Fungal Ecology 39 (2019) 168-183

Contents lists available at ScienceDirect

Fungal Ecology

journal homepage: www.elsevier.com/locate/funeco

Geosmithia species in southeastern USA and their affinity to beetle vectors and tree hosts

Yin-Tse Huang ^a, James Skelton ^a, Andrew J. Johnson ^a, Miroslav Kolařík ^c, Jiri Hulcr ^{a, b, *}

^a School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32603, USA

^b Department of Entomology and Nematology, University of Florida, Gainesville, FL, 32603, USA

^c Institute of Microbiology, Czech Academy of Sciences, Vídeňská 1083, 142 20 Prague 4, Czech Republic

A R T I C L E I N F O

Article history: Received 23 August 2018 Received in revised form 14 February 2019 Accepted 15 February 2019

Corresponding Editor: Prof. L. Boddy

Keywords: Bark beetles Scolytinae Ectosymbiotic Fungal community Bionectriaceae

ABSTRACT

The fungal genus *Geosmithia* is best known due to one species, *G. morbida*, which is vectored by the walnut twig beetle (WTB) and contributes to Thousand Cankers Disease (TCD) on walnut and wingnut trees. However, the genus is globally very diverse and abundant, and dominates a ubiquitous but understudied niche – the twig-infesting, phloem-feeding bark beetle mycobiome. The *Geosmithia* community in North America is only now beginning to be described. Very limited information is available for the South East, despite the region's potential to be a *Geosmithia* diversity hotspot. To survey the *Geosmithia* community in the subtropical USA, to assess their beetle and tree associations, and to test for the presence of *G. morbida*, we systematically deployed branch sections of nine tree species, including three Juglandaceae, in North Florida. We recovered 55 *Geosmithia* isolates from 195 beetle specimens from 45 exposed branch units. Neither *G. morbida* nor its beetle vector were detected. We identified 14 *Geosmithia* species; those in the *G. pallida* species complex were the most prevalent. Four undescribed phylogenetic species were recovered, indicating that the *Geosmithia* diversity in North America remains under-documented. Analysis of the association of *Geosmithia* with beetles and trees suggested that most species are generalists, five display preference for certain tree species, and none is specific to any beetle species.

© 2019 Elsevier Ltd and British Mycological Society. All rights reserved.

1. Introduction

Members of *Geosmithia* (Ascomycota: Bionectriaceae) are globally distributed, ubiquitous fungi that are commonly associated with bark and ambrosia beetles (Coleoptera: Scolytinae), especially with the phloem-feeding species (Kolařík et al., 2007, 2017; Lin et al., 2016; Pitt, 1979). Other wood-boring insects such as the Bostrichidae and Curculionidae may also vector *Geosmithia* species (Juzwik et al., 2015; Kolařík et al., 2017). *Geosmithia* species are predominantly isolated from beetles from woody materials, although they have been documented from a few other substrates including soil (Kolařík et al., 2004), seed-feeding beetles (Huang et al., unpublished), animal skin (Crous et al., 2018), indoor environment (Crous et al., 2018), insect-free plant tissues (McPherson et al., 2013), and food materials (Pitt and Hocking, 2012). Spores

E-mail address: hulcr@ufl.edu (J. Hulcr).

https://doi.org/10.1016/j.funeco.2019.02.005 1754-5048/© 2019 Elsevier Ltd and British Mycological Society. All rights reserved. of Geosmithia are presumably transmitted by adhering to the exterior surfaces of their beetle vectors and are not known to be carried in specialized fungal transport organs (mycangia) as is known for many mutualistic fungal associates of bark and ambrosia beetles. Despite their associations with bark beetles, the ecological roles of most Geosmithia species in the symbiosis remain obscure. Some species serve as a food source or supplementary nutrition for the beetles (Kolařík and Kirkendall, 2010; Machingambi et al., 2014), but most are probably commensals with minimal or no benefit to the beetle. Some Geosmithia species exhibit extracellular antimicrobial metabolites but without a known ecological implication (Stodůlková et al., 2009). Geosmithia species are found almost exclusively on branch- and twig-dwelling bark beetles but rarely on trunk-infesting bark beetles (Kolařík and Jankowiak, 2013; Jankowiak et al., 2014). Given the fact that trunk-infesting beetles behave as pests more commonly than twig boring beetles, their fungal flora, i.e. the ophiostomatoid fungi, has received much more research attention. Branch- and twig-infesting bark beetles are equally common and diverse, but the intriguing mycobiota associated with them remains understudied.

^{*} Corresponding author. School of Forest Resources and Conservation, University of Florida, Gainesville, FL, 32603, USA.

One *Geosmithia* species is known to contribute to a significant tree disease: the canker-causing G. morbida (Kolařík et al., 2011). Following high density colonization by its beetle vector, the walnut twig beetle (WTB, Pityophthorus juglandis), in the phloem of walnut (Juglans spp.) or wingnut (Pterocarya spp.) trees, the fungus causes numerous small lesions and the disease is termed Thousand Cankers Disease (TCD) (Tisserat et al., 2009; Kolařík et al., 2011; Hishinuma et al., 2016). TCD has been reported in western and northeastern USA and recently in Europe (Tisserat et al., 2009; Grant et al., 2011; Hadziabdic et al., 2013; Montecchio et al., 2014). While originally G. morbida was considered an invasive species in most of the USA, the population structure of the fungus suggests that it is a native and a widespread species, albeit rare (Zerillo et al., 2014). The emergence and the disappearance of the Thousand Cankers Disease in the eastern US is, therefore, most likely a result of environmental stress on the trees, not of a pathogen invasion. Another species, Geosmithia sp. 41, was reported to induce dieback symptom on coast live oak (Quercus agrifolia) (Kolařík et al., 2017; originally reported as G. pallida by Lynch et al., 2014). These two mildly pathogenic species were thought to assist the colonization of beetle vectors by suppressing the defense system of tree hosts, however, this "immunosuppressing hypothesis" has been challenged (see Six and Wingfield, 2011).

Fungal communities associated with phloem-infesting bark beetles are shaped by multiple biotic and abiotic factors. The tree host is one of the most important factors. Several studies have shown that beetle species infesting the same tree species share similar fungal assemblages of ophiostomatoid fungi (Kirisits, 2004; Linnakoski et al., 2012; Jankowiak et al., 2017a). Other factors affecting the fungal community structure include beetle ecology, the surrounding host tree community, and climatic factors (Six and Bentz, 2007; Jankowiak et al., 2017b). These factors also influence the communities of *Geosmithia*, most notably by the fact that different beetles co-infesting the same host tree have similar *Geosmithia* assemblages (Kolařík et al., 2008; Machingambi et al., 2014). Several *Geosmithia* species inhabit living tree as endophytes, but their effect on the resulting *Geosmithia* community has not been evaluated (McPherson et al., 2013).

The specificity of the association between Geosmithia, the beetle vectors and the host trees is variable. Geosmithia species range from generalists to specialists for both beetle vectors and host trees (Kolařík et al., 2008, 2017; Kolařík and Jankowiak, 2013). For example, Geosmithia ulmacea is vectored solely by bark beetles infesting Ulmus species, Geosmithia sp. 12 is vectored by Hylesinus spp. from Fraxinus spp., Geosmithia morbida is vectored by Pityophthorus juglandis from Juglans and Pterocarya spp., and G. sp. 34 and 44 occurring exclusively on beetles from Calocedrus decurrens and Pinus spp. (Kolařík et al., 2017). In contrast, some generalist Geosmithia, e.g. members in the G. pallida species complex (GPSC), can be recovered from varied beetle vectors from varied hosts. It remains unclear whether the host tree specialist Geosmithia are also specific to particular beetle vectors. Some Geosmithia species are found almost exclusively on beetles that are specific to a limited range of tree species. The specificity observed could be an artefact of specificity of some bark beetles to host trees, or beetle-selected microenvironment.

The question of vector specificity is important for our understanding of the economically important Thousand Cankers Disease. Surveys of the *G. morbida* in North America have revealed that *P. juglandis* is the predominant vector, but some generalist beetles such as *Xylosandrus crassiusculus* (Curculionidae, Scolytinae), *Xyleborinus saxesenii* (Curculionidae, Scolytinae), and *Stenomimus pallidus* (Curculionidae, Cossoninae) emerging from *J. nigra* can also harbor *G. morbida* propagules (Juzwik et al., 2015, 2016). A broad, systematic survey of alternative vectors of *G. morbida* is therefore needed, considering the possibility of spread of the fungus beyond the original vector.

Geosmithia studies in North America have focused on the causal agents of TCD (i.e. *G. morbida*) and mostly conducted in the West and Northeast, where black walnuts are prevalent (Burns and Honkala, 1990). The community of *Geosmithia* species in the Southeast, however, has never before been systematically addressed. The two *Geosmithia* community surveys in North America have hinted at what appears to be a large species diversity with many undocumented species and new *Geosmithia*-beetle-tree associations (Kolařík et al., 2017; Huang et al., 2018). The Southeastern region hosts the highest diversity of tree species and the highest diversity of bark beetles (Atkinson, 2018), and therefore it may be the center of the *Geosmithia* diversity in North America.

We conducted a culture-based survey of *Geosmithia* associated with bark beetles in North Florida and Georgia. Our replicated and phylogenetically informed sampling design allowed us to ask three questions: (1) Are the causal agents of TCD (the fungus and the beetle) present in the surveyed region? (2) If *G. morbida* is present, are there any alternative beetle vector or tree hosts that accommodate this fungus? and (3) What is the specificity of the *Geosmithia* association with its beetle vectors and tree hosts?

