

Recall - Inexpressibility Proofs

- How can one prove that a property P is inexpressible in a logic L on a class C of structures?
 - To prove that *P* is expressible, one needs to find a formula of *L* that defines *P* on *C*.
 - To prove that *P* is not expressible, one has to show no formula of *L* that defines *P* on *C*.
- Common techniques used for inexpressibility proofs in first-order logic:
 - Compactness theorem
 - \hookrightarrow fails over finite structures.
 - Ehrenfeucht-Fraïssé games
 - \hookrightarrow used as a central tool on classes of finite structures.

Elementary Equivalence and Isomorphism

- Elementary equivalence, formulated by Alfred Tarski, is an important model-theoretic notion.
- Two models 𝔅 and 𝔅 over the same vocabulary are elementarily equivalent if, for every first-order sentence φ, 𝔅 ⊨ φ iff 𝔅 ⊨ φ.

That is, if two models are elementarily equivalent, then they cannot be distinguished by any first-order sentence.

- The notion of elementary equivalence is important to establishing inexpressibility results.
 - First, prove that two models are elementarily equivalent.
 - Then, show that a property *P* that can distinguish the two models.
 - Thus, the property *P* is not definable.

ogic summer school

ogic summer school

Elementary Equivalence and Isomorphism

- Two models \mathfrak{A} and \mathfrak{B} over the same vocabulary are **isomorphic** if there is a bijective mapping $h: A \to B$ preserving relations and constants.
- In general, two isomorphic models must be elementarily equivalent, but two elementarily equivalent models are not necessarily isomorphic.

Elementary Equivalence and Isomorphism

- Two models \mathfrak{A} and \mathfrak{B} over the same vocabulary are **isomorphic** if there is a bijective mapping $h: A \to B$ preserving relations and constants.
- In general, two isomorphic models must be elementarily equivalent, but two elementarily equivalent models are not necessarily isomorphic.
- In the case of finite structures, elementary equivalence is however uninteresting. Finite structures can be characterized up to isomorphism by single FO sentence.

elementary equivalence \Leftrightarrow isomorphism

Elementary Equivalence and Isomorphism

• Theorem

ogic summer school

For every finite structure \mathfrak{A} , there is a first-order sentence φ such that $\mathfrak{B} \models \varphi$ iff an arbitrary structure \mathfrak{B} is isomorphic to \mathfrak{A} .

Proof

- Assume w.l.o.g. that \mathfrak{A} is a graph (V, E) where $V = \{a_1, \ldots, a_n\}$.
- Define φ as

$$\exists x_1 \dots \exists x_n ((\bigwedge_{i \neq j} \neg (x_i = x_j))) \land (\forall y \bigvee y = x_i) \land (\bigwedge_{(a_i, a_j) \in E} E(x_i, x_j)) \land (\bigwedge_{(a_i, a_i) \notin E} \neg E(x_i, x_j)))$$

• We have $\mathfrak{A} \models \varphi$. If $\mathfrak{B} \models \varphi$, then \mathfrak{B} is isomorphic to \mathfrak{A} .

Methodology for Inexpressibility Proofs

- Thus, for finite structures, the notion of elementary equivalence is too strong to establishing inexpressibility results.
- One way to solve this is to weaken the relation of elementary equivalence by stratifying formulas in a logic.

ogic summer school

Methodology for Inexpressibility Proofs

- To prove that a property *P* is not expressible in a logic *L* over finite structures, we can do the following:
 - Partition the set of all formulas of *L* into countably many classes, i.e., *L*[0], *L*[1],..., *L*[*k*],...;
 - Find two families of structures $\{\mathfrak{A}_k | k \in \mathbb{N}\}$ and $\{\mathfrak{B}_k | k \in \mathbb{N}\}$ such that
 - **1** $\mathfrak{A}_k \models \varphi$ iff $\mathfrak{B}_k \models \varphi$ for every sentence φ in L[k]; and
 - 2 \mathfrak{A}_k has property *P*, but \mathfrak{B}_k does not.

