When Sparsity Meets Low-Rankness: Transform Learning With Non-Local Low-Rank Constraint For Image Restoration

Bihan Wen, Yanjun Li and Yoram Bresler

Department of Electrical and Computer Engineering Coordinated Science Laborarory University of Illinois at Urbana-Champaign

March 9, 2017

(B)

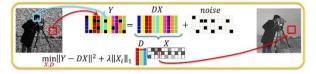
- Local sparsity v.s Non-local low-rankness
- **STROLLR** Sparsifying TRansfOrm Learning and Low-Rank model
- STROLLR Image Restoration: formulation & algorihms
- Applications in image denoising and inpainting.

A B > A B >

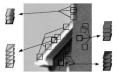
Local and Non-Local Image Properties

Image Properties: to differentiate Signal from corruptions.

- 1. Local properties Sparsity
 - Natural patches are sparsifiable.
 - Synthesis model
 - Analysis model
 - => Transform model



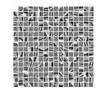
- 2. Non-local properties Low-rankness
 - Image contains "similar" patches.
 - Group & process
 - Low-rank approximation



STROLLR

Sparse Coding

Transform Learning



Non-local Low-Rankness

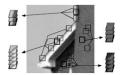
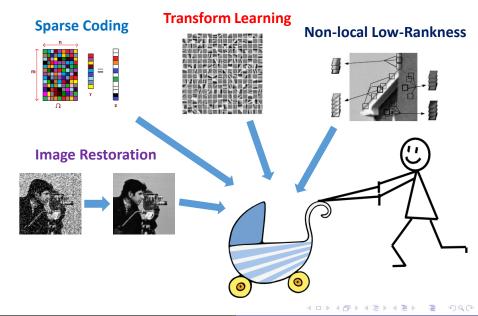


Image Restoration

STROLLR

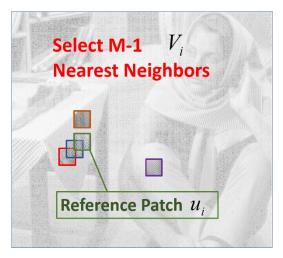


B. Wen et al

Example: Barbara

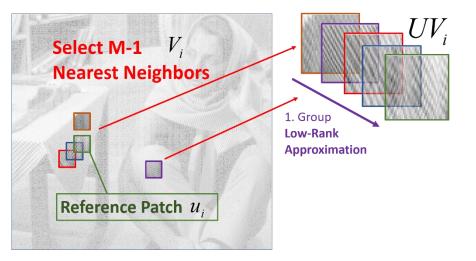
STROLLR Learning and Restoration

《注》《注》:



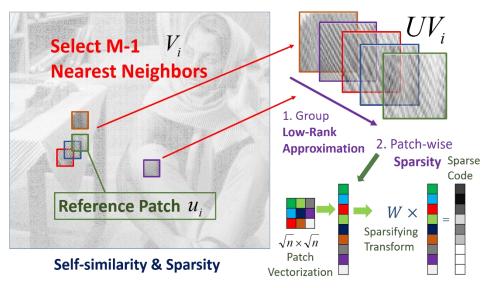
Example: Barbara

B. Wen et al. STROLLR Learning and Restoration



Example: Barbara

ヨト イヨト

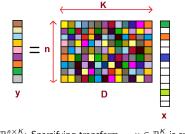


Example: Barbara

4 = > < = >

Sparse Model: Synthesis Model

- Synthesis Model (SM): Given synthesis dictionary $D \in \mathbb{R}^{n \times K}$, a signal $y \in \mathbb{R}^n$ satisfies y = Dx, with sparse x, i.e., $||x||_0 \ll n$.
 - General **SM**: y = Dx + e, where e is a small deviation term.



 $D \in \mathbb{R}^{n imes K}$: Sparsifying transform $x \in \mathbb{R}^{K}$ is sparse

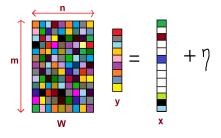
- Dictionary Learning: popular sparse signal modeling approach.
- Sparse coding in SM is NP-hard!
 - Approximate methods: Greedy algorithms / *l*₁ norm relaxation.
 - Not efficient enough.

A B > A B >

э

Sparse Model: Transform Model

- Transform Model generalization of analysis model.
- Given transform $W \in \mathbb{R}^{m \times n}$, signal $y \in \mathbb{R}^n$ satisfies $Wy = x + \eta$, with $||x||_0 \ll m$, and a small deviation η in the transform domain.



