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A new model of surface drift currents is constructed using the full nonlinear equations 
of motion. This model includes the balance between Coriolis forces due to the mean 
and wave-induced motions and the surface wind stresses. The approach used in the 
analysis is similar to the work by Craik & Leibovich (1976) and Leibovich (1977), 
but the emphasis is on the mean motion rather than the small-scale time-dependent 
part of the Langmuir circulation. The final result indicates that surface currents can 
be generated by both the direct wind stresses, as in the classical Ekman model, and 
the Stokes drift, derived from the surface wave motion, in an interrelated fashion 
depending on a wave Ekman number E defined as 

E = Q/vek& 

where Q is the angular velocity of the earth’s rotation, v,, the eddy viscosity and k,, 
the wavenumber of the surface wave at the spectral peak. When E < 1, the Langmuir 
mode dominates. When E B I, inertial motion results. The classical Ekman drift 
current is a special case even under the restriction E N 1. On the basis of these results, 
a new model of the surface-layer movements for future large-scale ocean circulation 
studies is presented. For this new model both the wind stresses and the sea-state 
information are crucial inputs. 

1. Introduction 
The motion of the surface water over the world’s oceans is a critical factor in con- 

trolling the large-scale transport processes of mass, momentum and energy. It is also 
the key to solving the global air-sea interaction problem. Past treatment of the 
surface-water motion has not been totally successful. The solutions obtained reflect 
the personal preferences of the investigator. The solutions range from the classical 
Ekman (1905) flow, where currents are generated by the balance between the wind 
stress and the Coriolis force under a rigid flat surface, to that of Bye (1967) and 
Kenyon (1970), where currents are attributed to pure Stokes drift from a local wave 
field subjected to no surface stress. These approaches were not representative of the 
complete physics. This contention is supported by numerous field observations such 
as those of Ichiye (1964, 1967), Katz, Gerard & Costin (1965) and Hunkins (1966). 
The results of Ichiye and Katz et al. clearly indicate the existence of an Ekman-type 
spiral but the shape has a strong dependence on the local sea state. Hunkins’ current 
observations, made under an ice sheet, where no sea-state influence exists, match 
the expected Ekman spiral to a remarkable degree. Field observations would seem 
to indicate that any model of surface drift currents devoid of Coriolis and frictional 
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ABSTRACT

Oceanic surface gravity waves have a mean Lagrangian motion, the Stokes drift. The dynamics of wind-
driven, basin-scale oceanic currents in the presence of Stokes drift are modified by the addition of so-called
vortex forces and wave-induced material advection, as well by wave-averaged effects in the surface boundary
conditions for the dynamic pressure, sea level, and vertical velocity. Some theoretical analyses previously have
been made for the gravity wave influences on boundary-layer motions, including the Ekman currents. The present
paper extends this theory to the basin-scale, depth-integrated circulation in a bounded domain. It is shown that
the Sverdrup circulation relation, with the meridional transport proportional to the curl of the surface wind stress,
applies to Lagrangian transport, while the associated Eulerian transport is shown to have a component opposite
to the Stokes-drift transport. A wave-induced correction to the relation between sea level and surface dynamic
pressure is also derived. Preliminary assessments are made of the relative importance of these influences using
a global wind climatology and an empirical relationship between the wind and wave fields. Recommendations
are made for further development and testing of this theory and for its inclusion in general circulation models.

1. Introduction

The theory and simulation of persistent basin-scale
oceanic currents, especially those near the surface where
mariners travel and plankton grow, is a central problem
in oceanography. It has long been understood that the
prevailing surface winds are the primary driving mech-
anism for these currents, and in the first half of this
century some simple models were developed to dem-
onstrate this (e.g., Ekman 1905; Sverdrup 1947; Stom-
mel 1948; Munk 1950). Subsequently, oceanic general
circulation models (GCMs) have become much more
sophisticated and geographically realistic [see the re-
view in McWilliams (1996)]. Nevertheless, the quasi-
steady, basin-scale patterns of both surface currents and
depth-averaged (i.e., barotropic) horizontal mass trans-
ports given by GCMs have remained qualitatively sim-
ilar to those predicted by the early simple models, in
locations away from strong lateral boundary currents
and their separation zones. The dynamical complica-
tions arising from other real-world influences—density
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stratification, advective nonlinearity and turbulence,
surface buoyancy fluxes, transient adjustment, bottom
turbulent and form stresses, and basin geometrical com-
plexity—all appear to be either quantitatively modest
or dominant only on sub-basin scales or at great depths
[for further discussion see Pedlosky (1996)]. There have
been several empirical tests of the predicted relation
between the wind stress and the depth-integrated trans-
port on the basin scale in the equatorward flanks of the
Northern Hemisphere subtropical gyres (e.g., Leetmaa
et al. 1977; Hautala et al. 1994), and they showed an
approximate consistency with the predictions of the sim-
ple theory [but note the caution expressed in Roemmich
and Wunsch (1985) about the confidence we should
place in such tests].
In the standard theory of ocean circulation, the tur-

bulent boundary layer near the surface (i.e., the Ekman
layer) responds to the surface wind stress with bound-
ary-layer horizontal currents whose convergence causes
a vertical divergence (i.e., Ekman pumping), which
drives the interior, geostrophically balanced, horizontal
circulation in extratropical oceanic gyres. The vertical
integral of the total horizontal circulation is the Sverdrup
transport. In this simple theory the sea state is ignored.
However, surface gravity waves are capable of gener-
ating a mean Lagrangian current called the Stokes drift

Stokes drift and large scale ocean circulation
CS Jones



Traditional models of large-scale ocean circulation do not 
include surface waves

Ocean circulation is usually 
considered to be driven directly by 
the wind stress at the surface, 
without thinking about the role of 
the Stokes drift due to surface 
waves.

It is impossible to directly 
incorporate surface waves 
into numerical models of the 
ocean, because they require 
high spatial and temporal 
resolution. 

Talley, Pickard, Emery and Swift (2011)

�t ⇠ 10s

�x ⇠ 100m
for long waves}



Huang (1979)
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I n  order to  scale the various terms in ( 5 )  properly a length scale l /ko  and a time scale 
l/go are introduced, where k, and go are the wavenumber and frequency of the surface 
gravity waves a t  the spectral peak, respectively. With this choice of scales, the 
vorticity equation ( 5 )  becomes 

where the primes are dropped to indicate non-dimensional quantities and Q is replaced 
by Qe,  with e a unit vector parallel to the axis of the earth’s rotation. 

Next, the motion will be divided into mean and fluctuating parts as 

v = T+(v), m = ra+(m), (8) 
the overbars indicating the time-averaged values and the angular brackets the 
fluctuating parts. The perturbed equations of motion to order c2, e3 and c4, respectively, 
can then be written as 

aa,/at = 0,  (9) 

Equations (Q), (10) and (11) are similar to  those of Leibovich (1977) except for the 
Coriolis terms. From (9), it can be shown that 

(a,) = 0, (12) 

because the fluctuating part of m, is induced by the periodic motions. Note, however, 
that  (12) does not imply that a, = 0. 

It then follows from (10) that  

2Q 

Next, taking the mean of (1 1) yields 
2Q 

v x  ( ~ , x ~ ~ ) + V x  (a,x4%)-- ( e . V ) T ,  = 
go €2 

with v x (a, x4%) = ( 4 % .  V) (a1) - ((a). V)@. 

Then, combining (13) and (15), and using tensor notation for convenience, the result 
is 

7 

(16) 
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Observe that the Stokes drift @s can be written as 

CiYsi = %2i,j ajar .  (17) S 
Following the scheme used by Craik & Leibovich (1976), we can write the Coriolis 

terms in (16) as 
1 

E2 ej ( @ k  s @ i , j k d ?  - @ i , k / ‘ @ k , j d T )  
VO E 

2R t 
= z e j  ( - @ . i , j + @ f , , j I  @ k d T + @ , / l @ i , j k d T )  

Then by combining (14), (16) and (18),  the following is obtained: 

v IC2 2R 
V, €2 VOE 

-- O V2Po = (Go. V) (0, i- as) - (8, + as). V m , + y  ( e  . V) (To + as). (19) 

This is the same expression as equation (14) in Craik & Leibovich (1976) with the 
addition of the extra term representing Coriolis forces. Equation (19) is the generalized 
Ekman equation with wave motion included. 

3. Specific results 
Having derived the generalized Ekman equation, we can seek an Ekman-type 

solution by assuming that all the mean motions are functions of z alone; then the 
relations for the velocity components can be written as 

where = f / v , k i  is an Ekman-type number, with f = S2. e3, the local component of 
the earth’s rotation, and e3 the unit vector in the local vertical direction. The sig- 
nificance of the Elrman-type number I? (or more generally, E = Q/v ,k ; )  will be dis- 
cussed in detail later. 

For a random gravity wave field, the Stokes drift can be expressed, as in Huang 
(1971), as 

42; = jkIn 2nkX(k,n)exp (21klz)dkdn, (21) 

where k is the wavenumber vector, n is the frequency and X(k, n)  is the directional 
wave energy spectrum. If we define the current a t  the surface as a;, then the solution 
of (20) expressed in dimensional form will be 

- 
0; = 0; exp { f /v,)$ (1 + i) z ’ }  

where the relationship 0; = v; + iv; holds. 

