Radiative and non-radiative transitions

Radiative

bound—bound

absorption

spontaneous emission

stimulated emission

bound—free: photoionization

free—bound: radiative recombination

fluorescence / Auger effect

Collisional

excitation

deexcitation

collisional ionization/recombination

Reminder – energy levels

Hydrogen

Radiative transitions

Bound – bound transitions: Einstein coefficients

1. Spontaneous emission

 A_{ul} = transition probability per unit time for spontaneous emission (sec⁻¹)

2. Absorption

$$B_{\text{lu}}J$$
 = transition probability per unit time for absorption $\bar{J} \equiv \int_{0}^{\infty} J_{\nu} \phi(\nu) d\nu$; $\int_{0}^{\infty} \phi(\nu) d\nu = 1$ - line profile

3. Stimulated emission

 $B_{...}J$ = transition probability per unit time for stimulated emission

Relations between Einstein coefficients:

tions between Einstein coefficients:
$$g_{l}B_{lu} = g_{u}B_{ul} \qquad \text{(transitions between levels 1 and 2 have to balance)}$$

$$A_{ul} = \frac{2hv^{3}}{c^{2}}B_{ul} \qquad g_{l}, g_{u} - \text{statistical weights of the levels involved,}$$

$$e.g., g = 2J + 1$$

Einstein coefficients

Quantum mechanical calculations of transition probabilities

$$w_{if} = \frac{4\pi^2 e^2}{m^2 c} \frac{J(\omega_{if})}{\omega_{if}^2} \left| \left\langle f \left| \exp(i \, \mathbf{k} \cdot \mathbf{r}) \, \mathbf{l} \cdot \sum \nabla_j \right| i \right\rangle \right|^2 \quad \text{probability of transition}$$

$$\exp(i\mathbf{k}\cdot\mathbf{r}) = 1 + i\mathbf{k}\cdot\mathbf{r} + \frac{1}{2}(i\mathbf{k}\cdot\mathbf{r})^2 + \cdots$$

$$\exp(i \mathbf{k} \cdot \mathbf{r}) \approx 1 \Rightarrow$$
 dipole transition;

higher orders: electric quadrupole, magnetic dipole, etc ...

in the dipole approximation:

$$\langle w_{if} \rangle = \frac{1}{2} B_{if} J(\omega_{if}) = \frac{4\pi^2}{3 c \hbar^2} |d_{if}^2| J(\omega_{if}) \qquad |d_{if}^2| = |(d_x)_{if}|^2 + |(d_y)_{if}|^2 + |(d_z)_{if}|^2 \qquad d \equiv e \sum_j \mathbf{r}_j - \text{dipole operator}$$
 hence
$$|(d_x)_{if}|^2 = |\langle f|e|x|i\rangle|^2$$

$$B_{ul} = \frac{8\pi^2 |d_{ul}|^2}{3 c \hbar^2} \qquad A_{ul} = \frac{64\pi^4 v^3}{3 h c^3} |d_{ul}|^2$$

For degenerate states:

$$A_{ul} = \frac{64 \pi^4 v_{ul}^3}{3 h c^3} \frac{1}{g_u} \sum |d_{ul}|^2$$
 where the sum is over all substates of the lower and upper levels

Oscillator strength

Absorption

classically:

$$\sigma_{tot} = \frac{\pi e^{2}}{mc} = B_{lu}^{classic} \frac{h v_{lu}}{4\pi}$$

$$B_{lu} = \frac{4\pi^{2} e^{2}}{h v_{ul} m c} f_{lu}$$

$$F_{lu}^{classic} = \frac{4\pi^{2} e^{2}}{h v_{lu} m c}$$

$$f_{lu} = \frac{2m}{3\hbar^{2} g_{l} e^{2}} (E_{u} - E_{l}) \sum |d_{lu}|^{2}$$

f – oscillator strength – quantum correction to the classical value of B

Emission

$$B_{ul} = \frac{4\pi^2 e^2}{h v_{lu} m c} f_{ul} \qquad \Rightarrow \qquad g_l f_{lu} = g_u f_{ul}$$

