
Robot Learning by Demonstration with
Local Gaussian Process Regression

Markus Schneider, Wolfgang Ertel
University of Applied Sciences Ravensburg-Weingarten

Email: {markus.schneider, ertel}@hs-weingarten.de

Abstract— In recent years there was a tremendous progress
in robotic systems, and however also increased expectations: A
robot should be easy to program and reliable in task execution.
Learning from Demonstration (LfD) offers a very promising
alternative to classical engineering approaches. LfD is a very
natural way for humans to interact with robots and will be
an essential part of future service robots. In this work we
first review heteroscedastic Gaussian processes and show how
these can be used to encode a task. We then introduce a new
Gaussian process regression model that clusters the input space
into smaller subsets similar to the work in [11]. In the next
step we show how these approaches fit into the Learning by
Demonstration framework of [2], [3]. At the end we present
an experiment on a real robot arm that shows how all these
approaches interact.

I. INTRODUCTION

In the last years robots have turned from simple pre-
programmed machines into highly flexible and complex
systems. Therefore, the programming of such a robot is very
difficult and other human-robot interfaces are needed. This
is one reason why Learning from Demonstration (LfD), also
referred to as Programming by Demonstration (PbD), has
become a major topic in the context of robotics [1], [18].

Current approaches for robot skill representations can
be broadly divided in two layers called symbolic encoding
and trajectory encoding. An encoding at a symbolic level
describes a sequence of primitives that are already known and
given in advance. In most cases a graph-like representation
of the task and the environment is created where each
state is a node of the graph and actions are directed links
between these states. In contrast, trajectory encoding tries
to approximate the underlying teacher policy (the state-to-
action mapping) directly and is less goal oriented than the
symbolic approach. This is also very often referred to as
action primitive. Typically, regression techniques are used
to retrieve a generalized version of these low-level motions
(joint positions, dynamics, torques). For example, Locally
Weighted Regression (LWR) in combination with differential
equations was used in [9] to form so called motor primitives
and [8] using a confidence-based learning approach for
teaching low-level robotic skills.

The recent work of [2] and [3] showed, that Gaussian
Mixture Models (GMM) and Gaussian Mixture Regression

This work was supported by the Collaborative Center of Applied Research
on Service Robotics (ZAFH Service Robotics).

(GMR) can be used to encode demonstrated robot trajecto-
ries. They showed successfully that the important features
of a task can be extracted using the change in variability
between demonstrations over time. In this work, we show
how Gaussian processes (GP) can be used for the same pur-
pose and how to deal with the extremely high computational
costs. Gaussian processes had already been proposed in the
context of robot Learning from Demonstration [7], [17], but
have never been used to extract task constraints as in this
work. After a short review we extend the standard Gaussian
process model using heteroscedasticity [10], [13]. We then
show how this can be used to extract properties of a task
called constraints. Further, we show that this encoding is
able to generalize over multiple demonstrations in order to
create smooth and continuous trajectories. In a second step
we introduce a new local Gaussian process algorithm which
extremely reduces the computational costs compared to the
standard Gaussian process model. In contrast to the work of
[11] it can also handle the GP prediction variances.

II. GAUSSIAN PROCESS MODELS
A. Gaussian process review

In recent years, Gaussian processes became very popular
in the context of machine learning for regression and clas-
sification problems [15]. They are powerful tools to solve
non-linear problems while requiring only relatively simple
linear algebra. The Gaussian process theory provides a very
natural way to define a prior distribution over (regression)
functions. In the standard non-linear regression problem, we
try to estimate a latent function f(x) given input variables
x ∈ RD and noisy observed target values y ∈ R modeled
as y = f(x) + ε, where ε ∈ R is a random noise variable
that is independent, identically distributed (i.i.d.) for each
observation. The training data set comprising n input points
together with the corresponding observations is denoted by
D = {(xi, yi)|ni=1}. The Gaussian process regression model
tries to learn the predictive distribution p(f∗|x∗,D) of a new
test output f∗ given a test input x∗. To simplify notation, all
training inputs {xi}ni=1 are collected in a so called design
matrix X of size D × n and we define the matrix X∗ and
the vectors f∗,y in the same way. The key in Gaussian
processes is to consider the training outputs y and the new
testing points (prediction values) f∗ as a sample from the
same (zero mean) multivariate Gaussian distribution. The
predictive distribution is then again a multivariate Gaussian