Follow Craik-Leibovich



McWilliams and Restrepo (1999)
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sponds to a quiescent ocean surface. On the free surface
the pressure is equal to the atmospheric surface pressure.
The position vector is denoted by x [ (xh, z), where
the transverse or horizontal component is xh 5 (x, y).
Time is denoted by t. The Eulerian velocity is denoted
by q[ (qh, w). The transverse component of differential
operators and vector variables has a subscript h; for
example, = [ (=h, ]/]z) and D/Dt 5 ]/]t 1 qh · =h 1

w]/]z. The oceanic dynamics are represented, as in CL
and Leibovich (1977a,b), by the Boussinesq momentum
and continuity equations,
]q 1

2
1 (q · =)q 1 V 3 q 2 b̃ẑ 1 =p̃ 5 nπ q,

]t r0

= · q 5 0, (1)
where n is the viscosity, g is the gravitational acceler-
ation, and r is the density, with r0 its mean value. The
unit vector ẑ is antiparallel to the gravitational force.
The buoyancy field is defined by b̃5 g(12 r/r0), where
the dynamic pressure, p̃, does not include the hydrostatic
contribution pam 2 gr0z due to the mean atmospheric
surface pressure, pam, and the mean density of the resting
ocean. The projection of the Coriolis vector, directed
along the earth’s axis of rotation, onto the local Cartesian
coordinate system is 2V 5 [0, f ( y)(y), f (z)(y)]. Its spatial
dependence is a consequence of variations of the local
vertical direction with latitude. Since energetic, extra-
tropical atmospheric and oceanic motions typically have
large horizontal scales in comparison to the thickness
of the fluid layer itself, it is usually possible to neglect
the y component of the Coriolis vector.
We shall assume, for simplicity, that the buoyancy

depends linearly on one or more passive tracers
, such as temperature or salinity, instead of theũ(x , z, t)h

true nonlinear equation of state for seawater. The equa-
tion of state may thus be written as

b̃ 5 gS mũ,
u

(2)
where m is the expansion coefficient for and S

u

de-ũ

notes the sum over all the tracers that contribute to the
buoyancy. In turn, the tracer dynamics are given by

Dũ

2
5 kπ ũ, (3)

Dt

where k is the tracer diffusivity. We further assume that
the tracer and buoyancy fields have a mean vertical
stratification in the absence of any motion. Thus, we
write the total buoyancy field as

z
2b̃ 5 N (z9) dz9 1 b*(x, t), (4)E

where N(z) is the Brunt–Väisälä frequency of the mean
buoyancy stratification and b* is the buoyancy deviation
associated with fluid motions. Accompanying the mean
stratification are each of the mean vertical tracer profiles
Q(z), so that

5 Q(z) 1 u*(x, t).ũ (5)
The pressure, p̃, is also assumed to have a mean P(z)
and deviation p*. The mean pressure is in hydrostatic
balance with the mean stratification.
The surface boundary conditions at z 5 h(xh, t) are

the following:
Dh

w 5 , p̃ 5 gr h 1 p̃ ,0 aDt

]q 1 ]ũ

n 5 t , k 5 T. (6)
]z r ]z0

Here t and T are the wind stress and surface tracer flux,
respectively.
We are concerned with the situation whereby currents

are influenced by surface gravity waves, characterized
by an amplitude a and horizontal wavenumber with
magnitude k 5 |kh|. We assume that the wave slope e

5 ka is a small number and that k|D| k 1, so that these
waves, to leading order, are approximately linear and
uninfluenced by the ocean bottom. These assumptions
lead to the deep-water dispersion relation s 5 gk,œ
where s is the frequency. The leading-order wave ve-
locity field, uw [ ( , ww), is irrotational (i.e., = 3 uwwuh
5 0), and it is assumed to be composed of a linear
superposition of individual components with different
horizontal wavenumbers, each of which has the solution
form

w wu 5 2=w , withk k

kz we ]h (x , t)k hw
w 5 2 , andk k ]t
w

h 5 a cos[k · x 2 s t], (7)k k h h k

where , , and are the k th component of thew w wu w hk k k

velocity, velocity potential, and the free surface ele-
vation, respectively. These gravity waves arise primarily
through the interaction of the wind with the ocean sur-
face. We will take their spectrum as given (see section
4) and ignore in this study the dynamics of their gen-
eration and dissipation. The dynamics of these waves,
to leading order, are not influenced by the stratification;
however, there is a wave-correlated component of the
buoyancy and tracer fields, bw and u

w, due to the strat-
ification. The leading-order, nondiffusive buoyancy bal-
ance and its resulting wave solution are

w
]b

2 w
5 2N (z)w

]t
w 2 kz⇒ b 5 2a N (z)e cos[k · x 2 s t], (8)k k h h k

with analogous relations for u

w.
We nondimensionalize (1)–(6) by characteristic

wave-propagation scales, that is, by the timescale 1/s0
and the space scale 1/k0. The corresponding velocity
scale is s0/k0, the pressure scale is r0(s0/k0)2, the buoy-
ancy scale is ( /k0)B0, and the tracer scale is2

s 0

Irrotational
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2[s /(k gm)]B .0 0 0

The surface elevation h is scaled by 1/k0. In addition,
we designate the Coriolis scale by s0V0, the Brunt–
Väisälä scale by s0N0, the viscosity and tracer diffu-
sivity scale by (s0/ )n0, the wind stress scale by r0(s0/2k0
k0)2t 0, and the tracer-flux scale by [ /( gm)] T0. The3 2

s k0 0
nondimensional values of the B0, V0, N0, n0, t 0, and
T0 will be chosen to preserve certain balances in the
asymptotic theory.
The theory to be presented shows that surface gravity

waves, with a much faster timescale than most ocean
currents, influence the dynamics of these currents. How-
ever, the form of the theory is potentially much more
general than the particular situation we shall develop it
for. Its essential basis is the presence of a rapidly varying
irrotational flow, with zero time mean on this rapid time-
scale, which then can influence the dynamics of a weak-
er solenoidal component of the flow. Thus, variants of
the theory may also apply to other types of fast oscil-
lations, such as shallow water and internal waves. The
separation between the solenoidal and irrotational com-
ponents of the velocity field is in principle easily ac-
complished, formally or numerically, using the well-
known Hodge (or Helmholtz) decomposition. Hence,
the starting point for the theory is the following general
form of the nondimensional velocity:

q 5 e[uw(x, t) 1 dv(x, ts, t)], (9)
where t is the fast time coordinate and ts 5 gt is the
slow time coordinate with g [ ed. Here uw is assumed
to be strictly irrotational, and v contains the solenoidal
component, with both fast- and slow-time dependencies.
The parameter d in (9), assumed small, will be specified
later. To accompany (9), we write the nondimensional
buoyancy and tracer fields as

wB0 wb* 5 b (x, t) 1 b(x, t , t),sB0
where 5 from (8), andw 2B eN0 0

wB0 w
u* 5 u (x, t) 1 u(x, t , t). (10)sB0

The nondimensional vorticity equation comes from
the curl of the momentum equation in (1):
]v ]v V0 w 2

1 g 5 = 3 [e(u 1 dv) 3 2V] 1 n nπ v0
]t ]t eds

w
1 = 3 [e(u 1 dv) 3 v]

wB B0 0 w
1 = 3 ẑ b 1 b ,1 2 1 2[ ]

ed B0
(11)

where
v 5 = 3 v.

Furthermore, after subtracting out the wave balance (8),
the nondimensional buoyancy equation becomes

w 2
]b ]b B N ed0 0w w 2

1 g 1 [e(u 1 dv)] ·= b1 b 1 N w1 2 1 2[ ]
]t ]t B Bs 0 0

wB02 w
5 n kπ b 1 b .0 1 2[ ]B0

(12)

The nondimensional form of (2) is b 5 S

u

u. Thus, there
are nondimensional tracer equations analogous to (12)
for each of the component tracers.
We seek a general form for the asymptotic theory,

which means that we formally choose values of the
expansion parameters, which allow the various terms to
all enter together at the leading nontrivial order in the
governing equations for the evolution of v and b, on
the slow timescale. The relations among the nondimen-
sional parameters that allow this are the following:

V0, n0, N0 5 O(g); B0, t 0, T0 5 O(g2). (13)
Later we shall be more specific about the size of these
parameters in the physical setting. Note that (13) implies
that /B0 5 e, and as a consequence, the wave-forcedwB0
buoyancy fluctuations are of secondary importance in
(11) and (12).
The vector and scalar field variables will be decom-

posed into mean and fluctuating components. The av-
erage of a quantity r, say, is defined by

t1T /21
^r(· , t )& 5 r(· , t , t9) dt9,s E sT t2T /2

where T is the period of the gravity wave field. Hence,
the t-average yields a quantity that varies in timescales
typical of the longer wind and current variability. Ap-
plication of these averages to the Eulerian velocity
yields

v 5 ^v(x, ts)& 1 v9(x, ts, t).
The model to be developed depends crucially on the
assumptions that uw is periodic and that ^uw& 5 0, as is
true for the sinusoidal wave field described by (7).
The velocity and vorticity are expanded in e,

v 5 v0 1 ev1 1 e

2v2 1 · · · ,
and

v 5 v0 1 ev1 1 e

2
v2 1 · · · ,

with analogous expressions for b and u. When these
are substituted in (11), we obtain a set of equations
that are ordered by powers of e. The lowest-order
balance leads to

v0 5 v0(x, ts).
After integration in t, the next-order balance gives a
vorticity,

v1 5 = 3 (U 3 v0) 1 = 3 (U 3 2V), (14)
where U [ uw(xh, s) ds. Thus, ^v& 5 v0 1 O(e) andt#
v9 5 ev1 1 O(e2).

Rotational

ts = �t

� = ✏�
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component, with both fast- and slow-time dependencies.
The parameter d in (9), assumed small, will be specified
later. To accompany (9), we write the nondimensional
buoyancy and tracer fields as

wB0 wb* 5 b (x, t) 1 b(x, t , t),sB0
where 5 from (8), andw 2B eN0 0

wB0 w
u* 5 u (x, t) 1 u(x, t , t). (10)sB0

The nondimensional vorticity equation comes from
the curl of the momentum equation in (1):
]v ]v V0 w 2

1 g 5 = 3 [e(u 1 dv) 3 2V] 1 n nπ v0
]t ]t eds

w
1 = 3 [e(u 1 dv) 3 v]

wB B0 0 w
1 = 3 ẑ b 1 b ,1 2 1 2[ ]

ed B0
(11)

where
v 5 = 3 v.

