Overview of Topics

Finite Model Theory

Qing Wang

qing.wang@anu.edu.au

Logic and Computation

Research School of Computer Science

- Part 2: - Ehrenfeucht-Fraïssé Games
(1) Elementary equivalence and isomorphism
(2) Ehrenfeucht-Fraïssé (EF) games
- Rules
- Winning strategies
(3) Partial isomorphism
(4) Equivalence relation
(5) EF theorem
(6) EF applications

Recall - Inexpressibility Proofs

- How can one prove that a property P is inexpressible in a logic L on a class C of structures?
- To prove that P is expressible, one needs to find a formula of L that defines P on C.
- To prove that P is not expressible, one has to show no formula of L that defines P on C
- Common techniques used for inexpressibility proofs in first-order logic:
- Compactness theorem
\hookrightarrow fails over finite structures.
- Ehrenfeucht-Fraïssé games
\hookrightarrow used as a central tool on classes of finite structures.

Elementary Equivalence and Isomorphism

- Elementary equivalence, formulated by Alfred Tarski, is an important model-theoretic notion.
- Two models \mathfrak{A} and \mathfrak{B} over the same vocabulary are elementarily equivalent if, for every first-order sentence $\varphi, \mathfrak{B}=\varphi$ iff $\mathfrak{A}=\varphi$.

That is, if two models are elementarily equivalent, then they cannot be distinguished by any first-order sentence.

- The notion of elementary equivalence is important to establishing inexpressibility results.
- First, prove that two models are elementarily equivalent.
- Then, show that a property P that can distinguish the two models.
- Thus, the property P is not definable.

Elementary Equivalence and Isomorphism

- Two models \mathfrak{A} and \mathfrak{B} over the same vocabulary are isomorphic if there is a bijective mapping $h: A \rightarrow B$ preserving relations and constants.
- In general, two isomorphic models must be elementarily equivalent, but two elementarily equivalent models are not necessarily isomorphic.
- Two models \mathfrak{A} and \mathfrak{B} over the same vocabulary are isomorphic if there is a bijective mapping $h: A \rightarrow B$ preserving relations and constants.
- In general, two isomorphic models must be elementarily equivalent, but two elementarily equivalent models are not necessarily isomorphic.
- In the case of finite structures, elementary equivalence is however uninteresting. Finite structures can be characterized up to isomorphism by single FO sentence

elementary equivalence \Leftrightarrow isomorphism

Elementary Equivalence and Isomorphism

Methodology for Inexpressibility Proofs

- Theorem

For every finite structure \mathfrak{A}, there is a first-order sentence φ such that $\mathfrak{B}=\varphi$ iff an arbitrary structure \mathfrak{B} is isomorphic to \mathfrak{A}.

Proof

- Assume w.l.o.g. that \mathfrak{A} is a graph (V, E) where $V=\left\{a_{1}, \ldots, a_{n}\right\}$.
- Define φ as

$$
\begin{aligned}
\exists x_{1} \ldots \exists x_{n} & \left(\left(\bigwedge_{i \neq j} \neg\left(x_{i}=x_{j}\right)\right)\right. \\
& \wedge\left(\forall y \bigvee_{V} y=x_{i}\right) \\
& \wedge\left(\bigwedge_{\left(a_{i}, a_{j}\right) \in E}^{i} E\left(x_{i}, x_{j}\right)\right) \\
& \left.\wedge\left(\bigwedge_{\left(a_{i}, a_{j}\right) \notin E} \neg E\left(x_{i}, x_{j}\right)\right)\right)
\end{aligned}
$$

- We have $\mathfrak{A} \models \varphi$. If $\mathfrak{B} \models \varphi$, then \mathfrak{B} is isomorphic to \mathfrak{A}.