The 2010 IEEE/RSJ International Conference on
Intelligent Robots and Systems
October 18-22, 2010, Taipei, Taiwan

978-1-4244-6676-4/10/$25.00 ©2010 IEEE 255

distribution N (f̄∗, cov[f∗]) conditioned on the training data
with mean

f̄∗ = K∗(K + σ2
nI)−1y (1)

and covariance matrix cov[f∗]

cov[f∗] = K∗∗ −K∗(K + σ2
nI)−1K∗T , (2)

where I is the identity matrix, σ2
n is the noise variance

K ∈ Rn×n,Ki,j = k(xi,xj), K∗ ∈ Rn∗×n,K∗
i,j =

k(x∗
i ,xj) and K∗∗ ∈ Rn∗×n∗

,K∗∗
i,j = k(x∗

i ,x
∗
j). The

function k(·, ·) is called covariance function, or kernel, and
is used to construct the covariance matrices K,K∗,K∗∗.
The corresponding variance V[f∗] is given by the diagonal
elements of cov[f∗]. We will write the Gaussian process
as GP(0, k(·, ·)) or simply GP . Typically, the covariance
function depends on parameters ω which are called hyper
parameters because they are determined in advance and not
used to absorb the training data information. A widely used
covariance function is given by the exponential of a quadratic
form, namely the Squared Exponential (SE) to give

k(xp,xq) = σ2
f exp

(
−‖xp − xq‖

2

2l2

)
, (3)

with ω = (σn, σf , l)
T defining the noise level, signal

variance and characteristic length scale, respectively. We use
p(y|X,ω) to obtain the log marginal likelihood given by

log p(y|X,ω) = −1

2
yTK−1

y y−1

2
log|Ky|−

n

2
log 2π, (4)

where Ky substitutes K+σ2
nI and |·| is the determinant of

a matrix. We then use a conjugate gradient algorithm [12]
to (locally) maximize the log marginal likelihood function
with respect to the hyper parameters.

B. Heteroscedastic Gaussian Processes
The Gaussian process model described so far assumes a

constant noise level. Given a data set that requires a variable
noise model as in Fig. 1 it would be able to correctly estimate
the mean value, but it would fail to correctly estimate the
variance. We therefore have to introduce a more flexible
noise model called heteroscedasticity. Replacing the constant
noise rate σn by an input dependent noise function r(x), the
mean and covariance function of the predictive distribution
changes to

f̄∗ = K∗(K +R)−1y and (5)

cov[f∗] = K∗∗ +R∗ −K∗(K +R)−1K∗T , (6)

respectively. R is defined as diag(r), with r =
(r(x1), . . . , r(xn))T , and R∗ = diag(r∗), with r∗ =
(r(x∗

1), . . . , r(x∗
n∗))T . We follow [6] and use a second

independent Gaussian process (the z-process denoted by
GPz) to model the log of the noise level giving z(x) =
log(r(x)) = (z1, . . . , zn)T . The z-process maintains its own
independent covariance function kz(·, ·) and parameters ωz .
With z∗ as the GPz posterior prediction, we obtain the
predictive distribution p(f∗|X∗,D) =∫ ∫

p(f∗|X∗,D, z, z∗)p(z, z∗|X∗,D) dz dz∗, (7)

0 10 20 30 40 50 60 70 80 90 100
−5

−4

−3

−2

−1

0

1

2

3

4

5

y

x

(a) underestimated variance

0 10 20 30 40 50 60 70 80 90 100
−5

−4

−3

−2

−1

0

1

2

3

4

5

y

x

(b) overestimated variance

0 10 20 30 40 50 60 70 80 90 100
−5

−4

−3

−2

−1

0

1

2

3

4

5

y

x

(c) heteroscedastic GP

0 10 20 30 40 50 60 70 80 90 100
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

r
(x

)

x

(d) latent local noise rate

Fig. 1: An example of a standard Gaussian process applied
to a data set that requires a variable noise model. The
data set shown in the panels (a), (b) and (c) consists of
five trajectories (black lines) recorded with the sensors of
a real physical robot arm. The bold solid line represents
the Gaussian process mean and the shaded region denotes
twice the standard deviation for the input. It can be clearly
seen that the GP in (a) underestimates the variance from
x = 50 to x = 100, whereas the GP in (b) overestimates the
variance from x = 10 to x = 50. Panel (c) illustrates the
resulting heteroscedastic Gaussian process after the EM run.
Its internal noise model is illustrated in (d).

where the last term prevents an analytical solution
of the integral. A common method is to approximate
p(f∗|X∗,D) ≈ p(f∗|X∗,D, z̃, z̃∗), where z̃, z̃∗ =
arg maxz,z∗ p(z, z∗|X∗,D). We use the expectation-
maximization (EM) algorithm, introduced by [10], to iter-
atively estimate p(f∗|X∗,D).