Methodology for Inexpressibility Proofs

- To prove that a property *P* is not expressible in a logic *L* over finite structures, we can do the following:
 - Partition the set of all formulas of *L* into countably many classes, i.e., *L*[0], *L*[1],..., *L*[*k*],...;
 - Find two families of structures $\{\mathfrak{A}_k | k \in \mathbb{N}\}$ and $\{\mathfrak{B}_k | k \in \mathbb{N}\}$ such that
 - **1** $\mathfrak{A}_k \models \varphi$ iff $\mathfrak{B}_k \models \varphi$ for every sentence φ in L[k]; and
 - 2 \mathfrak{A}_k has property *P*, but \mathfrak{B}_k does not.
- But...

ogic summer school

- How to partition FO into such classes?
- How to show that two families of structures agree on classes of FO?

Methodology for Inexpressibility Proofs

- To prove that a property *P* is not expressible in a logic *L* over finite structures, we can do the following:
 - Partition the set of all formulas of *L* into countably many classes, i.e., *L*[0], *L*[1],..., *L*[*k*],...;
 - Find two families of structures $\{\mathfrak{A}_k | k \in \mathbb{N}\}$ and $\{\mathfrak{B}_k | k \in \mathbb{N}\}$ such that
 - **1** $\mathfrak{A}_k \models \varphi$ iff $\mathfrak{B}_k \models \varphi$ for every sentence φ in L[k]; and
 - 2 \mathfrak{A}_k has property *P*, but \mathfrak{B}_k does not.

But...

ogic summer school

- How to partition FO into such classes?
 - $\hookrightarrow \text{Quantifier rank}$
- How to show that two families of structures agree on classes of FO?
 → Partial isomorphism

Quantifier Rank

- The quantifier rank of a formula φ, written as qr(φ), is its depth of quantifier nesting, i.e.,
 - If φ is atomic, then $qr(\varphi) = 0$.
 - $qr(\varphi_1 \land \varphi_2) = qr(\varphi_1 \lor \varphi_2) = max(qr(\varphi_1), qr(\varphi_2)).$
 - $qr(\neg \varphi) = qr(\varphi)$.
 - $qr(\exists x\varphi) = qr(\forall x\varphi) = qr(\varphi) + 1.$
- **Example**: What is the quantifier rank of *d_k*? What is the total number of quantifiers in *d_k*?
 - $d_0(x, y) = E(x, y)$
 - ...
 - $d_k = \exists z d_{k-1}(x, z) \land d_{k-1}(z, y)$
- The set of all FO-formulas is partitioned into many classes, denoted as FO[k], each having all formulas of quantifier rank up to k.

Equivalence Relation

$$\mathfrak{A}\models\varphi\Leftrightarrow\mathfrak{B}\models\varphi,$$

- i.e., \mathfrak{A} and \mathfrak{B} cannot be distinguished by FO sentences with $qr(\varphi) < k$.
- Let \bar{a} and \bar{b} be two tuples from \mathfrak{A} and \mathfrak{B} , respectively. We write $(\mathfrak{A}, \bar{a}) \equiv_k (\mathfrak{B}, \bar{b})$ iff the following equivalence holds for all formulas $\varphi \in FO[k]$, where

$$\mathfrak{A}\models\varphi[\bar{a}]\Leftrightarrow\mathfrak{B}\models\varphi[\bar{b}]$$

- Note that,
 - $\mathfrak{A} \equiv_k \mathfrak{B}$ is a weakening of elementary equivalence by only considering the class of FO sentences/formulas of quantifier rank up to *k*.
 - \equiv_k has finitely many equivalence classes, each of which is FO-definable.

ogic summer school

Partial Isomorphism

• Are they partial isomorphisms?

Partial Isomorphism

- Recall that all finite structures are relational (no function symbols).
- Let $\mathfrak{A}|_{A'}$ be the substructure of \mathfrak{A} to the subdomain $A' \subseteq A$, i.e., for each relation R:

 $R^{\mathfrak{A}|_{A'}} := \{(a_1,\ldots,a_n) \in R^{\mathfrak{A}}|a_1,\ldots,a_n \in A'\}.$

• A partial function $\zeta : |A| \to |B|$ is a **partial isomorphism** between \mathfrak{A} and \mathfrak{B} if ζ is an isomorphism between $R^{\mathfrak{A}|_{dom(\zeta)}}$ to $R^{\mathfrak{B}|_{mg(\zeta)}}$.