2. Materials and methods

2.1. Sampling and isolation

We sampled host trees that represent the local diversity of Juglandaceae: black walnut (J. nigra), pignut hickory (Carya glabra), and pecan (C. illinoinensis), and six tree species that are phylogenetically divergent but common in the Southeast: red cedar (Juniperus virginiana), loblolly pine (Pinus taeda), laurel oak (Quercus laurifolia), American sweetgum (Liquidambar styraciflua), sugarberry (Celtis laevigata), and white ash (Fraxinus americana). To characterize the Geosmithia-beetle-tree association, we applied a sampling design that allowed for tree species replication and equal sampling effort among various locations (Fig. 1). From March 2017 to April 2018, we deployed freshly cut branches of the targeted tree species as a lure for bark beetles. One lure unit was represented by two to five branches (40–50 cm $long \times 3-15$ cm diameter) of a targeted host severed from a healthy tree and wrapped in a bundle. For each tree species, five units were deployed. The branch units were hung for 1-2 months approximately 1 m above ground in natural forests in which each given tree species was abundant. For black walnut, branch sections were severed from a landscape stand from the UF campus. Given the small population of black walnut trees in surveyed regions, the lure units were hung around the closely related tree species such as pignut hickory and pecan.

We investigated the occurrences of Geosmithia species from up to five beetle individuals for each beetle species from each of the tree species where that beetle occurred. Beetle specimens were identified based on their morphology (Wood, 2007). Fungal isolation was performed by vortexing a whole beetle specimen in a 1.5 mL tube containing 1 mL sterilized distilled water and a drop of Tween 80 for 1 min. The vortexed fluid was serially diluted into concentrations of 1:10, 1:100, and 1:1000 and 100 µL for each concentration was then plated on 2% Malt Extract Agar media (MEA, BD Difco). Plates were incubated in the dark at 25 °C for 7–14 d with examination at intervals for the Geosmithia fruiting structures. The Geosmithia colonies were determined based on their morphotypes and then CFUs (Colony Forming Units) were counted for each plate to determine the frequencies and proportion of each of the Geosmithia isolates. Colonies of other fungal species and bacteria were neither quantified nor isolated. Pure cultures of Geosmithia species were obtained by using a sterilized scalpel to cut

Fig. 1. Map of sampling sites in present study. Site codes: 1 - Austin Cary Forest, FL; 2 - Eewl pecan farm, FL; 3 - Shiloh pecan Farm, GA; 4 - Athens, GA; 5 - Gainesville 1, FL; 6 - Salt Marsh Trails, Homosassa, FL; 7 - Cedar Key State Park, FL; 8 - Cumberland, GA; 9 - Agricultural Experimental Station, UF, FL; 10 - Lake Alice, UF, FL; 11 - Sweetwater Wetlands Park, FL; 12 - Gainesville 2, FL. Tree codes: Jni - Juglans nigra; Cgl - Carya glabra; Cil - Carya illinoensis; Jvi - Juniperus virginiana; Pta - Pinus taeda; Qla - Quercus laurifolia; Lst - Liquidambar styraciflua; Cla - Celtis laevigata; Fam - Fraxinus americana.

the margin of each Geosmithia-suspected colony.

2.2. DNA extraction, amplification and sequencing

DNA of Geosmithia isolates was extracted from pure cultures by using a DNeasy Tissue and Blood DNA extraction kit (Qiagen, Inc., Valencia, California, USA) following the manufacturer's protocol; or using Extract-N-Amp Plant PCR kit (Sigma-Aldrich, St. Louis MO.) with the following steps: incubating ca. 15 µg mycelia in a tube containing 20 µL extraction solution at 96 °C for 30 min; following incubation, adding 20 µL of 3% BSA (bovine serum albumin), vortexing, and centrifuging at 5000 g; using the upper 15 μ L of the supernatant as the PCR template. The complete nuc rDNA region of the ITS1-5.8S-ITS2 (ITS) and the partial translation elongation factor 1- α gene (*TEF*-1 α) of fungal isolates were amplified for molecular identification. The ITS region was amplified by using the primer pair ITS-1F/ITS4 (White et al., 1990; Gardes and Bruns, 1993) and the TEF-1a gene was amplified using EF1-983F/EF1-2218R (Rehner and Buckley, 2005). PCR amplification was carried out in a final 15 μ L PCR reaction mixture consisting of 50–100 ng template DNA, 1.25 U Taq polymerase (Takara Bio Inc), 200 µM dNTP, 0.5 µM of each primer, and 5% DMSO (V/V). The PCR conditions were as follows: 95 °C for 4 min, followed by 35 cycles of 94 °C for 30 s, 40 s at 50–55 °C, and 1 min at 72 °C. The final extension step was 10 min at 72 °C. Amplification products were purified and sequenced on an ABI 3130XL at Genewiz, Inc. (South Plainfield, NJ, USA) and at Eurofins, Inc. (Louisville, KY, USA).

2.3. DNA sequences analyses

The recovered DNA sequences of *Geosmithia* species are listed in Table 2. *Emericellopsis pallida* CBS 490.71 was chosen as the phylogenetic outgroup because it is a closely related genus, and both its ITS region and *TEF*-1 α were available on NCBI. Sequences

were aligned by using the online version of MAFFT (Katoh and Standley, 2013). Phylogenetic relationships were inferred from both individual partitions and the concatenated multilocus dataset combined using supermat() function in phytools package in R (Revell, 2011). The best nucleotide substitution model for each partition was determined in jModelTest 2.1.1 (Darriba et al., 2012) on the University of Florida HiPerGator 2.0 and selected based on the lowest Akaike Information Criterion (AIC) value. Maximum likelihood (ML) phylogenetic analyses were conducted by using RAxML 8.2.2 (Stamatakis, 2014) with recommended partition parameters to assess the tree topology and bootstrap values from 1000 pseudoreplicate searches. Bayesian inference (BI) were estimated by using MrBayes 3.2.5 (Ronquist et al., 2012) with recommended partition parameters. Two MCMC runs of four chains were executed simultaneously from a random starting tree for 1000000 generations, every 100 generations were sampled resulting in 10000 trees, and 2500 trees were discarded during burn-in. Posterior probabilities were estimated from the retained 7501 trees. The NEXUS file containing concatenated two-loci sequences and ML-inferred phylogeny was deposited in TreeBASE (study no. S22946) Dendrogram trees were visualized and edited by using TreeGraph2 (Stöver and Müller, 2010) and modified using Inkscape (https://inkscape.org/en/).

2.4. Community analysis

To evaluate our sampling completeness and total species richness of *Geosmithia* species diversity within our sampling area, we calculated rarified and extrapolated species richness with 95% confidence intervals obtained using a bootstrap method with 200 replications (Chao et al., 2014). The analysis was conducted using the iNEXT R package (Hsieh et al., 2016).

To test for the effects of tree host and beetle vector species on the probability of recovering each *Geosmithia* species, we

Table 1

Eewl pecan farm (2) c, FL

Xylobiops basilaris

The sampling overview: localities, tree hosts, and beetle vectors and the presence/absence of *Geosmithia* species from each beetle individual. Each "X" represents an isolation of *Geosmithia* species. Multiple lines per beetle species represent multiple specimens from which isolation was attempted, up to 5 per host and locality combination.

	Localities	Beetles species	Geosmitl	nia specie	es ^b											
Trees sp.			brunnea	pallida	sp.2	sp.23	sp.41	ominicola	sp.12	obscura	sp.21	lavendula	sp.45	sp.46	sp.47	sp.48
Juglans nigra	Austin Cary Forest (1) ^a a, FL	Hypothenemus eruditus														
	Eewl pecan farm (2) a, FL	Xylosandrus crassiusculus Hypothenemus eruditus												x		
	Eewl pecan farm (2) b, FL	Hypothenemus eruditus												х		
	Eewl pecan farm (2) c, FL	Hypothenemus eruditus														
Carya glabra	Eewl pecan farm (2) d, FL Eewl pecan farm (2) a, FL	Hypothenemus dissimilis Xylosandrus compactus Hypothenemus eruditus Hypothenemus eruditus								х						
Carya illinoensis	Shiloh pecan Farm (3), GA Eewl pecan farm (2) b, FL Eewl pecan farm (2) a, FL	Xylobiops basilaris Hypothenemus eruditus Pseudopityophthorus minutissimus		х												
	Athens (4), GA	Chramesus hicoriae Hypothenemus rotundicollis							X X X							
		Xylobiops basilaris					X X		x x	x						
	Eewl pecan farm (2) b, FL	Xylosandrus crassiusculus Hypothenemus eruditus														
		Hypothenemus dissimilis					Х		Х							
	Shiloh pecan Farm, GA	Hypothenemus eruditus														
		Xylosandrus compactus														

(continued on next page)

Table 1 (continued)

	Localities	Beetles species	Geosmithia species ^b													
Trees sp.			brunnea	pallida	sp.2	sp.23	sp.41	ominicola	sp.12	obscura	sp.21	lavendula	sp.45	sp.46	sp.47	sp.48
Juniperus virginiana	Gainesville (5) 1, FL	Hypothenemus dissimilis Ambrosiodmus lecontei Phloeosinus dentatus		х											х	
	Salt Marsh Trails (6) a, Homosassa, FL	Phloeosinus dentatus								V						
	Salt Marsh Trails (6) b, Homosassa, FL	Phloeosinus dentatus			x x					~	Х					
	Cedar Key Museum State Park (7), FL	Phloeosinus dentatus			X X											
	Cumberland (8), GA	Phloeosinus dentatus			X X X						х					x x
Pinus taeda	Austin Cary Forest (1) a, FL	Pityophthorus pulicarius														
		Pityophthorus confusus														
	Austin Cary Forest (1) b, FL	Pityophthorus annectens											X X			
	Austin Cary Forest (1) c, FL	Pityophthorus annectens														
	Austin Cary Forest (1) d, FL	Pityophthorus pulicarius														
	Agricultural Experimental Station (9), UF, FL	lps avulsus Pityophthorus pulicarius											x			
		Pityophthorus annectens														
Quercus laurifolia	Austin Cary Forest (1) a, FL	Pseudopityophthorus minutissimus					x									
	Austin Cary Forest (1) b, FL	Hypothenemus dissimilis	Х											х	х	

