Module 3

Constitutive Equations

Learning Objectives

e Understand basic stress-strain response of engineering materials.

e Quantify the linear elastic stress-strain response in terms of tensorial quantities and in
particular the fourth-order elasticity or stiffness tensor describing Hooke’s Law.

e Understand the relation between internal material symmetries and macroscopic anisotropy,
as well as the implications on the structure of the stiffness tensor.

e Quantify the response of anisotropic materials to loadings aligned as well as rotated
with respect to the material principal axes with emphasis on orthotropic and transversely-
isotropic materials.

e Understand the nature of temperature effects as a source of thermal expansion strains.

e Quantify the linear elastic stress and strain tensors from experimental strain-gauge
measurements.

e Quantify the linear elastic stress and strain tensors resulting from special material
loading conditions.

3.1 Linear elasticity and Hooke’s Law

Readings: Reddy 3.4.1 3.4.2
BC 2.6

Consider the stress strain curve o = f(€) of a linear elastic material subjected to uni-axial
stress loading conditions (Figure |3.1)).
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€

Figure 3.1: Stress-strain curve for a linear elastic material subject to uni-axial stress o (Note
that this is not uni-axial strain due to Poisson effect)

In this expression, F is Young’s modulus.

Strain Energy Density R
For a given value of the strain €, the strain energy density (per unit volume) 1 = 1(e), is

defined as the area under the curve. In this case,

v(e) = 5B

We note, that according to this definition,

_ o _

= =F
Oe ¢

g

In general, for (possibly non-linear) elastic materials:

0y (3.1)

0ij = 0ij€) = 5~
ij

Generalized Hooke’s Law
Defines the most general linear relation among all the components of the stress and strain

tensor

0ij = Cijri€rl (3.2)

In this expression: Cjji; are the components of the fourth-order stiffness tensor of material
properties or Elastic moduli. The fourth-order stiffness tensor has 81 and 16 components for
three-dimensional and two-dimensional problems, respectively. The strain energy density in
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this case is a quadratic function of the strain:

A 1
P(e) = §Oz'jkl5z’j5kl (3.3)

Concept Question 3.1.1. Deriwation of Hooke’s law.
Derive the Hooke’s law from quadratic strain energy function Starting from the quadratic
strain energy function and the definition for the stress components given in the notes,

1. derive the Generalized Hooke’s law 0;; = Cjjri€ni-

3.2 Transformation of basis for the elasticity tensor
components

Readings: BC 2.6.2, Reddy 3.4.2

The stiffness tensor can be written in two different orthonormal basis as:
C=Cine e Qe e
= Chyrs®, @ 8,0 8, @ &,

(3.4)

As we’ve done for first and second order tensors, in order to transform the components from
the e; to the e; basis, we take dot products with the basis vectors e; using repeatedly the
fact that (em ® €,) - € = (e, - €;)em and obtain:

éz’jkl = Cpgrs(€y - €i)(eq - €;)(e, - &) (e, - &)

3.3 Symmetries of the stiffness tensor

Readings: BC 2.1.1

The stiffness tensor has the following minor symmetries which result from the symmetry
of the stress and strain tensors:

oij = 0ji = Cjig = Cijul (3.6)
Proof by (generalizable) example:

From Hooke’s law we have 091 = Coipi€rr, 012 = Clopi€r
and from the symmetry of the stress tensor we have 91 = 019
= Hence Coipery = Clraniep
Also, we have (C’gw — Clgkl)Ekl =0 = Hence Cy11; = Cion
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This reduces the number of material constants from 81 =3 x 3 x3x3 =54 =6 x 3 x 3.
In a similar fashion we can make use of the symmetry of the strain tensor

€ij = €ji = Cijie = Ciji (3.7)

This further reduces the number of material constants to 36 = 6 x 6. To further reduce the

number of material constants consider equation ([10.1]), (10.1)):

oij = % = Cijki€rl (3.8)
aéiiﬁg% = 83% (Cijmien) (3.9)
CijktOkmOm = % (3.10)
Cijmn = % (3.11)
Assuming equivalence of the mixed partials:
Cijit = Gl il = Chuij (3.12)

