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ABSTRACT 
Several web-based platforms have emerged to ease the 
development of interactive or near real-time IoT applications by 
providing a way to connect things and services together and 
process the data they emit using a data flow paradigm.  While 
these platforms have been found to be useful on their own, many 
IoT scenarios require the coordination of computing resources 
across the network: on servers, gateways and devices themselves.  
To address this, we explore how to extend existing IoT data flow 
platforms to create a system suitable for execution on a range of 
run time environments, toward supporting distributed IoT  
programs that can be partitioned between servers, gateways and 
devices.  Eventually we aim to automate the distribution of data 
flows using appropriate distribution mechanism, and optimization 
heuristics based on participating resource capabilities and 
constraints imposed by the developer. 

Categories and Subject Descriptors 
D.2.6 [Programming Techniques]: Graphical Environments, 
Integrated Environments, C.2.4 [Distributed Systems]: 
Distributed applications, D.1.3 [Concurrent Programming] 
Distributed Programming. 

General Terms 
Performance, Design, Languages 

Keywords 
Visual data flow languages, toolkits, Web of things, Internet of 
things 

1. INTRODUCTION 
Many common IoT scenarios in areas such as home and industrial 
automation, real time business intelligence, and interactive spaces 
require integration with online services and (near) real time 
sensing and actuation.  While it is possible to create real time 
interactive IoT applications using traditional programming tools, 
it can be difficult, requiring developers to learn new protocols and 
APIs, create data processing components, and link them together. 
Today practitioners are creating new tools and platforms to ease 
the development of this class of IoT applications.  Some of these 
systems focus on connectivity and routing [1, 13], while other use 
a ‘condition action’ paradigm [3, 8] to connect services and 
things.  To provide more flexibility while maintaining ease of use, 
several platforms [4, 5, 7, 11, 14] provide a data flow 
programming paradigm where computer programs are modeled as 
directed graphs connecting networks of ‘black box’ nodes that 

exchange data along connected arcs.  This simple paradigm, while 
not necessarily expressed visually, lies at the heart of several 
visual programming languages.  Visual data flow programming 
languages (VDFPLs) [9] have been used in many other domains 
such as high performance parallel computing [2] leveraging 
multi-core processors, music [10], toys [15] and industrial 
applications [4].  Two web-based data flow systems in particular; 
the WoTKit Processor [5], and Node-RED [11], begin to address 
interactive IoT scenarios like these.  The Processor is a multi-user 
system for running data flow programs in the cloud while Node-
RED is toolkit for developing data flows on devices and servers. 
While data flow platforms have proven useful on their own, many 
IoT scenarios require the coordination of computing resources 
hosted on things and servers across the Internet: hosted in the 
cloud, gateways and at the edge on smart devices.  Devices with 
attached sensors can change raw sensor readings to send 
“presence” events for example.  Gateways can aggregate data 
from several sensors and perform some simple data processing; 
cloud-based systems can connect to online services for real time 
access to social network feeds and alert channels such as email 
and SMS.  We believe that by providing a distributed data flow 
run time for the IoT where data flows can be hosted on a variety 
of platforms, developers can more easily make use of these 
computing resources across the network. 
In this paper we provide an overview of data flow architectures 
and describe the WoTKit and Node-RED systems in some detail, 
comparing and contrasting these systems toward the design of a 
distributed data flow system called WoT Flow.  We then outline 
our proposed distributed architecture, and describe an early 
prototype system we’ve developed based on Node-RED. 
We then provide context for this work by describing existing 
interactive web-based platforms that can be used in IoT 
applications, highlighting their key characteristics.  We conclude 
with some open questions for participants at the workshop to 
inform the design of WoT Flow. 
Our contribution is an exploration of how to extend existing IoT 
data flow systems to create a platform suitable for execution on a 
range of run time environments, and support data flows that can 
be partitioned manually.  Eventually, using an appropriate flow 
distribution facility and optimization heuristics, we aim to support 
the automatic partitioning and distribution of data flows based on 
participating resource capabilities and constraints imposed by the 
developer around cost, performance and security. 