Y.-T. Huang et al. / Fungal Ecology 39 (2019) 168–183

172

	Austin Cary Forest (1) c, FL	Micracisella nanula				х	Х	х	х
		Pseudopityophthorus minutissimus		X X	x	X X			
	Lake Alice (10), UF, FL	Pseudopityophthorus minutissimus		x x	Х				
	Sweetwater Wetlands Park (11), FL	Pseudopityophthorus minutissimus				x x			
Liquidambar styraciflua	Austin Cary Forest (1) a, FL	Pityophthorus liquidambarus							
		Hypothenemus interstitialis							
	Austin Cary Forest (1) b, FL	Xylosandrus compactus Pseudopityophthorus minutissimus							
	Lake Alice (10), UF, FL	Xylosandrus compactus Pseudopityophthorus minutissimus	X X						
	Gainesville (12) 2, FL	Hypothenemus eruditus							
Celtis laevigata	Austin Cary Forest (1) a, FL	Pseudopityophthorus minutissimus Xylosandrus germanus Xyleborinus saxeseni Xylosandrus compactus Hypothenemus eruditus							

(continued on next page)

Table 1 (continued)	1															
	Localities	Beetles species	Geosmit	hia specie	s ^b											
Trees sp.			brunnea	pallida	sp.2	sp.23	sp.41	ominicola	sp.12	obscura	sp.21	lavendula	sp.45	sp.46	sp.47	sp.48
		Xylosandrus crassiusculus				х										
	Companyille (5) 1 El	Chramosus chanuisii				Х										
	Gamesvine (5) 1, FL	Chrumesus chupuish														
		Development and the second sec														
		Pseudopotyopthorus asperulus														
		Hypothenemus eruditus														
	Lake Alice (10), UF, FL	Chramesus chapuisii			Х											
		Phloeotribus texanus														
	Gainesville (5) 1. FL	Hypothenemus brunneus Phloeotribus texanus				х										
		Hypothenemus eruditus														
	Austin Cary Forest (1) b, FL	Xylobiops basilaris														
		Xylosandrus crassiusculus														
		Hypothenemus eruditus														
		Xylosandrus compactus														
	Sweetwater Wetlands Park (11), FL	Xylosandrus compactus														
	Austin Cary Forest (1) a, FL	Pseudothysanoes dislocatus														

^a Numbers in brackets refer to site codes in Fig. 1.
^b Species numeric codes Kolarik et al. (2017); G. sp.45–48 are assigned in present study as putative new species.

174

Table 2

Host ranges, beetle vectors, and GenBank accession numbers of Geosmithia species included in the phylogenetic analyses. Geosmithia species recovered in the present study were shown in bold.

Species ^a	Isolation no. ^c	Beetle vectors	Tree host/substratum	GenBank acces	sion no.	References
				ITS	TEF1-α	
G. proliferans	CBS 142636 T	Phloeotribus frontalis	Acer negundo	KY872744	KY872749	Huang et al. (2018)
G. proliferans	CBS 142637	Phloeotribus frontalis	Acer negundo	KY872745	KY872750	Huang et al. (2018)
G. langdonii	CCF 3332 T	Scolytus intricatus	Quercus robur	KF808297	HG799876	Kolarik et al. (2005, 2017)
G. langdonii	CCF 4338	Cryphalus pubescens	Sequoia serpervirens	HF546245	HG799877	Kolarik et al. (2017)
G. putterillii	CCF 3052 T	N/A	discoloured timber of Beilschmiedia tawa	AF033384	HG799853	Kolarik et al. (2004, 2017)
G. putterillii	U307	Pityophthorus sp.	Pinus ponderosa	HF546306	MH580529	Kolarik et al. (2017)
G. pallida	CCF 3053 T	N/A	cotton yarn	AJ578486	NA	Kolarik et al. (2004, 2017)
G. pallida	CCF 3324	N/A	Soil	NA	HG799846	Kolarik et al. (2004, 2017)
G. flava	CCF 3333 T (=MK101)	Xiphydria sp.	Castanea sativa	AJ578483	MH580541	Kolarik et al. (2004)
G. flava	CCF 4337 (=U56)	Cerambycidae sp.	Pseudotsuga menziesii	HF546244	MH580542	Kolarik et al. (2004)
G. obscura	CCF 3422 T	Scolytus intricatus	Quercus robur	AJ784999	MH580539	Kolarik et al. (2005)
G. obscura	CCF 3425 = MK616	Scolytus carpini	Carpinus betulus	AM181460	MH580540	Kolarik et al. (2005)
G. lavendula	CCF 3051	NA	Laboratory contamination	AF033385	NA	Kolarik et al. (2004)
G. lavendula	CCF 3394	Carphoborus vestitus	Pistacia terebinthus	AM421098	NA	Kolarik et al. (2007)
G. morbida	CCF 4576 (=U173)	Pityophthorus juglandis	Juglans nigra	HF546282	MH580544	Kolarik et al. (2007)
G. morbida	CCF 3881 = CBS 124663	Pityophthorus juglandis	Juglans nigra	FN434082	MH580543	Kolarik et al. (2010)
G. microcorthyli	CCF 3861 T	Microcorthylus sp.	Cassia grandis	FM986798	MH580560	Kolařík et Kirkendall (2010)
G. rufescens	CCF 3751	Cnesinus lecontei	Croton draco	AM947667	NA	Kolarik et al. (2010)
G. rufescens	CCF 4524	Cnesinus lecontei	Croton draco	AM947668	NA	Kolarik et al. (2010)
G. fassatiae	AK31/98	Scolytus intricatus	Quercus sp.	AM421039	MH580557	Kolarik et al. (2008)
G. fassatiae	CCF 3334 T	NA	Quercus pubescens	AJ578482	MH580530	Kolarik et al. (2005)
G. sp. 2	U107	Scolytys rugulosus	Prunus sp.	HF546256	HG799855	Kolarik et al. (2017)
G. sp. 2	MK642	Hylesinus orni	Fraxinus ornus	NA	HG799852	Kolarik et al. (2017)
G. sp. 2	CCF 3319	N/A	ex tree in apple orchard	NA	HG799840	Kolarik et al. (2017)
G. sp. 2	CCF 3320	N/A	ex Cucumis melo	NA	HG799841	Kolarik et al. (2017)
G. sp. 3	CCF 4298	Scolytus intricatus	Quercus dalechampii	AM181436	HG799851	Kolarik et al. (2008, 2017)
G. sp. 3	CCF 3481	Scolvtus carpini	Carpinus betulus	AM181467	HG799842	Kolarik et al. (2017)
G. sp. 3	CCF 3344	Scolvtus intricatus	Ouercus robur	NA	HG799848	Kolarik et al. (2008, 2017)
G. sp. 4	CCF 4278	Pteleobius vittatus	Ulmus laevis	AM181466	HG799850	Kolarik et al. (2008, 2017)
G. sp. 5	CCF 3341	Scolvtus intricatus	Ouercus petraea	AI578487	HG799837	Kolarik et al. (2004, 2017)
G. sp. 5	CCF 4215	Pityophthorus pityographus	Picea abies	HE604117	HG799854	Kolarik and Jankowiak (2013)
G. sp. 5	AK192/98	Scolvtus intricatus	Ouercus robur	NA	HG799835	Kolarik et al. (2017)
G. sp. 8	CCF 3358	Scolvtus intricatus	Ouercus petraea	AM181421	MH580559	Kolařík et Kirkendall (2010)
G. sp. 9	RI0266	Ips cembrae	Larix decidua	HE604123	MH580551	Kolarik and Iankowiak (2013)
G. omnicola10	MK1707	Hylesinus orni	Fraxinus sp.	AM181452	MH580558	Kolařík et al. (2008)
G. omnicola10	IMI 194089	NA	Air	AM181450	NA	Kolařík et al. (2008)
G. Sp. 11	CCF 3555 = MK551	Scolvtus intricatus	Ouercus pubescens	AM181419	MH580545	Kolařík et al. (2008)
G. sp. 11	CCF 3556	Scolytus intricatus	Quercus pubescens	AM181418	NA	Kolařík et al. (2008)
G. sp. 12	CCF 4320 = U164	Hylesinus oregonus	Fraxinus sp.	HF546229	MH580532	Kolarik et al. (2017)
G. sp. 12	CCF 3557 = MK661	Leperisinus orni	Fraxinus excelsior	AM181431	MH580531	Kolařík et al. (2008)
G. ulmacea 13	CCF 3559	Scolvtus multistriatus	Ulmus sp.	AM181439	MH580535	Kolařík et al. (2008)
G. ulmacea 13	1226	Scolvtus schevvrewi	Ulmus sp.	KI716463	NA	Zerillo et al. (2014)
G. sp. 16	CCF 4201	Pityophthorus pityographus	Picea abies	HE604146	HE604206	Kolarik and Jankowiak (2013)
G. sp. 16	RI34m	Pitvophthorus pitvographus	Picea abies	NA	HE604207	Kolarik and Jankowiak (2013)
G. sp. 19	CCF 3658 = MK1085a	Hypoborus ficus	Ficus carica	AM421085	MH580546	Kolarik et al. (2007)
G. sp. 19	CCF 3655	Hypoborus ficus	Ficus carica	AM421075	NA	Kolarik et al. (2007)
G. sp. 20	CCF 4316 = MK119b	Phloesinus fulgens	Calocedrus decurrens	HF546226	MH580547	Kolarik et al. (2017)
G. sp. 20	U193	Scolytus schevyrewi	Ulmus pumila	HF546287	MH580548	Kolarik et al. (2017)
G. sp. 21	CCF 5270	Pseudotsuga menziesii	Pitvophthorus sp., Scolvtus oregoni, Cryphalus	HF546289	MH580534	Kolarik et al. (2017)
G. sp. 21	CCF 4280	Hypoborus ficus	Ficus carica	AM421049	MH580533	Kolarik et al. (2007)
G. sp. 22	CCF 3645	Phloetribus scarabeoides	Olea europaea	AM421061	MH580552	Kolarik et al. (2007)
G. sp. 22	CCF 3652	Phloetribus scarabeoides	Olea europaea	AM421062	MH580553	Kolarik et al. (2007)
G. sp. 23	CCF 3318	scolvtid beetles	Persea gratissima	AI578489	HG799845	Kolarik et al. (2004, 2017)
G. sp. 23	CCF 3639	Scolytus rugulosus	Prunus armeniaca	AM421068	HG799838	Kolarik et al. (2004, 2017)
•						