Furthermore, after subtracting out the wave balance (8),
the nondimensional buoyancy equation becomes

w 2
]b ]b B N ed0 0w w 2

1 g 1 [e(u 1 dv)] ·= b1 b 1 N w1 2 1 2[ ]
]t ]t B Bs 0 0
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(12)

The nondimensional form of (2) is b 5 S

u

u. Thus, there
are nondimensional tracer equations analogous to (12)
for each of the component tracers.
We seek a general form for the asymptotic theory,

which means that we formally choose values of the
expansion parameters, which allow the various terms to
all enter together at the leading nontrivial order in the
governing equations for the evolution of v and b, on
the slow timescale. The relations among the nondimen-
sional parameters that allow this are the following:

V0, n0, N0 5 O(g); B0, t 0, T0 5 O(g2). (13)
Later we shall be more specific about the size of these
parameters in the physical setting. Note that (13) implies
that /B0 5 e, and as a consequence, the wave-forcedwB0
buoyancy fluctuations are of secondary importance in
(11) and (12).
The vector and scalar field variables will be decom-

posed into mean and fluctuating components. The av-
erage of a quantity r, say, is defined by

t1T /21
^r(· , t )& 5 r(· , t , t9) dt9,s E sT t2T /2

where T is the period of the gravity wave field. Hence,
the t-average yields a quantity that varies in timescales
typical of the longer wind and current variability. Ap-
plication of these averages to the Eulerian velocity
yields

v 5 ^v(x, ts)& 1 v9(x, ts, t).
The model to be developed depends crucially on the
assumptions that uw is periodic and that ^uw& 5 0, as is
true for the sinusoidal wave field described by (7).
The velocity and vorticity are expanded in e,

v 5 v0 1 ev1 1 e

2v2 1 · · · ,
and

v 5 v0 1 ev1 1 e

2
v2 1 · · · ,

with analogous expressions for b and u. When these
are substituted in (11), we obtain a set of equations
that are ordered by powers of e. The lowest-order
balance leads to

v0 5 v0(x, ts).
After integration in t, the next-order balance gives a
vorticity,

v1 5 = 3 (U 3 v0) 1 = 3 (U 3 2V), (14)
where U [ uw(xh, s) ds. Thus, ^v& 5 v0 1 O(e) andt#
v9 5 ev1 1 O(e2).

2526 VOLUME 29J O U R N A L O F P H Y S I C A L O C E A N O G R A P H Y

2[s /(k gm)]B .0 0 0

The surface elevation h is scaled by 1/k0. In addition,
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nondimensional values of the B0, V0, N0, n0, t 0, and
T0 will be chosen to preserve certain balances in the
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The theory to be presented shows that surface gravity
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the theory may also apply to other types of fast oscil-
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separation between the solenoidal and irrotational com-
ponents of the velocity field is in principle easily ac-
complished, formally or numerically, using the well-
known Hodge (or Helmholtz) decomposition. Hence,
the starting point for the theory is the following general
form of the nondimensional velocity:

q 5 e[uw(x, t) 1 dv(x, ts, t)], (9)
where t is the fast time coordinate and ts 5 gt is the
slow time coordinate with g [ ed. Here uw is assumed
to be strictly irrotational, and v contains the solenoidal
component, with both fast- and slow-time dependencies.
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which means that we formally choose values of the
expansion parameters, which allow the various terms to
all enter together at the leading nontrivial order in the
governing equations for the evolution of v and b, on
the slow timescale. The relations among the nondimen-
sional parameters that allow this are the following:

V0, n0, N0 5 O(g); B0, t 0, T0 5 O(g2). (13)
Later we shall be more specific about the size of these
parameters in the physical setting. Note that (13) implies
that /B0 5 e, and as a consequence, the wave-forcedwB0
buoyancy fluctuations are of secondary importance in
(11) and (12).
The vector and scalar field variables will be decom-

posed into mean and fluctuating components. The av-
erage of a quantity r, say, is defined by
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where T is the period of the gravity wave field. Hence,
the t-average yields a quantity that varies in timescales
typical of the longer wind and current variability. Ap-
plication of these averages to the Eulerian velocity
yields

v 5 ^v(x, ts)& 1 v9(x, ts, t).
The model to be developed depends crucially on the
assumptions that uw is periodic and that ^uw& 5 0, as is
true for the sinusoidal wave field described by (7).
The velocity and vorticity are expanded in e,

v 5 v0 1 ev1 1 e
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and
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with analogous expressions for b and u. When these
are substituted in (11), we obtain a set of equations
that are ordered by powers of e. The lowest-order
balance leads to
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After integration in t, the next-order balance gives a
vorticity,

v1 5 = 3 (U 3 v0) 1 = 3 (U 3 2V), (14)
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sponds to a quiescent ocean surface. On the free surface
the pressure is equal to the atmospheric surface pressure.
The position vector is denoted by x [ (xh, z), where
the transverse or horizontal component is xh 5 (x, y).
Time is denoted by t. The Eulerian velocity is denoted
by q[ (qh, w). The transverse component of differential
operators and vector variables has a subscript h; for
example, = [ (=h, ]/]z) and D/Dt 5 ]/]t 1 qh · =h 1

w]/]z. The oceanic dynamics are represented, as in CL
and Leibovich (1977a,b), by the Boussinesq momentum
and continuity equations,
]q 1

2
1 (q · =)q 1 V 3 q 2 b̃ẑ 1 =p̃ 5 nπ q,

]t r0

= · q 5 0, (1)
where n is the viscosity, g is the gravitational acceler-
ation, and r is the density, with r0 its mean value. The
unit vector ẑ is antiparallel to the gravitational force.
The buoyancy field is defined by b̃5 g(12 r/r0), where
the dynamic pressure, p̃, does not include the hydrostatic
contribution pam 2 gr0z due to the mean atmospheric
surface pressure, pam, and the mean density of the resting
ocean. The projection of the Coriolis vector, directed
along the earth’s axis of rotation, onto the local Cartesian
coordinate system is 2V 5 [0, f ( y)(y), f (z)(y)]. Its spatial
dependence is a consequence of variations of the local
vertical direction with latitude. Since energetic, extra-
tropical atmospheric and oceanic motions typically have
large horizontal scales in comparison to the thickness
of the fluid layer itself, it is usually possible to neglect
the y component of the Coriolis vector.
We shall assume, for simplicity, that the buoyancy

depends linearly on one or more passive tracers
, such as temperature or salinity, instead of theũ(x , z, t)h

true nonlinear equation of state for seawater. The equa-
tion of state may thus be written as

b̃ 5 gS mũ,
u

(2)
where m is the expansion coefficient for and S

u

de-ũ

notes the sum over all the tracers that contribute to the
buoyancy. In turn, the tracer dynamics are given by

Dũ

2
5 kπ ũ, (3)

Dt

where k is the tracer diffusivity. We further assume that
the tracer and buoyancy fields have a mean vertical
stratification in the absence of any motion. Thus, we
write the total buoyancy field as

z
2b̃ 5 N (z9) dz9 1 b*(x, t), (4)E

where N(z) is the Brunt–Väisälä frequency of the mean
buoyancy stratification and b* is the buoyancy deviation
associated with fluid motions. Accompanying the mean
stratification are each of the mean vertical tracer profiles
Q(z), so that

5 Q(z) 1 u*(x, t).ũ (5)
The pressure, p̃, is also assumed to have a mean P(z)
and deviation p*. The mean pressure is in hydrostatic
balance with the mean stratification.
The surface boundary conditions at z 5 h(xh, t) are

the following:
Dh

w 5 , p̃ 5 gr h 1 p̃ ,0 aDt

]q 1 ]ũ

n 5 t , k 5 T. (6)
]z r ]z0

Here t and T are the wind stress and surface tracer flux,
respectively.
We are concerned with the situation whereby currents

are influenced by surface gravity waves, characterized
by an amplitude a and horizontal wavenumber with
magnitude k 5 |kh|. We assume that the wave slope e

5 ka is a small number and that k|D| k 1, so that these
waves, to leading order, are approximately linear and
uninfluenced by the ocean bottom. These assumptions
lead to the deep-water dispersion relation s 5 gk,œ
where s is the frequency. The leading-order wave ve-
locity field, uw [ ( , ww), is irrotational (i.e., = 3 uwwuh
5 0), and it is assumed to be composed of a linear
superposition of individual components with different
horizontal wavenumbers, each of which has the solution
form

w wu 5 2=w , withk k

kz we ]h (x , t)k hw
w 5 2 , andk k ]t
w

h 5 a cos[k · x 2 s t], (7)k k h h k

where , , and are the k th component of thew w wu w hk k k

velocity, velocity potential, and the free surface ele-
vation, respectively. These gravity waves arise primarily
through the interaction of the wind with the ocean sur-
face. We will take their spectrum as given (see section
4) and ignore in this study the dynamics of their gen-
eration and dissipation. The dynamics of these waves,
to leading order, are not influenced by the stratification;
however, there is a wave-correlated component of the
buoyancy and tracer fields, bw and u

w, due to the strat-
ification. The leading-order, nondiffusive buoyancy bal-
ance and its resulting wave solution are

w
]b

2 w
5 2N (z)w

]t
w 2 kz⇒ b 5 2a N (z)e cos[k · x 2 s t], (8)k k h h k

with analogous relations for u

w.
We nondimensionalize (1)–(6) by characteristic

wave-propagation scales, that is, by the timescale 1/s0
and the space scale 1/k0. The corresponding velocity
scale is s0/k0, the pressure scale is r0(s0/k0)2, the buoy-
ancy scale is ( /k0)B0, and the tracer scale is2

s 0

Broken promise: what is    ?

(same as CL and Huang)
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where t is the fast time coordinate and ts 5 gt is the
slow time coordinate with g [ ed. Here uw is assumed
to be strictly irrotational, and v contains the solenoidal
component, with both fast- and slow-time dependencies.
The parameter d in (9), assumed small, will be specified
later. To accompany (9), we write the nondimensional
buoyancy and tracer fields as

wB0 wb* 5 b (x, t) 1 b(x, t , t),sB0
where 5 from (8), andw 2B eN0 0

wB0 w
u* 5 u (x, t) 1 u(x, t , t). (10)sB0

The nondimensional vorticity equation comes from
the curl of the momentum equation in (1):
]v ]v V0 w 2

