
Toward a Distributed Data Flow Platform for the Web of
Things

Michael Blackstock
Human Communication Technologies Laboratory

University of British Columbia
Vancouver, Canada

mblackst@magic.ubc.ca

Rodger Lea
Human Communication Technologies Laboratory

University of British Columbia
Vancouver, Canada

rodgerl@ece.ubc.ca

ABSTRACT
Several web-based platforms have emerged to ease the
development of interactive or near real-time IoT applications by
providing a way to connect things and services together and
process the data they emit using a data flow paradigm. While
these platforms have been found to be useful on their own, many
IoT scenarios require the coordination of computing resources
across the network: on servers, gateways and devices themselves.
To address this, we explore how to extend existing IoT data flow
platforms to create a system suitable for execution on a range of
run time environments, toward supporting distributed IoT
programs that can be partitioned between servers, gateways and
devices. Eventually we aim to automate the distribution of data
flows using appropriate distribution mechanism, and optimization
heuristics based on participating resource capabilities and
constraints imposed by the developer.

Categories and Subject Descriptors
D.2.6 [Programming Techniques]: Graphical Environments,
Integrated Environments, C.2.4 [Distributed Systems]:
Distributed applications, D.1.3 [Concurrent Programming]
Distributed Programming.

General Terms
Performance, Design, Languages

Keywords
Visual data flow languages, toolkits, Web of things, Internet of
things

1. INTRODUCTION
Many common IoT scenarios in areas such as home and industrial
automation, real time business intelligence, and interactive spaces
require integration with online services and (near) real time
sensing and actuation. While it is possible to create real time
interactive IoT applications using traditional programming tools,
it can be difficult, requiring developers to learn new protocols and
APIs, create data processing components, and link them together.
Today practitioners are creating new tools and platforms to ease
the development of this class of IoT applications. Some of these
systems focus on connectivity and routing [1, 13], while other use
a ‘condition action’ paradigm [3, 8] to connect services and
things. To provide more flexibility while maintaining ease of use,
several platforms [4, 5, 7, 11, 14] provide a data flow
programming paradigm where computer programs are modeled as
directed graphs connecting networks of ‘black box’ nodes that

exchange data along connected arcs. This simple paradigm, while
not necessarily expressed visually, lies at the heart of several
visual programming languages. Visual data flow programming
languages (VDFPLs) [9] have been used in many other domains
such as high performance parallel computing [2] leveraging
multi-core processors, music [10], toys [15] and industrial
applications [4]. Two web-based data flow systems in particular;
the WoTKit Processor [5], and Node-RED [11], begin to address
interactive IoT scenarios like these. The Processor is a multi-user
system for running data flow programs in the cloud while Node-
RED is toolkit for developing data flows on devices and servers.
While data flow platforms have proven useful on their own, many
IoT scenarios require the coordination of computing resources
hosted on things and servers across the Internet: hosted in the
cloud, gateways and at the edge on smart devices. Devices with
attached sensors can change raw sensor readings to send
“presence” events for example. Gateways can aggregate data
from several sensors and perform some simple data processing;
cloud-based systems can connect to online services for real time
access to social network feeds and alert channels such as email
and SMS. We believe that by providing a distributed data flow
run time for the IoT where data flows can be hosted on a variety
of platforms, developers can more easily make use of these
computing resources across the network.
In this paper we provide an overview of data flow architectures
and describe the WoTKit and Node-RED systems in some detail,
comparing and contrasting these systems toward the design of a
distributed data flow system called WoT Flow. We then outline
our proposed distributed architecture, and describe an early
prototype system we’ve developed based on Node-RED.
We then provide context for this work by describing existing
interactive web-based platforms that can be used in IoT
applications, highlighting their key characteristics. We conclude
with some open questions for participants at the workshop to
inform the design of WoT Flow.
Our contribution is an exploration of how to extend existing IoT
data flow systems to create a platform suitable for execution on a
range of run time environments, and support data flows that can
be partitioned manually. Eventually, using an appropriate flow
distribution facility and optimization heuristics, we aim to support
the automatic partitioning and distribution of data flows based on
participating resource capabilities and constraints imposed by the
developer around cost, performance and security.