Species ^a	Isolation no. ^c	Beetle vectors	Tree host/substratum	GenBank acces	sion no.	References	
				ITS	TEF1-a		
G. sp. 23	U160	Scolytus multistriatus	Ulmus pumila	HF546284	HG799859	Kolarik et al. (2017)	
G. sp. 24	CCF 4294 = MK1837	Pityogenes quadridens	Pinus sylvestris	HE604165	MH580555	Kolarik and Jankowiak (2013)	
G. sp. 24	MK1772	Pityophthorus pityographus	Pinus sylvestris	HE604164	MH580556	Kolarik and Jankowiak (2013)	
G. sp. 25	MK1832	Cryphalus abietis	Abies alba	HE604128	HE604218	Kolarik and Jankowiak (2013)	
G. sp. 25	CCF 4205	Cryphalus piceae	Abies alba	HE604127	HE604219	Kolarik and Jankowiak (2013)	
		Pityophthorus pityographus					
G sp. 26	CCF 4222 = RJ26	Pinus sylvestris	Pityogenes bidentatus	HE604158	LN907595	Kolarik et Jankowiak (2016)	
G sp. 26	CCF 4223 = MK1796	Pinus sylvestris	Pityophthorus pityographus	HE604112	LN907596	Kolařík et Jankowiak (2016)	
G. sp. 27	CCF 4605	Pityophthorus sp.	Pinus ponderosae	HF546309	HG799867	Kolarik and Jankowiak (2013)	
G. sp. 27	CCF 4206	Pityogenes bidentatus	Pinus sylvestris	HE794978	HG799839	Kolarik et al. (2017)	
G. sp. 28	RJ278m	Pityophthorus pityographus	Picea abies	HE604124	NA	Kolarik and Jankowiak (2013)	
G. sp. 28	RJ279m	Pityophthorus pityographus	Picea abies	HE604154	MH580554	Kolarik and Jankowiak (2013)	
G. sp. 29	CCF 4221	Cryphalus piceae Pitvophthorus pitvographus	Abies alba	HE604125	HE604233	Kolarik and Jankowiak (2013)	
G. sp. 30	CCF 4288	Ins cembrae	Larix decidua	HE604132	HE604216	Kolarik and Jankowiak (2013)	
G. sp. 30	CCF 4219	Cryphalus abietis	Abies alba	NA	HE604221	Kolarik and Jankowiak (2013)	
G. sp. 31	CCF 4197	Pitvogenes bidentatus	Pinus sylvestris	NA	HE604229	Kolarik and Jankowiak (2013)	
G. sp. 31	CCF 4196	Pitvonhthorus pitvographus	Pinus sylvestris	NA	HE604230	Kolarik and Jankowiak (2013)	
G. sp. 32	CCF 3554	Phloeosinus thuiae	Chamaecyparis pisifera	AM181426	HG799874	Kolarik et al. (2008, 2017)	
$G \sin 32$	CCF 5242	Phloesinus seguige	Seauoia sernervirens	HF546265	HG799873	Kolarik et al. (2008, 2017)	
G sp 33	CCF 4598	Scolytus praeceps	Abies concolor	HF546331	HG799869	Kolarik et al. (2017)	
G sp 34	CCF 4604	Ins nlastogranhus	Calocedrus decurrens	HF546295	HG799866	Kolarik et al. (2017)	
G sp 34	11417	Scolvtus praeceps	Ahies concolor	HF546330	HG799868	Kolarik et al. (2017)	
$G \sin 35$	U196	Pitvonhthorus sn	Pseudotsuga menziesii	HF546231	NA	Kolarik et al. (2017)	
		Scolytus oregoni					
C cn 26	CCE 4228 - 11216	Dityonhthorys sp	Dinus muricata	HE546226	NA	K_{0} (2017)	
G. sp. 30	CCF 4328 = 0310	Pityophinorus sp.	Codmus atlantica	NA		Rolalik et al. (2017)	
G. sp. 30	MIN 1014 11107	NA Dituonhthorus sn	Decudotsuga monziosii	INA UE546288	MID300330	Kolarik et al. (2017)	
G. <i>sp. 51</i>	0157	Scolytus oregoni	i seuuoisugu menziesii	111 540200	113735802		
C sn 38	1179	Pseudonityonhthorus nuhinennis	Notholithocarnus densiflorus	HE546346	MH580537	Kolarik et al. (2017)	
$C \le 28$	CCE 5241 (-U95)	Deeudonityophthorus pubipennis	Quercus acrifolia	HE546251	MH580536	Kolarik et al. (2017)	
G. sp. 30 G. sp. 39	11323	Pitvonhthorus juglandis	luglans hindsii	HE546314	NA	Kolarik et al. (2017)	
G. sp. 33	CCE 5250 (-U143)	Pityophthorus sn	Pinus nonderosa	HF546273	MH580550	Kolarik et al. (2017)	
G. sp. 40	CCF 5245 (-11306a)	Ins plastographus	Pinus radiata	HE546304	MH580549	Kolarik et al. (2017)	
G. sp. 40 G. sn 41	LI215	Cossoninge sn	Artemisia arborea	HE546292	HC799865	Kolarik et al. (2017)	
G. sp. 41	CCF 4342	Bostrichidae	Toxicodendron diversilohum	HF546249	HG799871	Kolarik et al. (2017)	
$G_{sn} 41$	164	Scohicia declivis	Imbellularia californica	HF546342	HG799870	Kolarik et al. (2017)	
G sn 42	U166	Phloesinus canadensis	Chamaecynaris sn	HF546279	HG799860	Kolarik et al. (2017)	
$G \sin 42$	CCF 5251	Scolytus rugulosus	Prunus sn	HF546285	HG799861	Kolarik et al. (2017)	
G. sp. 43	CCF 4203	Pityogenes knechteli	Pinus ponderosae	HF546223	HG799864	Kolarik et al. (2017)	
G sn 44	CCF 4333 (= U410)	Phyophinorus sp. Phloeosinus fulgens	Phloeosinus fulgens	HF546241	LN907598	Kolarik et al. (2017)	
G. sp. 44	CCF 4332 (= U408)	Pinus sabiniana	Pityophthorus sp.	HF546240	LN907599	Kolarik et al. (2017)	
G. brunnea	CBS 142634	Xylosandrus compactus	Liauidambar styraciflua	KY872741	KY872746	present study	
G. brunnea	CBS 142635	Xylosandrus compactus	Liauidambar styraciflua	KY872742	KY872747	present study	
G brunnea	CBS 142633 T	Hypothenemus dissimilis	Quercus sp	KY872743	KY872748	present study	
G ominicola	Hulcr 17349	Micracisella nanula	Quercus laurifolia	MH426757	MH580485	present study	
G. pallida	Hulcr 17003	Xvlobiops basilaris	Carva illinoinensis	MH426751	MH580481	present study	
G. pallida	Hulcr 17350	Pseudopityophthorus minutissimus	Ouercus laurifolia	MH426758	MH580486	present study	
G. pallida	Hulcr 17353	Pseudopityophthorus minutissimus	Quercus laurifolia	MH426761	MH580488	present study	
G. pallida	Hulcr 18164	Pseudopityophthorus minutissimus	Carva illinoinensis	MH426775	MH580500	present study	
G. pallida	Hulcr 18777	Pseudopityophthorus minutissimus	Quercus laurifolia	MH426778	MH580503	present study	
G. pallida	Hulcr 18778	Pseudopityophthorus minutissimus	Quercus laurifolia	MH426779	MH580504	present study	
G. obscura	Hulcr 18146	Xylobiops basilaris	Carya illinoinensis	MH426774	MH580499	present study	
						-	