1 g 5 = 3 [e(u 1 dv) 3 2V] 1 n nπ v0
]t ]t eds

w
1 = 3 [e(u 1 dv) 3 v]

wB B0 0 w
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typical of the longer wind and current variability. Ap-
plication of these averages to the Eulerian velocity
yields

v 5 ^v(x, ts)& 1 v9(x, ts, t).
The model to be developed depends crucially on the
assumptions that uw is periodic and that ^uw& 5 0, as is
true for the sinusoidal wave field described by (7).
The velocity and vorticity are expanded in e,

v 5 v0 1 ev1 1 e

2v2 1 · · · ,
and

v 5 v0 1 ev1 1 e

2
v2 1 · · · ,

with analogous expressions for b and u. When these
are substituted in (11), we obtain a set of equations
that are ordered by powers of e. The lowest-order
balance leads to

v0 5 v0(x, ts).
After integration in t, the next-order balance gives a
vorticity,

v1 5 = 3 (U 3 v0) 1 = 3 (U 3 2V), (14)
where U [ uw(xh, s) ds. Thus, ^v& 5 v0 1 O(e) andt#
v9 5 ev1 1 O(e2).
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Väisälä scale by s0N0, the viscosity and tracer diffu-
sivity scale by (s0/ )n0, the wind stress scale by r0(s0/2k0
k0)2t 0, and the tracer-flux scale by [ /( gm)] T0. The3 2

s k0 0
nondimensional values of the B0, V0, N0, n0, t 0, and
T0 will be chosen to preserve certain balances in the
asymptotic theory.
The theory to be presented shows that surface gravity

waves, with a much faster timescale than most ocean
currents, influence the dynamics of these currents. How-
ever, the form of the theory is potentially much more
general than the particular situation we shall develop it
for. Its essential basis is the presence of a rapidly varying
irrotational flow, with zero time mean on this rapid time-
scale, which then can influence the dynamics of a weak-
er solenoidal component of the flow. Thus, variants of
the theory may also apply to other types of fast oscil-
lations, such as shallow water and internal waves. The
separation between the solenoidal and irrotational com-
ponents of the velocity field is in principle easily ac-
complished, formally or numerically, using the well-
known Hodge (or Helmholtz) decomposition. Hence,
the starting point for the theory is the following general
form of the nondimensional velocity:

q 5 e[uw(x, t) 1 dv(x, ts, t)], (9)
where t is the fast time coordinate and ts 5 gt is the
slow time coordinate with g [ ed. Here uw is assumed
to be strictly irrotational, and v contains the solenoidal
component, with both fast- and slow-time dependencies.
The parameter d in (9), assumed small, will be specified
later. To accompany (9), we write the nondimensional
buoyancy and tracer fields as
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where 5 from (8), andw 2B eN0 0
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u* 5 u (x, t) 1 u(x, t , t). (10)sB0
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the nondimensional buoyancy equation becomes

w 2
]b ]b B N ed0 0w w 2

1 g 1 [e(u 1 dv)] ·= b1 b 1 N w1 2 1 2[ ]
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We seek a general form for the asymptotic theory,

which means that we formally choose values of the
expansion parameters, which allow the various terms to
all enter together at the leading nontrivial order in the
governing equations for the evolution of v and b, on
the slow timescale. The relations among the nondimen-
sional parameters that allow this are the following:

V0, n0, N0 5 O(g); B0, t 0, T0 5 O(g2). (13)
Later we shall be more specific about the size of these
parameters in the physical setting. Note that (13) implies
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waves, with a much faster timescale than most ocean
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general than the particular situation we shall develop it
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irrotational flow, with zero time mean on this rapid time-
scale, which then can influence the dynamics of a weak-
er solenoidal component of the flow. Thus, variants of
the theory may also apply to other types of fast oscil-
lations, such as shallow water and internal waves. The
separation between the solenoidal and irrotational com-
ponents of the velocity field is in principle easily ac-
complished, formally or numerically, using the well-
known Hodge (or Helmholtz) decomposition. Hence,
the starting point for the theory is the following general
form of the nondimensional velocity:
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where t is the fast time coordinate and ts 5 gt is the
slow time coordinate with g [ ed. Here uw is assumed
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sional parameters that allow this are the following:
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are substituted in (11), we obtain a set of equations
that are ordered by powers of e. The lowest-order
balance leads to
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After integration in t, the next-order balance gives a
vorticity,
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sional parameters that allow this are the following:
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Later we shall be more specific about the size of these
parameters in the physical setting. Note that (13) implies
that /B0 5 e, and as a consequence, the wave-forcedwB0
buoyancy fluctuations are of secondary importance in
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the t-average yields a quantity that varies in timescales
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plication of these averages to the Eulerian velocity
yields
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The model to be developed depends crucially on the
assumptions that uw is periodic and that ^uw& 5 0, as is
true for the sinusoidal wave field described by (7).
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are substituted in (11), we obtain a set of equations
that are ordered by powers of e. The lowest-order
balance leads to
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After integration in t, the next-order balance gives a
vorticity,
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The t-average of (11) yields
]v0 2 w 2

g 5 e = 3 ^u 3 v & 1 g= 3 (v 3 v )1 gnπ v1 0 0 0
]ts

1 g= 3 (v 3 2V) 1 g= 3 (b ẑ),0 0 (15)
where we have used the relations in (13).
As shown in appendix A, the procedure described in

CL enables us to derive the ‘‘vortex force,’’
= 3 ^uw 3 v1& 5 (v0 1 2V) ·=us 2 us ·=(v0 1 2V)

5 = 3 [us 3 (v0 1 2V)], (16)
where the quantity

t
s w wu 5 u (x, s) ds · =u (17)E7 8

is the rescaled Stokes-drift velocity (i.e., with a dimen-
sionalizing scale of e

2
s0/k0). Incorporating (16) into

(15) and dividing by g yields the equation for the lead-
ing-order, slow-time vorticity balance:

]v0 2
2 = 3 [V 3 Z] 2 = 3 b ẑ 5 nπ v , (18)0 0

]ts
where j 5 e

2/g 5 e/d is a measure of the wave-added
terms in these dynamics, V 5 v0 1 jus, and Z 5 2V

1 v0. Equation (18) is similar to one derived in Holm
(1996).
The curl operator can be made to operate explicitly

on each term of the vorticity equation, which allows us
to identify the compatible momentum equation. Since
the divergence of the Stokes drift is zero and

2|v |0
2= 3 (v 3 v ) 5 2= 3 = 2 v · =v ,0 0 0 01 2[ ]2

we can express the momentum equation as
]v0 2

2 V 3 Z 1 =F 2 b ẑ 5 nπ v , (19)0 0
]ts

where we define
1

2
F 5 p 1 V (20)0 2

as the nondimensional, generalized geopotential func-
tion. Since v0 is incompressible, the divergence of the
momentum equation yields an elliptical problem for de-
termining F:

π

2
F 5 = · (V 3 Z 1 b0 ẑ 1 nπ

2v0). (21)
To obtain the boundary conditions for the slow-time

vorticity and momentum balances, the boundary con-
ditions (6) at the free surface z 5 h* are made nondi-
mensional, analytically continued to the mean sea level
z 5 0 [i.e., r(h*)5 r(0)1 h*]r/]z(0)1 · · · ], expanded
in wave and current components as above, and finally
time averaged. The nondimensional surface elevation
and pressure are assumed to have the forms

w
h* 5 e[h 1 d(h 1 eh · · ·)],0 1

wp* 5 e[p 1 d(p 1 ep · · ·)]. (22)0 1

First we consider the kinematic condition in (6). Its
leading-order, fast-time balance is the familiar wave
condition, ww

5 . The time-averaged balance isw
ht

w0 5 j= ·M at z 5 0, (23)

where

M [ ^uw(xh, 0, t)hw(xh, t)&. (24)

In (23) we have used the fact that the term ^Dh0/Dt& is
smaller by O(g). On the other hand, if we were to as-
sume that the horizontal variation of both the currents
and wave statistics were on a slow scale Xh 5 gxh, then
the amplitude of w0 would be smaller by g (for 3D
continuity balance), and the boundary condition (23)
would be generalized by the addition of ]h0/]ts on the
right-hand side. This addition would formally permit
very long (i.e., shallow water) surface gravity waves in
the current dynamics.
The nondimensional quantity M represents the net

mass flux per unit width associated with the waves. It
is numerically equal to the mean wave momentum per
unit area, ^f w

=h

w
&, to second order in e, since the mean

of the quantity =(hw
f

w) is zero when the flow is pe-
riodic both in space and time. The wave momentum
term in the kinematic condition also appears in Has-
selmann’s (1971) study of the interaction of long and
short gravity waves. The pressure condition in (6) has
the fast-time balance pw 5 h

w and the slow-time balance,

p0 5 h0 1 pa0 2 jP at z 5 0, (25)

where we have assumed that the slow atmospheric pres-
sure variations pa0 scale in a similar way to p0, and the
wave-added pressure adjustment term is

P [ ^ (xh, 0, t)hw(xh, t)& 5 ^( )2& 5 ^(ww)2&,w wp hz t
(26)

with the second and third expressions obtained from the
first one by using the linear balances that underlie the
wave solution in (7). The stress condition in (6) is ir-
relevant to the leading-order wave dynamics because n0
is small in (13). The slow-time stress condition is

]v0
n 1 jS 5 t at z 5 0, (27)1 2

]z

where
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later. To accompany (9), we write the nondimensional
buoyancy and tracer fields as

wB0 wb* 5 b (x, t) 1 b(x, t , t),sB0
where 5 from (8), andw 2B eN0 0

wB0 w
u* 5 u (x, t) 1 u(x, t , t). (10)sB0

The nondimensional vorticity equation comes from
the curl of the momentum equation in (1):
]v ]v V0 w 2

1 g 5 = 3 [e(u 1 dv) 3 2V] 1 n nπ v0
]t ]t eds

w
1 = 3 [e(u 1 dv) 3 v]

wB B0 0 w
1 = 3 ẑ b 1 b ,1 2 1 2[ ]

ed B0
(11)

where
v 5 = 3 v.

Furthermore, after subtracting out the wave balance (8),
the nondimensional buoyancy equation becomes

w 2
]b ]b B N ed0 0w w 2

1 g 1 [e(u 1 dv)] ·= b1 b 1 N w1 2 1 2[ ]
]t ]t B Bs 0 0

wB02 w
5 n kπ b 1 b .0 1 2[ ]B0

(12)

The nondimensional form of (2) is b 5 S

u

u. Thus, there
are nondimensional tracer equations analogous to (12)
for each of the component tracers.
We seek a general form for the asymptotic theory,

which means that we formally choose values of the
expansion parameters, which allow the various terms to
all enter together at the leading nontrivial order in the
governing equations for the evolution of v and b, on
the slow timescale. The relations among the nondimen-
sional parameters that allow this are the following:

V0, n0, N0 5 O(g); B0, t 0, T0 5 O(g2). (13)
Later we shall be more specific about the size of these
parameters in the physical setting. Note that (13) implies
that /B0 5 e, and as a consequence, the wave-forcedwB0
buoyancy fluctuations are of secondary importance in
(11) and (12).
The vector and scalar field variables will be decom-

posed into mean and fluctuating components. The av-
erage of a quantity r, say, is defined by

t1T /21
^r(· , t )& 5 r(· , t , t9) dt9,s E sT t2T /2

where T is the period of the gravity wave field. Hence,
the t-average yields a quantity that varies in timescales
typical of the longer wind and current variability. Ap-
plication of these averages to the Eulerian velocity
yields

v 5 ^v(x, ts)& 1 v9(x, ts, t).
The model to be developed depends crucially on the
assumptions that uw is periodic and that ^uw& 5 0, as is
true for the sinusoidal wave field described by (7).
The velocity and vorticity are expanded in e,

v 5 v0 1 ev1 1 e

2v2 1 · · · ,
and

v 5 v0 1 ev1 1 e

2
v2 1 · · · ,

with analogous expressions for b and u. When these
are substituted in (11), we obtain a set of equations
that are ordered by powers of e. The lowest-order
balance leads to

v0 5 v0(x, ts).
After integration in t, the next-order balance gives a
vorticity,

v1 5 = 3 (U 3 v0) 1 = 3 (U 3 2V), (14)
where U [ uw(xh, s) ds. Thus, ^v& 5 v0 1 O(e) andt#
v9 5 ev1 1 O(e2).
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The theory to be presented shows that surface gravity

waves, with a much faster timescale than most ocean
currents, influence the dynamics of these currents. How-
ever, the form of the theory is potentially much more
general than the particular situation we shall develop it
for. Its essential basis is the presence of a rapidly varying
irrotational flow, with zero time mean on this rapid time-
scale, which then can influence the dynamics of a weak-
er solenoidal component of the flow. Thus, variants of
the theory may also apply to other types of fast oscil-
lations, such as shallow water and internal waves. The
separation between the solenoidal and irrotational com-
ponents of the velocity field is in principle easily ac-
complished, formally or numerically, using the well-
known Hodge (or Helmholtz) decomposition. Hence,
the starting point for the theory is the following general
form of the nondimensional velocity:

q 5 e[uw(x, t) 1 dv(x, ts, t)], (9)
where t is the fast time coordinate and ts 5 gt is the
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typical of the longer wind and current variability. Ap-
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The velocity and vorticity are expanded in e,
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with analogous expressions for b and u. When these
are substituted in (11), we obtain a set of equations
that are ordered by powers of e. The lowest-order
balance leads to

v0 5 v0(x, ts).
After integration in t, the next-order balance gives a
vorticity,
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where

Therefore, time averaging gives
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The t-average of (11) yields
]v0 2 w 2

g 5 e = 3 ^u 3 v & 1 g= 3 (v 3 v )1 gnπ v1 0 0 0
]ts

1 g= 3 (v 3 2V) 1 g= 3 (b ẑ),0 0 (15)
where we have used the relations in (13).
As shown in appendix A, the procedure described in

CL enables us to derive the ‘‘vortex force,’’
= 3 ^uw 3 v1& 5 (v0 1 2V) ·=us 2 us ·=(v0 1 2V)

5 = 3 [us 3 (v0 1 2V)], (16)
where the quantity

t
s w wu 5 u (x, s) ds · =u (17)E7 8

is the rescaled Stokes-drift velocity (i.e., with a dimen-
sionalizing scale of e

2
s0/k0). Incorporating (16) into

(15) and dividing by g yields the equation for the lead-
ing-order, slow-time vorticity balance:

]v0 2
2 = 3 [V 3 Z] 2 = 3 b ẑ 5 nπ v , (18)0 0

]ts
where j 5 e

2/g 5 e/d is a measure of the wave-added
terms in these dynamics, V 5 v0 1 jus, and Z 5 2V

1 v0. Equation (18) is similar to one derived in Holm
(1996).
The curl operator can be made to operate explicitly

on each term of the vorticity equation, which allows us
to identify the compatible momentum equation. Since
the divergence of the Stokes drift is zero and

2|v |0
2= 3 (v 3 v ) 5 2= 3 = 2 v · =v ,0 0 0 01 2[ ]2

we can express the momentum equation as
]v0 2

2 V 3 Z 1 =F 2 b ẑ 5 nπ v , (19)0 0
]ts

where we define
1

2
F 5 p 1 V (20)0 2

as the nondimensional, generalized geopotential func-
tion. Since v0 is incompressible, the divergence of the
momentum equation yields an elliptical problem for de-
termining F:

π

2
F 5 = · (V 3 Z 1 b0 ẑ 1 nπ

2v0). (21)
To obtain the boundary conditions for the slow-time

vorticity and momentum balances, the boundary con-
ditions (6) at the free surface z 5 h* are made nondi-
mensional, analytically continued to the mean sea level
z 5 0 [i.e., r(h*)5 r(0)1 h*]r/]z(0)1 · · · ], expanded
in wave and current components as above, and finally
time averaged. The nondimensional surface elevation
and pressure are assumed to have the forms

w
h* 5 e[h 1 d(h 1 eh · · ·)],0 1

wp* 5 e[p 1 d(p 1 ep · · ·)]. (22)0 1

First we consider the kinematic condition in (6). Its
leading-order, fast-time balance is the familiar wave
condition, ww

5 . The time-averaged balance isw
ht

w0 5 j= ·M at z 5 0, (23)

where

M [ ^uw(xh, 0, t)hw(xh, t)&. (24)

In (23) we have used the fact that the term ^Dh0/Dt& is
smaller by O(g). On the other hand, if we were to as-
sume that the horizontal variation of both the currents
and wave statistics were on a slow scale Xh 5 gxh, then
the amplitude of w0 would be smaller by g (for 3D
continuity balance), and the boundary condition (23)
would be generalized by the addition of ]h0/]ts on the
right-hand side. This addition would formally permit
very long (i.e., shallow water) surface gravity waves in
the current dynamics.
The nondimensional quantity M represents the net

mass flux per unit width associated with the waves. It
is numerically equal to the mean wave momentum per
unit area, ^f w

=h

w
&, to second order in e, since the mean

of the quantity =(hw
f

w) is zero when the flow is pe-
riodic both in space and time. The wave momentum
term in the kinematic condition also appears in Has-
selmann’s (1971) study of the interaction of long and
short gravity waves. The pressure condition in (6) has
the fast-time balance pw 5 h

w and the slow-time balance,

p0 5 h0 1 pa0 2 jP at z 5 0, (25)

where we have assumed that the slow atmospheric pres-
sure variations pa0 scale in a similar way to p0, and the
wave-added pressure adjustment term is

P [ ^ (xh, 0, t)hw(xh, t)& 5 ^( )2& 5 ^(ww)2&,w wp hz t
(26)

with the second and third expressions obtained from the
first one by using the linear balances that underlie the
wave solution in (7). The stress condition in (6) is ir-
relevant to the leading-order wave dynamics because n0
is small in (13). The slow-time stress condition is

]v0
n 1 jS 5 t at z 5 0, (27)1 2

]z

where
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where

z = 2⌦+ !0

Some more manipulation gives CLH

where



Boundary conditions
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sponds to a quiescent ocean surface. On the free surface
the pressure is equal to the atmospheric surface pressure.
The position vector is denoted by x [ (xh, z), where
the transverse or horizontal component is xh 5 (x, y).
Time is denoted by t. The Eulerian velocity is denoted
by q[ (qh, w). The transverse component of differential
operators and vector variables has a subscript h; for
example, = [ (=h, ]/]z) and D/Dt 5 ]/]t 1 qh · =h 1

w]/]z. The oceanic dynamics are represented, as in CL
and Leibovich (1977a,b), by the Boussinesq momentum
and continuity equations,
]q 1

2
1 (q · =)q 1 V 3 q 2 b̃ẑ 1 =p̃ 5 nπ q,

]t r0

= · q 5 0, (1)
where n is the viscosity, g is the gravitational acceler-
ation, and r is the density, with r0 its mean value. The
unit vector ẑ is antiparallel to the gravitational force.
The buoyancy field is defined by b̃5 g(12 r/r0), where
the dynamic pressure, p̃, does not include the hydrostatic
contribution pam 2 gr0z due to the mean atmospheric
surface pressure, pam, and the mean density of the resting
ocean. The projection of the Coriolis vector, directed
along the earth’s axis of rotation, onto the local Cartesian
coordinate system is 2V 5 [0, f ( y)(y), f (z)(y)]. Its spatial
dependence is a consequence of variations of the local
vertical direction with latitude. Since energetic, extra-
tropical atmospheric and oceanic motions typically have
large horizontal scales in comparison to the thickness
of the fluid layer itself, it is usually possible to neglect
the y component of the Coriolis vector.
We shall assume, for simplicity, that the buoyancy

depends linearly on one or more passive tracers
, such as temperature or salinity, instead of theũ(x , z, t)h

true nonlinear equation of state for seawater. The equa-
tion of state may thus be written as

b̃ 5 gS mũ,
u

(2)
where m is the expansion coefficient for and S

u

de-ũ

notes the sum over all the tracers that contribute to the
buoyancy. In turn, the tracer dynamics are given by

Dũ

2
5 kπ ũ, (3)

Dt

where k is the tracer diffusivity. We further assume that
the tracer and buoyancy fields have a mean vertical
stratification in the absence of any motion. Thus, we
write the total buoyancy field as

z
2b̃ 5 N (z9) dz9 1 b*(x, t), (4)E

where N(z) is the Brunt–Väisälä frequency of the mean
buoyancy stratification and b* is the buoyancy deviation
associated with fluid motions. Accompanying the mean
stratification are each of the mean vertical tracer profiles
Q(z), so that

5 Q(z) 1 u*(x, t).ũ (5)
The pressure, p̃, is also assumed to have a mean P(z)
and deviation p*. The mean pressure is in hydrostatic
balance with the mean stratification.
The surface boundary conditions at z 5 h(xh, t) are

the following:
Dh

w 5 , p̃ 5 gr h 1 p̃ ,0 aDt

]q 1 ]ũ

n 5 t , k 5 T. (6)
]z r ]z0

Here t and T are the wind stress and surface tracer flux,
respectively.
We are concerned with the situation whereby currents

are influenced by surface gravity waves, characterized
by an amplitude a and horizontal wavenumber with
magnitude k 5 |kh|. We assume that the wave slope e

