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ABSTRACT



Traditional models of large-scale ocean circulation do not
include surface waves

Ocean circulation is usually
considered to be driven directly by
the wind stress at the surface,
without thinking about the role of
the Stokes drift due to surface
waves.

It is iImpossible to directly
iIncorporate surface waves
iInto numerical models of the
ocean, because they require
high spatial and temporal
resolution.
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Talley, Pickard, Emery and Swift (2011)



Huang (1979)
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McWilliams and Restrepo (1999)
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Boussinesqg equations, multiple timescales
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Boussinesqg equations, multiple timescales
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Boundary conditions

D
w = —, at z =
Dt d

Expanding about 2 = ()
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Boundary conditions

Is this the correct boundary condition anyway? Most momentum is
transferred by a correlation between p, and 7]

Expanding about 2z = ()
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Boundary conditions

Is this the correct boundary condition anyway? Most momentum is
transferred by a correlation between p, and 7]

Expanding about 2z = () and averaging over a wave period
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New equations, including surface wave eftects
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Momentum % — VXZ+ Vb — bz = vV3v,,
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Modified boundary conditions

ov
Surface stress v(a—; + 68) =7 atz =0,

o‘u*(x,, 0, 1)
80 = a ) nw(x}n t)
Surface tracer flux 2% — 7 4. = 0. <

0z




Entering section 3: more assumptions

Hydrostatic
lgnore advective terms in the momentum equation
Neglect horizontal component of the Coriolis vector
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Wind strength

(b) Mean Wind Velocity

Annual Mean 1979-1995 Climatology (m'-s™)
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FIG. 1. Annual-mean wind, U, at a height of 10 m above the sea
surface: (a) Northern Hemisphere; (b) Southern Hemisphere.



Wave strength

(b) Wave Height Variance

Annual Mean 1979-1995 Climatology (m®
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FIG. 2. Annual-mean wave height variance, {((1)?), from (66): (a)
Northern Hemisphere; (b) Southern Hemisphere.

Waves are strongest far from
land, and where the winds are
strong and westerly



How big is the correction due to the surface pressure”

(b) Mean Sea Level Correction
Po= Mo T Py — &P atz =0,
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FiG. 3. Annual-mean increment to the surface-pressure boundary
condition, that is, g7'P from (66): (a) Northern Hemisphere; (b)
Southern Hemisphere.



How big is the correction due to Stokes drift”

u’ dz

(b) Stokes Transport 0
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FIG. 4. Annual-mean Stokes transport, T, from (67): (a) Northern
Hemisphere; (b) Southern Hemisphere.



How big is the Ekman transport?

(b) Ekman Transport Mainly perpendicular to the
wina

Annual Mean 1979-1995 Climatology (m*-s™)

About 4x the size of the
Stokes transport
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FIG. 5. Annual-mean Lagrangian Ekman transport —z X (1/fp,)7"
from (68): (a) Northern Hemisphere; (b) Southern Hemisphere.



How big is the correction due to Stokes drift”

(b) Stokes/Ekman Transport Ratio (Magnitude)

Annual Mean 1979-1985 Climatology

Wave effects are biggest
30W, at higher latitudes
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FIG. 6. The ratio of the wave- and wind-driven components in (51),
I/R from (54), using the fields in Figs. 4-5. The contour interval is
0.1. The largest contour of 1.0 is approached only where U | — O.



For the terms to be of comparable size, € ~ 1072
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Low frequency waves are more important for Stokes drift”

A%, = [ATH ko = [ATE 0%/g, o = \/gk
(using Phillips spectrum assumption)
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Low frequency waves are more important in generating the Stokes drift.
Is this true???



Regimes
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Predicted velocity and length scales for Stokes drift
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Conclusions
* Stokes drift should be include when modeling the Ekman layer
* Stokes drift might well be important in modeling the ocean,

especially at high latitudes. Waves both cause the Stokes drift
and alter the boundary conditions.
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Wind strength

(a) Mean Wind Velocity

Annual Mean 1979-1995 Climatology (m's™
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Wave strength

(a) Wave Height Variance
Annual Mean 1979-1995 Climatology (m?) Waves are strongest far from
150W T S5 150E land, and where the winds are
65,7 0,5 strong and westerly
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How big is the correction due to the surface pressure”

a Mean Sea Level Correction
() p0:770+pa0_§P at z = 0,

Annual Mean 1979-1995 Climatology (X10'm )
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How big is the correction due to Stokes drift”

(a) Stokes Transport T, — u dz
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How big is the Ekman transport?

(a) Ekman Transport Mainly perpendicular to the
wina

Annual Mean 1979-1995 Climatology (m?-s™)

About 4x the size of the
Stokes transport
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How big is the correction due to Stokes drift”

(a) Stokes/Ekman Transport Ratio (Magnitude)

Annual Mean 1979-1995 Climatology Wave effects are biggest
% at higher latitudes

150W

0
CONTOUR FROM 0.1 TO 1.1 BY CONTOUR INTERVAL 0.1