2. IoT DATA FLOW ARCHITECTURES 
Research in data flow architectures dates back to the mid-70’s 
when researchers wanted to exploit the massive parallelism 
offered by parallel processors [9].  While traditional programs are 
typically represented as a series of instructions written using text, 
and focusing on the operations that are to be executed, data flow 
programs lend themselves to a visual representation where nodes 
representing data inputs, outputs and functions are connected with 
arcs that define the data flow between components as illustrated 
in Figure 1.  Since these operations are stand alone, they can be 
easily re-used and composed in other programs.  The dataflow 
semantics of VDFPLs can be more intuitive for non-programmers 
to understand and lend themselves to programming environments 
where users can arguably more easily move between program 
design and implementation [9], and reduce development time [4].  
The two systems described here provide such an environment for 
building real time IoT applications. 

2.1 WoTKit Processor 
The WoTKit Processor is a multi-user service bundled with the 
WoTKit platform [5] that allows users to process sensor data and 
react to real time updates from sensors and other external 
systems.  The WoTKit processor is implemented in Java using the 
Spring Framework, and leverages the Java Concurrency 
Framework in its execution engine. Like other data flow systems, 
the primary interface is a browser-based visual data flow editor.  
Inspired by Yahoo Pipes [14], users of the Processor create data 
flow programs called pipes made up of modules connected with 
wires. 

A pipe management page lists the pipes that the user has created, 
indicating their execution status (error, executing, stopped).  
Users can start, stop and edit their own pipes from this page; they 
do not have access to other users pipes executing on the platform.  
To develop a new pipe, users drag and drop modules to the main 
canvas, and connect them as illustrated in Figure 2. 

After saving a pipe, a user can start a pipe’s execution in the 
editor or on the management page.  The system then checks the 
pipe for errors, and “compiles” the pipe by instantiating pipe 

modules in the server, and adding wires to a global ‘routing’ table 
that links module endpoints together. Once all modules are 
instantiated, the system calls ‘start’ on each module.  On start, 
input modules connect to external systems such as Twitter or the 
WoTKit sensor data aggregation platform [18], subscribing to 
appropriate real time data streams. 

The Processor uses a multi-threaded execution scheduler to 
process data as it arrives at the system for all users as illustrated 
in Figure 3.  Input modules connected to external services add 
tasks to the execution queue consisting of a received data message 
and an instance of the input module.  The scheduler waits on this 
queue, and retrieves the next task, calling the associated 
process() method on the associated module with the new 
data.  The module implementation may add additional tasks 
(messages and associated modules) to the execution queue, or 
send the data to an external service itself. 

To stop the execution of a pipe, the system looks up the modules 
on the specified pipe and calls stop() on each module.  This 
allows endpoint modules to unsubscribe or disconnect from 
external services.  It then removes the wires from the routing table 
in the system, leaving other modules and wires in the system for 
other pipes running.  This architecture allows pipes to be 
managed and controlled independently and by changing the 
execution queue implementation, control the priority of pipe 
execution between users. 

The WoTKit Processor includes input and output modules to send 
and receive data to external systems such as WoTKit-hosted 
sensors, twitter feeds and email.  A monitor module is used for 
testing and debugging pipes, allowing users to watch data as it 
flows through the system.  Alerting is supported with an email 
module to send emails when interesting events occur.  An 
actuator module, allows users to control things from a pipe.  
Function modules for data aggregation and thresholds are 
included.  Finally, the Processor includes the ability for 
developers or users of the system to write their own modules.  
Developers can add new modules in Java by implementing 
JavaBeans and registering them with the Processor database.  End 
users of the system can implement their own modules in the UI 
using Python and save copies of these scripts for use in other 
pipes. 