C. Local Gaussian Processes (LGP)

The heteroscedastic Gaussian processes described so far
are one of the most flexible and accurate regression methods,
but this comes at the costs of O(n3) computing time to invert
the training data covariance matrix (K+R)−1 in (5) and (6).
Solutions to this problem can be divided into two groups: (i)
global (or sparse) GP approximations [4], [5], [19] typically
use a much smaller set of so called support points. The main
problem is to find sufficient good support points that are
representative for the whole input space. The other group
contains (ii) local GP approximations or mixture of experts
(ME) [11], [14], [20], where the input space is divided into
smaller subspaces and only points ”near” the test point are
considered in prediction.

In this work we use a local GP approximation, where our
input space clustering is similar to the procedure described in
[11]. The idea in our approach is to assign the training inputs
to the local model which fits best and then train an individual
Gaussian process on each of these models. A training input
xi will be assigned to the model which center cp has the

256

0 10 20 30 40 50 60 70 80 90 100
−60

−50

−40

−30

−20

−10

0

10

t

y

Fig. 2: The graph illustrates the input space clustering. The
data set was split up into five individual subsets and assigned
to local models indicated by the different markers/colors. The
squares at the bottom of the figure and the Gaussian looking
shape are the centers and the weighting functions of the local
models, respectively.

highest covariance with the training input wk = k(xi, cp).
This is more reasonable than a simple distance function,
because it takes the properties of more complex covariance
functions1 into account. If no local model obtains a sufficient
high covariance value, a new model will be created at
the position of the training input. The clustering steps are
summarized in Algorithm 1. This reduces the computation
costs to O(n3l) for each of the L local models, where nl
presents the number of data points in a local model which
is typically much smaller than the total number of training
inputs n.

We calculate the prediction mean f̄∗ and covariance
cov[f∗] as the Gaussian product of the local model predic-
tions:

z · N (f̄∗, cov[f∗]) =

L∏
l=1

N (f̄∗
l ,Σl = diag(V[f∗]l)), (8)

where

cov[f∗] =

(
L∑
l=1

Σ−1
l

)−1

, f̄∗ = cov[f∗]

(
L∑
l=1

Σ−1
l f̄

∗
l ,

)−1

(9)

and z is a normalization constant. Note that we construct
a diagonal matrix from the local variance prediction which
is easy to invert, instead of taking the local covariance
prediction cov[f∗] which would lead to costs of O(n∗3)
for predictions. The prediction procedure is summarized in
Algorithm 2. A comparison of computation speed for the
standard and local Gaussian process models is given in
section V.

III. THE LEARNING FROM DEMONSTRATION
FRAMEWORK

We use the same learning from demonstration framework
as described in [2] to encode a task and summarize the

1As for example periodic covariance functions

Algorithm 1 Input Space Clustering & Learning
1: input: X (inputs), y (observations), k(·, ·) (the GP covariance func-

tion)
2: init number of local models to zero
3: L = 0
4: for each data point (xi, yi) do
5: for l = 1→ L do
6: Compute covariance between the model center and the input
7: wl = k(xi, cl)
8: end for
9: Choose the model with the highest covariance value

10: p = arg maxp wp
11: if wp > min. required weight and L > 0 then
12: insert (xi, yi) to the local model data set
13: X̃p = X̃p ∪ xi, ỹp = ỹp ∪ yi
14: update model mean
15: cp = MEAN(X̃p)
16: else
17: create a new local model
18: cl+1 = xi, X̃l+1 = xi, ỹl+1 = yi
19: L = L+ 1
20: end if
21: end for
22: for l = 1→ L do
23: train l-th Gaussian process
24: GPl = Gaussian process posterior using X̃l, ỹl
25: end for
26: return: local models