8€k186ij 8@]»86“

This further reduces the number of material constants to 21. The most general anisotropic
linear elastic material therefore has 21 material constants. We can write the stress-strain
relations for a linear elastic material exploiting these symmetries as follows:

011 _01111 Crizz Cuss Ciizs Cinz Chine €11
022 Coa22  Cazzzs Cagaz Caziz Caoro €22
33| _ Cs333 Czzo3 Csziz Cszio €33 (3 13)
023 Casas Caz1z Coasia 2€93 '
013 symm Cizis Ciziz 2¢€13

1012 | L 01212_ _2612_

3.4 Engineering or Voigt notation

Since the tensor notation is already lost in the matrix notation, we might as well give indices
to all the components that make more sense for matrix operation:

_01_ _011 Cha Cis Cuy Cys 016- _61_
02 022 CY23 024 025 026 €2
03 Cs3 O34 Cs5 Che €3
- 3.14
04 Cu Cys Cyg €4 ( )
o5 symm Css Csg| |e5
106 ] | 066_ | €6 |
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We have: 1) combined pairs of indices as follows: ()11 — ()1, ()22 — ()2, ()33 = ()3, ()23 —
04,013 = 05,012 = (6, and, 2) defined the engineering shear strains as the sum of
symmetric components, e.g. €4 = 2693 = €93 + €39, etc.

When the material has symmetries within its structure the number of material constants
is reduced even further. We now turn to a brief discussion of material symmetries and
anisotropy.

3.5 Material Symmetries and anisotropy

Anisotropy refers to the directional dependence of material properties (mechanical or other-
wise). It plays an important role in Aerospace Materials due to the wide use of engineered
composites.

The different types of material anisotropy are determined by the existence of symmetries
in the internal structure of the material. The more the internal symmetries, the simpler
the structure of the stiffness tensor. Each type of symmetry results in the invariance of the
stiffness tensor to a specific symmetry transformations (rotations about specific axes and
reflections about specific planes). These symmetry transformations can be represented by
an orthogonal second order tensor, i.e. Q = @;je; ® e;,such thatQ™' = QT and:

+1 rotation

—1 reflection

det(Q”) = {

The invariance of the stiffness tensor under these transformations is expressed as follows:

Cijkl = Qinijerlstqrs (315)

Let’s take a brief look at various classes of material symmetry, corresponding sym-
metry transformations, implications on the anisotropy of the material, and the struc-
ture of the stiffness tensor:

- } mE. o - Triclinic: no symmetry planes, fully anisotropic.
/ | 0, B,y < 90
Number of independent coefficients: 21
" / : ':7::::::"”””}”” = p Symmetry transformation: None
> f. _ |
] \Nof oo Ciini Ciizz Chiiss Chizs Cins Chine
02222 02233 02223 02213 02212
C ¢= Chazz Ca3a3 Chaziz Charo
Casaz Caziz Casio
s Cizi3 Cizia
_ 01212_
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T 1 _ Monoclinic: one symmetry plane (zy).
,,3/,,,,,,,,,,,,,::::::::” Monoclinice:  onc s
B aEEE) Number of independent coefficients: 13
b 3\ l B o
of — o-lo1 o
<1 a — 010

_Cllll 01122 CY1133 O O CY1112
C'2222 C’2233 0 O 02212
C(3333 0 0 C’3312

Cozaz Coziz 0

symim 01313 0

Concept Question 3.5.1. Monoclinic symmetry.
Let’s consider a monoclinic material.

1. Derive the structure of the stiffness tensor for such a material and show that the tensor
has 13 independent components.

Orthotropic: three mutually orthogonal planes of

Yy T 1 reflection symmetry. a #b# ¢, a =5 =~v=90
i — 1 I\ - Number of independent coefficients: 9
1 \ Symmetry transformations: reflections about all
- three orthogonal planes
LNl B T[] -1 1.0 0 1 0 0 10 0
~ || Q=10 1 0{Q=10 -1 0{Q=1]01 0
R | 1 0 0 1 0 0 1 00 -1
¢ [Cii1 Chizz Chuss 0 0 0 |
Cozoz  Cozzz 0 0 0
O — Csz33 0 0 0
Cozaz 0 0
symm Cizi3 0
i Cro12 |

Concept Question 3.5.2. Orthotropic elastic tensor.
Consider an orthotropic linear elastic material where 1, 2 and 3 are the orthotropic axes.

