
Multiple Leading Mechanisms	Magnesium*
	Albumin*
	Gangliosides*
	Melatonin
Uncertain Mechanism	Piracetam*

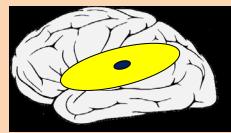
UCLA Stroke Center

Standard Care

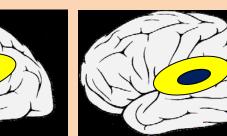

Neuroprotection

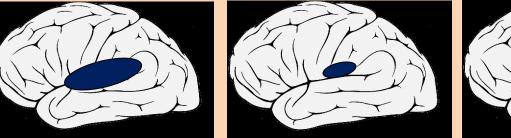
Collateral Neu Enhancement + C


Neuroprotection + Collateral 个

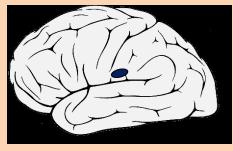


3 hours

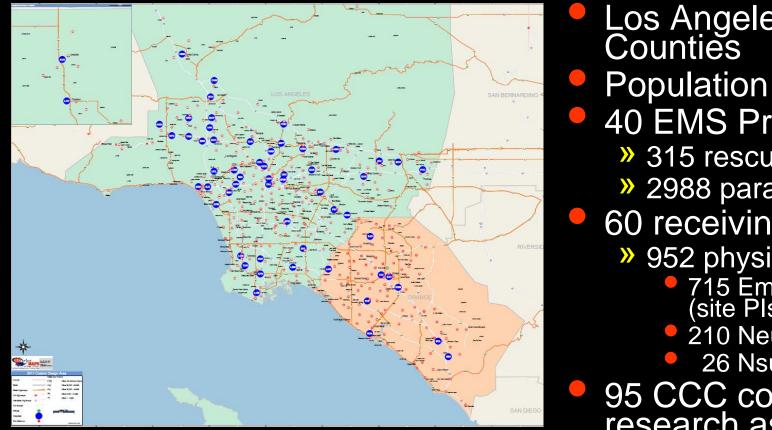



Reperfusion





Final Infarct



Prehospital Stroke Trials of Paramedic Delivered Therapy

Trial	Intervention	Strategy	Design	Size	Status
FAST-MAG Pilot	Magnesium	NP	Pilot / Hist Cont	20	2004
Helsinki EMS	IV + SQ Insulin	Homeostasis	Randomized (open-lab)	23	2011
Aarhus Univ	Remote perconditioning	NP	Randomized (open-lab)	443	2013
RIGHT	Glyceryl trinitrate	BP/NP	Randomized (open-lab)	41	2013
PIL-FAST	Lisinopril	BP	Randomized (open-lab)	14	2013
FAST-MAG Pivotal	Magnesium	NP	Randomized (placebo)	1700	2014
RIGHT-2	Glyceryl trinitrate	NP/BP/CE	Randomized (placebo)	850	2018
FRONTIER	NA-1	NP	Randomized (placebo)	500	Enrolling (Canada)
RESIST	Remote perconditioning	NP	Randomized (open-lab)	1500	Enrolling (Denmark)
PHAST-TSC	Trans Sodium Crocetinate	NP	Randomized (placebo)	160	Enrolling (LA + VA)

FAST-MAG Trial Consortium

Performance Sites in Los Angeles and Orange Counties, 2004-2012

- Los Angeles and Orange Counties
- Population 13.3 million
- **40 EMS Provider Agencies**
 - > 315 rescue ambulances
 - » 2988 paramedics
 - 60 receiving hospitals
 - >> 952 physician-investigators
 - 715 Emergency Medicine (site Pls)
 210 Neurologist