Algorithm 2 Local Gaussian Process Prediction
1: input: X∗ (test inputs)
2: for l = 1→ L do
3: Compute local Gaussian process posterior prediction
4: [f̄∗l ,V[f∗]l] = GPl(X∗)
5: Σl = diag(V[f̄∗]l)
6: end for
7: N (f̄∗, cov[f∗]) =

∏L
l=1N (f̄∗l ,Σl)

8: return: f̄∗ (prediction mean), cov[f∗] (prediction covariance)

used methods. During a demonstration, sensor information is
collected and stored as a state/observation ξ = (ξ

(i)
t , ξ

(i)
s) ∈

RD. Here, ξ(i)t denotes the i-th temporal value ∈ R and ξ(i)s
∈ R(D−1) is the i-th vector of spatial values. A mapping π :

R→ RD−1, ξ
(i)
t → ξ

(i)
s is called a policy. In our experiments

described in section IV we will use a simple timestamp t as
the temporal value. The spatial value is represented through
coordinates in joint space (θ1, . . . , θk for the k motor en-
coders of the robot) or task space (Cartesian coordinates and
orientation of the end effector). Suppose we have n demon-
strations and each demonstration is resampled to a fixed size
of T , then the data set D of all observations will be of length
N = nT , formally D = {(ξ(i)t , ξ

(i)
s)|i = 1, . . . , N}. We use

an independent GP to model each dimension of ξ(i)s so π
consists of D−1 Gaussian processes. This approach perfectly
fits the requirements of an approximation in the context of
robots, namely generating continuous and smooth paths and
provide a generalization over multiple demonstrations. The
Gaussian process covariance function controls the function
shape and ensures a smooth path, whereas the fundamental
GP algebra calculates the mean over demonstrations. This
reduces noise (introduced by sensors and human jitter during
the demonstration) and recovers the underlying trajectory.

The key idea is to use the variations and similarities

257

(a) Subtask 1 (b) Subtask 2

Fig. 3: The coffee machine task. The first subgoal is to move
the robot arm in proper position in order to grasp the orange
cup. Subsequently, the robot has to move under the machine
carefully , place the cup and move a little bit away in order
to be able to press the small button at the front panel of the
coffee machine.

between demonstrations to extract what is important to
imitate. Assume a robot arm scenario where the goal is to
reach a specific end state (e.g. given 3D coordinates) and
the start state is chosen randomly. The trajectories will differ
significantly at the beginning, whereas the position should be
more or less the same at the end. Such a part of a trajectory
with low variation is defined as a constraint because no
discrepancy is desired. The heteroscedastic Gaussian process
model, as discussed in section II, allows us to encode both
the trajectory and the variation between the demonstrations
(see also Fig. 1). The lower the variance of the Gaussian
process prediction is, the stronger is the constraint.

In the training (encoding) phase, policies are created with
respect to the (absolute) joint angle trajectories θ and relative
to all m ∈ M objects o(m) detected in the environment.
More precisely, the relative position of the robot’s end
effector to the initial position of each object (in Cartesian
coordinates) is calculated.

In the reproduction phase, the task space predictions are
transformed into joint angle predictions and then all predic-
tions are weighted by their variance to form an overall con-
troller. More precisely, a Cartesian trajectory estimation x̂(m)

and a related covariance matrix Σ̂x(m) for each detected
object2 is calculated by the Gaussian process policies, giving
M task space constraints. These constraints are used together
with the joint angle estimation θ̂ and related covariance
matrix Σ̂θ to create a final policy which considers constraints
in both Cartesian space and joint space. The projection from
Cartesian space to joint space is done with a pseudoinverse
Jacobian algorithm that compensates the missing orientation
information of the end effector. Algorithm 3 shows this
procedure and is described in [2] in more detail.

IV. EXPERIMENTS

The experiment consists of two subtasks: First, grasp the
cup somewhere on the table and place it under the coffee
machine as in Fig. 3. Second, press the button on the
machine. Especially the movement to reach the button is very

2It is no problem if some of the objects from the training phase are not
detected. Constraints with respect to these objects will be skipped.