 $W \in \mathbb{R}^{m \times n}$: Sparsifying transform $x \in \mathbb{R}^m$ is sparse

• Transform sparse coding:

 $\hat{x} = \arg \min_{x} \|Wy - x\|_{2}^{2} \ s.t. \ \|x\|_{0} \le s.$

- Exact and cheap solution: $\hat{x} = H_s(Wy)$ computed by thresholding Wy to the *s* largest magnitude elements (projection onto ℓ_0 ball).
 - A least squares signal estimate: $\hat{y} = W^{\dagger} \hat{x}$.

(P1)
$$\min_{\{W,X,\{D_i\}\}} \|W U - X\|_F^2 + \gamma_s^2 \|X\|_0 + \gamma_I \sum_{i=1}^N \left\{ \|U V_i - D_i\|_F^2 + \theta^2 \operatorname{rank}(D_i) \right\} \quad s.t. \quad W^T W = I_n$$

- $U = [u_1 | u_2 | \dots | u_N] \in \mathbb{R}^{n \times N}$: matrix of image patch vectors.
- $X = [x_1 | x_2 | \dots | x_N] \in \mathbb{R}^{n \times N}$: matrix of sparse codes of u_i 's.
- *UV_i* ∈ ℝ^{n×M} : matrix of patch-vectors via block matching (BM) with reference patch u_i.
- $D_i \in \mathbb{R}^{n \times M}$: the low-rank approximation of UV_i .
- STROLLR Modeling:
 - Local patch sparsity \implies Sparse coding for U with adaptive W.
 - Non-local low-rankness \implies Low-rank approximation of UV_i .

STROLLR Restoration

(P2)
$$\min_{\{W,X,\{D_i\},U\}} \|W U - X\|_F^2 + \gamma_s^2 \|X\|_0 + \gamma_f \sum_{i=1}^N \left\{ \|A_i u_i - y_i\|_2^2 \right\} + \gamma_l \sum_{i=1}^N \left\{ \|U V_i - D_i\|_F^2 + \theta^2 \operatorname{rank}(D_i) \right\} \quad s.t. \ W^T W = I_n$$

• Corrupted measurement
$$y_i = A_i u_i + h_i$$

- $h_i \in \mathbb{R}^n$: additive noise, and $A_i \in \mathbb{R}^{n \times n}$: corruption operator.
- $U = [u_1 | u_2 | \dots | u_N] \in \mathbb{R}^{n \times N}$, where u_i is *i*-th overlapping image patch.
- $UV_i \in \mathbb{R}^{n \times M}$: block matching within $Q \times Q$ search window, centered at u_i .
- Simple algorithm via Block Coordinate Descent:
 - Exact and closed-form solution within each step.

STROLLR Algorithm

STROLLR Image Restoration Algorithm Framework **Input:** The corrupted image Y, the initial transform W_0 . **Initialize:** $\hat{W}_0 = W_0$, $\hat{U}_0 = [R_1Y \mid R_2Y \mid ... \mid R_NY]$. **For** t = 1, 2, ..., T **Repeat**

1. **Sparse Coding:** $\hat{X}_t = H_{\gamma_s}(\hat{W}_{t-1}\hat{U}_{t-1}).$

Four Major Steps:

- 1. Sparse Coding
- 2. Transform Update
- 3. Low-rank Approximation
- 4. Patch Restoration

2. Transform Update: Compute $S_t \Sigma_t G_t^T =$ SVD $(\hat{U}_{t-1} \hat{X}_t^T)$ as the full SVD, then update $\hat{W}_t = G_t S_t^T$.

- 3. Low-rank Approximation for all i = 1, ...N:
 - (a) Form $\{U_{t-1}V_i\}$ using BM.
 - (b) Compute SVD $\Phi_t \Omega_t \Psi_t^T = \text{SVD}(U_{t-1} V_i).$
 - (c) Update $\hat{D}_{i,t} = \Phi_t H_\theta(\Omega_t) \Psi_t^T$.
- 4. Patch Restoration: Restore the patch with closed-form solution for denoising or inpainting, to update \hat{U}_t

伊トイモトイモト ヨークへつ

End

Aggregate $\{\hat{u}_i\}_{i=1}^N$ to restore the image

STROLLR Algorithm

$$\hat{X} = \underset{X}{\operatorname{argmin}} \|W U - X\|_{F}^{2} + \gamma_{s}^{2} \|X\|_{0}$$
(1)

Step 1: Sparse Coding: update X with fixed W.

• Standard transform-domain sparse coding:

Cheap hard thresholding: $\hat{X} = H_{\gamma_s}(W U)$.

$$\hat{W} = \underset{W}{\operatorname{argmin}} \|W U - X\|_{F}^{2} \quad s.t. \quad W^{T} W = I_{n}$$
(2)

Step 2: Transform Update: update W with fixed X.