 - 26 Nsurg/Intensiv/Hosp
- 95 CCC coordinators and research assistants

FAST-MAG Time Intervals

	Placebo (n=843)	Magnesiu m (n=857)	Total (n=1700)	p value
Onset* to Drug (mins)	46 (36-62)	45 (35-60)	45 (35-62)	0.24
Onset* to Drug (category)				
0-1 hours	73.2%	75.3%	74.3%	0.61
1-2 hours	25.7%	23.7%	24.7%	
>2 hours	1.1%	0.9%	1.0%	
On Scene to Drug	23 (19-28)	23 (18-27)	23 (18-27)	0.58
On Scene to Door**	33 (27-39)	32 (27-39)	33 (27-39)	0.91

*Onset = last known well time

**Historical comparator, pretrial LA scene to door times = 35 minutes (Stroke 2004;35:e106-108)

Supported by NIH-NINDS

Reperfusion Treatments After Arrival in FAST-MAG Cerebral Ischemia Patients (n=1235)

	Number of Patients	Percent
IV tPA	452	36.6%
Endovascular	76	6.1%

Needle to Needle Time (prehospital study drug to ED tPA): median 95 minutes

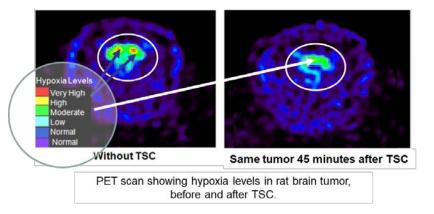
--Nguyen P, Sanossian N, et al, ISC

Supported by NIH-NINDS

Reperfusion Treatments After Arrival in FAST-MAG Cerebral Ischemia Patients (n=1235)

	Number of Patients	Percent
IV tPA	452	36.6%
Endovascular	76	6.1%

Needle to Needle Time (prehospital study drug to ED tPA): median 95 minutes Est Needle to Endo Reperf Time: 140 min

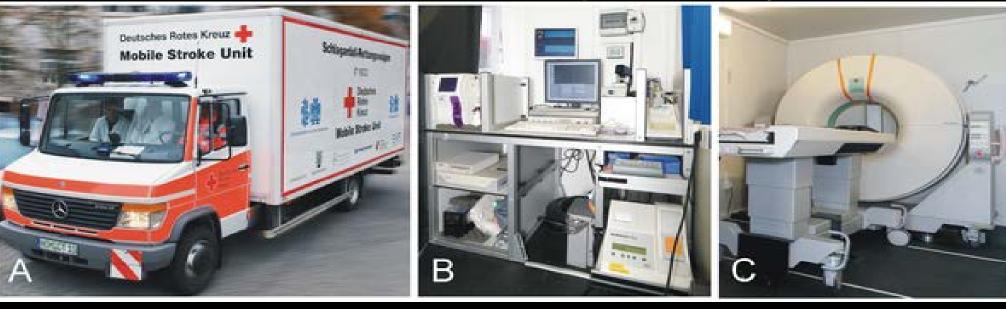

--Nguyen P, Sanossian N, et al, ISC

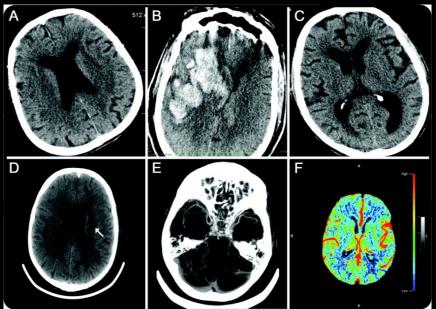
Supported by NIH-NINDS

Pre-Hospital Administration of Stroke Therapy (PHAST-TSC) Trial

- Testing Trans Sodium Crocetinate (TSC)
 - Oxygen diffuser enhancer
 - Reduces stroke size in animal models
 - Reduces tissue hypoxia in phase 2 human trials in PAD and glioma
- PHAST-TSC design
 - Phase 2 safety and preliminary efficacy trials
 - 160 prehospital patients under 2h from onset
 - ~150 ambulances and 30 receiving Stroke Centers, Los Angeles and Virginia
 - Funded by Diffusion
 Pharmaceuticals, Inc. of
 Charlottesville, VA