EF Games

• Ehrenfeucht-Fraïssé (EF) games:

• Fraïssé was the first to find a purely structural necessary and sufficient condition for two structures to be elementarily equivalent (1954).

14

- Ehrenfeucht reformulated this condition in terms of games (1961).
- One of the few model-theoretic techniques that apply to finite structures as well as infinite ones
 - The infinite case: a number of more powerful tools available
 - The finite case: a central tool for describing expressiveness of logics, e.g., measure the expressive power of database query languages
- Variations for capturing different logics/describing different equivalences

ogic summer school

EF Games - Rules

- $\bullet~$ Two structures ${\mathfrak A}$ and ${\mathfrak B}$ over the same vocabulary.
- Two players: **Spoiler**, **Duplicator**.
 - **Spoiler** tries to show that \mathfrak{A} and \mathfrak{B} are different.
 - **Duplicator** tries to show that \mathfrak{A} and \mathfrak{B} are the same.
- The players play a fixed number of rounds, each having three steps:
 - **Spoiler** picks a structure (\mathfrak{A} or \mathfrak{B}).
 - **Spoiler** makes a move by picking an element of that structure.
 - **Ouplicator** responds by picking an element in the other structure.
- After n rounds, two sequences have been chosen:
 - (a_1,\ldots,a_n) from \mathfrak{A} ;
 - (b_1, \ldots, b_n) from \mathfrak{B} .

17

EF Games - Examples

• Consider the following two structures:

• Some plays:

	A 3-roun	d play	A 3-roun	d play
-	Player	Choice	Player	Choice
-	Spoiler	<i>a</i> 1	Spoiler	<i>b</i> ₃
	Duplicator	<i>b</i> 1	Duplicator	a_2
	Spoiler	b_4	Spoiler	<i>a</i> 1
	Duplicator	a_4	Duplicator	b ₂
	Spoiler	b_5	Spoiler	<i>b</i> 1
	Duplicator	a_3	Duplicator	a_3

EF Games - Examples

• Consider the following two structures:

Some plays:

			A 3-roun	d play
A 2-roun	d play		Player	Choice
Player	Choice	-	Spoiler	a ₁
Spoiler	a ₁	-	Duplicator	<i>b</i> 1
Duplicator	<i>b</i> 1		Spoiler	<i>b</i> 1
Spoiler	a_2		duplicator	a ₁
duplicator	<i>b</i> 1		Spoiler	a_2
		-	duplicator	<i>b</i> 1

_ogic summer school

18

EF Games - Winning Strategies

• How can Spoiler or Duplicator win in a game?

_ogic summer school

EF Games - Winning Strategies

- Winning position: Duplicator wins a run of the game if the mapping between elements of the two structures defined by the game run is a partial isomorphism. Otherwise, **Spoiler** wins.
- A player has an n-round winning strategy if s/he can play in a way that guarantees a winning position after n rounds, no matter how the other player plays.
- There is always either a winning strategy for **Spoiler** or for **Duplicator**.
- Notation:
 - $\mathfrak{A} \sim_n \mathfrak{B}$: if there is an n-round winning strategy for **Duplicator**.
 - $\mathfrak{A} \not\sim_n \mathfrak{B}$: if there is an n-round winning strategy for **Spoiler**.

Easy to see that $\mathfrak{A} \sim_n \mathfrak{B}$ implies $\mathfrak{A} \sim_k \mathfrak{B}$ for every $k \leq n$.

ogic summer school

EF Games - Examples

• Consider only 2 rounds of the EF game on $\mathfrak{A} = \langle \{a_1, a_2\}, \emptyset \rangle$ and $\mathfrak{B} = \langle \{b_1\}, \emptyset \rangle$.