2. IoT DATA FLOW ARCHITECTURES
Research in data flow architectures dates back to the mid-70’s
when researchers wanted to exploit the massive parallelism
offered by parallel processors [9]. While traditional programs are
typically represented as a series of instructions written using text,
and focusing on the operations that are to be executed, data flow
programs lend themselves to a visual representation where nodes
representing data inputs, outputs and functions are connected with
arcs that define the data flow between components as illustrated
in Figure 1. Since these operations are stand alone, they can be
easily re-used and composed in other programs. The dataflow
semantics of VDFPLs can be more intuitive for non-programmers
to understand and lend themselves to programming environments
where users can arguably more easily move between program
design and implementation [9], and reduce development time [4].
The two systems described here provide such an environment for
building real time IoT applications.

2.1 WoTKit Processor
The WoTKit Processor is a multi-user service bundled with the
WoTKit platform [5] that allows users to process sensor data and
react to real time updates from sensors and other external
systems. The WoTKit processor is implemented in Java using the
Spring Framework, and leverages the Java Concurrency
Framework in its execution engine. Like other data flow systems,
the primary interface is a browser-based visual data flow editor.
Inspired by Yahoo Pipes [14], users of the Processor create data
flow programs called pipes made up of modules connected with
wires.

A pipe management page lists the pipes that the user has created,
indicating their execution status (error, executing, stopped).
Users can start, stop and edit their own pipes from this page; they
do not have access to other users pipes executing on the platform.
To develop a new pipe, users drag and drop modules to the main
canvas, and connect them as illustrated in Figure 2.

After saving a pipe, a user can start a pipe’s execution in the
editor or on the management page. The system then checks the
pipe for errors, and “compiles” the pipe by instantiating pipe

modules in the server, and adding wires to a global ‘routing’ table
that links module endpoints together. Once all modules are
instantiated, the system calls ‘start’ on each module. On start,
input modules connect to external systems such as Twitter or the
WoTKit sensor data aggregation platform [18], subscribing to
appropriate real time data streams.

The Processor uses a multi-threaded execution scheduler to
process data as it arrives at the system for all users as illustrated
in Figure 3. Input modules connected to external services add
tasks to the execution queue consisting of a received data message
and an instance of the input module. The scheduler waits on this
queue, and retrieves the next task, calling the associated
process() method on the associated module with the new
data. The module implementation may add additional tasks
(messages and associated modules) to the execution queue, or
send the data to an external service itself.

To stop the execution of a pipe, the system looks up the modules
on the specified pipe and calls stop() on each module. This
allows endpoint modules to unsubscribe or disconnect from
external services. It then removes the wires from the routing table
in the system, leaving other modules and wires in the system for
other pipes running. This architecture allows pipes to be
managed and controlled independently and by changing the
execution queue implementation, control the priority of pipe
execution between users.

The WoTKit Processor includes input and output modules to send
and receive data to external systems such as WoTKit-hosted
sensors, twitter feeds and email. A monitor module is used for
testing and debugging pipes, allowing users to watch data as it
flows through the system. Alerting is supported with an email
module to send emails when interesting events occur. An
actuator module, allows users to control things from a pipe.
Function modules for data aggregation and thresholds are
included. Finally, the Processor includes the ability for
developers or users of the system to write their own modules.
Developers can add new modules in Java by implementing
JavaBeans and registering them with the Processor database. End
users of the system can implement their own modules in the UI
using Python and save copies of these scripts for use in other
pipes.

The Processor’s pipes are expressed using JSON documents as
shown in Figure 5. This example pipe takes input from a Twitter
feed called myeverydayearth, does some processing on the
message, then sends the processed output to a WoTKit sensor.
The visual editor on the browser generates these JSON

Figure 1. Simple data flow connecting Twitter and a
presence sensor to control a television.

Figure 2. WoTKit Processor browser-based pipe editor.

Figure 3. WoTKit Processor Architecture

representations, which are sent to the server for storage and
execution.