Pre-Hospital Administration of Stroke Therapy (PHAST-TSC) Trial

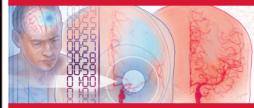

- **Testing Trans Sodium Crocetinate** (TSC)
 - Oxygen diffuser enhancer
 - Reduces stroke size in animal models
 - **Reduces tissue** human
- - hase 2 safety and preliminary efficacy trials
 - 160 prehospital patients under 2h from onset
 - ~150 ambulances and 30 receiving Stroke Centers, Los Angeles and Virginia
 - Funded by Diffusion Pharmaceuticals, Inc. of Charlottesville, VA



PET scan showing hypoxia levels in rat brain tumor,

Same tumor 45 minutes after TSC

Mobile Stroke Units for Prehospital Thrombolysis



--Audebert et al, Berlin

--Walter et al, PLOS One, 2010, Homburg

In This Issue of JAMA

Neurology Edited by Roger N. Rosenberg, MD, and Jeffrey L. Saver, MD

Research

Ambulance-Based Thrombolysis in Acute Ischemic Stroke

Early thrombolysis with intravenous tissue plasminogen activator is associated with better outcomes in acute ischemic stroke. In a study randomized by week from May 1, 2011, to January 31, 2013, that involved 6182 German adults with suspected stroke, Ebinger and colleagues found that compared with conventional ambulance care, use of an ambulance equipped with a computed tomography scanner, laboratory capability, telemedicine connection, and trained stroke team resulted in decreased time to treatment without an increase in adverse events. In an Editorial, Grotta discusses progress in treatment of ischemic stroke.

Editorial 1615 Related Article 1632

Time to tPA Administration and Outcomes of Ischemic Stroke 1632

In an analysis of registry data from 1030 hospitals (71169 patients) participating in Target: Stroke, a national acute ischemic stroke care quality improvement program, Fonarow and colleagues assessed door-to-needle times for tissue plasminogen activator (tPA) administration and patient outcomes before and after program initiation. The authors report the Target:Stroke initiative was associated with improved timeliness of tPA administration and lower in-hospital mortality and intracranial hemorrhage.

Editorial 1615 Related Article 1622 Author Video Interview jama.com

Effect of Acetazolamide on Vision Function in IIH

Acetazolamide is commonly used to treat idiopathic intracranial hypertension (IIH) despite insufficient evidence supporting its use. In a randomized study that enrolled 165 patients with IIH and mild vision loss. Wall and colleagues found that 6 months' treatment with acetazolamide and a low-sodium weight reduction diet, compared with diet alone, resulted in modest improvement in visual field function. In an Editorial, Horton discusses beneficial effects of acetazolamide in IIH

C Editorial 1618

Lorazepam vs Diazepam for Pediatric Status Epilepticus 1652 Diazepam is approved for the treatment of status epilepticus in children. However, some data suggest lorazepam may be more effective or safer. In a randomized trial involving 273 patients aged 3 months to 18 years who presented to academic pediatric emergency departments with convulsive status epilepticus, Chamberlain and colleagues found that treatment with lorazepam did not result in improved efficacy or safety compared with diazepam.

Opinion Viewpoint 1607 How Neurologists Can Choose (Even More) Wisely: Prioritizing Waste

April 23/30, 2014

Volume 311. Number 16 Pages 1579-1704

Reduction Targets and Identifying Gaps in Knowledge BC Callaghan and Coauthors 1609 Global Opportunities and Challenges for Clinical Neuroscience

GL Birbeck and Coauthors 1611 Neurology at a Crossroads: Opportunities and Challenges

TA Pedley A Piece of My Mind 1613 Decisions

H Lee Editorial 1615 tPA for Stroke: Important Progress

1622

1641

in Achieving Faster Treatment JC Grotta 1618 Acetazolamide for Pseudotumor

Cerebri- Evidence From the NORDIC Trial JC Horton 1620 Advancing Neurotherapeutics in the 21st Century RN Rosenberg and JL Saver