G. obscura	Hulcr 18775	Phloeosinus dentatus	Juniperus virginiana	MH426777	MH580502	present study
G. obscura	Hulcr 19181	Hypothenemus eruditus	Juglans nigra	MH426788	MH580509	present study
G. lavendula	Hulcr 17347	Micracisella nanula	Quercus laurifolia	MH426755	MH580484	present study
G. sp. 2	Hulcr 10913	Chramesus chapuisii	Celtis laevigata	MH426746	MH580477	present study
G. sp. 2	Hulcr 17352	Pseudopityophthorus minutissimus	Quercus laurifolia	MH426760	MH580521	present study
G. sp. 2	Hulcr 17357	Pseudopityophthorus minutissimus	Quercus laurifolia	MH426763	MH580489	present study
G. sp. 2	Hulcr 18903	Juniperus virginiana	Phloeosinus dentatus	MH426781	MH580519	present study
G. sp. 2	Hulcr 18904	Juniperus virginiana	Phloeosinus dentatus	MH426782	MH580520	present study
G. sp. 2	Hulcr 19183	Phloeosinus dentatus	Juniperus virginiana	MH426790	MH580516	present study
G. sp. 2	Hulcr 19184	Phloeosinus dentatus	Juniperus virginiana	MH426791	MH580517	present study
G. sp. 2	Hulcr 19185	Phloeosinus dentatus	Juniperus virginiana	MH426792	MH580518	present study
G. sp. 2	Hulcr 19187	Phloeosinus dentatus	Juniperus virginiana	MH426794	MH580512	present study
G. sp. 2	Hulcr 19189	Phloeosinus dentatus	Juniperus virginiana	MH426795	MH580513	present study
G. sp. 12	Hulcr 17348	Micracisella nanula	Quercus laurifolia	MH426756	MH580492	present study
G. sp. 12	Hulcr 18136	Hypothenemus rotundicollis	Carya illinoinensis	MH426767	MH580491	present study
G. sp. 12	Hulcr 18137	Hypothenemus rotundicollis	Carya illinoinensis	MH426768	MH580493	present study
G. sp. 12	Hulcr 18138	Hypothenemus rotundicollis	Carya illinoinensis	MH426769	MH580494	present study
G. sp. 12	Hulcr 18139	Hypothenemus rotundicollis	Carya illinoinensis	MH426770	MH580495	present study
G. sp. 12	Hulcr 18145	Xylobiops basilaris	Carya illinoinensis	MH426773	MH580498	present study
G. sp. 12	Hulcr 19079	Hypothenemus dissimilis	Carya illinoinensis	MH426787	MH580508	present study
G. sp. 21	Hulcr 18907	Juniperus virginiana	Phloeosinus dentatus	MH426785	MH580506	present study
G. sp. 21	Hulcr 19186	Phloeosinus dentatus	Juniperus virginiana	MH426793	MH580511	present study
G. sp. 23	Hulcr 14582	Phloeotribus texanus	Celtis laevigata	MH426750	MH580526	present study
G. sp. 23	Hulcr 17358	Xylosandrus crassiusculus	Celtis laevigata	MH426764	MH580527	present study
G. sp. 23	Hulcr 17359	Xylosandrus crassiusculus	Celtis laevigata	MH426765	MH580528	present study
G. sp. 41	Hulcr 11574	Pseudopityophthorus minutissimus	Quercus laurifolia	MH426747	MH580478	present study
G. sp. 41	Hulcr 17346	Micracisella nanula	Quercus laurifolia	MH426754	MH580483	present study
G. sp. 41	Hulcr 17351	Pseudopityophthorus minutissimus	Quercus laurifolia	MH426759	MH580524	present study
G. sp. 41	Hulcr 17354	Pseudopityophthorus minutissimus	Quercus laurifolia	MH426762	MH580525	present study
G. sp. 41	Hulcr 18143	Hypothenemus rotundicollis	Carya illinoinensis	MH426771	MH580496	present study
G. sp. 41	Hulcr 18144	Hypothenemus rotundicollis	Carya illinoinensis	MH426772	MH580497	present study
G. sp. 41	Hulcr 18905	Pseudopityophthorus minutissimus	Quercus laurifolia	MH426783	MH580522	present study
G. sp. 41	Hulcr 18906	Pseudopityophthorus minutissimus	Quercus laurifolia	MH426784	MH580523	present study
G. sp. 41	Hulcr 19078	Hypothenemus dissimilis	Carya illinoinensis	MH426786	MH580507	present study
G. sp. 45	Hulcr 17004	Pityophthorus annectens	Pinus taeda	MH426752	MH580482	present study
G. sp. 45	Hulcr 17006	Pityophthorus annectens	Pinus taeda	MH426753	MH580487	present study
G. sp. 45	Hulcr 18823	Pityophthorus pulicarius	Pinus taeda	MH426780	MH580505	present study
G. sp. 46	Hulcr 11575	Pseudopityophthorus minutissimus	Quercus laurifolia	MH426748	MH580479	present study
G. sp. 46	Hulcr 18077	Hypothenemus eruditus	Juglans nigra	MH426766	MH580490	present study
G. sp. 46	Hulcr 18201	Hypothenemus eruditus	Juglans nigra	MH426776	MH580501	present study
G. sp. 47	Hulcr 11904	Hypothenemus dissimilis	Quercus laurifolia	MH426749	MH580480	present study
G. sp. 47	Hulcr 19182	Hypothenemus dissimilis	Carya illinoinensis	MH426789	MH580510	present study
G. sp. 48	Hulcr 19190	Phloeosinus dentatus	Juniperus virginiana	MH426796	MH580514	present study
G. sp. 48	Hulcr 19192	Phloeosinus dentatus	Juniperus virginiana	MH426797	MH580515	present study
Emericellopsis pallida b	CBS 490.71 T	NA	NA	NR_145052	KC998998	Grum-Grzhimaylo et al. (2013)

a Species numeric codes corresponding to Kolarik et al. (2007, 2008), Kolarik and Jankowiak (2013), and Kolarik et al. (2017). b E. pallida selected as outgroup of phylogenies. C Superscript T denote type strain.

conducted a linear model-based analysis of the recovered Geosmithia assemblages. We used the manyglm() function of the mvabund package of R (Wang et al., 2012) to fit individual binomial linear models for the presence/absence of each Geosmithia species, with tree host, beetle vector, and tree/beetle interaction term as predictors. This approach provides an overall multivariate test of the effect of beetle and tree species on the composition of the recovered *Geosmithia* species assemblages, as well as individual tests of tree and beetle species on the occurrence of each Geosmithia species with adjusted P-values to account for multiple comparisons (see details in Wang et al., 2012). We chose to exclude samples from C. glabra (n = 4) and F. americana (n = 2) from the community analyses because these tree species yielded only 4 and 2 beetles, respectively, and *Geosmithia* was not recovered from any of these individuals. We also excluded *Geosmithia* species that were recovered in fewer than three isolates (G. sp. 10, G. sp. 21, G. lavendula, G. sp. 47, G. sp. 48).

3. Results

3.1. Identification of Geosmithia species and their occurrence on trees and beetles

In total, 195 beetle specimens were excised from 45 exposed branch units (Table 1), of which 23.1% (n = 45) yielded *Geosmithia* species resulting in 55 isolates. We did not find *Pityophthorus juglandis*, the known vector of TCD, in the assayed branch baits.

Among the 55 Geosmithia isolates, 14 species were determined based on the morphological characteristics and molecular makers (Fig. 2). We did not recover G. morbida in our isolates. Species in the *G. pallida* species complex (GPSC, i.e. *pallida*, *brunnea*, sp. 2, sp. 23, and sp. 41) accounted for 56% of the isolates (n = 31), in which G. sp. 2 (n = 10) and G. sp. 41 (n = 9) had the highest incidence, followed by *G.* pallida (n = 6), *G.* brunnea (n = 3), and *G.* sp. 23 (n = 3). For species other than the GPSC (n = 24), G. sp. 12 was the most frequently isolated species (n = 7), whereas other species were isolated less frequently, i.e. G. sp. 10 (n = 1), G. obscura (n = 3), G. sp. 21 (n = 2), and *G. lavendula* (n = 1). Ten *Geosmithia* isolates, which clustered separately into four phylogenetic species, did not conform to any previously reported Geosmithia species and are considered putatively to be new species (Fig. 2). These putative new species were assigned numbers following Kolařík et al. (2017), namely G. sp. 45, G. sp. 46, G. sp. 47, G. sp. 48. Three isolates of G. sp. 45 were isolated from *Pityophthorus annectens* and *Pityophthorus* pulicarius from P. taeda. Three isolates of G. sp. 46 were isolated from Hypothenemus dissimilis from Q. laurifolia and Hypothenemus eruditus from J. nigra. Two isolates of G. sp. 47 were isolated from H. dissimilis from C. illinoinensis and Q. laurifolia. Two isolates of G. sp. 48 were isolated from Phloeosinus dentatus from J. virginiana.

Occurrences of *Geosmithia* species were highly varied among tree and beetle species (Figs. 3 and 4). In general, beetle specimens from *Q. laurifolia* (73.1%), *J. virginiana* (54.5%), and *C. illinoinensis* (46.4%) had the highest rate of *Geosmithia* species recovery. Other tree species had much lower recovery rates; *P. taeda* (15.4%), *J. nigra* (13%), *C. laevigata* (10.5%), and *L. styraciflua* (6.1%). Beetles from *C. glabra* and *F. americana* had no *Geosmithia* associated.

3.2. Community analysis

We estimated a total *Geosmithia* species richness of 14.66 ± 1.3 species in the sampling area. Our estimated sampling coverage was 96%, indicating that our samples were representative of the *Geosmithia* species diversity on the studied substrates in the assayed regions (Fig. 5).

Recovery rates were calculated as the percentage of individual

beetles in each tree species from which each Geosmithia species was recovered. From the perspective of tree hosts, G. sp. 2 had the highest recovery rate from J. virginiana (33.3%), followed by G. sp. 41 from Q. laurifolia (28.5%), G. sp. 12 from C. illinoensis (21.4%), and G. pallida from Q. laurifolia (19%); other Geosmithia species showed lower recovery rates ranging from 2% to 11% (Fig. 3). We recovered Geosmithia species from 13 of 24 beetle species sampled, with a range of 1–4 *Geosmithia* species per beetle vector (Fig. 4). Hypothenemus rotundicollis had the highest recovery rate of G. sp. 12 (80%), though this fungus was also isolated from three other beetle species (H. dissimilis, Micracisella nanula, and Pseudopityophthorus minutissimus). Micracisella nanula vectored G. sp. 41, G. sp. 12, G. ominicola, and G. lavendula (all 50%); the latter two were found exclusively in association with this beetle. However, we only recovered two specimens of M. nanula, which greatly limited our ability to make robust inferences about the consistency and/or specificity of these relationships. The other beetle species showed variable association with Geosmithia species ranging from 3% to 35% (Fig. 4).

We found evidence for tree host preferences among Geosmithia species, but no evidence for preference or specificity to beetle vectors. General linear model-based analysis indicated a significant effect of tree species on the multivariate composition of the recovered Geosmithia assemblages, but no significant effect of beetle species or interaction between tree and beetle (Table 3). Individual species-level tests showed that tree species was a significant predictor of the presence of five Geosmithia species: G. pallida, G. sp. 2, G. sp. 41, G. sp. 12, and G. sp. 45 (all P < 0.05). Geosmithia pallida was found most frequently in O. laurifolia, G. sp. 2 in I. virginiana, G. sp. 41 in *Q. laurifolia* and *Carya illinoensis*, *G.* sp. 12 in *C. illinoensis*, and *G.* sp. 45 in *P. taeda*. Beetle vector was not a significant predictor for the presence of any Geosmithia species, nor was the interaction between beetle and tree species a significant predictor for Geosmithia species present (Table 3). This suggests that Geosmithia prevalence is determined by the substrate (i.e. tree species) and that the fungi are able to disperse on multiple non-specific vectors.

4. Discussion

This is the first study to quantitatively examine the symbiotic relationship of *Geosmithia* species with their beetle vectors and host trees in the southeastern USA. We systematically deployed branch sections from targeted species to be colonized by bark beetles that potentially carry *Geosmithia* species, and quantitatively described the *Geosmithia* community in relation to their beetle vectors and host trees.

