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Abstract. We prove an estimate of the growth of a nonnegative A-subharmonic
function in Rn in terms of the Wolff potential of its Riesz measure. Our estimate

can be viewed as a counterpart to Nevanlinna’s first fundamental theorem for sub-

harmonic functions in the nonlinear setting. As a consequence, we prove that a
nonnegative A-subharmonic function has the same order as the Wolff potential of its

Riesz measure.

1. Introduction

If u is a nonnegative subharmonic function in Rn, then Nevanlinna’s first fun-
damental theorem tells us that

T (r, u) = N(r, u) + u(0) ;

here T (r, u) is the average of u on the sphere ∂B(0, r) and

N(r, u) = dn

r∫
0

µ(B(0, t))
rn−2

dt

t
,

where dn = max(1, n− 2) and µ = ∆u is the Riesz measure of u. Moreover, T (r, u)
and maxB(x,r) u have comparable growth. We refer to [HK, Section 3.9] for more
thorough discussion.

In this paper we extend this result in the nonlinear setting. That is, we estimate
the growth of nonnegative A-subharmonic functions in Rn in terms of potentials
of their Riesz measures

µ = divA(x,∇u) ,

where the operator divA(x,∇u) is similar to the weighted p-Laplacian; see Section
2 below for precise assumptions.

Our first result gives a double sided estimate on the maximal growth of a non-
negative A-subharmonic function u in terms of the (weighted) Wolff potential of
its Riesz measure µ,

(1.1) Wµ
p,w(x, r) =

∫ r

0

(
tp

µ(B(x, t))
w(B(x, t))

)1/(p−1)
dt

t
.
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In the unweighted case, where w is Lebesgue measure the Wolff potential takes the
form

Wµ
p,1(x, r) = const

∫ r

0

(
µ(B(x, t))

tn−p

)1/(p−1)
dt

t
,

which with an appropriate choice of the constant reduces to N(r, u) if p = 2.

1.2. Theorem. Let u be a nonnegative A-subharmonic function in Rn and µ =
divA(x,∇u) its Riesz measure. Then there is a constant δ = δ(n, p, λ,Λ, cw) ≥ 1
such that for all r > 0

u(0) + c1Wµ
p,w(0, r/2) ≤ M(r) ≤ 2u(0) + c2Wµ

p,w(0, δr)

where
M(r) = sup

B(0,r)

u

and c1, c2 are positive constants depending only on n, p, λ, Λ and constants associ-
ated with weight w.

Observe that by the maximum principle

M(r) = sup
B(0,r)

u = max
∂B(0,r)

u .

The proof of Theorem 1.2 is based on the pointwise potential estimate for the
A-superharmonic functions [KM2] and on a method by Eremenko and Lewis [EL].

1.3. Corollary. Let u be a nonnegative A-subharmonic function in Rn and µ its
Riesz measure. Then u is bounded in Rn if and only if

Wµ
p,w(0,∞) < ∞ .

As in [HK, Definition 4.1], we define the order ν̄ and the lower order ν of a
positive increasing function S(r) by

ν̄ = lim
r→∞

log S(r)
log r

, ν = lim
r→∞

log S(r)
log r

.

If u is a nonnegative A-subharmonic function in Rn, unbounded above, we define
the order and the lower order of u be that of M(r) = supB(0,r) u.

1.4. Corollary. Let u be a nonnegative A-subharmonic function in Rn and µ its
Riesz measure. Then the order of u and the order of Wµ

p,w(0, r) coincide. The
same holds for lower orders.

Corollaries 1.3 and 1.4 generalize classical results for the Laplacian [HK, Theorem
3.20 and 4.4]. Our results seem to be new even for linear uniformly elliptic equations
in divergence form.
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2. Preliminaries

In this section, we recall necessary definitions and required preliminary results.
We shall work with weighted setup. A function w ∈ L1

loc(R
n), w > 0 a.e., is

called a weight; also the associated measure is denoted by w, that is,

w(E) =
∫

E

w dx

for all measurable E ⊂ Rn. In what follows we shall always assume that w is
p-admissible in the sense of [HKM], i.e. the following four properties hold:

I Doubling: there is a constant CI ≥ 1 such that

w(B(x, 2r)) ≤ CIw(B(x, r))

for all balls B(x, r) ⊂ Rn.
II Uniqueness of the gradient: If Ω is an open set in Rn and (ϕj) ⊂ C∞(Ω) is a

sequence of functions such that as j →∞,∫
Ω

|ϕj |p dw → 0 and
∫

Ω

|∇ϕj − v|p dw → 0,

where v ∈ Lp(Ω; w), then v = 0 a.e. in Ω.
III Sobolev inequality: There are constants κ > 1 and CIII > 0 such that(