The Processor’s pipes are expressed using JSON documents as 
shown in Figure 5.  This example pipe takes input from a Twitter 
feed called myeverydayearth, does some processing on the 
message, then sends the processed output to a WoTKit sensor.  
The visual editor on the browser generates these JSON 

 
Figure 1. Simple data flow connecting Twitter and a 
presence sensor to control a television. 
 

 
Figure 2. WoTKit Processor browser-based pipe editor. 
 

 
Figure 3. WoTKit Processor Architecture 

 



representations, which are sent to the server for storage and 
execution. 

2.2 Node-RED 
Like the Processor, Node-RED is a web-based tool for connecting 
hardware devices and APIs.  It also provides a browser-based 
flow editor (Figure 4).  It is implemented in JavaScript using the 
Node.js framework, taking advantage of Node’s built in event 
model, and native support for JavaScript on both the client editor 

and the server. 

Data flow programs on Node-RED are called flows consisting of 
nodes connected by wires.  Like the WoTKit Processor, the user 
interface consists of a flow editor with node templates on the left 
that can be dragged and dropped into a flow canvas.  Unlike the 
Processor, all users accessing Node-RED manage a single flow, 
which may be shown on multiple pages.  Once a flow is created, 
or after a change, the user deploys the flow, both saving it to the 
server and (re)starting its execution on the Node-RED server. 

Nodes in a flow inherit from the Node base class.  A Node is also 
subclass of an EventEmitter in the Node.js event API that 
implements the observer design pattern to maintain subscriber 
lists defined by wires, and emits events to downstream nodes.  On 
instantiation, input nodes may subscribe to external services, 
begin listening for data on a port, or begin processing HTTP 
requests.  Once data is processed by a node, either from an 
external service, or received from an upstream node via its 
“input” handler, the node calls the base class Node send() 
method with a JavaScript object.  The send method delegates to 
the EventEmitter.emit() method to send named events to  
downstream Node instances which process data and either 
generate additional events, or communicate with outside services 
or the OS. 

Node-RED is supported by IBM and a large community of users 
that contribute new nodes and flows1.  New nodes can be 

                                                                 
1 http://flows.nodered.org/ Node Red Flow Library.  Accessed 15-

Aug-2014. 

{ 
  "name": "Twitter to Sensor", 
  "modules": [{ 
      "id": 2, 
      "name": "Twitter Feed", 
      "type": "twitter-in", 
      "x": 110.99999809265, 
      "y": 121.18181610107, 
      "config": { 
        "feed": "myeverydayearth" 
      } 
    },{ 
      "id": 1, 
      "name": "Sensor Output", 
      "type": "sensor-output", 
      "x": 372.99999809265, 
      "y": 269.36362457275, 
      "config": { 
        "sensor": "mike.output" 
      } 
    },{ 
      "id": 3, 
      "name": "Python Script", 
      "type": "py-script", 
      "x": 211.99999809265, 
      "y": 213.90906524658, 
      "config": { 
        "script":”input = output” 
        } 
    }],"wires":[ 
    { 
      "source": { 
        "module": 2, 
        "terminal": 1 
      },"target": { 
        "module": 3, 
        "terminal": 0 
      } 
    },{ 
      "source": { 
        "module": 3, 
        "terminal": 1 
      },"target": { 
        "module": 1, 
        "terminal": 0 
      } 
    } 
  ] 
} 