5 ka is a small number and that k|D| k 1, so that these
waves, to leading order, are approximately linear and
uninfluenced by the ocean bottom. These assumptions
lead to the deep-water dispersion relation s 5 gk,œ
where s is the frequency. The leading-order wave ve-
locity field, uw [ ( , ww), is irrotational (i.e., = 3 uwwuh
5 0), and it is assumed to be composed of a linear
superposition of individual components with different
horizontal wavenumbers, each of which has the solution
form

w wu 5 2=w , withk k

kz we ]h (x , t)k hw
w 5 2 , andk k ]t
w

h 5 a cos[k · x 2 s t], (7)k k h h k

where , , and are the k th component of thew w wu w hk k k

velocity, velocity potential, and the free surface ele-
vation, respectively. These gravity waves arise primarily
through the interaction of the wind with the ocean sur-
face. We will take their spectrum as given (see section
4) and ignore in this study the dynamics of their gen-
eration and dissipation. The dynamics of these waves,
to leading order, are not influenced by the stratification;
however, there is a wave-correlated component of the
buoyancy and tracer fields, bw and u

w, due to the strat-
ification. The leading-order, nondiffusive buoyancy bal-
ance and its resulting wave solution are

w
]b

2 w
5 2N (z)w

]t
w 2 kz⇒ b 5 2a N (z)e cos[k · x 2 s t], (8)k k h h k

with analogous relations for u

w.
We nondimensionalize (1)–(6) by characteristic

wave-propagation scales, that is, by the timescale 1/s0
and the space scale 1/k0. The corresponding velocity
scale is s0/k0, the pressure scale is r0(s0/k0)2, the buoy-
ancy scale is ( /k0)B0, and the tracer scale is2

s 0

at z = ⌘

Expanding about z = 0

w + ⌘w
z

= ⌘
t

+ u⌘
x

+ v⌘
y

+O(✏2)

w = ⌘
t

+ (u⌘)
x

+ (v⌘)
y

+O(✏2)
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The t-average of (11) yields
]v0 2 w 2

g 5 e = 3 ^u 3 v & 1 g= 3 (v 3 v )1 gnπ v1 0 0 0
]ts

1 g= 3 (v 3 2V) 1 g= 3 (b ẑ),0 0 (15)
where we have used the relations in (13).
As shown in appendix A, the procedure described in

CL enables us to derive the ‘‘vortex force,’’
= 3 ^uw 3 v1& 5 (v0 1 2V) ·=us 2 us ·=(v0 1 2V)

5 = 3 [us 3 (v0 1 2V)], (16)
where the quantity

t
s w wu 5 u (x, s) ds · =u (17)E7 8

is the rescaled Stokes-drift velocity (i.e., with a dimen-
sionalizing scale of e

2
s0/k0). Incorporating (16) into

(15) and dividing by g yields the equation for the lead-
ing-order, slow-time vorticity balance:

]v0 2
2 = 3 [V 3 Z] 2 = 3 b ẑ 5 nπ v , (18)0 0

]ts
where j 5 e

2/g 5 e/d is a measure of the wave-added
terms in these dynamics, V 5 v0 1 jus, and Z 5 2V

1 v0. Equation (18) is similar to one derived in Holm
(1996).
The curl operator can be made to operate explicitly

on each term of the vorticity equation, which allows us
to identify the compatible momentum equation. Since
the divergence of the Stokes drift is zero and

2|v |0
2= 3 (v 3 v ) 5 2= 3 = 2 v · =v ,0 0 0 01 2[ ]2

we can express the momentum equation as
]v0 2

2 V 3 Z 1 =F 2 b ẑ 5 nπ v , (19)0 0
]ts

where we define
1

2
F 5 p 1 V (20)0 2

as the nondimensional, generalized geopotential func-
tion. Since v0 is incompressible, the divergence of the
momentum equation yields an elliptical problem for de-
termining F:

π

2
F 5 = · (V 3 Z 1 b0 ẑ 1 nπ

2v0). (21)
To obtain the boundary conditions for the slow-time

vorticity and momentum balances, the boundary con-
ditions (6) at the free surface z 5 h* are made nondi-
mensional, analytically continued to the mean sea level
z 5 0 [i.e., r(h*)5 r(0)1 h*]r/]z(0)1 · · · ], expanded
in wave and current components as above, and finally
time averaged. The nondimensional surface elevation
and pressure are assumed to have the forms

w
h* 5 e[h 1 d(h 1 eh · · ·)],0 1

wp* 5 e[p 1 d(p 1 ep · · ·)]. (22)0 1

First we consider the kinematic condition in (6). Its
leading-order, fast-time balance is the familiar wave
condition, ww

5 . The time-averaged balance isw
ht

w0 5 j= ·M at z 5 0, (23)

where

M [ ^uw(xh, 0, t)hw(xh, t)&. (24)

In (23) we have used the fact that the term ^Dh0/Dt& is
smaller by O(g). On the other hand, if we were to as-
sume that the horizontal variation of both the currents
and wave statistics were on a slow scale Xh 5 gxh, then
the amplitude of w0 would be smaller by g (for 3D
continuity balance), and the boundary condition (23)
would be generalized by the addition of ]h0/]ts on the
right-hand side. This addition would formally permit
very long (i.e., shallow water) surface gravity waves in
the current dynamics.
The nondimensional quantity M represents the net

mass flux per unit width associated with the waves. It
is numerically equal to the mean wave momentum per
unit area, ^f w

=h

w
&, to second order in e, since the mean

of the quantity =(hw
f

w) is zero when the flow is pe-
riodic both in space and time. The wave momentum
term in the kinematic condition also appears in Has-
selmann’s (1971) study of the interaction of long and
short gravity waves. The pressure condition in (6) has
the fast-time balance pw 5 h

w and the slow-time balance,

p0 5 h0 1 pa0 2 jP at z 5 0, (25)

where we have assumed that the slow atmospheric pres-
sure variations pa0 scale in a similar way to p0, and the
wave-added pressure adjustment term is

P [ ^ (xh, 0, t)hw(xh, t)& 5 ^( )2& 5 ^(ww)2&,w wp hz t
(26)

with the second and third expressions obtained from the
first one by using the linear balances that underlie the
wave solution in (7). The stress condition in (6) is ir-
relevant to the leading-order wave dynamics because n0
is small in (13). The slow-time stress condition is

]v0
n 1 jS 5 t at z 5 0, (27)1 2

]z

where

< w >= � < ⌘ >ts +⇠r·M
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sponds to a quiescent ocean surface. On the free surface
the pressure is equal to the atmospheric surface pressure.
The position vector is denoted by x [ (xh, z), where
the transverse or horizontal component is xh 5 (x, y).
Time is denoted by t. The Eulerian velocity is denoted
by q[ (qh, w). The transverse component of differential
operators and vector variables has a subscript h; for
example, = [ (=h, ]/]z) and D/Dt 5 ]/]t 1 qh · =h 1

w]/]z. The oceanic dynamics are represented, as in CL
and Leibovich (1977a,b), by the Boussinesq momentum
and continuity equations,
]q 1

2
1 (q · =)q 1 V 3 q 2 b̃ẑ 1 =p̃ 5 nπ q,

]t r0

= · q 5 0, (1)
where n is the viscosity, g is the gravitational acceler-
ation, and r is the density, with r0 its mean value. The
unit vector ẑ is antiparallel to the gravitational force.
The buoyancy field is defined by b̃5 g(12 r/r0), where
the dynamic pressure, p̃, does not include the hydrostatic
contribution pam 2 gr0z due to the mean atmospheric
surface pressure, pam, and the mean density of the resting
ocean. The projection of the Coriolis vector, directed
along the earth’s axis of rotation, onto the local Cartesian
coordinate system is 2V 5 [0, f ( y)(y), f (z)(y)]. Its spatial
dependence is a consequence of variations of the local
vertical direction with latitude. Since energetic, extra-
tropical atmospheric and oceanic motions typically have
large horizontal scales in comparison to the thickness
of the fluid layer itself, it is usually possible to neglect
the y component of the Coriolis vector.
We shall assume, for simplicity, that the buoyancy

depends linearly on one or more passive tracers
, such as temperature or salinity, instead of theũ(x , z, t)h

true nonlinear equation of state for seawater. The equa-
tion of state may thus be written as

b̃ 5 gS mũ,
u

(2)
where m is the expansion coefficient for and S

u

de-ũ

notes the sum over all the tracers that contribute to the
buoyancy. In turn, the tracer dynamics are given by

Dũ

2
5 kπ ũ, (3)

Dt

where k is the tracer diffusivity. We further assume that
the tracer and buoyancy fields have a mean vertical
stratification in the absence of any motion. Thus, we
write the total buoyancy field as

z
2b̃ 5 N (z9) dz9 1 b*(x, t), (4)E

where N(z) is the Brunt–Väisälä frequency of the mean
buoyancy stratification and b* is the buoyancy deviation
associated with fluid motions. Accompanying the mean
stratification are each of the mean vertical tracer profiles
Q(z), so that

5 Q(z) 1 u*(x, t).ũ (5)
The pressure, p̃, is also assumed to have a mean P(z)
and deviation p*. The mean pressure is in hydrostatic
balance with the mean stratification.
The surface boundary conditions at z 5 h(xh, t) are

the following:
Dh

w 5 , p̃ 5 gr h 1 p̃ ,0 aDt

]q 1 ]ũ

n 5 t , k 5 T. (6)
]z r ]z0

Here t and T are the wind stress and surface tracer flux,
respectively.
We are concerned with the situation whereby currents

are influenced by surface gravity waves, characterized
by an amplitude a and horizontal wavenumber with
magnitude k 5 |kh|. We assume that the wave slope e

5 ka is a small number and that k|D| k 1, so that these
waves, to leading order, are approximately linear and
uninfluenced by the ocean bottom. These assumptions
lead to the deep-water dispersion relation s 5 gk,œ
where s is the frequency. The leading-order wave ve-
locity field, uw [ ( , ww), is irrotational (i.e., = 3 uwwuh
5 0), and it is assumed to be composed of a linear
superposition of individual components with different
horizontal wavenumbers, each of which has the solution
form

w wu 5 2=w , withk k

kz we ]h (x , t)k hw
w 5 2 , andk k ]t
w

h 5 a cos[k · x 2 s t], (7)k k h h k

where , , and are the k th component of thew w wu w hk k k

velocity, velocity potential, and the free surface ele-
vation, respectively. These gravity waves arise primarily
through the interaction of the wind with the ocean sur-
face. We will take their spectrum as given (see section
4) and ignore in this study the dynamics of their gen-
eration and dissipation. The dynamics of these waves,
to leading order, are not influenced by the stratification;
however, there is a wave-correlated component of the
buoyancy and tracer fields, bw and u

w, due to the strat-
ification. The leading-order, nondiffusive buoyancy bal-
ance and its resulting wave solution are

w
]b

2 w
5 2N (z)w

]t
w 2 kz⇒ b 5 2a N (z)e cos[k · x 2 s t], (8)k k h h k

with analogous relations for u

w.
We nondimensionalize (1)–(6) by characteristic

wave-propagation scales, that is, by the timescale 1/s0
and the space scale 1/k0. The corresponding velocity
scale is s0/k0, the pressure scale is r0(s0/k0)2, the buoy-
ancy scale is ( /k0)B0, and the tracer scale is2

s 0

at z = ⌘

Expanding about z = 0
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The t-average of (11) yields
]v0 2 w 2

g 5 e = 3 ^u 3 v & 1 g= 3 (v 3 v )1 gnπ v1 0 0 0
]ts

1 g= 3 (v 3 2V) 1 g= 3 (b ẑ),0 0 (15)
where we have used the relations in (13).
As shown in appendix A, the procedure described in