Algorithm 3 Reproduction

1: input: θ̂ (GP estimate joint space), Σ̂θ (joint space covariances),
o(m) (M objects), x̂(m) (GP estimate relative to objects), Σ̂x(m)

(covariances relative to objects)
2: α = 0.5 (weight factor for Jacobian null space optimization)
3: Set initial values by direct kinematics (DK)
4: θ0 = θ̂0, x0 = DK(θ̂0)
5: for t = 0→ T do
6: Compute Jacobian matrix, where k is the number of joints and
7: p is the number of elements in the Cartesian coordinate vector:
8: J(θt) =

(
∂ xi
∂ θt,j

)
i,j

∣∣∣ i ∈ [1, . . . , p], j ∈ [1, . . . , k]

9: Compute the pseudoinverse of the Jacobian matrix
10: J†(θt) = (J(θt)TJ(θt))−1J(θt)T

11: Approximate dynamics with ∆-values for the M objects and
12: apply the pseudoinverse Jacobian method.
13: for m = 1→M do
14: ∆x

(m)
t+1 = o(m) + x̂

(m)
t+1 − xt

15: ∆eθ = θ̂t+1 − θt
16: ∆θ

(m)
t+1 = J†(θt)∆x

(m)
t+1 + α

(
I − J†(θt)J(θt)

)
∆eθ

17: Σ
(m)
t+1 = J†(θt)Σ̂

x(m)
t+1

(
J†(θt)

)T
18: end for
19: Compute posture in joint & task space by Gaussian product rule :

θt+1 = θt +
∏M
m=1N

(
∆θ

(m)
t+1 ,Σ

(m)
t+1

)
N
(
θ̂t+1 − θt,Σθt+1

)
20: Update new position by direct kinematic:
21: xt+1 = DK(θt+1)
22: end for
23: return: θ (trajectory to reproduce)

complex, because the robot has to move a little bit away from
the machine without hitting the cup or anything else.

The experiments were performed on a Katana 6M from
Neuronics. This is a lightweight portable robot arm with six
degrees of freedom (including one degree for the gripper).
For the kinesthetic teaching process all motors are set to
passive mode which allows the user to freely move the
robot arm. During the movement, all motor encoder values
are recorded at a sampling rate of 100 Hz. The data set
for training consists of four trajectories with nine variables
describing the five joint angles of the arm, the gripper and
three Cartesian coordinates representing the position of the
end effector. We resample each trajectory to T = 2000 data
points in a preprocessing step. The initial positions of the cup
and the coffee machine are gathered by the object detection
prior to the beginning of each demonstration.

We use an independent local, heteroscedastic Gaussian
process to encode each of the five joint angle trajectories
and for each dimension of the path relative to the objects
in Cartesian space. This yields to six Gaussian processes for
the joint space, three for the cup and three for the coffee
machine. To achieve a smooth trajectory, we use a squared
exponential covariance function with a single length scale
parameter and an additional parameter for the overall process
variance as in Eq. 3. We also directly introduce a noise term
into the covariance function to filter out small human jitter
during demonstration giving

k(ξ
(p)
t , ξ

(q)
t) = σ2

f exp

(
−‖ξ

(p)
t − ξ

(q)
t ‖2

2l2

)
+ δpqσ

2
n, (10)

where δpq is the Kronecker delta. This function is used for
each of the local Gaussian processes and its noise level pro-

258

(a) Relative to cup (b) Relative to coffee machine

Fig. 4: The learned policies relative to the initial positions
of the cup (a) and the coffee machine (b) in Cartesian
coordinates. We can see that the movement relative to the
cup is highly constrained between time steps 20 and 30. At
this time, the end effector reaches the cup and grasps it.
In contrast, the movement relative to the coffee machine is
constrained when it places the cup (time steps 50 to 65) and
when the button is pressed (time steps 85 to 100).

cess, but with individual parameterization and optimization.
The learned policies relative to the initial positions of

the cup and the coffee machine in Cartesian coordinates
can be seen in Fig. 4a and Fig. 4b, respectively. The
reproduction trajectories generated by the overall policy for
a new constellation of cup and coffee machine positions are
illustrated in Fig. 5. In some cases the robot was not able
to press the tiny button and stopped a few millimeters in
front of it or don’t press it deep enough. However, the robot
always managed to grasp the cup and to place it under the
coffee machine.

V. PERFORMANCE

For the comparison of computation times between the
LGP and the Standard GP we used a real data set from the
coffee task (experiments section) and resampled it to different
sizes. Fig. 6a, 6b shows the comparison between the two
approaches for the encoding/training phase, whereas Fig. 6c,
6d illustrates the prediction time. The local Gaussian process
clearly outperforms the original version of the Gaussian
process regression model for data set sizes bigger than
100 in the training phase and 250 for predictions. The
slightly worse performance at the beginning is caused by
the additional overhead for clustering and and the Gaussian
product calculations in training and prediction, respectively.