1
w(B)

∫
B

|ϕ|κp dw

)1/κp

≤ CIIIr

(
1

w(B)

∫
B

|∇ϕ|p dw

)1/p

for all balls B = B(x, r) ⊂ Rn and for all ϕ ∈ C∞0 (B).
IV Poincaré inequality: There is a constant CIV > 0 such that∫

B

|ϕ− ϕB |p dw ≤ CIV rp

∫
B

|∇ϕ|p dw

for all balls B = B(x, r) ⊂ Rn and for all bounded ϕ ∈ C∞(B), where

ϕB =
1

w(B)

∫
B

ϕ dw.

In what follows we shall indicate the dependence on the above constants CI , κ,
CIII , and CIV by cw.

The above properties of the weight form a sufficient framework for a theory of
quasilinear PDEs. This was first proven by Fabes, Kenig, and Serapioni in [FKS]
and further exploited in [HKM]. Nowadays it is known that the uniqueness of the
gradient and the Sobolev inequality can be deduced from the other two properties;
the first was proven by Semmes (see [HeK]) and the second can be found e.g. in
[HaK].

Examples of p-admissible weights are the constant weight w = 1, Muckenhoupt’s
Ap-weights, and certain powers of the Jacobians of quasiconformal mappings [HKM,
ch. 15].
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Throughout, we let 1 < p < ∞ be a fixed number and Ω an open set in Rn. The
weighted Sobolev space H1,p(Ω;w) is the completion of the set

{ϕ ∈ C∞(Ω) : ||ϕ||1,p,w < ∞}

with respect to the norm

||ϕ||1,p,w =
(∫

Ω

|ϕ|p dw

)1/p

+
(∫

Ω

|∇ϕ|p dw

)1/p

,

and H1,p
loc (Ω; w) the corresponding local space. The closure of C∞0 (Ω) in H1,p(Ω;w)

is denoted by H1,p
0 (Ω;w). For the basic properties of weighted Sobolev spaces we

refer to [HKM, ch. 1].

A-subharmonic functions. To define our operator we assume that A : Rn ×
Rn → Rn is a mapping satisfying the following properties:

(2.1)
the mapping x 7→ A(x, ξ) is measurable for all ξ ∈ Rn, and

the mapping ξ 7→ A(x, ξ) is continuous for a.e. x ∈ Rn;

There are constants 0 < λ ≤ Λ ≤ ∞ such that for a.e. x ∈ Rn and for all ξ ∈ Rn

(2.2) |A(x, ξ)| ≤ Λw(x)|ξ|p−1,

(2.3) (A(x, ξ)−A(x, ζ)) · (ξ − ζ) ≥ λw(x)(|ξ|+ |ζ|)p−2|ξ − ζ|2,

whenever ξ, ζ ∈ Rn, and

(2.4) A(x, tξ) = t|t|p−2A(x, ξ)

for all t ∈ R \ {0}. A basic example of A satisfying the assumptions (2.1)-(2.4)
is the weighted p-Laplacian, A(x, ξ) = w(x)|ξ|p−2ξ; in the unweighted case, where
w = 1 this reduces to the p-Laplacian and, further, to the classical Laplacian if
p = 2.

The above properties enable us to define a differential operator as follows. As-
sume that v is measurable function such that |v|p−1 is locally integrable in Ω with
respect to w-measure. Then −divA(x, v(x)) can be defined in the distributional
sense:

−divA(x, v)(ϕ) =
∫

Ω

A
(
x, v(x)

)
· ∇ϕ dx , ϕ ∈ C∞0 (Ω) .

Then continuous function u ∈ H1,p
loc (Ω;w) is called A-harmonic in Ω, if

−divA(x,∇u) = 0 in Ω .

The A-subharmonic functions are defined via the comparison principle: an upper
semicontinuous function u : Ω → R ∪ {−∞} is A-subharmonic in Ω if it is not
identically −∞ and if for all open D ⊂⊂ Ω and h ∈ C(D̄), A-harmonic in D,
the condition h ≥ u on ∂D implies h ≥ u in D. Further, a function v is A-
superharmonic in Ω if −v is A-subharmonic in Ω.
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It is well known that in the case of the Laplacian, i.e. A(x, ξ) = ξ, this definition
is one of the equivalent characterizations of subharmonic functions, often defined via
a submean value property, see [HK]. For a thorough discussion of A-subharmonic
functions see [HKM].