2.2 Node-RED
Like the Processor, Node-RED is a web-based tool for connecting
hardware devices and APIs. It also provides a browser-based
flow editor (Figure 4). It is implemented in JavaScript using the
Node.js framework, taking advantage of Node’s built in event
model, and native support for JavaScript on both the client editor

and the server.

Data flow programs on Node-RED are called flows consisting of
nodes connected by wires. Like the WoTKit Processor, the user
interface consists of a flow editor with node templates on the left
that can be dragged and dropped into a flow canvas. Unlike the
Processor, all users accessing Node-RED manage a single flow,
which may be shown on multiple pages. Once a flow is created,
or after a change, the user deploys the flow, both saving it to the
server and (re)starting its execution on the Node-RED server.

Nodes in a flow inherit from the Node base class. A Node is also
subclass of an EventEmitter in the Node.js event API that
implements the observer design pattern to maintain subscriber
lists defined by wires, and emits events to downstream nodes. On
instantiation, input nodes may subscribe to external services,
begin listening for data on a port, or begin processing HTTP
requests. Once data is processed by a node, either from an
external service, or received from an upstream node via its
“input” handler, the node calls the base class Node send()
method with a JavaScript object. The send method delegates to
the EventEmitter.emit() method to send named events to
downstream Node instances which process data and either
generate additional events, or communicate with outside services
or the OS.

Node-RED is supported by IBM and a large community of users
that contribute new nodes and flows1. New nodes can be

1 http://flows.nodered.org/ Node Red Flow Library. Accessed 15-

Aug-2014.

{
 "name": "Twitter to Sensor",
 "modules": [{
 "id": 2,
 "name": "Twitter Feed",
 "type": "twitter-in",
 "x": 110.99999809265,
 "y": 121.18181610107,
 "config": {
 "feed": "myeverydayearth"
 }
 },{
 "id": 1,
 "name": "Sensor Output",
 "type": "sensor-output",
 "x": 372.99999809265,
 "y": 269.36362457275,
 "config": {
 "sensor": "mike.output"
 }
 },{
 "id": 3,
 "name": "Python Script",
 "type": "py-script",
 "x": 211.99999809265,
 "y": 213.90906524658,
 "config": {
 "script":”input = output”
 }
 }],"wires":[
 {
 "source": {
 "module": 2,
 "terminal": 1
 },"target": {
 "module": 3,
 "terminal": 0
 }
 },{
 "source": {
 "module": 3,
 "terminal": 1
 },"target": {
 "module": 1,
 "terminal": 0
 }
 }
]
}

Figure 5. WoTKit Processor Example Pipe

[
 {
 "id": "81bbf709.7e4408",
 "type": "mqtt-broker",
 "broker": "public",
 "port": "1883",
 "clientid": ""
 },{
 "id": "23df8a24.dc2076",
 "type": "twitter in",
 "twitter": "",
 "tags": "",
 "user": "false",
 "name": "myeverydayearth",
 "topic": "tweets",
 "x": 185.09091186523,
 "y": 75.090911865234,
 "z": "db25cd7.f24da3",
 "wires": [["7b3fdb79.84c024"]]
 },{
 "id": "85ac23b0.7a53e",
 "type": "mqtt out",
 "name": "Output Sensor",
 "topic": "output-sensor",
 "broker": "81bbf709.7e4408",
 "x": 467.09091186523,
 "y": 212.09091186523,
 "z": "db25cd7.f24da3",
 "wires": []
 },{
 "id": "7b3fdb79.84c024",
 "type": "function",
 "name": "Example function",
 "deviceId": "server",
 "func": "\nreturn msg;",
 "outputs": 1,
 "x": 318.09091186523,
 "y": 142.09091186523,
 "z": "db25cd7.f24da3",
 "wires": [["85ac23b0.7a53e"]]
 }

]

Figure 6. Node-RED Example Flow

Figure 4. Node-RED browser-based flow editor.

implemented in JavaScript and added to the system by adding an
HTML file to implement the UI in the browser, and a JavaScript
file for data processing or integration on the server. Text
representations of flows can be imported and exported between
instances. When a node used in one instance of Node-RED is not
available on another, a placeholder node is shown in the UI to
indicate the user must install a missing node implementation
before the flow can be deployed.