Oscillator strength for emission are negative

$$g_{u}A_{ul} = -\frac{8\pi^{2}e^{2}v_{ul}^{2}}{mc^{3}}g_{u}f_{ul} = \frac{8\pi^{2}e^{2}v_{ul}^{2}}{mc^{3}}g_{l}f_{lu}$$

Natural line width

Energy levels are somewhat broadened as a result of of Heisenberg's "uncertainty principle". Finite life-time of a level means some spread in energy,

Level lifetime.

$$\Delta t \sim 1/A_{21} \equiv 1/\gamma$$
 $\Delta E \Delta t \sim \hbar$

transition,

$$E(t) \sim \sin(2\pi v_0 t + \phi_0) e^{-\gamma t/2}$$

hence profile in frequency space (Fourier transform)

$$\phi(v) = \frac{\gamma/4\pi^2}{(v - v_0)^2 + (\gamma/4\pi)^2}$$

Long-lived levels give very narrow lines (e.g. H 21 cm line)

Radiative transitions

Permitted (allowed) transitions: dipole matrix element does not vanish

Semi-forbidden transitions: dipole transitions but with a change of spin

Forbidden transitions: dipole matrix element vanishes (may be possible at higher orders)

Selection rules

 $Electric\ dipole\ (E1)\ Magnetic\ dipole\ (M1)\ Electric\ quadrupole\ (E2)$

Selection rules for discrete transitions

 $\exp(i\,\boldsymbol{k}\cdot\boldsymbol{r})=1+i\,\boldsymbol{k}\cdot\boldsymbol{r}+\cdots$

		("allowed")	("forbidden")	("forbidden")
Rigorous rules	1.	$\Delta J = 0, \pm 1$ (except $0 \leftrightarrow 0$)	$\Delta J = 0, \pm 1$ (except $0 \leftrightarrow 0$)	$\Delta J = 0, \pm 1, \pm 2$ (except $0 \leftrightarrow 0$, $1/2 \leftrightarrow 1/2, 0 \leftrightarrow 1$)
	2.	$\Delta M = 0, \pm 1$ (except $0 \leftrightarrow 0$ when $\Delta J = 0$)	$\triangle M = 0, \pm 1$ (except $0 \leftrightarrow 0$ when $\triangle J = 0$)	$\Delta M = 0, \pm 1, \pm 2$
	3.	Parity change	No parity change	No parity change
With negligible configuration interaction	4.	One electron jumping, with $\Delta l = \pm 1$, Δn arbitrary	configuration; i.e., for	<i>No</i> change in electron configuration; <i>or</i> one electron jumping with $\Delta l = 0, \pm 2, \Delta n$ arbitrary
For LS coupling only	5.	$\Delta S = 0$	$\Delta S = 0$	$\Delta S = 0$
, e -7	6.	$\Delta L = 0, \pm 1$ (except $0 \leftrightarrow 0$)	$\Delta L = 0$ $\Delta J = \pm 1$	$\Delta L = 0, \pm 1, \pm 2$ (except $0 \leftrightarrow 0, 0 \leftrightarrow 1$)

Transitions with spin "flip"

Intercombination (semi-forbidden) lines

Grotrian diagram

CIII] 1909 Å, 6.50 eV $(2s2p\rightarrow 2s^2)$

The first few CIII Energy Levels

Energy (eV)	Configuration	J	L	S	Notes
0.0	$1s^2 2s^2 {}^1S_0$	0	0	0	ground-state
6.492690	1s ² 2s (² S ₀) 2p ³ P ⁰ 0	0	1	1	transition to ground completely forbidden (since J=0<->0 transition not allowed)
6.495627	1s ² 2s (² S ₀) 2p ³ P ^o ₁	1	1	1	transition to ground semi-forbidden Electric Dipole (E1) (since Delta-S=0)
6.502615	1s ² 2s (² S ₀) 2p ³ P° ₂	2	1	1	transition to ground "forbidden" Magnetic Ouadrupole (M2)
12.69004	1s ² 2s (² S ₀) 2p	1	1	1	transition to ground allowed electric-dipole (E1)

The He-like ions line triplet

Ground state: 1s² ¹S₀

1s2p $^{1}P_{1}$ – permitted (resonance) line ($\Delta L=1$, $\Delta S=0$, $\Delta J=1$)