Figure 5. WoTKit Processor Example Pipe 

[ 
  { 
    "id": "81bbf709.7e4408", 
    "type": "mqtt-broker", 
    "broker": "public", 
    "port": "1883", 
    "clientid": "" 
  },{ 
    "id": "23df8a24.dc2076", 
    "type": "twitter in", 
    "twitter": "", 
    "tags": "", 
    "user": "false", 
    "name": "myeverydayearth", 
    "topic": "tweets", 
    "x": 185.09091186523, 
    "y": 75.090911865234, 
    "z": "db25cd7.f24da3", 
    "wires": [["7b3fdb79.84c024"]] 
  },{ 
    "id": "85ac23b0.7a53e", 
    "type": "mqtt out", 
    "name": "Output Sensor", 
    "topic": "output-sensor", 
    "broker": "81bbf709.7e4408", 
    "x": 467.09091186523, 
    "y": 212.09091186523, 
    "z": "db25cd7.f24da3", 
    "wires": [] 
  },{ 
    "id": "7b3fdb79.84c024", 
    "type": "function", 
    "name": "Example function", 
    "deviceId": "server", 
    "func": "\nreturn msg;", 
    "outputs": 1, 
    "x": 318.09091186523, 
    "y": 142.09091186523, 
    "z": "db25cd7.f24da3", 
    "wires": [["85ac23b0.7a53e"]] 
  } 

   ] 

Figure 6. Node-RED Example Flow 

 
Figure 4.  Node-RED browser-based flow editor. 
 



implemented in JavaScript and added to the system by adding an 
HTML file to implement the UI in the browser, and a JavaScript 
file for data processing or integration on the server.  Text 
representations of flows can be imported and exported between 
instances. When a node used in one instance of Node-RED is not 
available on another, a placeholder node is shown in the UI to 
indicate the user must install a missing node implementation 
before the flow can be deployed. 

Node-RED’s flows are similar to the Processor’s Pipes in that 
they are expressed using JSON as shown in Figure 6.  One 
difference is that “wires” are not separate objects, but are arrays 
associated with each node connecting it to a downstream node.  
Configuration information that may be shared between nodes 
such as the twitter user name or MQTT topic is held in a 
configuration node without wires.  Unlike the Processor, flows on 
different tabs or pages are not separated in Node-RED, there is 
only one flow for the entire system.   

2.3 Analysis 
Both systems use a drag and drop visual editor to generate data 
flows using JSON.  The generated flows (pipes) consist of nodes 
(modules) connected via wires.  On execution, modules are 
instantiated in memory and execute code as they receive data.   

The Processor is targeted for server deployments and supports 
multiple users.  As such, logged in users can start and stop, create, 
update and delete individual data flow programs independently of 
other pipes and users on the same platform.  Node-RED hosts a 
single set of connected nodes, and can only manage one flow on 
the system.  Unlike Node-RED, the Processor never access local 
sensors (e.g. local GPIO pins, or USB ports), or OS services 
directly since the execution engine is server-based.  Node-RED 
can be deployed on a smart device; the lightweight nature of the 
node.js and the simplicity of the Node-RED execution engine 
allows Node-RED flows to execute with good performance on 
devices such as the Raspberry Pi.  The different systems come 
bundled with different modules/nodes; Node-RED has a large set 
of nodes and flows contributed by the open source community.  
The scripting nodes on the Processor are written in Python, 
whereas Node-RED supports JavaScript. 

Unlike Node-RED’s data flow model, the Processor pipe data 
flow model has a separate section for wires allowing programs to 
iterate through nodes and wires separately, while wires in the 
Node-RED model are associated directly with nodes.  Processor 
modules can have multiple inputs and outputs, while Node-RED 
can only support single input nodes.  All pipes are associated with 
users on the Processor, and have an ‘owner’.  Each user manages 
their pipes on the shared service independently.  In Node-RED, a 
single global flow is managed and deployed by a single user. 

3. TOWARD DISTRIBUTED DATA FLOW 
Because operations in a data flow can run as soon as data is 
available, and share no state with each other, operations are 
inherently parallel and can run independently [2].  Like functional 
programs [6], there are no ‘side effects’  in data flow programs; 
computation can be moved between processors and devices so 
that parts of a data flow run in parallel on different devices.  This 
approach has been used in other contexts to provide scalable real 
time data processing for example [17].  This ability to split and 
distribute a data flow allows some operations to execute in the 
cloud while others can execute an edge device depending on user 
preferences, the cost and speed of communications, and the 
performance of the run time host. 