Node-RED’s flows are similar to the Processor’s Pipes in that
they are expressed using JSON as shown in Figure 6. One
difference is that “wires” are not separate objects, but are arrays
associated with each node connecting it to a downstream node.
Configuration information that may be shared between nodes
such as the twitter user name or MQTT topic is held in a
configuration node without wires. Unlike the Processor, flows on
different tabs or pages are not separated in Node-RED, there is
only one flow for the entire system.

2.3 Analysis
Both systems use a drag and drop visual editor to generate data
flows using JSON. The generated flows (pipes) consist of nodes
(modules) connected via wires. On execution, modules are
instantiated in memory and execute code as they receive data.

The Processor is targeted for server deployments and supports
multiple users. As such, logged in users can start and stop, create,
update and delete individual data flow programs independently of
other pipes and users on the same platform. Node-RED hosts a
single set of connected nodes, and can only manage one flow on
the system. Unlike Node-RED, the Processor never access local
sensors (e.g. local GPIO pins, or USB ports), or OS services
directly since the execution engine is server-based. Node-RED
can be deployed on a smart device; the lightweight nature of the
node.js and the simplicity of the Node-RED execution engine
allows Node-RED flows to execute with good performance on
devices such as the Raspberry Pi. The different systems come
bundled with different modules/nodes; Node-RED has a large set
of nodes and flows contributed by the open source community.
The scripting nodes on the Processor are written in Python,
whereas Node-RED supports JavaScript.

Unlike Node-RED’s data flow model, the Processor pipe data
flow model has a separate section for wires allowing programs to
iterate through nodes and wires separately, while wires in the
Node-RED model are associated directly with nodes. Processor
modules can have multiple inputs and outputs, while Node-RED
can only support single input nodes. All pipes are associated with
users on the Processor, and have an ‘owner’. Each user manages
their pipes on the shared service independently. In Node-RED, a
single global flow is managed and deployed by a single user.

3. TOWARD DISTRIBUTED DATA FLOW
Because operations in a data flow can run as soon as data is
available, and share no state with each other, operations are
inherently parallel and can run independently [2]. Like functional
programs [6], there are no ‘side effects’ in data flow programs;
computation can be moved between processors and devices so
that parts of a data flow run in parallel on different devices. This
approach has been used in other contexts to provide scalable real
time data processing for example [17]. This ability to split and
distribute a data flow allows some operations to execute in the
cloud while others can execute an edge device depending on user
preferences, the cost and speed of communications, and the
performance of the run time host.

In this section we propose a cloud-based platform called ‘WoT
Flow’ that takes advantage of this property of data flow programs
and the open source Node-RED system to provide an execution
engine suitable for both multi-user cloud environments and
individual devices. Developers both create flows and identify the
devices participating in these flows. On deployment and
execution of a flow, a portion of the overall flow, a subflow, will
be executed on the cloud service, while other subflows will be
distributed and executed on devices. On deployment of the flow,
devices will be notified, and will download the segments of the
flow they are responsible for executing. Both devices and the
server will begin execution of the flow. Where necessary, devices
will send data to the server or to other devices, leveraging
network connectivity and appropriate middleware for data
transfer.

3.1 Data Flow Extensions
To support distributed flows, the data flow program model used
by Node-RED or the Processor needs to be extended in a number
of ways. First, flows should have an owner. This allows the
system to associate access and control of a flow to a specific user
and their devices, a requirement for any multi-user system.

Second, it must be possible to mark nodes as ‘device’ nodes,
‘server’ nodes, or ‘mobile’ nodes. Device nodes are those that
rely on local device connectivity, or the specific capabilities of a
device. This may include, for example, direct access to the local
file system, connected sensors on sensor pins, or connectivity to a
USB port on the device. A server node may require support for a
specific programming language on the platform, the processing
power or data storage of a cloud-hosted server, or server
connectivity outside of firewalls, etc. Nodes with unspecified
device ids can be considered mobile nodes and may be hosted on
either a device or a server, depending on user preferences, or a
heuristic that determines the best placement of a node.