CL enables us to derive the ‘‘vortex force,’’
= 3 ^uw 3 v1& 5 (v0 1 2V) ·=us 2 us ·=(v0 1 2V)

5 = 3 [us 3 (v0 1 2V)], (16)
where the quantity

t
s w wu 5 u (x, s) ds · =u (17)E7 8

is the rescaled Stokes-drift velocity (i.e., with a dimen-
sionalizing scale of e

2
s0/k0). Incorporating (16) into

(15) and dividing by g yields the equation for the lead-
ing-order, slow-time vorticity balance:

]v0 2
2 = 3 [V 3 Z] 2 = 3 b ẑ 5 nπ v , (18)0 0

]ts
where j 5 e

2/g 5 e/d is a measure of the wave-added
terms in these dynamics, V 5 v0 1 jus, and Z 5 2V

1 v0. Equation (18) is similar to one derived in Holm
(1996).
The curl operator can be made to operate explicitly

on each term of the vorticity equation, which allows us
to identify the compatible momentum equation. Since
the divergence of the Stokes drift is zero and

2|v |0
2= 3 (v 3 v ) 5 2= 3 = 2 v · =v ,0 0 0 01 2[ ]2

we can express the momentum equation as
]v0 2

2 V 3 Z 1 =F 2 b ẑ 5 nπ v , (19)0 0
]ts

where we define
1

2
F 5 p 1 V (20)0 2

as the nondimensional, generalized geopotential func-
tion. Since v0 is incompressible, the divergence of the
momentum equation yields an elliptical problem for de-
termining F:

π

2
F 5 = · (V 3 Z 1 b0 ẑ 1 nπ

2v0). (21)
To obtain the boundary conditions for the slow-time

vorticity and momentum balances, the boundary con-
ditions (6) at the free surface z 5 h* are made nondi-
mensional, analytically continued to the mean sea level
z 5 0 [i.e., r(h*)5 r(0)1 h*]r/]z(0)1 · · · ], expanded
in wave and current components as above, and finally
time averaged. The nondimensional surface elevation
and pressure are assumed to have the forms

w
h* 5 e[h 1 d(h 1 eh · · ·)],0 1

wp* 5 e[p 1 d(p 1 ep · · ·)]. (22)0 1

First we consider the kinematic condition in (6). Its
leading-order, fast-time balance is the familiar wave
condition, ww

5 . The time-averaged balance isw
ht

w0 5 j= ·M at z 5 0, (23)

where

M [ ^uw(xh, 0, t)hw(xh, t)&. (24)

In (23) we have used the fact that the term ^Dh0/Dt& is
smaller by O(g). On the other hand, if we were to as-
sume that the horizontal variation of both the currents
and wave statistics were on a slow scale Xh 5 gxh, then
the amplitude of w0 would be smaller by g (for 3D
continuity balance), and the boundary condition (23)
would be generalized by the addition of ]h0/]ts on the
right-hand side. This addition would formally permit
very long (i.e., shallow water) surface gravity waves in
the current dynamics.
The nondimensional quantity M represents the net

mass flux per unit width associated with the waves. It
is numerically equal to the mean wave momentum per
unit area, ^f w

=h

w
&, to second order in e, since the mean

of the quantity =(hw
f

w) is zero when the flow is pe-
riodic both in space and time. The wave momentum
term in the kinematic condition also appears in Has-
selmann’s (1971) study of the interaction of long and
short gravity waves. The pressure condition in (6) has
the fast-time balance pw 5 h

w and the slow-time balance,

p0 5 h0 1 pa0 2 jP at z 5 0, (25)

where we have assumed that the slow atmospheric pres-
sure variations pa0 scale in a similar way to p0, and the
wave-added pressure adjustment term is

P [ ^ (xh, 0, t)hw(xh, t)& 5 ^( )2& 5 ^(ww)2&,w wp hz t
(26)

with the second and third expressions obtained from the
first one by using the linear balances that underlie the
wave solution in (7). The stress condition in (6) is ir-
relevant to the leading-order wave dynamics because n0
is small in (13). The slow-time stress condition is

]v0
n 1 jS 5 t at z 5 0, (27)1 2

]z

where
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The t-average of (11) yields
]v0 2 w 2

g 5 e = 3 ^u 3 v & 1 g= 3 (v 3 v )1 gnπ v1 0 0 0
]ts

1 g= 3 (v 3 2V) 1 g= 3 (b ẑ),0 0 (15)
where we have used the relations in (13).
As shown in appendix A, the procedure described in

CL enables us to derive the ‘‘vortex force,’’
= 3 ^uw 3 v1& 5 (v0 1 2V) ·=us 2 us ·=(v0 1 2V)

5 = 3 [us 3 (v0 1 2V)], (16)
where the quantity

t
s w wu 5 u (x, s) ds · =u (17)E7 8

is the rescaled Stokes-drift velocity (i.e., with a dimen-
sionalizing scale of e

2
s0/k0). Incorporating (16) into

(15) and dividing by g yields the equation for the lead-
ing-order, slow-time vorticity balance:

]v0 2
2 = 3 [V 3 Z] 2 = 3 b ẑ 5 nπ v , (18)0 0

]ts
where j 5 e

2/g 5 e/d is a measure of the wave-added
terms in these dynamics, V 5 v0 1 jus, and Z 5 2V

1 v0. Equation (18) is similar to one derived in Holm
(1996).
The curl operator can be made to operate explicitly

on each term of the vorticity equation, which allows us
to identify the compatible momentum equation. Since
the divergence of the Stokes drift is zero and

2|v |0
2= 3 (v 3 v ) 5 2= 3 = 2 v · =v ,0 0 0 01 2[ ]2

we can express the momentum equation as
]v0 2

2 V 3 Z 1 =F 2 b ẑ 5 nπ v , (19)0 0
]ts

where we define
1

2
F 5 p 1 V (20)0 2

as the nondimensional, generalized geopotential func-
tion. Since v0 is incompressible, the divergence of the
momentum equation yields an elliptical problem for de-
termining F:

π

2
F 5 = · (V 3 Z 1 b0 ẑ 1 nπ

2v0). (21)
To obtain the boundary conditions for the slow-time

vorticity and momentum balances, the boundary con-
ditions (6) at the free surface z 5 h* are made nondi-
mensional, analytically continued to the mean sea level
z 5 0 [i.e., r(h*)5 r(0)1 h*]r/]z(0)1 · · · ], expanded
in wave and current components as above, and finally
time averaged. The nondimensional surface elevation
and pressure are assumed to have the forms

w
h* 5 e[h 1 d(h 1 eh · · ·)],0 1

wp* 5 e[p 1 d(p 1 ep · · ·)]. (22)0 1

First we consider the kinematic condition in (6). Its
leading-order, fast-time balance is the familiar wave
condition, ww

5 . The time-averaged balance isw
ht

w0 5 j= ·M at z 5 0, (23)

where

M [ ^uw(xh, 0, t)hw(xh, t)&. (24)

In (23) we have used the fact that the term ^Dh0/Dt& is
smaller by O(g). On the other hand, if we were to as-
sume that the horizontal variation of both the currents
and wave statistics were on a slow scale Xh 5 gxh, then
the amplitude of w0 would be smaller by g (for 3D
continuity balance), and the boundary condition (23)
would be generalized by the addition of ]h0/]ts on the
right-hand side. This addition would formally permit
very long (i.e., shallow water) surface gravity waves in
the current dynamics.
The nondimensional quantity M represents the net

mass flux per unit width associated with the waves. It
is numerically equal to the mean wave momentum per
unit area, ^f w

=h

w
&, to second order in e, since the mean

of the quantity =(hw
f

w) is zero when the flow is pe-
riodic both in space and time. The wave momentum
term in the kinematic condition also appears in Has-
selmann’s (1971) study of the interaction of long and
short gravity waves. The pressure condition in (6) has
the fast-time balance pw 5 h

w and the slow-time balance,

p0 5 h0 1 pa0 2 jP at z 5 0, (25)

where we have assumed that the slow atmospheric pres-
sure variations pa0 scale in a similar way to p0, and the
wave-added pressure adjustment term is

P [ ^ (xh, 0, t)hw(xh, t)& 5 ^( )2& 5 ^(ww)2&,w wp hz t
(26)

with the second and third expressions obtained from the
first one by using the linear balances that underlie the
wave solution in (7). The stress condition in (6) is ir-
relevant to the leading-order wave dynamics because n0
is small in (13). The slow-time stress condition is

]v0
n 1 jS 5 t at z 5 0, (27)1 2

]z

where

p+ ⌘pz = g⇢0⌘ + pa +O(✏2)

⇠ =
✏2

�
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is the rescaled Stokes-drift velocity (i.e., with a dimen-
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(15) and dividing by g yields the equation for the lead-
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]ts
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2/g 5 e/d is a measure of the wave-added
terms in these dynamics, V 5 v0 1 jus, and Z 5 2V

1 v0. Equation (18) is similar to one derived in Holm
(1996).
The curl operator can be made to operate explicitly

on each term of the vorticity equation, which allows us
to identify the compatible momentum equation. Since
the divergence of the Stokes drift is zero and
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we can express the momentum equation as
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2 V 3 Z 1 =F 2 b ẑ 5 nπ v , (19)0 0
]ts

where we define
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as the nondimensional, generalized geopotential func-
tion. Since v0 is incompressible, the divergence of the
momentum equation yields an elliptical problem for de-
termining F:

π

2
F 5 = · (V 3 Z 1 b0 ẑ 1 nπ

2v0). (21)
To obtain the boundary conditions for the slow-time

vorticity and momentum balances, the boundary con-
ditions (6) at the free surface z 5 h* are made nondi-
mensional, analytically continued to the mean sea level
z 5 0 [i.e., r(h*)5 r(0)1 h*]r/]z(0)1 · · · ], expanded
in wave and current components as above, and finally
time averaged. The nondimensional surface elevation
and pressure are assumed to have the forms

w
h* 5 e[h 1 d(h 1 eh · · ·)],0 1

wp* 5 e[p 1 d(p 1 ep · · ·)]. (22)0 1

First we consider the kinematic condition in (6). Its
leading-order, fast-time balance is the familiar wave
condition, ww