In this section we propose a cloud-based platform called ‘WoT 
Flow’ that takes advantage of this property of data flow programs 
and the open source Node-RED system to provide an execution 
engine suitable for both multi-user cloud environments and 
individual devices.  Developers both create flows and identify the 
devices participating in these flows.  On deployment and 
execution of a flow, a portion of the overall flow, a subflow, will 
be executed on the cloud service, while other subflows will be 
distributed and executed on devices. On deployment of the flow, 
devices will be notified, and will download the segments of the 
flow they are responsible for executing.  Both devices and the 
server will begin execution of the flow.  Where necessary, devices 
will send data to the server or to other devices, leveraging 
network connectivity and appropriate middleware for data 
transfer. 

3.1 Data Flow Extensions 
To support distributed flows, the data flow program model used 
by Node-RED or the Processor needs to be extended in a number 
of ways.  First, flows should have an owner.  This allows the 
system to associate access and control of a flow to a specific user 
and their devices, a requirement for any multi-user system. 

Second, it must be possible to mark nodes as ‘device’ nodes, 
‘server’ nodes, or ‘mobile’ nodes.  Device nodes are those that 
rely on local device connectivity, or the specific capabilities of a 
device.  This may include, for example, direct access to the local 
file system, connected sensors on sensor pins, or connectivity to a 
USB port on the device.  A server node may require support for a 
specific programming language on the platform, the processing 
power or data storage of a cloud-hosted server, or server 
connectivity outside of firewalls, etc.  Nodes with unspecified 
device ids can be considered mobile nodes and may be hosted on 
either a device or a server, depending on user preferences, or a 
heuristic that determines the best placement of a node. 

Similarly, we must extend a simple flow model to include 
different types of arcs or wires.  In a distributed flow, the wires 
between nodes are not all local connections in the same execution 
engine, but may involve the transfer of data between servers and 
devices over a local or wide area network.  “Local” wires are 
hosted on the same execution engine, while “remote” wires will 
require a network connection.  An example distributed flow is 
shown in Figure 7 where a subflow related to Twitter input and 
message parsing are hosted on a server like the WoTKit 
Processor, while a presence sensor and TV control actuator sub 
flows are hosted on the “presence_sensor” and “tv_actuator” 
devices. 

 
Figure 7. In a distributed flow, nodes may be hosted on 
servers and devices; remote wires connecting devices to 

servers, indicated by the dashed connections. 



3.2 Work to Date 
The WoT Flow system is at the early stages of development.  We 
are currently finalizing the distributed flow model by modifying 
Node-RED to support distributed flows.  

To date we have modified certain nodes in Node-RED by adding 
a device id property.  This property specifies the device where the 
node should execute.  It may represent a server-hosted instance of 
Node-RED (e.g. “server”), a sensor (e.g. “presence_sensor”) or 
other thing.  When a flow is executed, an added node analysis 
phase looks for wires in the flow between collaborating devices.  
Nodes in a flow connected on different devices are replaced by a 
hidden “wire in” or a “wire out” node for connectivity between 
distributed hosts of the flow.  Unlike local Node-RED wires, 
“wire” nodes connect Node-RED instances on different devices 
using a shared MQTT message broker.  Inner nodes of a subflow 
that are not hosted on the current device are deleted from the flow 
locally, since they will be executed on another device, and have 
no connectivity to the local device. 

Other devices participating in the flow install the flow using the 
built in Node-RED import mechanisms.  When they find a node 
that is not on their device, they also subscribe or send to a 
corresponding MQTT topic using their “wire” nodes. 