LETTERS Research Letter

1689 Testing the Presumption of Consent to Emergency Treatment for Acute Ischemic Stroke W Chiong and Coauthors

1691 Medical Communication Companies and Industry Grants 1693 Strategies to Overcome Medication Nonadherence

Instructions for Authors jama.com/public /instructionsforauthors.aspx

Research

Original Investigation

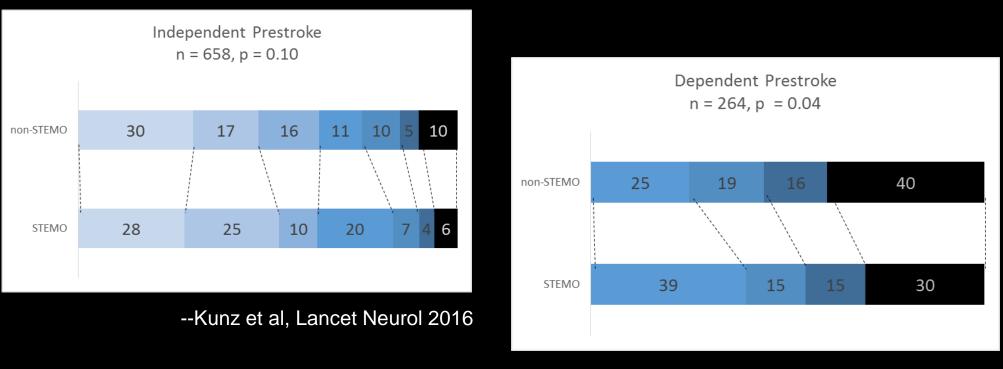
Effect of the Use of Ambulance-Based Thrombolysis on Time to Thrombolysis in Acute Ischemic Stroke A Randomized Clinical Trial

Martin Ebinger, MD; Benjamin Winter, MD; Matthias Wendt, MD; Joachim E. Weber, MD; Carolin Waldschmidt, MD; Michal Rozanski, MD; Alexander Kunz, MD; Peter Koch, MD; Philipp A. Kellner, MD; Daniel Gierhake, MD; Kersten Villringer, MD; Jochen B. Fiebach, MD; Ulrike Grittner, PhD; Andreas Hartmann, MD; Bruno-Marcel Mackert, MD: Matthias Endres, MD: Heinrich J. Audebert, MD: for the STEMO Consortium