Methodology for Inexpressibility Proofs

- To prove that a property P is not expressible in a logic L over finite structures, we can do the following:
- Partition the set of all formulas of L into countably many classes, i.e., $L[0], L[1], \ldots, L[k], \ldots$;
- Find two families of structures $\left\{\mathfrak{A}_{k} \mid k \in \mathbb{N}\right\}$ and $\left\{\mathfrak{B}_{k} \mid k \in \mathbb{N}\right\}$ such that
(1) $\mathfrak{A}_{k} \models \varphi$ iff $\mathfrak{B}_{k} \models \varphi$ for every sentence φ in $L[k]$; and\mathfrak{A}_{k} has property P, but \mathfrak{B}_{k} does not

Methodology for Inexpressibility Proofs

- To prove that a property P is not expressible in a logic L over finite structures, we can do the following:
- Partition the set of all formulas of L into countably many classes, i.e., $L[0], L[1], \ldots, L[k], \ldots$;
- Find two families of structures $\left\{\mathfrak{N}_{k} \mid k \in \mathbb{N}\right\}$ and $\left\{\mathfrak{B}_{k} \mid k \in \mathbb{N}\right\}$ such that

$$
\text { (1) } \mathfrak{A}_{k} \models \varphi \text { iff } \mathfrak{B}_{k} \models \varphi \text { for every sentence } \varphi \text { in } L[k] \text {; and }
$$

$$
\text { (2) } \mathfrak{A}_{k} \text { has property } P \text {, but } \mathfrak{B}_{k} \text { does not. }
$$

- But...
- How to partition FO into such classes?
- How to show that two families of structures agree on classes of FO?

Quantifier Rank

- The quantifier rank of a formula φ, written as $\operatorname{qr}(\varphi)$, is its depth of quantifier nesting, i.e.,
- If φ is atomic, then $\operatorname{qr}(\varphi)=0$.
- $\operatorname{qr}\left(\varphi_{1} \wedge \varphi_{2}\right)=\operatorname{qr}\left(\varphi_{1} \vee \varphi_{2}\right)=\max \left(\operatorname{qr}\left(\varphi_{1}\right), \operatorname{qr}\left(\varphi_{2}\right)\right)$.
- $\operatorname{qr}(\neg \varphi)=\operatorname{qr}(\varphi)$
- $\operatorname{qr}(\exists x \varphi)=\operatorname{qr}(\forall x \varphi)=\operatorname{qr}(\varphi)+1$.
- Example: What is the quantifier rank of d_{k} ? What is the total number of quantifiers in d_{k} ?

```
- \(d_{0}(x, y)=E(x, y)\)
- \(d_{k}=\exists z d_{k-1}(x, z) \wedge d_{k-1}(z, y)\)
```

- The set of all FO-formulas is partitioned into many classes, denoted as $F O[k]$, each having all formulas of quantifier rank up to k.

Equivalence Relation

- We write $\mathfrak{A} \equiv_{k} \mathfrak{B}$ for two structures \mathfrak{A} and \mathfrak{B} iff the following equivalence holds for all sentences $\varphi \in F O[k]$:

$$
\mathfrak{A} \models \varphi \Leftrightarrow \mathfrak{B} \models \varphi,
$$

i.e., \mathfrak{A} and \mathfrak{B} cannot be distinguished by FO sentences with $\operatorname{qr}(\varphi)<k$.

- Let \bar{a} and \bar{b} be two tuples from \mathfrak{A} and \mathfrak{B}, respectively. We write $(\mathfrak{A}, \bar{a}) \equiv_{k}(\mathfrak{B}, \bar{b})$ iff the following equivalence holds for all formulas $\varphi \in F O[k]$, where

$$
\mathfrak{A} \models \varphi[\bar{a}] \Leftrightarrow \mathfrak{B} \models \varphi[\bar{b}]
$$

- Note that,
- $\mathfrak{A} \equiv_{k} \mathfrak{B}$ is a weakening of elementary equivalence by only considering the class of FO sentences/formulas of quantifier rank up to k
- \equiv_{k} has finitely many equivalence classes, each of which is FO-definable.

Partial Isomorphism

- Recall that all finite structures are relational (no function symbols).
- Let $\left.\mathfrak{A}\right|_{A^{\prime}}$ be the substructure of \mathfrak{A} to the subdomain $A^{\prime} \subseteq A$, i.e., for each relation R :

$$
R^{\left.\mathfrak{2}\right|_{A^{\prime}}}:=\left\{\left(a_{1}, \ldots, a_{n}\right) \in R^{\mathfrak{2}} \mid a_{1}, \ldots, a_{n} \in A^{\prime}\right\} .
$$

- A partial function $\zeta:|A| \rightarrow|B|$ is a partial isomorphism between \mathfrak{A} and \mathfrak{B} if ζ is an isomorphism between $R^{21 / \operatorname{lom}(\zeta)}$ to $R^{\mathfrak{B} \mid m g(\zeta)}$.