Truncations of A-subharmonic functions belong locally to the Sobolev space
H1,p

loc (Ω; w) which leads to the definition of the weak gradient

Du = lim
k→∞

∇max(u,−k) .

This weak gradient is measurable and |Du|p−1 is locally w-integrable. Hence the
operator divA(x,Du) is well defined. It can be shown that it is a nonnegative
distribution whence represented by a Radon measure µ. We call this Radon measure

µ = divA(x, Du)

the Riesz measure of an A-subharmonic function u. For these properties the reader
is referred to [HKM, Ch. 7], [KM1], and [M].

A fundamental property of A-harmonic functions is the Harnack inequality.

2.5. Harnack’s inequality. Let h be a nonnegative A-harmonic function in
B(x0, r). Then

sup
B(x0,τr)

h ≤ c(1− τ)−β inf
B(x0,τr)

h ,

where c = c(n, p, λ, Λ, cw) and β = β(n, p, λ, Λ, cw) are positive constants.

We refer to [HKM, 6.2] for a proof of (2.5) when τ = 1/2. The general case
follows by iteration.

For the proof of Theorem 1.2 we need the following pointwise estimate for the
A-superharmonic functions established in [KM2]; see also [M, Theorem 3.1] and
[MZ].

2.6. Theorem. Let u be a nonnegative A-superharmonic function in B(x0, r) and

µ = −divA(x,∇u).

Then
c3Wµ

p,w(x0, r/2) ≤ u(x0) ≤ c4 inf
B(x0,r/2)

u + c5Wµ
p,w(x0, r),

where c3, c4 and c5 are positive constants depending only on n, p, λ,Λ, and cw, and
Wµ

p,w(x0, r) is the Wolff potential of µ, defined as in (1.1).

3. Proof of Theorem 1.2

For the proof of Theorem 1.2, we need the following lemma, whose proof is
similar to that of [EL, Lemma 1].

3.1. Lemma. Let u be a nonnegative A-subharmonic function in Rn and µ its
Riesz measure. Then there is θ = θ(n, p, λ, Λ, cw), 0 < θ < 1, such that if M(tr) ≤
θM(r) for some 0 < t ≤ 1 and r > 0, then

M(r) ≤ c6

(
rp µ(B(0, 2r))

w(B(0, 2r))

)1/(p−1)

,
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where c6 = c6(t, n, p, λ,Λ, cw) > 0, and M(r) is defined as in Theorem 1.2.

Proof. We treat two cases: p ≥ 2 and 1 < p < 2 separately. First suppose that
p ≥ 2. Let h be the A-harmonic function in B(0, 2r) with boundary value u, that
is,

(3.2)
{ −divA(x,∇h) = 0 in B(0, 2r)

h− u ∈ H1,p
0 (B(0, 2r);w).

The existence of h follows from the theory of monotone coercive operators, see
[HKM, Corollary 17.3]. We note that u ∈ H1,p

loc (Rn;w), since u is A-subharmonic
in Rn and bounded from below [HKM, Corollary 7.20]. By the comparison principle
[HKM, 3.18], 0 ≤ u ≤ h in B(0, 2r). From the Harnack inequality 2.5, we have

inf
B(0,r)

h ≥ c7 sup
B(0,r)

h ≥ c7 sup
B(0,r)

u = c7M(r) ,

where c7 = c7(n, p, λ, Λ, cw) ≤ 1. Thus, for all x ∈ B(0, tr),

(3.3) h(x)− u(x) ≥ inf
B(0,r)

h− sup
B(0,tr)

u ≥ c7M(r)− θM(r) ≥ c7

2
M(r),

by the assumption M(tr) ≤ θM(r) and choosing θ = c7/2. The function

ϕ = min
B(0,2r)

(h− u,
c7

2
M(r))

is nonnegative in B(0, 2r) and belongs to H1,p
0 (B(0, 2r);w). By (3.3),

(3.4) ϕ =
c7

2
M(r) on B(0, tr).

Let L be the set of points where∇ϕ exists and is nonzero. Using ϕ as a test-function
in the equations of u and h, we deduce that

(3.5)

λ

∫
B(0,2r)

|∇ϕ|p dw ≤ λ

∫
L

(|∇h|+ |∇u|)p−2|∇h−∇u|2 dw

≤
∫

B(0,2r)

(A(x,∇h)−A(x,∇u)) · ∇ϕ dx

= −
∫

B(0,2r)

A(x,∇u) · ∇ϕ dx =
∫

B(0,2r)