4. RELATED WORK 
Several web-based platforms provide support for connecting 
hardware and services for real time interaction.  Some target IoT 
applications specifically, while others are more general purpose.  
In this section, we provide an overview of some representative 
systems.  We categorize these systems as Thing Connectors, 
Condition Action Systems, and Data Flow Systems.   
Thing Connectors connect Internet-connected things to each 
other.  SpaceBrew [1] provides a way for devices to publish 
and/or subscribe to data (strings, boolean values or numbers).  
Using the SpaceBrew web interface, users configure the 
connections between publishers on the left and subscribers on the 
right to create interactive applications.  By connecting devices 
such as Arduinos, home automation equipment and displays to 
SpaceBrew, it is possible to create useful interactive space 
applications by connecting the output of one thing or service to 
another, leaving data processing, sensing and actuation to the 
connected things themselves. 
Paraimpu [13] is another system for creating connections between 
things.  In the workspace, sensors, which are sources of data, are 
connected to actuators to receive data.  These connections can 
perform filtering or mapping operations using JavaScript 
expressions.  A connection between a wind speed sensor and a 
twitter message actuator can be configured to send a Twitter 
message that expresses the wind speed in English by mapping 
values between 0 and 50km/h to “low wind speed” and values 
over 50 to “high wind speed”.  Paraimpu supports sharing things 
with others to make it easy to add new things to your workspace. 
Space Brew and Paraimpu focus on providing an easy way to 
connect things to each other, making it possible to easily reroute 
data from one thing to another, and leverage the integration work 
done by others necessary to use things with the platform. 
Condition Action Systems present a web interface for creating 
scripts that trigger an action in a target web service when a 
condition is met on another service.  If This Then That (IFTTT) 
[8] is a multi-user internet service for building interactive 
‘recipes’ made up of an event condition called a ‘trigger’ and an 
‘action’.  The triggers come from channels that you connect to the 

system corresponding to popular web applications and services 
such as social networks, document storage, email, and web-based 
IoT platforms.  While not targeted specifically at IoT systems, 
several channels are connection to Internet connected devices 
such as light switches, and thermostats, fitness tracker, and others.  
Configuration of these recipes is done using a simple user 
interface, where the specific triggers and actions depend on the 
channels used.  Like IFTTT, Zapier [3] also connects online web 
services or applications, using a ‘trigger’ and ‘action’ metaphor. 
Condition Action systems focus on providing connectivity to 
existing cloud services ‘out of the box’, and remove the need for 
any coding, targeting non-technical users that want to perform 
integration tasks. 
Data Flow Systems provide a data flow-programming paradigm 
for IoT applications.  The WoTKit Processor and Node-RED tool 
fall into this category.  Huginn [7] is another data flow system 
that allows developers to create ‘agents’ that can be connected 
together by users of the system, creating a flow of events between 
agents.  Users configure contributed agents with the agent editor, 
adding other agents as event sources.  Users can then view the 
overall event flow diagram visually. Once the agents are 
configured and connected, the system moves events through the 
system taking action on your behalf. 
Yahoo Pipes [14] is an online service to mashup data from the 
web.  Users create pipes visually in the browser by dragging pre-
configured modules such as RSS feeds onto a workspace and 
wiring them together.  Once you’ve created a pipe, you can 
request the output of a pipe like any other web based feed.  While 
Pipes does not process data in real time, the output from Pipes can 
be requested periodically to get regular updates when data 
changes on the web. Yahoo Pipes provides testing and debug 
facilities to monitor and tune the execution of pipes. 
One of the most well known tools for developing hardware-
centric applications is LabVIEW2 [5].  Using LabVIEW, users 
create data flow programs called “virtual instruments” (VIs) 
visually by connecting objects supplied by the platform in block 
diagrams.  Objects correspond to input and output devices, 
functionality and user interface components.  Using LabVIEW, 
developers can create user interfaces for control of equipment, 
process and view data from measurement equipment and open 
source hardware such as Arduino.  While LabVIEW does not 
support creating block diagrams in a browser, VIs can interact 
with services on the web, and can themselves be deployed as web 
services. 
The COMPOSE project [12] aims to provide an open 
Marketplace for IoT applications.  A key component of the 
system called the data plane and servIoTicy [16] is a cloud hosted 
system that includes features for data storage and processing of 
connected things.  Service Objects (SO’s) in the COMPOSE 
platform can include data processing logic that provides the 
capability to transform sensor updates and generate new data for 
subscribers in a fashion similar to Node-RED. 
Systems in this category leverage a data flow-programming 
model for not only the reuse of integration endpoints, but also the 
code necessary to process data as it flows from source things and 
services to sinks.  In a data flow, there are typically more than 
two modules, and one connection or route between them.  In most 
of these systems, it is possible for users to introduce new modules 
                                                                 