Similarly, we must extend a simple flow model to include
different types of arcs or wires. In a distributed flow, the wires
between nodes are not all local connections in the same execution
engine, but may involve the transfer of data between servers and
devices over a local or wide area network. “Local” wires are
hosted on the same execution engine, while “remote” wires will
require a network connection. An example distributed flow is
shown in Figure 7 where a subflow related to Twitter input and
message parsing are hosted on a server like the WoTKit
Processor, while a presence sensor and TV control actuator sub
flows are hosted on the “presence_sensor” and “tv_actuator”
devices.

Figure 7. In a distributed flow, nodes may be hosted on
servers and devices; remote wires connecting devices to

servers, indicated by the dashed connections.

3.2 Work to Date
The WoT Flow system is at the early stages of development. We
are currently finalizing the distributed flow model by modifying
Node-RED to support distributed flows.

To date we have modified certain nodes in Node-RED by adding
a device id property. This property specifies the device where the
node should execute. It may represent a server-hosted instance of
Node-RED (e.g. “server”), a sensor (e.g. “presence_sensor”) or
other thing. When a flow is executed, an added node analysis
phase looks for wires in the flow between collaborating devices.
Nodes in a flow connected on different devices are replaced by a
hidden “wire in” or a “wire out” node for connectivity between
distributed hosts of the flow. Unlike local Node-RED wires,
“wire” nodes connect Node-RED instances on different devices
using a shared MQTT message broker. Inner nodes of a subflow
that are not hosted on the current device are deleted from the flow
locally, since they will be executed on another device, and have
no connectivity to the local device.

Other devices participating in the flow install the flow using the
built in Node-RED import mechanisms. When they find a node
that is not on their device, they also subscribe or send to a
corresponding MQTT topic using their “wire” nodes.

4. RELATED WORK
Several web-based platforms provide support for connecting
hardware and services for real time interaction. Some target IoT
applications specifically, while others are more general purpose.
In this section, we provide an overview of some representative
systems. We categorize these systems as Thing Connectors,
Condition Action Systems, and Data Flow Systems.
Thing Connectors connect Internet-connected things to each
other. SpaceBrew [1] provides a way for devices to publish
and/or subscribe to data (strings, boolean values or numbers).
Using the SpaceBrew web interface, users configure the
connections between publishers on the left and subscribers on the
right to create interactive applications. By connecting devices
such as Arduinos, home automation equipment and displays to
SpaceBrew, it is possible to create useful interactive space
applications by connecting the output of one thing or service to
another, leaving data processing, sensing and actuation to the
connected things themselves.
Paraimpu [13] is another system for creating connections between
things. In the workspace, sensors, which are sources of data, are
connected to actuators to receive data. These connections can
perform filtering or mapping operations using JavaScript
expressions. A connection between a wind speed sensor and a
twitter message actuator can be configured to send a Twitter
message that expresses the wind speed in English by mapping
values between 0 and 50km/h to “low wind speed” and values
over 50 to “high wind speed”. Paraimpu supports sharing things
with others to make it easy to add new things to your workspace.
Space Brew and Paraimpu focus on providing an easy way to
connect things to each other, making it possible to easily reroute
data from one thing to another, and leverage the integration work
done by others necessary to use things with the platform.
Condition Action Systems present a web interface for creating
scripts that trigger an action in a target web service when a
condition is met on another service. If This Then That (IFTTT)
[8] is a multi-user internet service for building interactive
‘recipes’ made up of an event condition called a ‘trigger’ and an
‘action’. The triggers come from channels that you connect to the