EF Games - Examples

• Consider the EF game on $\mathfrak{A} = \langle \{a_1, a_2\}, \emptyset \rangle$ and $\mathfrak{B} = \langle \{b_1\}, \emptyset \rangle$.

• Is it a partial isomorphism?

		A 3-1001	iu piay
A 2-roun	d play	Player	Choice
Player	Choice	Spoiler	a ₁
Spoiler	<i>a</i> 1	Duplicator	b ₁
Duplicator	b ₁	Spoiler	b ₁
Spoiler	a_2	Duplicator	a ₁
Duplicator	b ₁	Spoiler	a_2
		Duplicator	b ₁

A 3-round play

• Who wins the plays?

EF Games - Examples • Consider only 2 rounds of the EF game on $\mathfrak{A} = \langle \{a_1, a_2\}, \emptyset \rangle$ and $\mathfrak{B} = \langle \{b_1\}, \emptyset \rangle$. Round 1

• Duplicator has a winning position if $(S \hookrightarrow a_1, D \hookrightarrow b_1, S \hookrightarrow a_1, D \hookrightarrow b_1)$.

EF Games - Examples

• Consider only 2 rounds of the EF game on $\mathfrak{A} = \langle \{a_1, a_2\}, \emptyset \rangle$ and $\mathfrak{B} = \langle \{b_1\}, \emptyset \rangle.$

• Spoiler has a winning position if $(S \hookrightarrow b_1, D \hookrightarrow a_1, S \hookrightarrow b_1, D \hookrightarrow a_2)$.

25

EF Games - Examples

• Consider only 2 rounds of the EF game on $\mathfrak{A} = \langle \{a_1, a_2\}, \emptyset \rangle$ and $\mathfrak{B} = \langle \{b_1\}, \emptyset \rangle.$

• Who has a 2-round winning strategy? Spoiler!

• Consider only 2 rounds of the EF game on $\mathfrak{A} = \langle \{a_1, a_2\}, \emptyset \rangle$ and $\mathfrak{B} = \langle \{b_1\}, \emptyset \rangle.$

• Who has a 2-round winning strategy?

- Let $\sigma = \emptyset$, and \mathfrak{A} and \mathfrak{B} be two sets of size at least *n*, i.e., $|A|, |B| \ge n$.
- Is it true that $\mathfrak{A} \sim_n \mathfrak{B}$?

ogic summer school

EF Games on Sets

- Let $\sigma = \emptyset$, and \mathfrak{A} and \mathfrak{B} be two sets of size at least *n*, i.e., $|A|, |B| \ge n$.
- Is it true that $\mathfrak{A} \sim_n \mathfrak{B}$?
- Winning strategy for Duplicator:
 - Suppose that the position is $((a_1, \ldots, a_i), (b_1, \ldots, b_i))$.
 - **Spoiler** picks an element $a_{i+1} \in A$:

Duplicator picks $b_{i+1} = b_j$ if $a_{i+1} = a_j$ for $j \le i$

29

Duplicator picks $b_k \in B - \{b_1, \ldots, b_i\}$ otherwise

EF Games - Examples

• Consider 3 rounds of the EF game on $\mathfrak{A} = \langle \{a_1, \ldots, a_4\}, \{E\} \rangle$ and $\mathfrak{B} = \langle \{b_1, \ldots, b_5\}, \{E\} \rangle$.

• Is it a partial isomorphism?

A 3-roun	d play
Player	Choice
Spoiler	<i>a</i> 1
Duplicator	<i>b</i> 1
Spoiler	b_4
duplicator	a_4
Spoiler	b_5
duplicator	a_3
_	

Who wins the play?

ogic summer school

EF Games - Examples

• Consider 3 rounds of the EF game on $\mathfrak{A} = \langle \{a_1, \ldots, a_4\}, \{E\} \rangle$ and $\mathfrak{B} = \langle \{b_1, \ldots, b_5\}, \{E\} \rangle$.

• Is it a partial isomorphism?