1. Use the symmetry transformations corresponding to this material shown in the notes
to derive the structure of the elastic tensor.

2. In particular, show that the elastic tensor has 9 independent components.
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Concept Question 3.5.3. Orthotropic elasticity in plane stress.

Let’s consider a two-dimensional orthotropic material based on the solution of the pre-
vious exercise.

1. Determine (in tensor notation) the constitutive relation € = f(o) for two-dimensional
orthotropic material in plane stress as a function of the engineering constants (i.e.,
Young’s modulus, shear modulus and Poisson ratio).

2. Deduce the fourth-rank elastic tensor within the constitutive relation o = f(e). Ex-
press the components of the stress tensor as a function of the components of both, the
elastic tensor and the strain tensor.

Transversely isotropic: The physical properties
are symmetric about an axis that is normal to a
plane of isotropy (zy-plane in the figure). Three
mutually orthogonal planes of reflection symmetry
and axial symmetry with respect to z-axis.

7 Number of independent coefficients: 5
=1 Symmetry transformations: reflections about all
three orthogonal planes plus all rotations about z-
axis.
-1 0 0 1 0 0 10 0
Q=10 10QQ=1({0 -1 0]Q=101 0
| 0 01 0 0 1 00 —1
LA_A_/
- cosf sinf 0
Q= |—sinf cosf 0|,0<0<27w
0 0 1
5 r -
w Cinir Cuze Cusz 0 0 0
i y— Cinn Crss 0 0 0
Cazaz 0 0
symm 02323 0
i %(01111 — Chi2)
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Cubic: three mutually orthogonal planes of reflec-

tion symmetry plus 90° rotation symmetry with re-

spect to those planes. a =b=c, a = =~v=90
y I Number of independent coefficients: 3

11 Symmetry transformations: reflections and 90° ro-
S tations about all three orthogonal planes
o ) ] ] ] ] ]
N I\ -100 1 0 0 10 0
a Yy e Q=10 1 0/Q=1[0 -1 0[Q=1|01 0
1. 11 0 01 0 0 1 00 —1
a0l = - - - - - -
Nl [0 1 0] [0 0 1] (1 0 0]
Q=|-100{Q@=|0 10[Q@=|0 0 1
|0 0 1 -1 0 0 0 -1 0
[Ciin Cize Chize 0 0 0 ]
Cunn Cuze 0 0 0
Cun 0 0 0
C =
Cra12 0 0
symim Ci212 0
i Cia12
3.6 Isotropic linear elastic materials
Most general isotropic 4th order isotropic tensor:
Cijkt = A0ijOr + M(5z'k5jz + 5@'15jk) (3.16)
Replacing in:
045 = Uijki€kl (3~17)
gives:
Oij = NOij€kk + N(Gij + Eji) (3.18)

0y = Mg + p(eij + €5i)

Examples

011 = A1y (611 + €22 + E33) + M(€11 + 611) = ()\ + 2#) €11 + A€aa + Aess (3.20)
012 = 2p1€12 (3.21)
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Concept Question 3.6.1. Isotropic linear elastic tensor.
Consider an isotropic linear elastic material.