system corresponding to popular web applications and services
such as social networks, document storage, email, and web-based
IoT platforms. While not targeted specifically at IoT systems,
several channels are connection to Internet connected devices
such as light switches, and thermostats, fitness tracker, and others.
Configuration of these recipes is done using a simple user
interface, where the specific triggers and actions depend on the
channels used. Like IFTTT, Zapier [3] also connects online web
services or applications, using a ‘trigger’ and ‘action’ metaphor.
Condition Action systems focus on providing connectivity to
existing cloud services ‘out of the box’, and remove the need for
any coding, targeting non-technical users that want to perform
integration tasks.
Data Flow Systems provide a data flow-programming paradigm
for IoT applications. The WoTKit Processor and Node-RED tool
fall into this category. Huginn [7] is another data flow system
that allows developers to create ‘agents’ that can be connected
together by users of the system, creating a flow of events between
agents. Users configure contributed agents with the agent editor,
adding other agents as event sources. Users can then view the
overall event flow diagram visually. Once the agents are
configured and connected, the system moves events through the
system taking action on your behalf.
Yahoo Pipes [14] is an online service to mashup data from the
web. Users create pipes visually in the browser by dragging pre-
configured modules such as RSS feeds onto a workspace and
wiring them together. Once you’ve created a pipe, you can
request the output of a pipe like any other web based feed. While
Pipes does not process data in real time, the output from Pipes can
be requested periodically to get regular updates when data
changes on the web. Yahoo Pipes provides testing and debug
facilities to monitor and tune the execution of pipes.
One of the most well known tools for developing hardware-
centric applications is LabVIEW2 [5]. Using LabVIEW, users
create data flow programs called “virtual instruments” (VIs)
visually by connecting objects supplied by the platform in block
diagrams. Objects correspond to input and output devices,
functionality and user interface components. Using LabVIEW,
developers can create user interfaces for control of equipment,
process and view data from measurement equipment and open
source hardware such as Arduino. While LabVIEW does not
support creating block diagrams in a browser, VIs can interact
with services on the web, and can themselves be deployed as web
services.
The COMPOSE project [12] aims to provide an open
Marketplace for IoT applications. A key component of the
system called the data plane and servIoTicy [16] is a cloud hosted
system that includes features for data storage and processing of
connected things. Service Objects (SO’s) in the COMPOSE
platform can include data processing logic that provides the
capability to transform sensor updates and generate new data for
subscribers in a fashion similar to Node-RED.
Systems in this category leverage a data flow-programming
model for not only the reuse of integration endpoints, but also the
code necessary to process data as it flows from source things and
services to sinks. In a data flow, there are typically more than
two modules, and one connection or route between them. In most
of these systems, it is possible for users to introduce new modules

2 http://www.ni.com/newsletter/51141/en/, What is LabVIEW:

2013. Accessed: 2014-08-12.

extending the capabilities in the platform itself rather than relying
on the connectors or channels provided by system integrators.
While Huggin and Node-RED provide data flow programming
capabilities for a single device/user, the Processor and Yahoo
Pipes manage data flow programs for many users, and are
designed for deployment in the cloud.

4.1 Summary
An interactive IoT system must, at a minimum, provide an easy
way to ‘connect’ things. It is important to provide a set of
common integration points such as sensor platforms, email,
HTTP, MQTT connectivity out of the box. All of the systems
aim to make it easier for developers to create interactive
applications, minimizing the programming effort involved. By
providing reusable integration and processing modules, they
allow users of their systems to leverage the work done by others.

While SpaceBrew, Huggin and Node-RED provide the ability to
create applications, only one set of routes, flows or agents is
hosted on a deployment at a time, assuming one administrative
user (or set of users) is in control of the entire instance. Cloud
services like Paraimpu, the WoTKit Processor, Yahoo Pipes, and
IFTTT highlight the need to support multiple users managing and
executing their applications independently and without access to
or interfering with other user’s applications. LabVIEW, Node-
RED, and the Processor allow end users to extend the basic
building blocks of the platform, adding new primitives for reuse.

With the flexibility VDFPLs offer, programs can become
complex; these systems require some level of debugging and
monitoring capabilities. None of the systems described provide
an easy way to take advantage of computing resources of both
cloud based services and smart devices as we have proposed.

5. OPEN QUESTIONS
Our early experience has already provided some insight on how to
best support distributed data flows for the IoT. However, even at
this early stage our work has raised several questions:

Do visual data flow programming languages find the right
balance between ease of use and flexibility for creating real time
IoT applications? Are there ways of extending Thing Connectors
or Condition Action Systems for greater flexibility and end user
programmability?