A 3-roun	d play
Player	Choice
Spoiler	<i>b</i> ₃
Duplicator	a_2
Spoiler	a ₁
duplicator	b ₂
Spoiler	b ₁
duplicator	a_3

• Who wins the play?

ogic summer school

EF Games - Examples

• Consider 3 rounds of the EF game on $\mathfrak{A} = \langle \{a_1, \dots, a_4\}, \{E\} \rangle$ and $\mathfrak{B} = \langle \{b_1, \dots, b_5\}, \{E\} \rangle$.

• Who has a 3-round winning strategy?

32

EF Games - Examples

• Consider 3 rounds of the EF game on $\mathfrak{A} = \langle \{a_1, \ldots, a_4\}, \{E\} \rangle$ and $\mathfrak{B} = \langle \{b_1, \ldots, b_5\}, \{E\} \rangle.$

• If we change $\sigma = \{E\}$ to $\sigma = \{<\}$ where < is interpreted as a linear order,

b1

b2

b3

 $\mathfrak{L}_{b} = \langle \{b_1, \ldots, b_5\}, \{<\} \rangle$

b4

b5

Who has a 3-round winning strategy? Spoiler!

and consider the following two structures:

a4

a2 a3

 $\mathfrak{L}_{a} = \langle \{a_1, \ldots, a_4\}, \{<\} \rangle$

EF Games - Examples

a1

EF Games - Examples

• Consider the EF game on $\mathfrak{A} = \langle \{a_1, \ldots, a_4\}, \{E\} \rangle$ and $\mathfrak{B} = \langle \{b_1, \ldots, b_5\}, \{E\} \rangle$ $\{E\}$ again.

- We know that Spoiler has a 3-round winning strategy now, but
 - Who has a 1-round winning strategy?
 - Who has a 2-round winning strategy?

710 1001	a piuy
Player	Choice
Spoiler	<i>a</i> 1
Duplicator	b1
Spoiler	<i>b</i> 4
duplicator	a_4
Spoiler	b 5
duplicator	a_3

Who wins the play?

ogic summer school

• Consider the following two structures:

• Who has a winning strategy for 3 rounds of the EF game on \mathfrak{L}_a and \mathfrak{L}_b ?

• Consider the following two structures:

• Who has a winning strategy for 3 rounds of the EF game on \mathfrak{L}_a and \mathfrak{L}_b ?

ogic summer school.

EF Theorem

• Theorem (Fraïssé 1954, Ehrenfeucht 1961)

Given two structures \mathfrak{A} and \mathfrak{B} . Then the following are equivalent for every integer *k*:

- **(1)** $\mathfrak{A} \equiv_k \mathfrak{B}$, i.e., \mathfrak{A} and \mathfrak{B} cannot be distinguished by sentences in FO[k].
- ② 𝔄 ~_k𝔅, i.e., Duplicator has a winning strategy for the *k*-round EF game.
- This provides a combinatorial characterization of first-order logic:
 - $\mathfrak{A} \equiv_k \mathfrak{B}$ is defined in terms of logic;
 - $\mathfrak{A} \sim_k \mathfrak{B}$ is defined in terms of games.

• How does EF games relate to FO?

ogic summer school 42

EF Theorem - Proof

Proof: $\mathfrak{A} \sim_k \mathfrak{B} \Rightarrow \mathfrak{A} \equiv_k \mathfrak{B}$

We need to show that: if there is a FO sentence φ with qr(φ) ≤ k that can distinguish 𝔅 and 𝔅, i.e.

 $\mathfrak{A} \models \varphi$ and $\mathfrak{B} \not\models \varphi$,

then **Spoiler** has a winning strategy in the k-round EF games on \mathfrak{A} and $\mathfrak{B}.$

- Key ideas:
 - W.I.o.g., assume that all negations are only in front of atomic formulas (i.e., negation normal form).
 - By induction on the quantifier rank, we show that: for φ with $qr(\varphi) \leq k$ and free variables $\{x_1, \ldots, x_n\}$, and two tuples $\bar{a} = (a_1, \ldots, a_n)$ and $\bar{b} = (b_1, \ldots, b_n)$ from \mathfrak{A} and \mathfrak{B} respectively, if

$\mathfrak{A} \models \varphi[\bar{a}] \text{ and } \mathfrak{B} \not\models \varphi[\bar{b}],$

then **Spoiler** has a winner strategy in the k-round EF game that starts from the moves (a_1, \ldots, a_n) and (b_1, \ldots, b_n) .