We considered beetle individuals as a quantitative unit for studying their association with *Geosmithia* species. Therefore, the recovery rate of *Geosmithia* species in the present study could also be extrapolated, to some degree, to the effectiveness of these beetle species to transmit *Geosmithia* propagules among tree hosts in the environment.

The species richness analysis suggested that our sampling effort was sufficient to accumulate a representative sample of regional *Geosmithia*. The uniform, factorial sampling effort also allowed us to quantitatively analyze the *Geosmithia* specificity, and it appeared that the fungi were more responsive to the host trees than to the identity of their beetle vectors. Therefore, additional *Geosmithia* fungi are likely to be found in surveys of additional tree species, but sampling different beetles from the trees already sampled is less likely to recover many new fungal taxa.

4.1. TCD causal agents

We found neither P. juglandis nor G. morbida in our assayed

Fig. 2. Phylogenetic relationships between the *Geosmithia* isolates, and their position within the genus. The tree was obtained using Maximum Likelihood analysis of the combined ITS and TEF1-α sequences dataset. *Geosmithia* species recovered in the present study are shown in bold. Bootstrap values/Bayesian posterior probabilities were shown above/below nodes. *Emericellopsis pallida* was selected as outgroup. Type strains are indicated with superscript T. Species numeric codes correspond to Kolarík et al. (2017).

Fig. 3. Heat map showing the occurrence frequencies of Geosmithia species from tree species.

Fig. 4. Heat map showing the occurrence frequencies of Geosmithia species from beetle species.

samples. Beetle species excised from the bait branches of three tree species in the Juglandaceae were primarily polyphagous bark or ambrosia beetles (*Hypothenemus eruditus, H. dissimilis, H. rotundicollis, X. crassiusculus, X. compactus, P. minutissimus*), one Juglandaceae-specific species (*Chramesus hicoriae*), and one bostrichid beetles (*Xylobiops basilaris*). These beetles carried diverse *Geosmithia* species but appeared not to carry *G. morbida* in this region. The absence of *G. morbida* and its vector (*P. juglandis*) from our survey is probably a reflection of the rarity of *Juglans* spp. in surveyed regions. Both appear to require *Juglans* or *Pterocarya* spp. for their development. *G. morbida* colonizes multiple *Juglans* and *Pterocarya* species (Utley et al., 2013; Hishinuma et al., 2016), but it does not affect other closely related genera such as *Carya* spp.

(Utley et al., 2013; Sitz et al., 2016). Similarly, the beetle can carry other *Geosmithia* species (Kolařík et al., 2017), but is not known to develop in hosts other than *Juglans* and *Pterocarya* spp. (Hefty et al., 2018). The strict association between *G. morbida* and its vector may therefore be a consequence of the specificity of both to *Juglans* and *Pterocarya* spp., not a consequence of an exclusive mutual relationship.

4.2. Beetle vector and tree host affinities with Geosmithia spp.

Based on our association analysis, three species in the *G. pallida* species complex (GPSC) showed affinities to certain tree hosts, i.e. *G. pallida* s str. and *G.* sp. 41 to *Q. laurifolia* and *G.* sp. 2 to

Fig. 5. Rarefaction curve of *Geosmithia* species isolated from 195 beetle specimens. Observed samples are denoted by a solid line and extrapolated segment extended to 390 samples by a dashed line. The 95% confidence intervals (shaded areas) were obtained by a bootstrap method based on 200 replications.

Table 3

Geosmithia specificity test using linear-model-based analysis showing the alphacorrected p values of the occurrence differences of Geosmithia species on trees, beetles, and the interaction term. Note that the trees C. glabra and F. americana, and Geosmithia species with fewer than three isolates, were not included in the analysis (see methods).

	Trees	Beetles	Trees:Beetles
Multivariate	0.001*	0.891	0.135
G. brunnea	0.313	1	0.812
G. pallida	0.004*	0.961	0.812
G. sp.2	0.001*	0.974	0.812
G. sp.23	0.167	0.846	0.812
G. sp.41	0.001*	0.961	0.142
G. sp.12	0.001*	1	0.745
G. obscura	0.372	0.994	0.812
G.sp.45	0.041*	0.999	0.812
G.sp.46	0.167	0.999	0.812
G.sp.46	0.167	0.999	0.812

* significant, P < 0.05.

J. virginiana. However, this was a statistical association, and whether this pattern is a reflection of true metabolic specificity will require future experimental tests. These three *Geosmithia* species were recovered occasionally from other tree than the one noted above, suggesting that these affinities for tree host species reflect some degree of preference, but not strict physiological specificity. Other studies also documented a broad host breath of most *Geosmithia*, particularly in the *pallida* species complex, which were recovered from various beetle vectors from diverse tree hosts including angiosperms and gymnosperms (Kolařík et al., 2008; Kolařík and Jankowiak, 2013). In our sample, the three cases of fungus-tree association that are statistically significant, are supported also by the fact that the three *Geosmithia* species were recovered from the same trees across multiple locations, indicating that their affinities for these trees is not a local phenomenon.

G. sp. 12 was reported to be specific to *Hylesinus* spp. from Oleaceae trees (e.g. *Fraxinus* spp.) as its almost exclusive recoveries from such beetle/tree combination (Kolařík et al., 2008, 2017). Similarly, a survey in the Southeastern USA had found *G.* sp. 12 were abundantly associated with *H. aculeatus* from *Fraxinus* sp. (Huang et al., 2018). We demonstrated that *G.* sp. 12 has a broader niche, having recovered it from diverse beetle species (*H. rotundicollis, H. dissimilis, M. nanula,* and *X. basilaris*) from two unrelated trees (*C. illinoinensis* and *Q. laurifolia*). The lack of specificity of *G.* sp. 12 to *Hylesinus* spp. with *Fraxinus* spp. in our sample may be a result of a

tree host switch of G. sp. 12 in this region.

Beetle species that infested the three Juglandaceae trees (*J. nigra*, *C. glabra*, and *C. illinoinensis*) were mostly polyphagous beetles. Except for the beetles from *C. glabra*, which had no associated *Geosmithia*, the *Geosmithia* community composition of beetles from *J. nigra* and *C. illinoinensis* were considerably different, even for those from the same geographical range. These results suggest that wood substrata of different tree species or the competitive capacity of fungi themselves might play a pivotal role in determining the *Geosmithia* community occurring on a given tree species. Some species in the Juglandaceae are known to produce toxic compounds, such as juglone, that displays inhibitory effect on other plants (Hejl et al., 1993). The chemical content of wood substrata might, therefore, play a role in selecting fungal colonizers (Lyr, 1962; Tsuneda and Kennedy, 1980; Dix, 2012).

We unveiled four putative new species, i.e. G. sp. 45–48, confirming the under-documented diversity of Geosmithia in the USA. Geosmithia sp. 46 and G. sp. 47 were both isolated from polyphagous beetles (Hypothenemus spp. and P. minutissimus) from various trees, and are therefore probably generalists. Geosmithia sp. 48 was found on the beetle P. dentatus which is specific to J. virginiana. While P. dentatus was also the vector of other Geosmithia species in our survey, G. sp. 48 might also be an opportunist vectored by P. dentatus on J. virginiana. Geosmithia sp. 45 was recovered exclusively from *P. taeda*. Three isolates of *G*. sp. 45 were recovered from the pine-specific bark beetles P. annectens and P. pulicarius. Interestingly, the pinaceous specificity was also suggested in G. sp. 44 and G. sp. 26 (Kolařík et al., 2013, 2017), the sister taxa of G. sp. 45. The distinct chemical environment in *Pinus* spp., resulting from its diverse defensive compounds such as terpenes (Bridges, 1987; Zulak and Bohlmann, 2010) and other defensive mechanisms (Ralph et al., 2006) may be the reason for ecological speciation and evolution of specificity of several Geosmithia on hosts in the Pinaceae (Kolařík and Jankowiak, 2013). Host preferences for either hardwoods or for conifers have also been demonstrated in many ophiostomatoid fungi (Harrington et al., 2001; Grobbelaar et al., 2009; De Beer et al., 2014; Jankowiak et al., 2017b). Although G. sp. 45 showed a similar specificity to Pinaceae as the closely related G. sp. 44, its recovery rate was significantly lower than that of G. sp. 44 in a survey of the western USA (Kolařík et al., 2017). The discrepancy might represent the low abundance of this fungus in the Southeast or it might be a consequence of sampling differences between the two studies.

5. Conclusion

The association among fungi, bark beetle vectors, and host trees is often thought to be complicated, but continued sampling is beginning to explain the patterns in these relationships. This dataset suggests that the distribution of Geosmithia among beetle vectors is primarily driven by the encounters of the beetles and the fungi in the hosts tree substrates, and in some cases by phylogenetic relatedness between the fungi, but the fungus-beetle associations are flexible. Moreover, as the beetles transmit the fungi among trees passively, a large part of the resulting community patterns may be due to neutral processes. The subcortical fungal genus Geosmithia is a system superbly suitable for studying the tripartite tree-vector-fungus dynamics due to the ease of its sampling, increasingly better taxonomy, and a convenient level of diversity: even in a limited region of the southeastern USA, the community includes specialists and generalists, commensals, mutualists and parasites. By implementing proper sampling strategies, analytical methods, and molecular tools, the Geosmithia system can help us unveil the true dynamics behind the relationship of this tripartite fungus-vector-host symbiosis.

Acknowledgement

We thank John and Katherine Ewel for access to their pecan farm. This work was supported by the United States Department of Agriculture Forest Service, USDA APHIS Farm Bill section 10007, Florida Department of Agriculture and Consumer Services – Division of Plant Industry, and the National Science Foundation (DEB 1556283).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.org/10.1016/j.funeco.2019.02.005.