1. Write the three-dimensional elastic/stiffness matrix in Voigt notation.

Compliance matrix for an isotropic elastic material

From experiments one finds:

1 - -
en =% |on - V(092 + 033)
€22 = % :022 - V(Un + 033): (3.22)
1r - )
€a3 = 77|03 V(Ull + 022)
0923 013 012
€23 G €13 G €12 G

In these expressions, E is the Young’s Modulus, v the Poisson’s ratio and G the shear
modulus. They are referred to as the engineering constants, since they are obtained from
experiments. The shear modulus G is related to the Young’s modulus £ and Poisson ratio v
by the expression G = —Z—. Equations can be written in the following matrix form:

2(1+v)
ey | 1 —v —v 0 0 0 1 [o]
€99 1 -V 0 0 0 092
€33 . 1 1 0 0 0 033
263 FE 2(1+v) 0 0 o3 (3.23)
2€13 symm 2(1+v) 0 013
_2612_ L 2(1 + 1/)_ _0'12_
Invert and compare with:
-0'11- -)\ + 2,u )\ )\ O O 0- [ €11 i
099 )\ —+ 2/11 A 0 0 O €929
033 _ A+ 2/L 0 0 O €33
oo | = uo0 0 %rs (3.24)
013 symm w0 [2€3
| 012 | | ] _2612
and conclude that:
Ev FE
A= =G=— 3.25
A+v)(1—20) " 21+ v) (3.25)

Concept Question 3.6.2. Inverted Hooke’s law.
Let’s consider a linear elastic material.
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1. Verify that the compliance form of Hooke’s law, Equation (3.23]) can be written in
index notation as:

1
€ij = E |:(1 + V>Uij - VO'kk(sl'j:|

2. Invert Equation (3.23) (e.g. using Mathematica or by hand) and verify Equation (3.24])
using A and p given by ([3.25)).

3. Verify the expression:

O = |:€ij +— €kk0ij
(1+v) (1—2v)

Bulk Modulus

Establishes a relation between the hydrostatic stress or pressure: p = %akk and the volumet-
ric strain 6 = ey.

Concept Question 3.6.3. Bulk modulus derivation. Let’s consider a linear elastic material.

1. Derive the expression for the bulk modulus in Equation ((3.26))

Concept Question 3.6.4. Independent coefficients for linear elastic isotropic materials.
For a linearly elastic, homogeneous, isotropic material, the constitutive laws involve three
parameters: Young’s modulus, E, Poisson’s ratio, v, and the shear modulus, G.

1. Write and explain the relation between stress and strain for this kind of material.
2. What is the physical meaning of the coefficients E, v and G?

3. Are these three coefficients independent of each other? If not, derive the expressions
that relate them. Indicate also the relationship with the Lame’s constants.

4. Explain why the Poisson’s ratio is constrained to the range v € (—1,1/2). Hint: use
the concept of bulk modulus.
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3.7 Thermoelastic effects

We are going to consider the strains produced by changes of temperature (¢?). These strains
have inherently a dilatational nature (thermal expansion or contraction) and do not cause
any shear. Thermal strains are proportional to temperature changes. For isotropic materials:

E?j = &Aﬁéij (327)

The total strains (¢;;) are then due to the (additive) contribution of the mechanical strains

(efgf ), i.e., those produced by the stresses and the thermal strains:

_ M 0

M 0 .
Uij = Cijklekl = Cijkl(ekl — Ekl) or:

045 = C’ijkl(ekl - ozAQékl) (328)

Concept Question 3.7.1. Thermoelastic constitutive equation.
Let’s consider an isotropic elastic material.

1. Write the relationship between stresses and strains for an isotropic elastic material
whose Lamé constants are A and p and whose coefficient of thermal expansion is «.

Concept Question 3.7.2. Thermoelasticity in a fully constrained specimen. Let’s consider
a specimen which deformations are fully constrained (see Figure[3.2). The material behavior
is considered isotropic linear elastic with £ and v the elastic constants, the Young’s modulus
and Poisson’s ratio, respectively. A temperature gradient A# is prescribed on the specimen.

Figure 3.2: Specimen fully constrained.

1. Determine the internal stress state within the specimen.




MODULE 3. CONSTITUTIVE EQUATIONS

Material Mass density | Young’s Mod- | Poisson | Thermal
(Mg -m™?] ulus [GPd] Ratio Expansion

Coefficient
[107¢K~!