• By induction on the quantifier rank $qr(\varphi) = k$ of a formula φ with

$$\mathfrak{A} \models \varphi[\bar{a}] \text{ and } \mathfrak{B} \not\models \varphi[\bar{b}].$$

- If $qr(\varphi) = 0$, i.e., φ is a quantifier-free formula, then the map from \bar{a} to \bar{b} is not a partial isomorphism.
- If $\varphi = \exists x \psi$, **Spoiler** chooses an element a_1 for x from \mathfrak{A} s.t.

 $\mathfrak{A} \models \psi[\bar{a}a_1]$ and $\mathfrak{B} \not\models \psi[\bar{b}b_1]$ for any b_1 from \mathfrak{B} .

• If $\varphi = \forall x \psi$, then $\mathfrak{B} \models \exists x \neg \psi$ and **Spoiler** chooses an element b_2 for x from \mathfrak{B} s.t.

 $\mathfrak{A} \models \psi[\bar{a}a_2]$ and $\mathfrak{B} \not\models \psi[\bar{b}b_2]$ for any a_2 from \mathfrak{A} .

45

- **Proof:** $\mathfrak{A} \equiv_k \mathfrak{B} \Rightarrow \mathfrak{A} \sim_k \mathfrak{B}$
- Given a winning strategy for Spoiler, we construct a sentence φ ∈ FO[k] that can distinguish 𝔅 and 𝔅, s.t.

 $\mathfrak{A}\models\varphi\text{ and }\mathfrak{B}\not\models\varphi\text{,}$

where \mathfrak{A} is the structure from which **Spoiler** chooses an element in the first round, and \mathfrak{B} is the other structure.

.ogic summer school 46

FO Definable Properties

• Can you find a FO definable property in only one of the following directed graphs?

ogic summer school

EF Games and FO definability

- Corollary: A property *P* is definable in FO iff there exists some *k* ∈ N such that for every two finite structure 𝔅 and 𝔅,
 - $\mathfrak{A} \not\sim_k \mathfrak{B}$, i.e., **Spoiler** has a winning strategy for *k*-round EF games, and
 - \mathfrak{A} has the property *P*, but \mathfrak{B} does not.
- If 𝔄 ≁_k𝔅, then a winning strategy for Spoiler can be described by a sentence ∈ FO[k], which is true in exactly one of 𝔅 and 𝔅, and vice versa.

FO Definable Properties

• Consider the following property. Can you construct a winning strategy for **Spoiler**?

 $\exists x \forall y \neg E(x, y)$

• By EF Theorem, $\mathfrak{A} \not\sim_2 \mathfrak{B}$.

 Given a winning strategy for Spoiler: {S → b₁, D → a₁, S → a₄, D → ...} The following property can be constructed.

$$\exists x \forall yx = y \lor E(x, y)$$

• By EF Theorem, $\mathfrak{A} \not\sim_2 \mathfrak{B}$.

ogic summer school

Logic summer school	50	
FO Definable Properties		
To bermable Troperties		

• Find a FO definable property in only one of the following undirected graphs, or find a winning strategy for **Spoiler**.

FO Definable Properties

• Consider the following property:

 $\exists x \exists y \exists z (x \neq y \land y \neq z \land z \neq x \land \neg E(x, y) \land \neg E(y, z) \land \neg E(z, x))$

• By EF Theorem, $\mathfrak{A} \not\sim_3 \mathfrak{B}$.