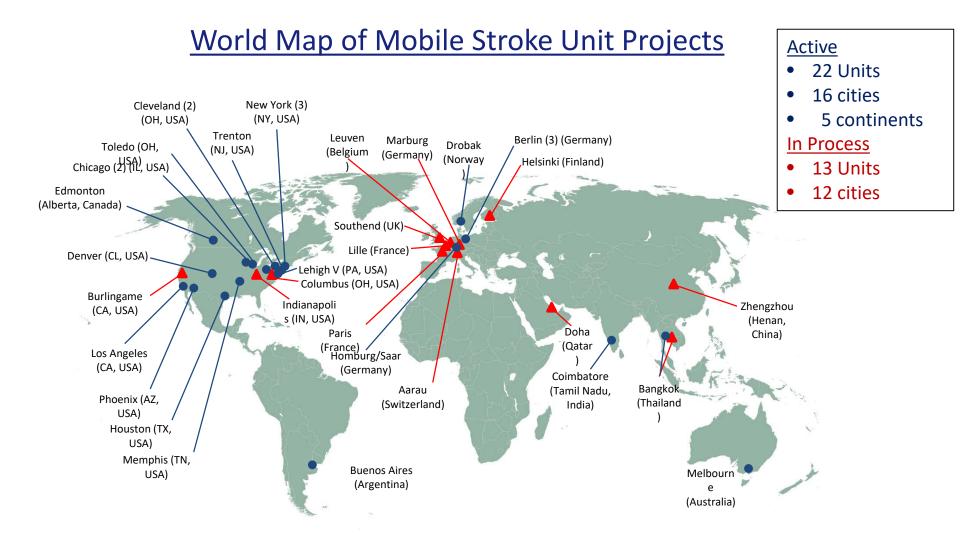
--JAMA, April 2014

UCLA Stroke Center

Comment & Response


1694 Correction

PHANTOM-S Trial TPA Frequency and Speed


	CT Ambulance Patients	p value	CT Ambulance Weeks	p value	Control Weeks
Ν	1804		3213		2969
Pct of AIS	32.6%	<0.001	28.9%	<0.001	21.1%
DTN Hosp (min)					42
Alarm to Hosp (min)	85	<0.001	67	<0.001	35
Alarm to Imaging	38	<0.001	44	<0.001	52
Imaging to TPA	14	<0.001	17	<0.001	24
*Alarm to TPA	52	<0.001	61	<0.001	76
Onset to TPA	103	<0.001	110	0.003	119
Onset to TPA <90m	58%	<0.001	48%	0.02	37%

*Primary Endpoint

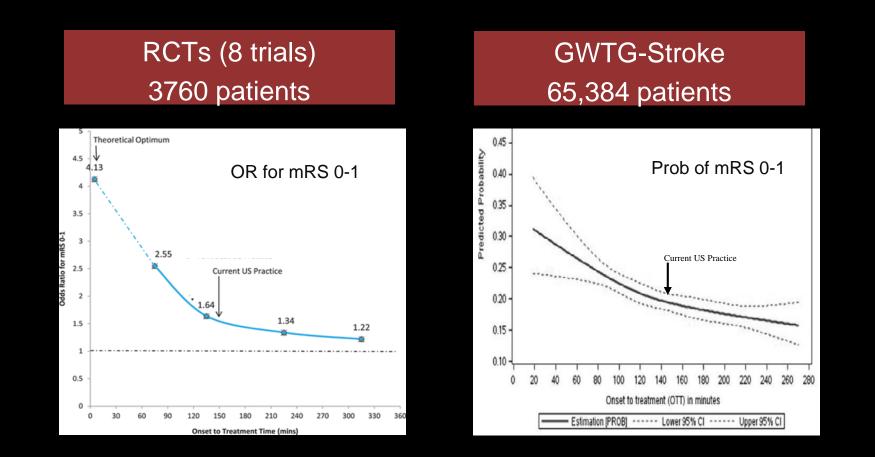
Disability Outcomes in STEMO Studies Suggestive of Benefit