0 50 100
300
400
500
600
700

t

x 1

0 50 100
−100

0
100
200
300

t

x 2

0 50 100

−200

0

200

t

x 3

(a) Reproduction in task space

20 40 60 80 1002

3

4

t

! 1

20 40 60 80 1000

2

4

t

! 2

20 40 60 80 1000

2

4

t

! 3

20 40 60 80 1003

4

5

t

! 4

20 40 60 80 1002

3

4

t

! 5

(b) Reproduction in joint space

Fig. 5: Reproduction attempts for a new constellation of
cup and coffee machine positions. The left panel shows the
reproduction in task space, where the dotted blue line is the
policy relative to the cup, the dashed green line is the policy
relative to the coffee machine and the solid red line marks
the resulting policy. We can see that the final controller first
follows the constraint for grasping the cup (region between
20 and 50) and then follows the constraint for moving to the
coffee machine (time steps 60 and 100). It can be also seen
that the initial position of the cup is irrelevant to perform the
”press-button” task. The reproduction in joint space is drawn
in the right panel. The shaded region denotes the remaining
variance after the reproduction algorithm.

VI. CONCLUSIONS AND FUTURE WORKS

A. Conclusions

In this paper we have presented how local, heteroscedastic
Gaussian process regression can be used to efficiently extract
the essential features of a task from a set of demonstrations
and to form a reproduction policy. We also showed how
this can be incorporated in a Learning from Demonstration
framework. We demonstrated the convenience of this method
in the application of learning to place a cup on a coffee
machine and press the button with only a few kinesthetic
demonstrations. These demonstrations had been sufficient for
the robot to gather all relevant informations about the task
to learn without the need of additional information from the
human teacher. Furthermore, the robot was able to reproduce
the task on an unknown setup of the environment in a robust
way, which is one of the essential properties of a Learning
from Demonstration system.

Gaussian processes are one of the most accurate regression
methods, but they suffer from very high computational costs.
To be specific the computing time to invert the training data
covariance matrix (K +R)−1 in Eq. 5 and Eq. 6 is O(n3).

259

0 500 1000 15000

100

200

300

400

500

number of training inputs

co
m

pu
tin

g
tim

e
[s

ec
]

GP
LGP

(a) Training

0 500 1000 1500
−1

0

1

2

3

4

5

6

7

number of training inputs

co
m

pu
tin

g
tim

e
[s

ec
] (

lo
g

sc
al

e)

GP
LGP

(b) Training (log scale)

0 500 1000 15000

5

10

15

20

25

number of training inputs

co
m

pu
tin

g
tim

e
[s

ec
]

GP
LGP

(c) Prediction

0 500 1000 1500

−4

−2

0

2

4

number of training inputs

co
m

pu
tin

g
tim

e
[s

ec
] (

lo
g

sc
al

e)

GP
LGP

(d) Prediction (log scale)

Fig. 6: Comparison between the local and the standard Gaus-
sian process. The upper and lower row show the computing
time for training and prediction phase, respectively. In the
right column, the computing time is plotted logarithmically
against the different sizes of the training data set. The data
had been averaged over 50 results.

We significantly reduce this computational cost by the use
of smaller local models introducing a new type of local
Gaussian process models. The inverse covariance matrix has
to be calculated only during the demonstration/training phase
which does not require a very fast computation and can
be stored for later use.3 The Gaussian process prediction
part can then be performed very quickly, which can be
advantageous for example to (online) modify the trajectory
during reproduction.

The Gaussian process model perfectly fits into the frame-
work introduced in [2]. The only open ”parameters” are
the choice of the GP covariance function and its hyper
parameters. The first is very intuitive to set and defines
the function shape properties. As illustrated in Fig. 4, the
choice of the squared exponential covariance function leads
to a smooth and continuous trajectory and therefore fits our
preference of robot arm trajectories. We also did not have to
distinguish between joint space, task space and gripper data
because the Gaussian process model, even with this simple
covariance function, was able to model all policies. The
Gaussian process hyper parameters can be optimized using
maximum likelihood if the initial guess is not extremely
wrong.