• Consider another property:

 $\exists x \exists y \exists z (x \neq y \land y \neq z \land z \neq x \land E(x, y) \land \neg E(y, z) \land \neg E(x, z))$

• By EF Theorem, $\mathfrak{A} \not\sim_{\mathfrak{I}} \mathfrak{B}$.

nmer school	53	Logic s	ummer school	54
EF Games and FO Inexpressibility			Evenness over Unordered Sets	
	•			

- How is EF Theorem useful for proving inexpressibility results over finite models?
- Corollary: A property *P* is not expressible in FO if for every *k* ∈ N, there exist two finite structures 𝔄 and 𝔅 s.t.
 - 𝔅 ~_k 𝔅 , i.e., Duplicator has a winning strategy for *k*-round EF games, and
 - \mathfrak{A} has the property *P*, but \mathfrak{B} does not.
- But finding such structures \mathfrak{A}_k and \mathfrak{B}_k is challenging...

• Evenness is not expressible over unordered, finite sets in FO.

naic su

• Evenness is not expressible over unordered, finite sets in FO.

Proof:

- Pick A to be a structure containing k elements, and B a structure containing k + 1 elements.
- We have $\mathfrak{A} \sim_k \mathfrak{B}$.

Logic summer school	57	
		-

Evenness over Linear Order

• Evenness is not expressible over linearly ordered, finite sets in FO.

Proof:

- Pick \$\mathbb{A}_k\$ to be a linear order of length 2^k, and \$\mathbb{B}_k\$ to be a linear order of length 2^k + 1.
- We have $\mathfrak{A}_k \sim_k \mathfrak{B}_k$.

59

• Evenness is not expressible over linearly ordered, finite sets in FO. *Hints*:

Theorem: Let k > 0, and \mathfrak{L}_a and \mathfrak{L}_b be linear orders of length at least 2^k . Then $\mathfrak{L}_a \sim_k \mathfrak{L}_b$.

- Logic summer school 58
 Acyclicity
 - A graph is **acyclic** if it does not contain any cycles.
 - Acyclicity of finite graphs is not expressible in FO.

• Acyclicity of finite graphs is not expressible in FO.

Proof:

- Let *m* depend only on *k*, and be sufficiently large.
- Assume that the game starts in a position where two special nodes (i.e., the start and end nodes of the success relation) have been played.

ogic summer school

2-colorability

• A graph is called 2-colorable if one can color each node in either red or green such that no two adjacent nodes have the same color.

• 2-colorability of finite graphs is not expressible in FO.

Hint: A cycle of length *n* is 2-colorable iff *n* is even.

• Acyclicity of finite graphs is not expressible in FO.

Proof (continue):

- Let $d(a_i, a_i)$ denote the distance between a_i and a_i , i.e., the length of the shortest path between them.
- **Duplicator** maintains the following conditions after each round *r*:
 - if d(a_j, a_i) ≤ 2^{k-r}, then d(b_j, b_i) = d(a_j, a_i).
 if d(a_j, a_i) > 2^{k-r}, then d(b_j, b_i) > 2^{k-r}.
- By choosing m "very large", if r rounds have been played, there is a node at a distance greater than $2^{k-(r+1)}$ from all the played nodes.

ogic summer school

62

2-colorability

- A graph is called **2-colorable** if one can color each node in either red or green such that no two adjacent nodes have the same color.
- 2-colorability of finite graphs is not expressible in FO.

Hint: A cycle of length *n* is 2-colorable iff *n* is even.

 $2^{k}+1$

Connectivity

- A graph is **connected** if there exists a path between any two nodes of the graph.
- Connectivity of finite graphs is not expressible in FO.

Connectivity

Logic summer school

- A graph is **connected** if there exists a path between any two nodes of the graph.
- Connectivity of finite graphs is not expressible in FO.

.ogic summer school	65	
Conclusions		

- In general, finding families of structures $\{\mathfrak{A}_k | k \in \mathbb{N}\}$ and $\{\mathfrak{B}_k | k \in \mathbb{N}\}$ is hard.
- In addition to this, it is also hard to prove that $\mathfrak{A}_k \sim_k \mathfrak{B}_k$.
- The complexity of proofs using EF games can quickly increase as the structures become complicated.
- To avoid complicated combinatorial arguments, it is possible to use simple sufficient conditions that guarantee a winning strategy for the duplicator, i.e., build a library of winning strategies.
- For FO, most such conditions are based on the idea of locality.
- EF games can be modified to provide methodologies for other logical languages.