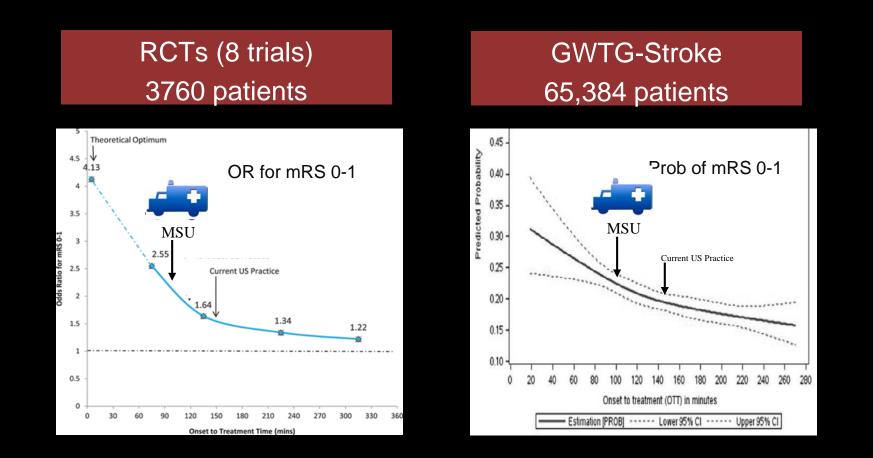
--Nolte et al, Stroke 2018

sites with active mobile stroke units

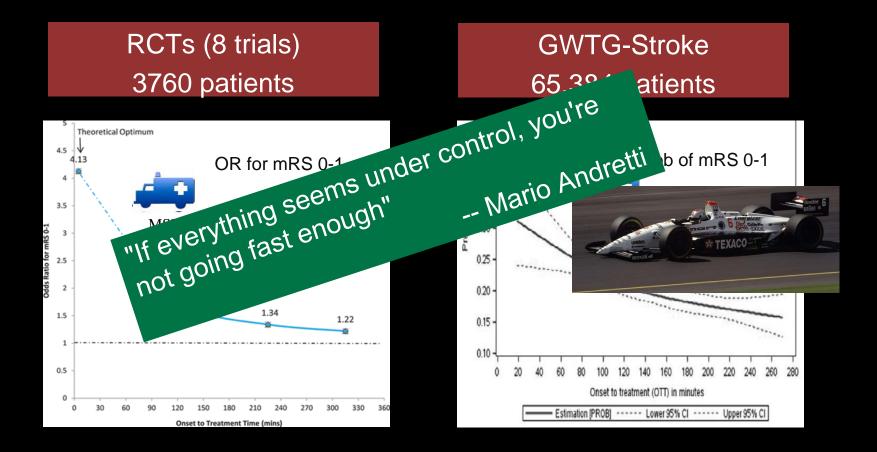
sites with projects in planning or implementation state

Modifed from Lesmeister/Fassbender 2018





Onset to Treatment Time for IV TPA and Excellent Outcome


--Lees et al, Lancet 2010; Saver + Levine, Lancet 2010; Saver, Stroke 2012; Audebert et al, JAMA 2014; Kim JT et al. Circulation 2017

Onset to Treatment Time for IV TPA and Excellent Outcome

--Lees et al, Lancet 2010; Saver + Levine, Lancet 2010; Saver, Stroke 2012; Audebert et al, JAMA 2014; Kim JT et al. Circulation 2017

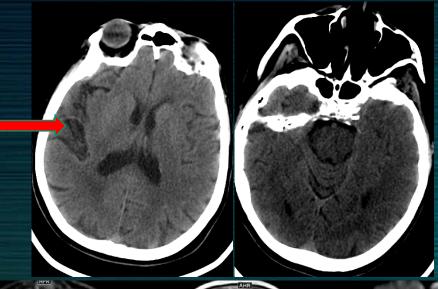
Onset to Treatment Time for IV TPA and Excellent Outcome

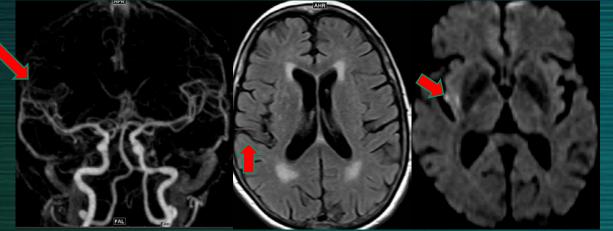
--Lees et al, Lancet 2010; Saver + Levine, Lancet 2010; Saver, Stroke 2012; Audebert et al, JAMA 2014; Kim JT et al. Circulation 2017

Dispatcher impression: Stroke

Provider impression: Stroke

NIHSS : 7 LAMS: 3


Clinical scenario: 76 year old woman with history of prior TIA (lip numbness & dysarthria 5 month prior), presenting with witnessed acute onset left face/arm weakness, difficulty with ambulation


Acute NIHSS 7: left face/arm weakness, numbness, ataxia, dysarthria, sensory

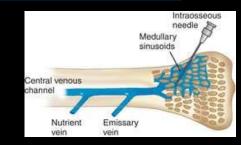
LKWT-to-Tx time: 45 min MSU admission-to-CT time: 5 min MSU admission-to-needle time: 19 min

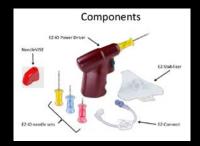
24 hr NIHSS 1: mild sensory deficit in left arm

MSU CT

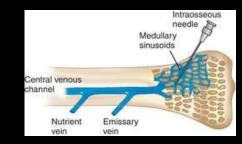
Hospital MRI

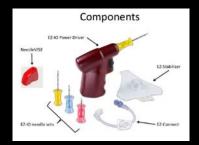
First Prehospital Interosseus Administration of tPA for Ischemic Stroke