ϕ dµ

≤ c7

2
M(r)µ(B(0, 2r)).

Here we employed the fact p ≥ 2 and assumption (2.3). On the other hand, by
(3.4), Hölder’s inequality and the Sobolev inequality (III),

(3.6)

(c7

2
M(r)

)p

w(B(0, tr)) ≤
∫

B(0,2r)

ϕp dw

≤ w(B(0, 2r))1−1/κ

(∫
B(0,2r)

ϕκp dw

)1/κ

≤ Cp
III(2r)p

∫
B(0,2r)

|∇ϕ|p dw
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We conclude the proof in this case by combining (3.5), (3.6) and

(3.7) w(B(0, 2r)) ≤ c8w(B(0, tr)),

where c8 = c8(t, CI) ≥ 1, which easily follows from the doubling property I of w.
To prove the lemma for 1 < p < 2, let H = H(·, s) be the A-harmonic function

in B(0, s), r < s < 2r, with H − u ∈ H1,p
0 (B(0, s);w). If r ≤ s′ < s, then from the

Harnack’s inequality (2.5) we find as above that

inf
B(0,s′)

H ≥ c(s, s′) sup
B(0,s′)

H ≥ c(s, s′)M(s′),

where

(3.8) c(s, s′) =
1
c

(
s− s′

s

)β

,

and c, β are constants in (2.5). Thus, for all x ∈ B(0, tr),

H(x, s)− u(x) ≥ inf
B(0,s′)

H − sup
B(0,tr)

u ≥ c(s, s′)M(s′)− θM(r) ≥ c(s, s′)
2

M(s′),

if we assume that

(3.9) c(s, s′)M(s′) ≥ 2θM(r).

Let

ϕ = min
B(0,s)

(H − u,
c(s, s′)

2
M(s′)),

and L be the set of points in B(0, s) where ∇ϕ exists and is nonzero. We note that

ϕ =
c(s, s′)

2
M(s′) on B(0, tr)

Using ϕ as a test-function in the eqautions of H and u, we deduce as in (3.5) that

(3.10)
I1 = λ

∫
L

(|∇H|+ |∇u|)p−2|∇H −∇u|2 dw

≤ c(s, s′)
2

M(s′)µ(B(0, s)) ≤ c(s, s′)
2

M(s′)µ(B(0, 2r)).

By Hölder’s inequality, we have

(3.11)

∫
B(0,s)

|∇ϕ|p dw ≤
(∫

L

(|∇H|+ |∇u|)p−2|∇H −∇u|2 dw

)p/2

×

×

(∫
B(0,s)

(|∇H|+ |∇u|)p dw

)(2−p)/2

.

Let
I2 =

∫
B(0,s)

(|∇H|+ |∇u|)p dw.
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We estimate I2 as as follows. First, by the quasiminimizing property of A-harmonic
functions [HKM, 3.15]∫

B(0,s)

|∇H|p dw ≤
(

Λ
λ

)p ∫
B(0,s)

|∇u|p dw.

Secondly, by the well-known Caccioppoli inequality (see [HKM, 3.27]), we have for
s < s′′ ≤ 2r ∫

B(0,s)

|∇u|p dw ≤
(

Λ
λ

)p (4p)p

(s′′ − s)p

∫
B(0,s′′)

|u|p dw

≤
(

Λ
λ

)p (4p)p

(s′′ − s)p
w(B(0, 2r))M(s′′)p,

These together lead us to the estimate

(3.12) I2 ≤
c

(s′′ − s)p
w(B(0, 2r))M(s′′)p,

where c = c(p, λ,Λ) > 0. Combining (3.10)–(3.12), we obtain that

(3.13)

∫
B(0,s)

|∇ϕ|p dw ≤ c(s′′ − s)−p(2−p)/2

(
c(s, s′)

2
M(s′)µ(B(0, 2r))

)p/2

×

× w(B(0, 2r)(2−p)/2M(s′′)p(2−p)/2.

On the other hand, as in (3.6) and (3.7), we deduce that

1
c8

(
c(s, s′)

2
M(s′)

)p

w(B(0, 2r)) ≤ Cp
IIIs

p

∫
B(0,s)

|∇ϕ|p dw,

which, together with (3.13), gives

(3.14)
M(s′)p/2 ≤ cspc(s, s′)−p/2(s′′ − s)−p(2−p)/2×

× w(B(0, 2r))−p/2µ(B(0, 2r))p/2M(s′′)p(2−p)/2,

where c = c(t, p, λ, Λ, cw) > 0. This can be rewritten, after some juggling, as

(3.15) Ψ(s′) ≤ k(s, s′, s′′)(Ψ(s′′))2−p ,

where

(3.16) Ψ(τ) = M(τ)p/2

(
rp µ(B(0, 2r))

w(B(0, 2r))

)−p/2(p−1)

and
k(s, s′, s′′) = cspc(s, s′)−p/2(s′′ − s)−p(2−p)/2r−p2/2.