1s2p $^{3}P_{_{1}}$ – intercombination ($\Delta L=1, \Delta S=1, \Delta J=1$)

1s2s ${}^{3}S_{1}$ – forbidden (magnetic dipole) ($\Delta L=0$, $\Delta S=1$, $\Delta J=1$)

1s2p $^{3}P_{2}$ – magnetic quadrupole (Δ L=1, Δ S=1, Δ J=2)

 ${}^{3}S {}^{3}P^{o} {}^{3}D {}^{1}S {}^{1}P^{o} {}^{1}D$

Forbidden lines

Example: [OIII] 5007 Å line

configuration: $2s^2 2p^2 \leftrightarrow 2s^2 2p^2$

line components:

4931 Å
$${}^{3}P_{0} - {}^{1}D_{2}$$
, E2 $\Delta L = 1, \Delta S = 1, \Delta J = 2$
4959 Å ${}^{3}P_{1} - {}^{1}D_{2}$, M1, E2 $\Delta L = 1, \Delta S = 1, \Delta J = 1$
5007 Å, ${}^{3}P_{2} - {}^{1}D_{2}$, M1, E2 $\Delta L = 1, \Delta S = 1, \Delta J = 0$

Strictly forbidden transitions

Matrix element vanishes to all perturbational orders.

Example: Ly α radiative decay of hydrogen: 2s to 1s – two spherically symmetric wave functions.

Possibilities:

```
collisional shifting 2s \rightarrow 2p, then 2p \rightarrow 1s. A = 6.2 \times 10^8 s<sup>-1</sup> two-photon process: v + v' = v_{21} A = 8.2 s<sup>-1</sup> 2-photon dominates if n < 10^4 cm<sup>-3</sup>.
```

Transition rates: bound – bound, hydrogen

A simple case: Hydrogen

$$h v = Ry(n^{-2} - n'^{-2})$$
 $Ry = \frac{e^2}{(2a_0)} = 13.6 \, eV$

Bound-bound transitions

Lyman-
$$\alpha$$
 transition: $g f = \frac{2^{14}}{3^9} = 0.83$ $A_{21} = 5 \times 10^8 \,\text{s}^{-1}$

other Lyman series:
$$g_1 f_{1n} = \frac{2^9 n^5 (n-1)^{2n-4}}{3(n+1)^{2n+4}}$$
; $n \gg 1 \implies g_1 f_{1n} \sim \frac{1}{n^3}$

Absorption:
$$B_{12} = 8.3 A_{21} = 4.2 \times 10^9 s^{-1}$$

Absorption cross section (at the line center, assuming the natural line width only):

$$\sigma_{v} = B_{12} \frac{h v}{4 \pi} \phi(v) \approx 10^{-11} cm^{2}$$

Transition rates: bound – bound

Number of absorptions:

$$n_i R_{ij} = n_i B_{ij} \int \phi_{\nu} J_{\nu} d\nu \equiv n_i B_{ij} \overline{J}_{ij} = n_i 4\pi \alpha_{ij} \frac{\overline{J}_{ij}}{h\nu} = n_i 4\pi \int \alpha_{ij} (\nu) \frac{J_{\nu}}{h\nu} d\nu \qquad \alpha_{ij} \equiv \sigma_{\nu}$$

Number of stimulated emissions:

$$n_{j}B_{ji}\int \phi_{\nu}J_{\nu}d\nu = n_{j}B_{ji}\bar{J}_{ij} = n_{j}\frac{g_{i}}{g_{j}}B_{ij}\bar{J}_{ij} = n_{j}4\pi\frac{g_{i}}{g_{j}}\alpha_{ij}\frac{J_{ij}}{h\nu}$$

Number of spontaneous emissions:

$$n_{j} A_{ji} \int \phi_{\nu} d\nu = n_{j} \frac{2h v_{ij}^{3}}{c^{2}} B_{ji} = n_{j} \frac{2h v_{ij}^{3}}{c^{2}} 4\pi \frac{g_{i}}{g_{j}} \frac{\alpha_{ij}}{4\pi}$$

Transition rates: bound – free

Bound-free transitions (photoionization)