- 94 yo woman
- H/o afib, on aspirin
- Acute global aphasia, right hemiparesis
 » NIHSS 16
- Initial IV access attempts unsuccessful
- No adverse effects (but no improvement)

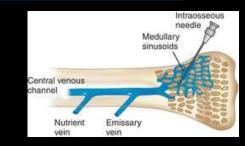


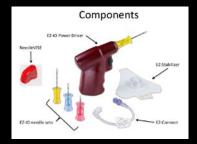
Eirst Prehospital Interosseus Administration of tPA for Ischemic Stroke


- 94 yo woman
- H/o afib, on aspirin
- Acute global aphasia, right hemiparesis
 » NIHSS 16
- Initial IV access attempts unsuccessful
- No adverse effects (but no improvement)



Eirst Prehospital Interosseus Administration of tPA for Ischemic Stroke


- 94 yo woman
- H/o afib, on aspirin
- Acute global aphasia, right hemiparesis
 » NIHSS 16
- Initial IV access attempts unsuccessful
- No adverse effects (but no improvement)



--Series of 3 cases: Bowry et al, Prehosp Emerg Care 2018

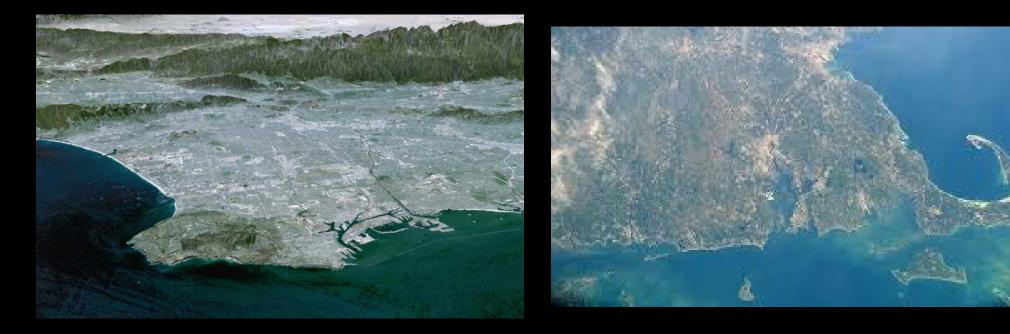
BEnefits of Stroke Treatment Delivered Using a Mobile Stroke Unit (BEST-MSU) Trial

- Cluster-control RCT
 - » 5 EMS Regions USA
 - » 1 week on, 1 week off
 - > Patients
 - 6000 assessed
 - 1200 enrolled
 - > 700 fully tPA eligible
- Key entry criteria
 - » LKW within 4.5h prior to ambulance evaluation
 - » tPA eligible prior to CT/labs
- Outcome: Utility-weighted mRS at 90d
- Timeline: 2014-2021

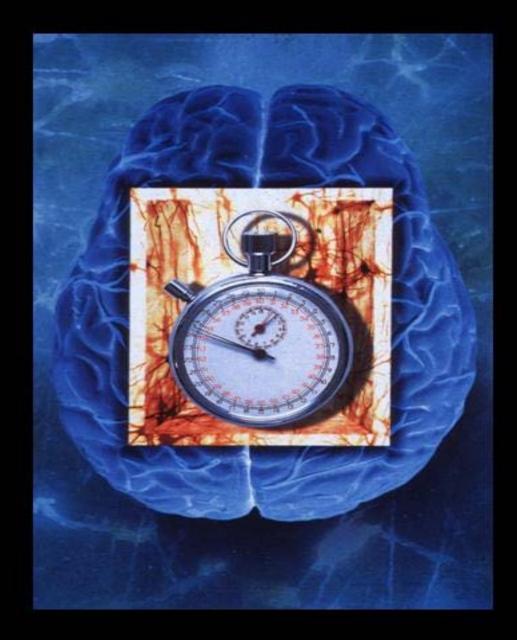
Future Technology / Trials?

Helicopter MSU

Mobile Neurointervention Suite



Population and Resources



Population and Resources

