Randomly stopped sum of distributions with dominatingly varying tails

Svetlana Danilenko

Vilnius Gediminas Technical University, Lithuania, svetlana.danilenko@vgtu.lt

Keywords: heavy tail, dominatingly varying tail, random sum, closure property

Heavy tailed random variables are useful in the insurance stochastic models. Usually such random variables describe a series of claim amounts. Various subclasses of heavy tailed random variables are considered. The best known subclasses are \mathcal{L} , \mathcal{D} and \mathcal{S} . It should be recalled that:

- distribution function (d.f.) $F = 1 \overline{F}$ is said to be heavy-tailed $(F \in \mathcal{H})$ if $\lim_{x \to \infty} \overline{F} e^{\delta x} = \infty$ for an arbitrary positive δ ;
- d.f. F is said to be long-tailed $(F \in \mathcal{L})$ if $\overline{F}(x+y) \sim \overline{F}(x)$ for every positive y;
- d.f. F has dominatingly varying tail $(F \in \mathcal{D})$ if $\limsup_{x \to \infty} (\overline{F}(xy)/\overline{F}(x)) < \infty$ for some $y \in (0,1)$;
- d.f. F is subexponential $(F \in S)$ if $\overline{F_+ * F_+}(x) \sim 2\overline{F}(x)$, where F_+ denotes the positive part of d.f. F.

It is known (see, for instance, [3]) that $\mathcal{L} \cap \mathcal{D} \subset \mathcal{S} \subset \mathcal{L} \subset \mathcal{H}$ and $\mathcal{D} \subset \mathcal{H}$.

Various properties of classes \mathcal{L} , \mathcal{D} and \mathcal{S} have been considered by many authors. For instance, in [1] the problem of max-sum equivalence and the problem of convolution closure were considered, while in [4] the problem of random convolution closure was investigated.

Particulary, in [4] conditions were obtained under which d.f. of random sum of independent and identically distributed random variables $\xi_1 + \xi_2 + \ldots + \xi_{\eta}$ belongs to the class \mathcal{D} . One can show that the similar results can be obtained in the case when random variables ξ_1, ξ_2, \ldots are independent, but not necessary identically distributed. The exact formulations of the results together with its detailed proofs can be found in [2].

References

- [1] Cai, J. and Tang, Q. (2004). On max-sum equivalence and convolution closure of heavy-tailed distributions and their applications. *Journal of Applied Probability* 41, 117–130.
- [2] Danilenko, S. and Šiaulys, J. (2016). Randomly stopped sums of not identically distributed heavy-tailed random variables. *Statistics and Probability Letters* 113, 84–93.
- [3] Embrechts, P., Klüppelberg, C., Mikosch, T. (1997). Modeling Extremal Events for Insurance and Finance. Springer, Berlin.
- [4] Leipus, R. and Šiaulys, J. (2012). Closure of some heavy tailed distribution classes under random convolution. *Lithuanian Mathematical Journal* 52, 249– 258.