Estimate (3.15) holds for all r ≤ s′ < s < s′′ ≤ 2r if (3.9) is satisfied.
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Now, let
sj = 2r(1− 2−j), j = 1, 2, . . . ,

and put s′ = sj , s
′′ = sj+1 and s = (sj + sj+1)/2. We note that (3.9) is always true

for j = 1, that is, (3.9) is true for s′ = s1, s = (s1 + s2)/2, if we choose

θ =
1
2
c((s1 + s2)/2, s1) =

1
2c5β

.

Let θ be chosen in this way. We prove that the lemma is true for such a θ. Now we
have two possibilities:

i) (3.9) is true for all j = 1, 2, . . . . Then in this case M(r) = 0, which easily
follows from (3.9) and the fact M(2r) < ∞. The lemma is trivial.

ii) (3.9) is not true for some j. Let j0 be the smallest number for which it fails.
Then j0 > 1, since (3.9) is satisfied for j = 1 by our choice of θ. This means (3.9)
is true for all j = 1, 2, . . . , j0 − 1, but

(3.17) c((sj0 + sj0+1)/2, sj0)M(sj0) < 2θM(r).

Consequently (3.15) is true for s′ = sj , s′′ = sj+1 and s = (sj + sj+1)/2 for all
j = 1, 2, . . . , j0 − 1, and

k(s, s′, s′′) ≤ c2γj

for some γ = γ(n, p, λ, Λ, cw) ≥ 1. Using this inequality in (3.15) and iterating we
obtain

(3.18) Ψ(s1) ≤ c2γΨ(s2)2−p ≤ · · · ≤ (c2γ)βΨ(sj0)
(2−p)j0−1

,

where

β =
∞∑

j=1

j(2− p)j−1 < ∞.

Taking account of the fact that 1 < p < 2, we deduce from (3.17) and (3.18) by an
easy calculation that

Ψ(s1) ≤ c,

where c > 0 depends only on t, n, p, λ,Λ, cw, not on j0. This concludes the proof of
the lemma. �

Now we are ready to give the proof of Theorem 1.2.

Proof of Theorem 1.2. We first prove the left hand inequality in Theorem 1.2.
Let u be a nonnegative A-subharmonic function in Rn and µ its Riesz measure.
Since v = M(r)− u is a nonnegative A-superharmonic function in B(0, r) and

−divA(x,∇v) = µ

The left hand inequality in Theorem 2.6 gives

c3Wµ
p,w(0, r/2) ≤ M(r)− u(0),

which prove the left hand inequality in Theorem 1.2.
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Next, we prove the right hand inequality in Theorem 1.2. Let

α =
2c4 − 1

2c4
< 1,

where c4 is the constant in Theorem 2.6. Let k be the integer such that αk < θ ≤
αk−1, where θ is the constant in Lemma 3.1, and let t = 2−k. Now fix r > 0.
Suppose that there is j, 1 ≤ j ≤ k, such that

M(2−jr) ≥ αM(2−j+1r).

Since M(2−j+1r) − u is a nonnegative p-superharmonic function in B(0, 2−j+1r),
Theorem 2.6 shows that

M(2−j+1r)− u(0) ≤ c4(M(2−j+1r)−M(2−jr)) + c5Wµ
p,w(0, 2−j+1r)

≤ c4(1− α)M(2−j+1r) + c5Wµ
p,w(0, r)

=
1
2
M(2−j+1r) + c5Wµ

p,w(0, r),

that is,

(3.19) M(tr) ≤ M(2−j+1r) ≤ 2u(0) + 2c5Wµ
p,w(0, r).

If for all j = 1, 2, . . . , k,
M(2−jr) < αM(2−j+1r),

then
M(tr) = M(2−kr) < αkM(r) < θM(r).

We may now apply Lemma 3.1 to obtain that

(3.20)
M(tr) ≤ M(r) ≤ c6

(
rp µ(B(0, 2r))

w(B(0, 2r))

)1/(p−1)

≤ cWµ
p,w(0, 4r),

by the doubling property I of w. Since either (3.19) or (3.20) is true, we arrive at

M(tr) ≤ 2u(0) + cWµ
p,w(0, 4r)

for all r > 0. This is equivalent to the right hand inequality of Theorem 1.2. �
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