Logic summer school
14

EF Games

- Ehrenfeucht-Fraïssé (EF) games:
- Fraïssé was the first to find a purely structural necessary and sufficient condition for two structures to be elementarily equivalent (1954).
- Ehrenfeucht reformulated this condition in terms of games (1961).
- One of the few model-theoretic techniques that apply to finite structures as well as infinite ones
- The infinite case: a number of more powerful tools available
- The finite case: a central tool for describing expressiveness of logics, e.g., measure the expressive power of database query languages
- Variations for capturing different logics/describing different equivalences

EF Games - Rules

- Two structures \mathfrak{A} and \mathfrak{B} over the same vocabulary.
- Two players: Spoiler, Duplicator.
- Spoiler tries to show that \mathfrak{A} and \mathfrak{B} are different.
- Duplicator tries to show that \mathfrak{A} and \mathfrak{B} are the same.
- The players play a fixed number of rounds, each having three steps:
(1) Spoiler picks a structure (\mathfrak{A} or \mathfrak{B}).
(2) Spoiler makes a move by picking an element of that structure.
(3) Duplicator responds by picking an element in the other structure.
- After n rounds, two sequences have been chosen:
- $\left(a_{1}, \ldots, a_{n}\right)$ from $\mathfrak{A} ;$
- $\left(b_{1}, \ldots, b_{n}\right)$ from \mathfrak{B}.

EF Games - Examples

EF Games - Winning Strategies

- Consider the following two structures:

$$
\mathfrak{B}=\left\langle\left\{b_{1}, \ldots, b_{5}\right\},\{E\}\right\rangle
$$

\qquad

EF Games - Examples

- Consider the following two structures:

- Some plays:

A 2-round play			A 3-round play	
			Player	Choice
		Spoiler	a_{1}	
Player	Choice		Duplicator	b_{1}
Spoiler	a_{1}		Spoiler	b_{1}
Duplicator	b_{1}		duplicator	a_{1}
Spoiler	a_{2}			Spoiler
duplicator	b_{1}		a_{2}	

[^0]| A 3-round play | | | A 3-round play | |
| :--- | :--- | :--- | :--- | :--- |
| | | | Player | Choice |
| | Spoiler | a_{1} | | Spoiler |
| Spoice | b_{3} | | | |
| Duplicator | b_{1} | | Duplicator | a_{2} |
| Spoiler | b_{4} | | Spoiler | a_{1} |
| Duplicator | a_{4} | | Duplicator | b_{2} |
| Spoiler | b_{5} | | Spoiler | b_{1} |
| Duplicator | a_{3} | | Duplicator | a_{3} |

EF Games - Winning Strategies

- Winning position: Duplicator wins a run of the game if the mapping between elements of the two structures defined by the game run is a partia isomorphism. Otherwise, Spoiler wins.
- A player has an n-round winning strategy if s/he can play in a way that guarantees a winning position after n rounds, no matter how the other player plays.
- There is always either a winning strategy for Spoiler or for Duplicator.
- Notation:
- $\mathfrak{A} \sim_{n} \mathfrak{B}$: if there is an n-round winning strategy for Duplicator.
- $\mathfrak{A} \not \chi_{n} \mathfrak{B}$: if there is an n-round winning strategy for Spoiler.

Easy to see that $\mathfrak{A} \sim_{n} \mathfrak{B}$ implies $\mathfrak{A} \sim_{k} \mathfrak{B}$ for every $k \leq n$.

EF Games - Examples

- Consider only 2 rounds of the EF game on $\mathfrak{A}=\left\langle\left\{a_{1}, a_{2}\right\}, \emptyset\right\rangle$ and $\mathfrak{B}=\left\langle\left\{b_{1}\right\}, \emptyset\right\rangle$.

EF Games - Examples

- Consider only 2 rounds of the EF game on $\mathfrak{A}=\left\langle\left\{a_{1}, a_{2}\right\}, \emptyset\right\rangle$ and $\mathfrak{B}=\left\langle\left\{b_{1}\right\}, \emptyset\right\rangle$.

- Duplicator has a winning position if ($S \hookrightarrow a_{1}, D \hookrightarrow b_{1}, S \hookrightarrow a_{1}, D \hookrightarrow b_{1}$).