B. Future Works

Future work will consider the use of Reinforcement Learn-
ing in combination with Dynamic Movement Primitives [9],

3Actually we store only the result of the covariance matrix Cholesky
decomposition, L, solving (LT)−1(L−1y)

[16] to equip the robot with self improvement capabilities.
For example, this can be used in the press-the-button step
(where the robot sometimes failed to press the button cor-
rectly) to adapt the movement. We also propose to combine
the encoding at trajectory level with a symbolic approach.
For example small variance regions (as grasp-the-cup and
press-the-button) could be extracted and labeled. The use
of active sensing would be advantageous, because then it is
also possible to adapt the motion during reproduction if the
positions of the objects are changing.

REFERENCES

[1] B. Argall, S. Chernova, M. M. Veloso, and B. Browning. A survey of
robot learning from demonstration. Robotics and Autonomous Systems,
57(5):469–483, 2009.

[2] S. Calinon and A. Billard. A probabilistic programming by demon-
stration framework handling skill constraints in joint space and task
space. In Proc. IEEE/RSJ Intl Conf. on Intelligent Robots and Systems
(IROS), September 2008.

[3] S. Calinon, F. Guenter, and A. Billard. On learning, representing
and generalizing a task in a humanoid robot. IEEE Transactions on
Systems, Man and Cybernetics, Part B. Special issue on robot learning
by observation, demonstration and imitation, 37(2):286–298, 2007.

[4] J. Q. Candela and C. E. Rasmussen. A unifying view of sparse ap-
proximate gaussian process regression. Journal of Machine Learning
Research, 6:1939–1959, 2005.

[5] L. Csató and M. Opper. Sparse on-line gaussian processes. Neural
Computation, 14(3):641–668, 2002.

[6] P. W. Goldberg, C. K. I. Williams, and C. M. Bishop. Regression
with input-dependent noise: A gaussian process treatment. In Neural
Information Processing Systems. The MIT Press, 1997.

[7] D. B. Grimes and R. Chalodhorn. Dynamic imitation in a humanoid
robot through nonparametric probabilistic inference. In Robotics:
Science and Systems. MIT Press, 2006.

[8] D. H. Grollman and O. C. Jenkins. Dogged learning for robots. In
ICRA, pages 2483–2488. IEEE, 2007.

[9] A. J. Ijspeert, J. Nakanishi, and S. Schaal. Learning attractor
landscapes for learning motor primitives. In Advances in Neural
Information Processing Systems 15, volume 15, pages 1547–1554,
2003.

[10] K. Kersting, C. Plagemann, P. Pfaff, and W. Burgard. Most likely
heteroscedastic gaussian process regression. In Machine Learning,
Proceedings of the Twenty-Fourth International Conference (ICML
2007), Corvalis, Oregon, USA, June 20-24, 2007, volume 227 of ACM
International Conference Proceeding Series, pages 393–400, 2007.

[11] D. Nguyen-Tuong and J. Peters. Local gaussian process regression
for real-time model-based robot control. In Intl Conf. on Intelligent
Robots and Systems (IROS), pages 380–385. IEEE, 2008.

[12] J. Nocedal and S. J. Wright. Numerical Optimization. Springer, New
York, 1999.

[13] C. Plagemann. Gaussian Processes for Flexible Robot Learning.
PhD thesis, University of Freiburg, Department of Computer Science,
December 2008.

[14] C. E. Rasmussen and Z. Ghahramani. Infinite mixtures of gaussian
process experts. In In Advances in Neural Information Processing
Systems 14, pages 881–888. MIT Press, 2002.

[15] C. E. Rasmussen and C. Williams. Gaussian Processes for Machine
Learning. MIT Press, 2006.

[16] S. Schaal. Dynamic movement primitives - a framework for motor
control in humans and humanoid robotics. pages 261–280. 2006.

[17] A. P. Shon, K. Grochow, and R. P. N. Rao. Robotic imitation from
human motion capture using gaussian processes. In Humanoid Robots,
2005 5th IEEE-RAS International Conference on, pages 129–134,
2005.

[18] B. Siciliano and O. Khatib, editors. Springer Handbook of Robotics.
Springer, Berlin, Heidelberg, 2008.

[19] E. Snelson and Z. Ghahramani. Sparse gaussian processes using
pseudo-inputs. In Advances in Neural Information Processing Systems
18, pages 1259–1266, 2006.

[20] E. Snelson and Z. Ghahramani. Local and global sparse gaussian
process approximations. In Artificial Intelligence and Statistics, 2007.

260