• Singular Value Decomposition: $S\Sigma G^T = UX^T$

Exact transform update: $\hat{W} = GS^T$.

白マ くほう くほう

STROLLR Algorithm

$$\hat{D}_i = \underset{D_i}{\operatorname{argmin}} \| U V_i - D_i \|_F^2 + \theta^2 \operatorname{rank}(D_i)$$
(3)

Step 3: Low-Rank Approximation: solve for $D_i \forall i$:

- Block matching to form UV_i .
- Apply SVD: $\Phi \Omega \Psi^T = U V_i$:

Low-rank Approximation: $\hat{D}_i = \Phi H_{\theta}(\Omega) \Psi^T$.

$$\hat{u}_{i} = \underset{u_{i}}{\operatorname{argmin}} \|W u_{i} - x_{i}\|_{2}^{2} + \gamma_{f} \|A_{i} u_{i} - y_{i}\|_{2}^{2} + \gamma_{I} \sum_{j \in C_{i}} \|u_{i} - D_{j,i}\|_{2}^{2}$$
(4)

Step 4: Patch Reconstruction: solve for u_i , with fixed W, X, and $\{D_i\}$.

Different restoration problems apply different A_i.

• • = • • = •

$$\hat{u}_{i} = \{ (1 + |C_{i}|\gamma_{l})I_{n} + \gamma_{f}A_{i} \}^{-1} (W^{T}x_{i} + \gamma_{l}\sum_{j \in C_{i}}D_{j,i} + \gamma_{f}A_{i}y_{i})$$
(5)

Inpainting: A_i is diagonal binary matrix $\forall i$.

• Least squares solution to (4), with cheap inversion of diagonal matrix.

$$\hat{u}_{i} = \underset{u_{i}}{\operatorname{argmin}} \|W u_{i} - x_{i}\|_{2}^{2} + \gamma_{f} \|u_{i} - y_{i}\|_{2}^{2} + \gamma_{I} \sum_{i \in C_{i}} \|u_{i} - D_{j,i}\|_{2}^{2}$$
(6)

Denoising: special case when $A_i = I \ \forall i$.

• Simple solution as weighted average:

$$\hat{u}_i = (W^T x_i + \gamma_f y_i + \gamma_l \sum_{j \in C_i} D_{j,i}) / (1 + \gamma_f + |C_i|\gamma_l).$$

白マ・キョン・キャン

Application: Inpainting

Example:

Image Face

Corrupted measurement with 90% pixels missing

Inpainted image using STORLLR PSNR = 28.1 dB

Testing
Images
(size)

Airport Baboon 1024^{2} 512^{2}

 276^{2}

 512^{2}

 512^{2}

4 = >

 512^{2}

3 ×

Plane 1024^{2}

B. Wen et al

STROLLR Learning and Restoration

Application: Inpainting

- Inpainting results:
- Random pixel removal
- Additive Gaussian noise
- PSNR (dB)

Available pixels	σ	Smooth	LR	TL	STROLLR
20%	5	28.9	29.0	29.2	29.3
	10	27.4	28.2	28.2	28.3
	15	26.9	27.3	27.3	27.4
	20	25.5	26.5	26.2	26.5
10%	5	26.9	26.9	27.0	27.1
	10	26.0	26.3	26.3	26.5
	15	24.8	25.5	25.4	25.6
	20	23.7	24.7	24.5	24.9
Average		26.3	26.8	26.8	27.0

B. Wen et al

STROLLR Learning and Restoration

Denoising PSNR table:

Images	σ	KSVD	LR	TL	BM3D	STROLLR
	5	38.1	38.4	38.1	38.3	38.5
Barbara	10	34.4	35.0	34.3	35.0	35.1
	15	32.3	33.1	32.1	33.1	33.2
	20	30.8	31.8	30.5	31.7	31.9
	5	37.3	37.2	37.2	36.7	37.4
Elaine	10	34.0	34.1	33.7	33.3	34.2
	15	32.3	32.5	32.1	32.2	32.6
	20	31.4	31.6	31.2	31.5	31.7
Average						
over 10 testing		32.9	33.0	32.8	33.1	33.2
images						

Testing Images (size)

 276^{2}

 512^{2}

Plane 1024²

 512^{2}

- Prior works on local and non-local image structures
- Sparsifying TRansfOrm Learning and Low-Rank (STROLLR) combines both local sparsity and non-local structure in a single variational formulation.
- STROLLR modeling and restoration with efficient algorithms.
- Applications: Image Denoisng, inpainting, etc.

A B > A B >

Thank you! Questions??

• • = • • = •

э