EF Games - Examples

- Consider only 2 rounds of the EF game on $\mathfrak{A}=\left\langle\left\{a_{1}, a_{2}\right\}, \emptyset\right\rangle$ and $\mathfrak{B}=\left\langle\left\{b_{1}\right\}, \emptyset\right\rangle$.

- Spoiler has a winning position if ($S \hookrightarrow b_{1}, D \hookrightarrow a_{1}, S \hookrightarrow b_{1}, D \hookrightarrow a_{2}$).

Logic summer school
25

EF Games - Examples

- Consider only 2 rounds of the EF game on $\mathfrak{A}=\left\langle\left\{a_{1}, a_{2}\right\}, \emptyset\right\rangle$ and $\mathfrak{B}=\left\langle\left\{b_{1}\right\}, \emptyset\right\rangle$.

Round 1

Round 2

- Who has a 2-round winning strategy? Spoiler!

EF Games on Sets

- Let $\sigma=\emptyset$, and \mathfrak{A} and \mathfrak{B} be two sets of size at least n, i.e., $|A|,|B| \geq n$.
- Is it true that $\mathfrak{A} \sim_{n} \mathfrak{B}$?
- Winning strategy for Duplicator:
- Suppose that the position is $\left(\left(a_{1}, \ldots a_{i}\right),\left(b_{1}, \ldots, b_{i}\right)\right)$.
- Spoiler picks an element $a_{i+1} \in A$:
$\begin{cases}\text { Duplicator picks } b_{i+1}=b_{j} & \text { if } a_{i+1}=a_{j} \text { for } j \leq i \\ \text { Duplicator picks } b_{k} \in B-\left\{b_{1}, \ldots, b_{i}\right\} & \text { otherwise }\end{cases}$

EF Games - Examples

- Consider 3 rounds of the EF game on $\mathfrak{A}=\left\langle\left\{a_{1}, \ldots, a_{4}\right\},\{E\}\right\rangle$ and $\mathfrak{B}=\left\langle\left\{b_{1}, \ldots, b_{5}\right\},\{E\}\right\rangle$.

- Is it a partial isomorphism?

A 3-round play	
Player	Choice
Spoiler	b_{3}
Duplicator	a_{2}
Spoiler	a_{1}
duplicator	b_{2}
Spoiler	b_{1}
duplicator	a_{3}

- Who wins the play?

EF Games - Examples

- Consider 3 rounds of the $E F$ game on $\mathfrak{A}=\left\langle\left\{a_{1}, \ldots, a_{4}\right\},\{E\}\right\rangle$ and $\mathfrak{B}=\left\langle\left\{b_{1}, \ldots, b_{5}\right\},\{E\}\right\rangle$.

- Who has a 3-round winning strategy? Spoiler!

EF Games - Examples

- If we change $\sigma=\{E\}$ to $\sigma=\{<\}$ where $<$ is interpreted as a linear order, and consider the following two structures:

EF Games - Examples

- Consider the EF game on $\mathfrak{A}=\left\langle\left\{a_{1}, \ldots, a_{4}\right\},\{E\}\right\rangle$ and $\mathfrak{B}=\left\langle\left\{b_{1}, \ldots, b_{5}\right\}\right.$, $\{E\}\rangle$ again.

$\bigcirc_{\mathrm{a} 1}^{\bigcirc}-\mathrm{O}_{\mathrm{a} 2}^{\bigcirc}-\mathrm{O}_{\mathrm{a} 4}^{\bigcirc}$
$\mathfrak{A}=\left\langle\left\{a_{1}, \ldots, a_{4}\right\},\{E\}\right\rangle$

- We know that Spoiler has a 3-round winning strategy now, but
- Who has a 1 -round winning strategy?
- Who has a 2 -round winning strategy?

EF Games - Examples

- Consider 3 rounds of the EF game on $\mathfrak{L}_{a}=\left\langle\left\{a_{1}, \ldots, a_{4}\right\},\{<\}\right\rangle$ and $\mathfrak{L}_{b}=\left\langle\left\{b_{1}, \ldots, b_{5}\right\},\{<\}\right\rangle$.

- Is it a partial isomorphism?

A 3-round play	
Player	Choice
Spoiler	a_{1}
Duplicator	b_{1}
Spoiler	b_{4}
duplicator	a_{4}
Spoiler	b_{5}
duplicator	a_{3}

- Who wins the play?