References

- Atkinson, T.H., 2018. Bark and Ambrosia Beetle [WWW Document]. http://www. barkbeetles.info/. (Accessed 22 August 2018).
- Bridges, J.R., 1987. Effects of terpenoid compounds on growth of symbiotic fungi associated with the southern pine beetle. Phytopathology 77, 83–85.
- Burns, R.M., Honkala, B.H., 1990. Silvics of North America. In: Hardwoods, vol. 2. USDA Agric. Handb, 876 pp.
- Chao, A., Gotelli, N.J., Hsieh, T.C., Sander, E.L., Ma, K.H., Colwell, R.K., Ellison, A.M., 2014. Rarefaction and extrapolation with Hill numbers: a framework for sampling and estimation in species diversity studies. Ecol. Monogr. 84, 45–67. https://doi.org/10.1890/13-0133.1.
- Crous, P.W., Luangsa-ard, J.J., Wingfield, M.J., Carnegie, A.J., Hernández-Restrepo, M., Lombard, L., Roux, J., Barreto, R.W., Baseia, I.G., Cano-Lira, J.F., Martín, M.P., Morozova, O.V., Stchigel, A.M., Summerell, B.A., Brandrud, T.E., Dima, B., García, D., Giraldo, A., Guarro, J., Gusmão, L.F.P., Khamsuntorn, P., Noordeloos, M.E., Nuankaew, S., Pinruan, U., Rodríguez-Andrade, E., Souza-Motta, C.M., Thangavel, R., van Iperen, A.L., Abreu, V.P., Accioly, T., Alves, J.L., Andrade, J.P., Bahram, M., Baral, H.-O., Barbier, E., Barnes, C.W., Bendiksen, E., Bernard, E., Bezerra, J.D.P., Bezerra, J.L., Bizio, E., Blair, J.E., Bulyonkova, T.M., Cabral, T.S., Caiafa, M.V., Cantillo, T., Colmán, A.A., Conceição, L.B., Cruz, S., Cunha, A.O.B., Darveaux, B.A., da Silva, A.L., da Silva, G.A., da Silva, G.M., da Silva, R.M.F., de Oliveira, R.J.V., Oliveira, R.L., De Souza, J.T., Dueñas, M., Evans, H.C., Epifani, F., Felipe, M.T.C., Fernández-López, J., Ferreira, B.W., Figueiredo, C.N., Filippova, N.V., Flores, J.A., Gene, J., Ghorbani, G., Gibertoni, T.B., Glushakova, A.M., Healy, R., Huhndorf, S.M., Iturrieta-González, I., Javan-Nikkhah, M., Juciano, R.F., Jurjevic, Z., Kachalkin, A.V., Keochanpheng, K., Krisai-Greilhuber, I., Li, Y.C., Lima, A.A., Machado, A.R., Madrid, H., Magalhães, O.M.C., Marbach, P.A.S., Melanda, G.C.S., Miller, A.N., Mongkolsamrit, S., Nascimento, R.P., Oliveira, T.G.L., Ordoñez, M.E., Orzes, R., Palma, M.A., Pearce, C.J., Pereira, O.L., Perrone, G., Peterson, S.W., Pham, T.H.G., Piontelli, E., Pordel, A., Quijada, L., Raja, H.A., Rosas de Paz, E., Ryvarden, L., Saitta, A., Salcedo, S.S., Sandoval-Denis, M., Santos, T.A.B., Seifert, K.A., Silva, B.D.B., Smith, M.E., Soares, A.M., Sommai, S., Sousa, J.O., Suetrong, S., Susca, A., Tederson, L., Telleria, M.T., Thanakitpipattana, D., Valenzuela-Lopez, N., Visagie, C.M., Zapata, M., Groenewald, J.Z., 2018. Fungal Planet description sheets: 785-867. Persoonia: Molecular Phylogeny and Evolution of Fungi 41, 238-417. https://doi.org/10.3767/persoonia.2018.41.12.
- Darriba, D., Taboada, G.L., Doallo, R., Posada, D., 2012. jModelTest 2: more models, new heuristics and parallel computing. Nat. Methods 9. https://doi.org/10.1038/ nmeth.2109, 772-772.
- De Beer, Z.W., Duong, T.A., Barnes, I., Wingfield, B.D., Wingfield, M.J., 2014. Redefining *Ceratocystis* and allied genera. Stud. Mycol. 79, 187–219. https://doi.org/ 10.1016/j.simyco.2014.10.001.
- Dix, N.J. (Ed.), 2012. Fungal Ecology. Springer Science & Business Media.
- Gardes, M., Bruns, T.D., 1993. ITS primers with enhanced specificity for basidiomycetes — application to the identification of mycorrhizae and rusts. Mol. Ecol. 2, 113–118. https://doi.org/10.1111/j.1365-294X.1993.tb00005.x.
- Grant, J.F., Windham, M.T., Haun, W.G., Wiggins, G.J., Lambdin, P.L., 2011. Initial assessment of thousand cankers disease on black walnut, *Juglans nigra*, in eastern Tennessee. Forests 2, 741–748. https://doi.org/10.3390/f2030741.
- Grobbelaar, J., Aghayeva, D., De Beer, Z.W., Bloomer, P., Wingfield, M., Wingfield, B., 2009. Delimitation of *Ophiostoma quercus* and its synonyms using multiple gene phylogenies. Mycol. Prog. 8, 221–236. https://doi.org/10.1007/s11557-009-0594-4.
- Hadziabdic, D., Windham, M., Baird, R., Vito, L., Cheng, Q., Grant, J., Lambdin, P., Wiggins, G., Windham, A., Merten, P., Taylor, G., 2013. First report of *Geosmithia morbida* in North Carolina: the pathogen involved in Thousand Cankers Disease of black walnut. Plant Dis. 98 https://doi.org/10.1094/PDIS-06-13-0630-PDN, 992–992.
- Harrington, T.C., McNew, D., Steimel, J., Hofstra, D., Farrell, R., 2001. Phylogeny and taxonomy of the *Ophiostoma piceae* complex and the Dutch elm disease fungi. Mycologia 111–136.
- Hefty, A.R., Aukema, B.H., Venette, R.C., Coggeshall, M.V., McKenna, J.R., Seybold, S.J., 2018. Reproduction and potential range expansion of walnut twig beetle across the Juglandaceae. Biol. Invasions 1–15. https://doi.org/10.1007/s10530-018-

1692-5.

- Hejl, A.A.M., Einhellig, F.A., Rasmussen, J.A., 1993. Effects of juglone on growth, photosynthesis, and respiration. J. Chem. Ecol. 19, 559–568. https://doi.org/ 10.1007/BF00994325.
- Hishinuma, S.M., Dallara, P.L., Yaghmour, M.A., Zerillo, M.M., Parker, C.M., Roubtsova, T.V., Nguyen, T.L., Tisserat, N.A., Bostock, R.M., Flint, M.L., Seybold, S.J., 2016. Wingnut (Juglandaceae) as a new generic host for *Pity-ophthorus juglandis* (Coleoptera: Curculionidae) and the thousand cankers disease pathogen, *Geosmithia morbida* (Ascomycota: hypocreales). Can. Entomol. 148, 83–91. https://doi.org/10.4039/tce.2015.37.
- Hsieh, T.C., Ma, K.H., Chao, A., 2016. iNEXT: an R package for rarefaction and extrapolation of species diversity (Hill numbers). Methods Ecol. Evol. 7, 1451–1456. https://doi.org/10.1111/2041-210X.12613.
- Huang, Y.-T., Kolařík, M., Kasson, M.T., Hulcr, J., 2018. Two new *Geosmithia* species in *G. pallida* species complex from bark beetles in eastern USA. Mycologia 109, 790–803. https://doi.org/10.1080/00275514.2017.1410422.
- Jankowiak, R., Kolařík, M., Bilański, P., 2014. Association of Geosmithia fungi (Ascomycota: hypocreales) with pine- and spruce-infesting bark beetles in Poland. Fungal Ecol 11, 71–79. https://doi.org/10.1016/j.funeco.2014.04.002. Jankowiak, R., Strzałka, B., Bilański, P., Kacprzyk, M., Lukášová, K., Linnakoski, R.,
- Jankowiak, R., Strzałka, B., Bilański, P., Kacprzyk, M., Lukášová, K., Linnakoski, R., Matwiejczuk, S., Misztela, M., Rossa, R., 2017a. Diversity of Ophiostomatales species associated with conifer-infesting beetles in the Western Carpathians. Eur. J. For. Res. 136, 939–956. https://doi.org/10.1007/s10342-017-1081-0.
- Jankowiak, R., Strzałka, B., Bilański, P., Linnakoski, R., Aas, T., Solheim, H., Groszek, M., de Beer, Z.W., 2017b. Two new *Leptographium* spp. reveal an emerging complex of hardwood-infecting species in the Ophiostomatales. Antonie Leeuwenhoek 110, 1–17. https://doi.org/10.1007/s10482-017-0905-8.
- Juzwik, J., Banik, M.T., Reed, S.E., English, J.T., Ginzel, M.D., 2015. *Geosmithia morbida* found on weevil species *Stenominus pallidus* in Indiana. Plant Health Prog. 16, 7–10.
- Juzwik, J., McDermott-Kubeczko, M., Stewart, T.J., Ginzel, M.D., 2016. First report of Geosmithia morbida on ambrosia beetles emerged from Thousand Cankersdiseased Juglans nigra in Ohio. Plant Dis. 100 https://doi.org/10.1094/PDIS-10-15-1155-PDN, 1238-1238.
- Katoh, K., Standley, D.M., 2013. MAFFT multiple sequence alignment software version 7: improvements in performance and usability. Mol. Biol. Evol. 30, 772–780. https://doi.org/10.1093/molbev/mst010.
- Kirisits, T., 2004. Fungal associates of European bark beetles with special emphasis on the ophiostomatoid fungi. In: Lieutier, F., Day, K.R., Battisti, A., Grégoire, J.-C., Evans, H.F. (Eds.), Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis. Springer Netherlands, pp. 181–236. https://doi.org/10.1007/978-1-4020-2241-8 10.
- Kolařík, M., Freeland, E., Utley, C., Tisserat, N., 2011. Geosmithia morbida sp. nov., a new phytopathogenic species living in symbiosis with the walnut twig beetle (Pityophthorus juglandis) on Juglans in USA. Mycologia 103, 325–332. https:// doi.org/10.3852/10-124.
- Kolařík, M., Hulcr, J., Tisserat, N., Beer, W.D., Kostovčík, M., Kolaříková, Z., Seybold, S.J., Rizzo, D.M., 2017. *Geosmithia* associated with bark beetles and woodborers in the western USA: taxonomic diversity and vector specificity. Mycologia 109, 185–199. https://doi.org/10.1080/00275514.2017.1303861.
- Kolařík, M., Jankowiak, R., 2013. Vector affinity and diversity of *Geosmithia* fungi living on subcortical insects inhabiting pinaceae species in central and northeastern Europe. Microb. Ecol. 66, 682–700. https://doi.org/10.1007/s00248-013-0228-x.
- Kolařík, M., Kirkendall, L.R., 2010. Evidence for a new lineage of primary ambrosia fungi in *Geosmithia* Pitt (Ascomycota: hypocreales). Fungal Biol 114, 676–689. https://doi.org/10.1016/j.funbio.2010.06.005.
- Kolařík, M., Kostovčík, M., Pažoutová, S., 2007. Host range and diversity of the genus Geosmithia (Ascomycota: hypocreales) living in association with bark beetles in the Mediterranean area. Mycol. Res. 111, 1298–1310. https://doi.org/10.1016/ j.mycres.2007.06.010.
- Kolařík, M., Kubátová, A., Hulcr, J., Pažoutová, S., 2008. Geosmithia fungi are highly diverse and consistent bark beetle associates: evidence from their community structure in temperate Europe. Microb. Ecol. 55, 65–80. https://doi.org/10.1007/ s00248-007-9251-0.
- Kolařík, M., Kubátová, A., Pažoutová, S., Šrûtka, P., 2004. Morphological and molecular characterisation of *Geosmithia putterillii, G. pallida* comb. nov. and *G. flava* sp. nov., associated with subcorticolous insects. Mycol. Res. 108, 1053–1069. https://doi.org/10.1017/S0953756204000796.
- Lin, Y.-T., Shih, H.-H., Huang, Y.-T., Lin, C.-S., Chen, C.-Y., 2016. Two species of beetleassociated Geosmithia in taiwan. Fungal Sci 31, 29–36.
- Linnakoski, R., Beer, Z.W. de, Duong, T.A., Niemelä, P., Pappinen, A., Wingfield, M.J., 2012. Grosmannia and Leptographium spp. associated with conifer-infesting bark beetles in Finland and Russia, including Leptographium taigense sp. nov. Antonie Leeuwenhoek 102, 375–399. https://doi.org/10.1007/s10482-012-9747-6.
- Lynch, S.C., Wang, D.H., Mayorquin, J.S., Rugman-Jones, P.F., Stouthamer, R., Eskalen, A., 2014. First report of *Geosmithia pallida* causing foamy bark canker, a new disease on coast live oak (*Quercus agrifolia*), in association with *Pseudopityophthorus pubipennis* in California. Plant Dis. 98 https://doi.org/10.1094/ PDIS-03-14-0273-PDN, 1276–1276.
- Lyr, H., 1962. Detoxification of heartwood toxins and chlorophenols by higher fungi. Nature 195, 289–290. https://doi.org/10.1038/195289a0.
- Machingambi, N.M., Roux, J., Dreyer, L.L., Roets, F., 2014. Bark and ambrosia beetles (Curculionidae: Scolytinae), their phoretic mites (Acari) and associated