Final energy of the electron: $E_f = \hbar \omega - \chi$

Cross section: $\sigma_{bf} \approx \frac{(2\alpha)^{9/2} \pi Z^5 c^{7/2}}{3a_0^{3/2} \omega^{7/2}} \qquad \hbar \omega \gg \chi$

more accurate form: Gaunt factor ≈ 1

$$\sigma_{bf} = \frac{512\pi^{7} m e^{10} Z^{4}}{3\sqrt{3} c h^{6} n^{5}} \frac{g(\omega, n, l, Z)}{\omega^{3}}$$

for 12S level of H-like ions (Osterbrock 1989):

$$\sigma_{bf} = \frac{A_0}{Z^2} \left(\frac{v_1}{v}\right)^4 \frac{\exp\left(4 - \frac{4\arctan\epsilon}{\epsilon}\right)}{1 - \exp(-2\pi/\epsilon)}, \quad v \ge v_1 \quad \epsilon = \sqrt{\frac{v}{v_1} - 1}$$

$$A_0 = \frac{2^8 \pi}{3 e^4} \left(\frac{1}{137.0}\right) \pi a_0^2 = 6.30 \times 10^{-18} cm^2 \quad h v_1 = Z^2 h v_0 = 13.6 Z^2 eV$$

Number of photoionizations: $n_i R_{ik} = n_i 4\pi \int_{v_0}^{\infty} \alpha_{ik}(v) \frac{J_v}{hv} dv$

Transition rates

Radiative recombination – the inverse process to photoionization

Number of recombinations (spontaneous + stimulated), obtained from the principle of *detailed balance*: i – atom

$$n_{k}\left(R'_{ki,spon}+R'_{ki,stim}\right) \equiv n_{k}\left(\frac{\overline{n_{i}}}{n_{k}}\right)R_{ki}=n_{k}\left(\frac{\overline{n_{i}}}{n_{k}}\right)4\pi\int_{v_{0}}^{\infty}\frac{\alpha_{ik}(v)}{hv}\left(\frac{2hv^{3}}{c^{2}}+\overline{J}\right)e^{-hv/kT}dv \qquad \overline{J}\equiv\int_{0}^{\infty}\phi_{v}J_{v}dv$$

sometimes used: recombination coefficient:

$$n_k (R'_{ki,spon} + R'_{ki,stim}) \equiv n_k n_e \alpha_{RR}(T)$$

Collisional rates: excitation/deexcitation, ionization/three body recombination

Upward rate i - j, where j is a bound or free state:

$$n_i C_{ij} = n_i n_e \int_{v_0}^{\infty} \sigma_{ij}(v) f(v) v dv \equiv n_i n_e q_{ij}(T)$$
 $\frac{1}{2} m_e v_0^2 = E_0$ - threshold for the ionization

Downward rates:

in equilibrium:
$$\overline{n_i}C_{ij} = \overline{n_j}C_{ji}$$
 hence: $n_jC_{ji} = n_j\overline{(n_i/n_j)}C_{ij} = n_j\overline{(n_i/n_j)}n_eq_{ij}(T)$

Collisional transitions

Autoionization

Doubly excited states - two electrons in excited levels – may have energy higher than the ionization potential of the ion in ground state. Then *autoionization* energetically favorable. One electron leaves the ion, the other returns to the ground state.

Dielectronic recombination

An ion collides with with an energetic electron: doubly excited state may form. This may autoionize, or a radiative downward transition can take place, leaving a bound atom with a single excited electron.

He⁰(1s²) +
$$e \rightarrow \text{He}^{-}(1s \ 2p^{2})$$

He⁻(1s 2p²) $\rightarrow \text{He}^{0}(1s^{2} \ 2p) + h_{0}$ (satellite line)
He⁻(1s² 2p) $\rightarrow \text{He}^{0}(1s^{2} \ 2s) + h_{0}$

Fluorescence/Auger effect

An electron is removed from an inner (e.g., K) shell and a highly excited ion is formed. This may decay with the emission of a **fluorescent** line (e.g. Kα line). *Or*, the excitation energy may be used to eject a number of electrons (Auger process).

The Auger Process