EF Games - Examples

EF Games - Examples

- Consider the following two structures:

- Who has a winning strategy for 3 rounds of the EF game on \mathfrak{L}_{a} and \mathfrak{L}_{b} ?
Logic summer school 38

EF Games on Linear Orders

- Theorem: Let $k>0$, and \mathfrak{L}_{a} and \mathfrak{L}_{b} be linear orders of length at least 2^{k}. Then $\mathfrak{L}_{a} \sim_{k} \mathfrak{L}_{b}$.
- Examples:

> - If $\left|L_{a}\right|=5$ and $\left|L_{a}\right|=6$, then $\mathfrak{L}_{a} \sim_{2} \mathfrak{L}_{b}$ but $\mathfrak{L}_{a} \not \chi_{3} \mathfrak{L}_{b}$.
> - If $\left|L_{a}\right|=8$ and $\left|L_{a}\right|=9$, then $\mathfrak{L}_{a} \sim_{3} \mathfrak{L}_{b}$ but $\mathfrak{L}_{a} \not \chi_{4} \mathfrak{L}_{b}$.

- Duplicator needs to use the following strategy after r rounds of a EF game, where $1 \leq i<j \leq r$:
- if $d\left(a_{i}, a_{j}\right)<2^{k-r}$, then $d\left(a_{i}, a_{j}\right)=d\left(b_{i}, b_{j}\right)$;
- if $d\left(a_{i}, a_{j}\right) \geq 2^{k-r}$, then $d\left(b_{i}, b_{j}\right) \geq 2^{k-r}$;
- $a_{i} \leq a_{j} \Leftrightarrow b_{i} \leq b_{j} ;$
where $d(x, y)$ denotes the distance between x and y.

EF Games and FO

Example 1 \square

Example $2 \mathfrak{A}=\left\langle\left\{a_{1}, \ldots, a_{4}\right\},\{E\}\right\rangle$
$\mathfrak{B}=\left\langle\left\{b_{1}, \ldots, b_{5}\right\},\{E\}\right\rangle$

- How does EF games relate to FO?

Example $3 \mathfrak{A}=\left\langle\left\{a_{1}, \ldots, a_{4}\right\},\{<\}\right\rangle$

EF Theorem

- Theorem (Fraïssé 1954, Ehrenfeucht 1961)

Given two structures \mathfrak{A} and \mathfrak{B}. Then the following are equivalent for every integer k :
(1) $\mathfrak{A} \equiv_{k} \mathfrak{B}$, i.e., \mathfrak{A} and \mathfrak{B} cannot be distinguished by sentences in $F O[k]$.
(2) $\mathfrak{A} \sim_{k} \mathfrak{B}$, i.e., Duplicator has a winning strategy for the k-round EF game.

- This provides a combinatorial characterization of first-order logic:
- $\mathfrak{A} \equiv_{k} \mathfrak{B}$ is defined in terms of logic;
- $\mathfrak{A} \sim_{k} \mathfrak{B}$ is defined in terms of games.

EF Theorem - Proof

Proof: $\mathfrak{A} \sim_{k} \mathfrak{B} \Rightarrow \mathfrak{A} \equiv_{k} \mathfrak{B}$

- We need to show that: if there is a FO sentence φ with $\operatorname{qr}(\varphi) \leq k$ that can distinguish \mathfrak{A} and \mathfrak{B}, i.e.

$$
\mathfrak{A} \models \varphi \text { and } \mathfrak{B} \not \vDash \varphi,
$$

then Spoiler has a winning strategy in the k-round EF games on \mathfrak{A} and \mathfrak{B}.

- Key ideas:
- W.I.o.g., assume that all negations are only in front of atomic formulas (i.e., negation normal form).
- By induction on the quantifier rank, we show that: for φ with $\operatorname{qr}(\varphi) \leq k$ and free variables $\left\{x_{1}, \ldots, x_{n}\right\}$, and two tuples $\bar{a}=\left(a_{1}, \ldots, a_{n}\right)$ and $\bar{b}=\left(b_{1}, \ldots, b_{n}\right)$ from \mathfrak{A} and \mathfrak{B} respectively, if

$$
\mathfrak{A} \models \varphi[\bar{a}] \text { and } \mathfrak{B} \not \models \varphi[\bar{b}],
$$

then Spoiler has a winner strategy in the k-round EF game that starts from the moves $\left(a_{1}, \ldots, a_{n}\right)$ and $\left(b_{1}, \ldots, b_{n}\right)$.