Is the distributed data low model described in section 3 complete?
What other attributes for flows, nodes and wires are required?
How should we extend the visual programming language to
indicate different devices in a distributed flow?

In a distributed system, connections between devices may fail or
errors may occur on remote devices. How can we support
distributed monitoring, debugging and error handling of
distributed flows?

Can web protocols and the web itself be used as the connector and
support infrastructure for distributed data flow, i.e. can the WoT
support data flow architectures directly?

Related to security, how do we ensure devices don’t accidentally
download malicious code? Do we need to digitally sign subflows
downloaded from a coordinator?

What are the appropriate heuristics for deciding node placement
automatically, where a node may be hosted either in the cloud
service or on the device? How do we indicate the cost and
performance of executing nodes, or network connectivity?

6. CONCLUSIONS
In this paper we presented the detailed design of two existing data
flow platforms to inform our work toward a distributed data flow
platform. We then described our early work toward modifying
Node-RED to support distributed flows by specifying the device
for node execution. This work has raised questions for us around
the programming model, error handling, security and heuristics
for distribution. In future work, using appropriate optimization
heuristics, we hope to support the automatic partitioning and
distribution of data flows based on based on profiling execution
and participating resource capabilities and constraints imposed by
the end user around cost, performance and security.

7. ACKNOWLEDGMENTS
Our thanks to IBM and the authors for contributing Node-RED to
the open source community. This work was funded in part by
NSERC.

8. REFERENCES
[1] About Spacebrew: http://docs.spacebrew.cc/about/.

Accessed: 2013-01-30.
[2] Ackerman, W.B. 1982. Data Flow Languages. Computer.

15, 2 (Feb. 1982), 15–25.
[3] Automate the Web - Zapier: https://zapier.com/. Accessed:

2014-08-12.
[4] Baroth, E. and Hartsough, C. 1995. Visual Object Oriented

Programming: Concepts and Environments. Visual
Programming in the Real World. Manning Publications Co.
21–42.

[5] Blackstock, M. and Lea, R. 2012. IoT mashups with the
WoTKit. Internet of Things (IOT), 2012 (Wuxi, China, Oct.
2012), 159–166.

[6] Hughes, J. 1989. Why Functional Programming Matters.
Comput. J. 32, 2 (Apr. 1989), 98–107.

[7] Huginn. Your agents are standing by.:
https://github.com/cantino/huginn.

[8] IFTTT / Put the internet to work for you.: https://ifttt.com/.
Accessed: 2013-01-29.

[9] Johnston, W.M. et al. 2004. Advances in Dataflow
Programming Languages. ACM Comput. Surv. 36, 1 (Mar.
2004), 1–34.

[10] MAX is a visual programming language for media:
http://cycling74.com/products/max/. Accessed: 2014-08-12.

[11] Node-RED: http://nodered.org/. Accessed: 2014-08-12.
[12] Pérez, J.L. et al. 2014. The COMPOSE API for the Internet

of Things. Proceedings of the Companion Publication of
WWW 2014 (Republic and Canton of Geneva, Switzerland,
2014), 971–976.

[13] Pintus, A. et al. 2011. The anatomy of a large scale social
web for internet enabled objects. Web of Things Workshop
(WoT 2011) (San Francisco, CA, USA, 2011), 6:1–6:6.

[14] Pipes: Rewire the Web: http://pipes.yahoo.com/pipes/.
Accessed: 2013-01-30.

[15] ROBOLAB for Lego Mindstorms:
http://www.legoengineering.com/program/robolab/.
Accessed: 2014-08-12.

[16] servIoCity: http://www.servioticy.com/. Accessed: 2014-08-
12.

[17] Storm: http://storm.incubator.apache.org/. Accessed: 2014-
08-12.

[18] Blackstock, M. and Lea, R. 2014. IoT interoperability, a Hub
based approach. Internet of Things (IOT), 2014 4th
International Conference on the (Boston, USA, Oct. 2014).