Geosmithia species (Ascomycota: hypocreales) from Virgilia trees in South Africa. Fungal Biol 118, 472–483. https://doi.org/10.1016/j.funbio.2014.03.006.

- McPherson, B.A., Erbilgin, N., Bonello, P., Wood, D.L., 2013. Fungal species assemblages associated with *Phytophthora ramorum*-infected coast live oaks following bark and ambrosia beetle colonization in northern California. For. Ecol. Manag. 291, 30–42. https://doi.org/10.1016/j.foreco.2012.11.010.
- Montecchio, L., Fanchin, G., Simonato, M., Faccoli, M., 2014. First record of thousand cankers disease fungal pathogen *Geosmithia morbida* and walnut twig beetle *Pityophthorus juglandis* on *Juglans regia* in Europe. Plant Dis. 98 https://doi.org/ 10.1094/PDIS-07-14-0719-PDN, 1445–1445.
- Pitt, J.I., 1979. Geosmithia gen. nov. for Penicillium lavendulum and related species. Can. J. Bot. 57, 2021–2030. https://doi.org/10.1139/b79-252.
- Pitt, J.I., Hocking, A.D., 2012. Fungi and Food Spoilage. Springer Science + Business Media Press, New York, USA.
- Ralph, S.G., Yueh, H., Friedmann, M., Aeschliman, D., Zeznik, J.A., Nelson, C.C., Butterfield, Y.S.N., Kirkpatrick, R., Liu, J., Jones, S.J.M., Marra, M.A., Douglas, C.J., Ritland, K., Bohlmann, J., 2006. Conifer defence against insects: microarray gene expression profiling of Sitka spruce (*Picea sitchensis*) induced by mechanical wounding or feeding by spruce budworms (*Choristoneura occidentalis*) or white pine weevils (*Pissodes strobi*) reveals large-scale changes of the host transcriptome. Plant Cell Environ. 29, 1545–1570. https://doi.org/10.1111/j.1365-3040.2006.01532.x.
- Rehner, S.A., Buckley, E., 2005. A *Beauveria* phylogeny inferred from nuclear ITS and EF1- α sequences: evidence for cryptic diversification and links to *Cordyceps* teleomorphs. Mycologia 97, 84–98.
- Revell Liam, J., 2011. phytools: an R package for phylogenetic comparative biology (and other things). Methods Ecol. Evol. 3, 217–223. https://doi.org/10.1111/ i.2041-210X.2011.00169.x.
- Ronquist, F., Teslenko, M., van der Mark, P., Ayres, D.L., Darling, A., Höhna, S., Larget, B., Liu, L., Suchard, M.A., Huelsenbeck, J.P., 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference and model choice across a large model space. Syst. Biol. 61, 539–542. https://doi.org/10.1093/sysbio/sys029.
- Sitz, R.A., Luna, E.K., Caballero, J.I., Tisserat, N.A., Cranshaw, W.S., Stewart, J.E., 2016. Virulence of genetically distinct *Geosmithia morbida* isolates to black walnut and their response to coinoculation with *Fusarium solani*. Plant Dis. 101, 116–120. https://doi.org/10.1094/PDIS-04-16-0535-RE.
- Six, D., Bentz, B., 2007. Temperature determines symbiont abundance in a multipartite bark beetle-fungus ectosymbiosis. Microb. Ecol. 54, 112–118.
- Six, D.L., Wingfield, M.J., 2011. The role of phytopathogenicity in bark beetle-fungus symbioses: a challenge to the classic paradigm. Annu. Rev. Entomol. 56, 255–272. https://doi.org/10.1146/annurev-ento-120709-144839.

- Stamatakis, A., 2014. RAxML version 8: a tool for phylogenetic analysis and postanalysis of large phylogenies. Bioinformatics 30, 1312–1313. https://doi.org/ 10.1093/bioinformatics/btu033.
- Stodůlková, E., Kolařík, M., Křesinová, Z., Kuzma, M., Šulc, M., Man, P., Novák, P., Maršík, P., Landa, P., Olšovská, J., Chudíčková, M., Pažoutová, S., Černý, J., Bella, J., Flieger, M., 2009. Hydroxylated anthraquinones produced by *Geosmithia* species. Folia Microbiol. 54, 179–187. https://doi.org/10.1007/s12223-009-0028-3.
- Stöver, B.C., Müller, K.F., 2010. TreeGraph 2: combining and visualizing evidence from different phylogenetic analyses. BMC Bioinf. 11, 7. https://doi.org/10.1186/ 1471-2105-11-7.
- Tisserat, N., Cranshaw, W., Leatherman, D., Utley, C., Alexander, K., 2009. Black walnut mortality in Colorado caused by the walnut twig beetle and thousand cankers disease. Plant Health Prog. https://doi.org/10.1094/PHP-2009-0811-01-RS.
- Tsuneda, I., Kennedy, L.L., 1980. Basidiospore germination and substrate preference in Fomes fomentarius and Fomitopsis cajanderi. Mycologia 72, 204–208. https:// doi.org/10.2307/3759435.
- Utley, C., Nguyen, T., Roubtsova, T., Coggeshall, M., Ford, T.M., Grauke, L.J., Graves, A.D., Leslie, C.A., McKenna, J., Woeste, K., Yaghmour, M.A., Seybold, S.J., Bostock, R.M., Tisserat, N., 2013. Susceptibility of walnut and hickory species to *Geosmithia morbida*. Plant Dis. 97, 601–607. https://doi.org/10.1094/PDIS-07-12-0636-RE.
- Wang, Y., Naumann, U., Wright, S.T., Warton, D.I., 2012. mvabund an R package for model-based analysis of multivariate abundance data. Methods Ecol. Evol. 3, 471–474. https://doi.org/10.1111/j.2041-210X.2012.00190.x.
- White, T.J., Bruns, T., Lee, S., Taylor, J., 1990. Amplification and direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J., White, T.J. (Eds.), PCR Protocols: A Guide to the Methods and Applications. Academic Press, New York, NY.
- Wood, S.L., 2007. Bark and Ambrosia Beetles of South America (Coleoptera, Scolytidae). Monte L. Bean Life Science Museum Brigham Young University Provo, Utah.
- Zerillo, M.M., Caballero, J.I., Woeste, K., Graves, A.D., Hartel, C., Pscheidt, J.W., Tonos, J., Broders, K., Cranshaw, W., Seybold, S.J., Tisserat, N., 2014. Population structure of *Geosmithia morbida*, the causal agent of Thousand Cankers Disease of walnut trees in the United States. PLoS One 9, e112847. https://doi.org/ 10.1371/journal.pone.0112847.
- Zulak, K.G., Bohlmann, J., 2010. Terpenoid biosynthesis and specialized vascular cells of conifer defense. J. Integr. Plant Biol. 52, 86–97. https://doi.org/10.1111/ j.1744-7909.2010.00910.x.