EF Theorem - Proof

Proof: $\mathfrak{A} \sim_{k} \mathfrak{B} \Rightarrow \mathfrak{A} \equiv_{k} \mathfrak{B}$

- By induction on the quantifier rank $\operatorname{ar}(\varphi)=k$ of a formula φ with

$$
\mathfrak{A} \models \varphi[\bar{a}] \text { and } \mathfrak{B} \not \vDash \varphi[\bar{b}] .
$$

- If $\operatorname{qr}(\varphi)=0$, i.e., φ is a quantifier-free formula, then the map from \bar{a} to \bar{b} is not a partial isomorphism.
- If $\varphi=\exists x \psi$, Spoiler chooses an element a_{1} for x from \mathfrak{A} s.t.

$$
\mathfrak{A} \models \psi\left[\bar{a} a_{1}\right] \text { and } \mathfrak{B} \not \vDash \psi\left[\bar{b} b_{1}\right] \text { for any } b_{1} \text { from } \mathfrak{B} .
$$

- If $\varphi=\forall x \psi$, then $\mathfrak{B} \models \exists x \neg \psi$ and Spoiler chooses an element b_{2} for x from \mathfrak{B} s.t.
$\mathfrak{A} \models \psi\left[\bar{a} a_{2}\right]$ and $\mathfrak{B} \not \vDash \psi\left[\bar{b} b_{2}\right]$ for any a_{2} from \mathfrak{A}.

EF Theorem - Proof

Proof: $\mathfrak{A} \equiv_{k} \mathfrak{B} \Rightarrow \mathfrak{A} \sim_{k} \mathfrak{B}$

- Given a winning strategy for Spoiler, we construct a sentence $\varphi \in F O[k]$ that can distinguish \mathfrak{A} and \mathfrak{B}, s.t.

$$
\mathfrak{A} \models \varphi \text { and } \mathfrak{B} \not \models \varphi,
$$

where \mathfrak{A} is the structure from which Spoiler chooses an element in the first round, and \mathfrak{B} is the other structure.

FO Definable Properties

- Can you find a FO definable property in only one of the following directed graphs?

- If $\mathfrak{A} \not \chi_{k} \mathfrak{B}$, then a winning strategy for Spoiler can be described by a sentence $\in F O[k]$, which is true in exactly one of \mathfrak{A} and \mathfrak{B}, and vice versa.
- $\mathfrak{A} \not \chi_{k} \mathfrak{B}$, i.e., Spoiler has a winning strategy for k-round EF games, and
- \mathfrak{A} has the property P, but \mathfrak{B} does not.

FO Definable Properties

- Consider the following property. Can you construct a winning strategy for Spoiler?

$$
\exists x \forall y \neg E(x, y)
$$

- By EF Theorem, $\mathfrak{A} \not \chi_{2} \mathfrak{B}$.

FO Definable Properties

- Given a winning strategy for Spoiler: $\left\{S \hookrightarrow b_{1}, D \hookrightarrow a_{1}, S \hookrightarrow a_{4}, D \hookrightarrow \ldots\right\}$ The following property can be constructed.

$$
\exists x \forall y x=y \vee E(x, y)
$$

- By EF Theorem, $\mathfrak{A} \not \chi_{2} \mathfrak{B}$.

FO Definable Properties

- Can you find a winning strategy for Spoiler in the following undirected graph?

FO Definable Properties

- Find a FO definable property in only one of the following undirected graphs, or find a winning strategy for Spoiler.

FO Definable Properties

- Consider the following property:

$$
\exists x \exists y \exists z(x \neq y \wedge y \neq z \wedge z \neq x \wedge \neg E(x, y) \wedge \neg E(y, z) \wedge \neg E(z, x))
$$

- By EF Theorem, $\mathfrak{A} \not \chi_{3} \mathfrak{B}$.