2 http://www.ni.com/newsletter/51141/en/, What is LabVIEW: 

2013.  Accessed: 2014-08-12. 



extending the capabilities in the platform itself rather than relying 
on the connectors or channels provided by system integrators.  
While Huggin and Node-RED provide data flow programming 
capabilities for a single device/user, the Processor and Yahoo 
Pipes manage data flow programs for many users, and are 
designed for deployment in the cloud. 

4.1 Summary 
An interactive IoT system must, at a minimum, provide an easy 
way to ‘connect’ things.  It is important to provide a set of 
common integration points such as sensor platforms, email, 
HTTP, MQTT connectivity out of the box.  All of the systems 
aim to make it easier for developers to create interactive 
applications, minimizing the programming effort involved.  By 
providing reusable integration and processing modules, they 
allow users of their systems to leverage the work done by others. 

While SpaceBrew, Huggin and Node-RED provide the ability to 
create applications, only one set of routes, flows or agents is 
hosted on a deployment at a time, assuming one administrative 
user (or set of users) is in control of the entire instance.  Cloud 
services like Paraimpu, the WoTKit Processor, Yahoo Pipes, and 
IFTTT highlight the need to support multiple users managing and 
executing their applications independently and without access to 
or interfering with other user’s applications.  LabVIEW, Node-
RED, and the Processor allow end users to extend the basic 
building blocks of the platform, adding new primitives for reuse. 

With the flexibility VDFPLs offer, programs can become 
complex; these systems require some level of debugging and 
monitoring capabilities.  None of the systems described provide 
an easy way to take advantage of computing resources of both 
cloud based services and smart devices as we have proposed. 

5. OPEN QUESTIONS 
Our early experience has already provided some insight on how to 
best support distributed data flows for the IoT. However, even at 
this early stage our work has raised several questions: 

Do visual data flow programming languages find the right 
balance between ease of use and flexibility for creating real time 
IoT applications?  Are there ways of extending Thing Connectors 
or Condition Action Systems for greater flexibility and end user 
programmability?  

Is the distributed data low model described in section 3 complete?  
What other attributes for flows, nodes and wires are required?  
How should we extend the visual programming language to 
indicate different devices in a distributed flow? 

In a distributed system, connections between devices may fail or 
errors may occur on remote devices. How can we support 
distributed monitoring, debugging and error handling of 
distributed flows? 

Can web protocols and the web itself be used as the connector and 
support infrastructure for distributed data flow, i.e. can the WoT 
support data flow architectures directly? 

Related to security, how do we ensure devices don’t accidentally 
download malicious code?  Do we need to digitally sign subflows 
downloaded from a coordinator? 

What are the appropriate heuristics for deciding node placement 
automatically, where a node may be hosted either in the cloud 
service or on the device?  How do we indicate the cost and 
performance of executing nodes, or network connectivity? 

6. CONCLUSIONS 
In this paper we presented the detailed design of two existing data 
flow platforms to inform our work toward a distributed data flow 
platform.  We then described our early work toward modifying 
Node-RED to support distributed flows by specifying the device 
for node execution.  This work has raised questions for us around 
the programming model, error handling, security and heuristics 
for distribution.  In future work, using appropriate optimization 
heuristics, we hope to support the automatic partitioning and 
distribution of data flows based on based on profiling execution 
and participating resource capabilities and constraints imposed by 
the end user around cost, performance and security. 
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