Tungsten 13.4 410 0.30 )

CFRP 1.5-1.6 70 200 0.20 2

Low alloy | 7.8 200 - 210 0.30 15

steels

Stainless 7.5-7.7 190 - 200 0.30 11

steel

Mild steel | 7.8 196 0.30 15

Copper 8.9 124 0.34 16

Titanium 4.5 116 0.30 9

Silicon 2.5-3.2 107 0.22 5

Silica glass | 2.6 94 0.16 0.5

Aluminum | 2.6-2.9 69-79 0.35 22

alloys

GFRP 1.4-2.2 7-45 10

Wood, par- | 0.4-0.8 9-16 0.2 40

allel grain

PMMA 1.2 3.4 0.35-0.4 | 50

Polycarbonatd.2 1.3 2.6 0.36 65

Natural 0.83-0.91 0.01-0.1 0.49 200

Rubbers

PVC 1.3-1.6 0.003-0.01 0.41 70

Table 3.1: Representative isotropic properties of some materials
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3.8 Particular states of stress and strain of interest

3.8.1 Uniaxial stress
011 = o, all stress components vanish
From (3.23)):

o v v . .
€11 = —, €9 = ——0, €33 = ——0, all shear strain components vanish

E E E

[

3.8.2 Uniaxial strain

€11 = €, all other strain components vanish
From ((3.24)):
(1-v)
(I+v)(1-2v)

011 = ()\ + 2/,L)€11 =

3.8.3 Plane stress

Consider situations in which:

Then:

1
€11 = E(O'll — VO'QQ) (330)

1
€20 = E(022 — voy) (3.31)
€45 — %(011 +09) £ 0! (3.32)
€93 — €13 — 0 (333)

1

€p = 212 (A +v)ow (3.34)

26~ FE
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x2
x1
x3
In matrix form:
€11 1 1 -V 0 o11
€29 = E -V 1 0 0929 (335)
2¢19 0 0 2(14v)| |omw
Inverting gives the:
Relations among stresses and strains for plane stress:
011 L 0 €11
E
012 0 0 2€19

Concept Question 3.8.1. Plane stress
Let’s consider an isotropic elastic material for a plate in plane stress state.

1. Determine the out-of-plane €33 strain component from the measurement of the in-plane
normal strains €, €99.

3.8.4 Plane strain

In this case we consider situations in which:
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Then:
1
€33 =0= E|:O'33—V(O'11+O'22>i|, or. (338)
033 = V(O'H + 0'22) (339)
€11 = —{011 -V 022 + V(Un + 022)]}
b (3.40)
E[ 0'11—1/<1—|—I/)0'22:|
€990 — E |:(1 — 1/2)0'22 — V(l + V)O'H] (341)
In matrix form:
€11 1 1 —V2 —V(1+V) 0 011
2
€0 | = 5 —v(l+v) 1—v 0 099 (3.42)
2€19 0 0 2(1+v)| |o12
Inverting gives the
Relations among stresses and strains for plane strain:
o1 1—v v 0 €1
E v 1—v 0
029 = €929 (343)
s (14+v)(1—2v) 0 0 (1—2v) %y

Concept Question 3.8.2. Plane strain.
Using Mathematica:

1. Verify equations (3.36) and (3.43)

Concept Question 3.8.3. Comparison of plane-stress and plane-strain linear isotropic
elasticity.

Let’s consider two linear elastic isotropic materials with the same Young’s modulus £ but
different Poisson’s ratio, » = 0 and v = 1/3. We are interested in comparing the behavior
of these two materials for both, plane stress and plane strain models.

1. Express the relation between the stress components and the strain components in the
case of both, plane stress and plane strain models.

2. Under which conditions these two materials manifest the same elastic response for each
hypothesis, plane strain and plane stress?
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3. Derive the equation that relates €;; and ey when 099 = 0 for both, plane strain and
plane stress models. For the material having a Poisson’s ratio equals to v = 1/3, for
which model (plane stress or plane strain) the deformation sy reaches the greatest
value?

4. Let’s consider a square specimen of each material, with a length equals to 1 m and the
origin of the coordinate system is located at the left bottom corner of the specimen.
When a deformation of €;; = 0.01 is applied, calculate the displacement us of the point
with coordinates (0.5,1).