EF Games and FO Inexpressibility

- How is EF Theorem useful for proving inexpressibility results over finite models?
- Corollary: A property P is not expressible in FO if for every $k \in \mathbb{N}$, there exist two finite structures \mathfrak{A} and \mathfrak{B} s.t.
- $\mathfrak{A} \sim_{k} \mathfrak{B}$, i.e., Duplicator has a winning strategy for k-round EF games, and
- \mathfrak{A} has the property P, but \mathfrak{B} does not.
- But finding such structures \mathfrak{A}_{k} and \mathfrak{B}_{k} is challenging...

FO Definable Properties

- Consider another property:
$\exists x \exists y \exists z(x \neq y \wedge y \neq z \wedge z \neq x \wedge E(x, y) \wedge \neg E(y, z) \wedge \neg E(x, z))$

- By EF Theorem, $\mathfrak{A} \not \chi_{3} \mathfrak{B}$.

Evenness over Unordered Sets

Evenness over Unordered Sets

- Evenness is not expressible over unordered, finite sets in FO.

Proof:

- Pick \mathfrak{A} to be a structure containing k elements, and \mathfrak{B} a structure containing $k+1$ elements.
- We have $\mathfrak{A} \sim_{k} \mathfrak{B}$.

- Evenness is not expressible over linearly ordered, finite sets in FO. Hints:
Theorem: Let $k>0$, and \mathfrak{L}_{a} and \mathfrak{L}_{b} be linear orders of length at least 2^{k}. Then $\mathfrak{L}_{a} \sim_{k} \mathfrak{L}_{b}$.

Evenness over Linear Order

Acyclicity

- Evenness is not expressible over linearly ordered, finite sets in FO. Proof:
- Pick \mathfrak{A}_{k} to be a linear order of length 2^{k}, and \mathfrak{B}_{k} to be a linear order of length $2^{k}+1$
- We have $\mathfrak{A}_{k} \sim_{k} \mathfrak{B}_{k}$.

Acyclicity

- Acyclicity of finite graphs is not expressible in FO.

Proof:

- Let m depend only on k, and be sufficiently large.
- Assume that the game starts in a position where two special nodes (i.e., the start and end nodes of the success relation) have been played.

2-colorability

- A graph is called 2-colorable if one can color each node in either red or green such that no two adjacent nodes have the same color.
- 2-colorability of finite graphs is not expressible in FO.

Hint: A cycle of length n is 2 -colorable iff n is even.

Acyclicity

- Acyclicity of finite graphs is not expressible in FO.

Proof (continue):

- Let $d\left(a_{j}, a_{i}\right)$ denote the distance between a_{j} and a_{i}, i.e., the length of the shortest path between them.
- Duplicator maintains the following conditions after each round r :
- if $d\left(a_{j}, a_{i}\right) \leq 2^{k-r}$, then $d\left(b_{j}, b_{i}\right)=d\left(a_{j}, a_{i}\right)$.
- if $d\left(a_{j}, a_{i}\right)>2^{k-r}$, then $d\left(b_{j}, b_{i}\right)>2^{k-r}$.
- By choosing m "very large", if r rounds have been played, there is a node at a distance greater than $2^{k-(r+1)}$ from all the played nodes.

2-colorability

- A graph is called 2-colorable if one can color each node in either red or green such that no two adjacent nodes have the same color.
- 2-colorability of finite graphs is not expressible in FO. Hint: A cycle of length n is 2-colorable iff n is even.

Connectivity

- A graph is connected if there exists a path between any two nodes of the graph.
- Connectivity of finite graphs is not expressible in FO.

Conclusions

- In general, finding families of structures $\left\{\mathfrak{A}_{k} \mid k \in \mathbb{N}\right\}$ and $\left\{\mathfrak{B}_{k} \mid k \in \mathbb{N}\right\}$ is hard.
- In addition to this, it is also hard to prove that $\mathfrak{A}_{k} \sim_{k} \mathfrak{B}_{k}$.
- The complexity of proofs using EF games can quickly increase as the structures become complicated.
- To avoid complicated combinatorial arguments, it is possible to use simple sufficient conditions that guarantee a winning strategy for the duplicator, i.e. build a library of winning strategies.
- For FO, most such conditions are based on the idea of locality.
- EF games can be modified to provide methodologies for other logical languages.

Connectivity

- A graph is connected if there exists a path between any two nodes of the graph.
- Connectivity of finite graphs is not expressible in FO.

[^0]: - How can Spoiler or Duplicator win in a game?