5 . The time-averaged balance isw
ht

w0 5 j= ·M at z 5 0, (23)

where

M [ ^uw(xh, 0, t)hw(xh, t)&. (24)

In (23) we have used the fact that the term ^Dh0/Dt& is
smaller by O(g). On the other hand, if we were to as-
sume that the horizontal variation of both the currents
and wave statistics were on a slow scale Xh 5 gxh, then
the amplitude of w0 would be smaller by g (for 3D
continuity balance), and the boundary condition (23)
would be generalized by the addition of ]h0/]ts on the
right-hand side. This addition would formally permit
very long (i.e., shallow water) surface gravity waves in
the current dynamics.
The nondimensional quantity M represents the net

mass flux per unit width associated with the waves. It
is numerically equal to the mean wave momentum per
unit area, ^f w

=h

w
&, to second order in e, since the mean

of the quantity =(hw
f

w) is zero when the flow is pe-
riodic both in space and time. The wave momentum
term in the kinematic condition also appears in Has-
selmann’s (1971) study of the interaction of long and
short gravity waves. The pressure condition in (6) has
the fast-time balance pw 5 h

w and the slow-time balance,

p0 5 h0 1 pa0 2 jP at z 5 0, (25)

where we have assumed that the slow atmospheric pres-
sure variations pa0 scale in a similar way to p0, and the
wave-added pressure adjustment term is

P [ ^ (xh, 0, t)hw(xh, t)& 5 ^( )2& 5 ^(ww)2&,w wp hz t
(26)

with the second and third expressions obtained from the
first one by using the linear balances that underlie the
wave solution in (7). The stress condition in (6) is ir-
relevant to the leading-order wave dynamics because n0
is small in (13). The slow-time stress condition is

]v0
n 1 jS 5 t at z 5 0, (27)1 2

]z

where

at z = 0

at z = 0
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sponds to a quiescent ocean surface. On the free surface
the pressure is equal to the atmospheric surface pressure.
The position vector is denoted by x [ (xh, z), where
the transverse or horizontal component is xh 5 (x, y).
Time is denoted by t. The Eulerian velocity is denoted
by q[ (qh, w). The transverse component of differential
operators and vector variables has a subscript h; for
example, = [ (=h, ]/]z) and D/Dt 5 ]/]t 1 qh · =h 1

w]/]z. The oceanic dynamics are represented, as in CL
and Leibovich (1977a,b), by the Boussinesq momentum
and continuity equations,
]q 1

2
1 (q · =)q 1 V 3 q 2 b̃ẑ 1 =p̃ 5 nπ q,

]t r0

= · q 5 0, (1)
where n is the viscosity, g is the gravitational acceler-
ation, and r is the density, with r0 its mean value. The
unit vector ẑ is antiparallel to the gravitational force.
The buoyancy field is defined by b̃5 g(12 r/r0), where
the dynamic pressure, p̃, does not include the hydrostatic
contribution pam 2 gr0z due to the mean atmospheric
surface pressure, pam, and the mean density of the resting
ocean. The projection of the Coriolis vector, directed
along the earth’s axis of rotation, onto the local Cartesian
coordinate system is 2V 5 [0, f ( y)(y), f (z)(y)]. Its spatial
dependence is a consequence of variations of the local
vertical direction with latitude. Since energetic, extra-
tropical atmospheric and oceanic motions typically have
large horizontal scales in comparison to the thickness
of the fluid layer itself, it is usually possible to neglect
the y component of the Coriolis vector.
We shall assume, for simplicity, that the buoyancy

depends linearly on one or more passive tracers
, such as temperature or salinity, instead of theũ(x , z, t)h

true nonlinear equation of state for seawater. The equa-
tion of state may thus be written as

b̃ 5 gS mũ,
u

(2)
where m is the expansion coefficient for and S

u

de-ũ

notes the sum over all the tracers that contribute to the
buoyancy. In turn, the tracer dynamics are given by

Dũ

2
5 kπ ũ, (3)

Dt

where k is the tracer diffusivity. We further assume that
the tracer and buoyancy fields have a mean vertical
stratification in the absence of any motion. Thus, we
write the total buoyancy field as

z
2b̃ 5 N (z9) dz9 1 b*(x, t), (4)E

where N(z) is the Brunt–Väisälä frequency of the mean
buoyancy stratification and b* is the buoyancy deviation
associated with fluid motions. Accompanying the mean
stratification are each of the mean vertical tracer profiles
Q(z), so that

5 Q(z) 1 u*(x, t).ũ (5)
The pressure, p̃, is also assumed to have a mean P(z)
and deviation p*. The mean pressure is in hydrostatic
balance with the mean stratification.
The surface boundary conditions at z 5 h(xh, t) are

the following:
Dh

w 5 , p̃ 5 gr h 1 p̃ ,0 aDt

]q 1 ]ũ

n 5 t , k 5 T. (6)
]z r ]z0

Here t and T are the wind stress and surface tracer flux,
respectively.
We are concerned with the situation whereby currents

are influenced by surface gravity waves, characterized
by an amplitude a and horizontal wavenumber with
magnitude k 5 |kh|. We assume that the wave slope e

5 ka is a small number and that k|D| k 1, so that these
waves, to leading order, are approximately linear and
uninfluenced by the ocean bottom. These assumptions
lead to the deep-water dispersion relation s 5 gk,œ
where s is the frequency. The leading-order wave ve-
locity field, uw [ ( , ww), is irrotational (i.e., = 3 uwwuh
5 0), and it is assumed to be composed of a linear
superposition of individual components with different
horizontal wavenumbers, each of which has the solution
form

w wu 5 2=w , withk k

kz we ]h (x , t)k hw
w 5 2 , andk k ]t
w

h 5 a cos[k · x 2 s t], (7)k k h h k

where , , and are the k th component of thew w wu w hk k k

velocity, velocity potential, and the free surface ele-
vation, respectively. These gravity waves arise primarily
through the interaction of the wind with the ocean sur-
face. We will take their spectrum as given (see section
4) and ignore in this study the dynamics of their gen-
eration and dissipation. The dynamics of these waves,
to leading order, are not influenced by the stratification;
however, there is a wave-correlated component of the
buoyancy and tracer fields, bw and u

w, due to the strat-
ification. The leading-order, nondiffusive buoyancy bal-
ance and its resulting wave solution are

w
]b

2 w
5 2N (z)w

]t
w 2 kz⇒ b 5 2a N (z)e cos[k · x 2 s t], (8)k k h h k

with analogous relations for u

w.
We nondimensionalize (1)–(6) by characteristic

wave-propagation scales, that is, by the timescale 1/s0
and the space scale 1/k0. The corresponding velocity
scale is s0/k0, the pressure scale is r0(s0/k0)2, the buoy-
ancy scale is ( /k0)B0, and the tracer scale is2

s 0

Is this the correct boundary condition anyway? Most momentum is 
transferred by a correlation between        and  pa ⌘
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sponds to a quiescent ocean surface. On the free surface
the pressure is equal to the atmospheric surface pressure.
The position vector is denoted by x [ (xh, z), where
the transverse or horizontal component is xh 5 (x, y).
Time is denoted by t. The Eulerian velocity is denoted
by q[ (qh, w). The transverse component of differential
operators and vector variables has a subscript h; for
example, = [ (=h, ]/]z) and D/Dt 5 ]/]t 1 qh · =h 1

w]/]z. The oceanic dynamics are represented, as in CL
and Leibovich (1977a,b), by the Boussinesq momentum
and continuity equations,
]q 1

2
1 (q · =)q 1 V 3 q 2 b̃ẑ 1 =p̃ 5 nπ q,

]t r0

= · q 5 0, (1)
where n is the viscosity, g is the gravitational acceler-
ation, and r is the density, with r0 its mean value. The
unit vector ẑ is antiparallel to the gravitational force.
The buoyancy field is defined by b̃5 g(12 r/r0), where
the dynamic pressure, p̃, does not include the hydrostatic
contribution pam 2 gr0z due to the mean atmospheric
surface pressure, pam, and the mean density of the resting
ocean. The projection of the Coriolis vector, directed
along the earth’s axis of rotation, onto the local Cartesian
coordinate system is 2V 5 [0, f ( y)(y), f (z)(y)]. Its spatial
dependence is a consequence of variations of the local
vertical direction with latitude. Since energetic, extra-
tropical atmospheric and oceanic motions typically have
large horizontal scales in comparison to the thickness
of the fluid layer itself, it is usually possible to neglect
the y component of the Coriolis vector.
We shall assume, for simplicity, that the buoyancy

depends linearly on one or more passive tracers
, such as temperature or salinity, instead of theũ(x , z, t)h

true nonlinear equation of state for seawater. The equa-
tion of state may thus be written as

b̃ 5 gS mũ,
u

(2)
where m is the expansion coefficient for and S

u

de-ũ

notes the sum over all the tracers that contribute to the
buoyancy. In turn, the tracer dynamics are given by

Dũ

2
5 kπ ũ, (3)

Dt

where k is the tracer diffusivity. We further assume that
the tracer and buoyancy fields have a mean vertical
stratification in the absence of any motion. Thus, we
write the total buoyancy field as

z
2b̃ 5 N (z9) dz9 1 b*(x, t), (4)E

where N(z) is the Brunt–Väisälä frequency of the mean
buoyancy stratification and b* is the buoyancy deviation
associated with fluid motions. Accompanying the mean
stratification are each of the mean vertical tracer profiles
Q(z), so that

5 Q(z) 1 u*(x, t).ũ (5)
The pressure, p̃, is also assumed to have a mean P(z)
and deviation p*. The mean pressure is in hydrostatic
balance with the mean stratification.
The surface boundary conditions at z 5 h(xh, t) are

the following:
Dh

w 5 , p̃ 5 gr h 1 p̃ ,0 aDt

]q 1 ]ũ

n 5 t , k 5 T. (6)
]z r ]z0

Here t and T are the wind stress and surface tracer flux,
respectively.
We are concerned with the situation whereby currents

are influenced by surface gravity waves, characterized
by an amplitude a and horizontal wavenumber with
magnitude k 5 |kh|. We assume that the wave slope e

5 ka is a small number and that k|D| k 1, so that these
waves, to leading order, are approximately linear and
uninfluenced by the ocean bottom. These assumptions
lead to the deep-water dispersion relation s 5 gk,œ
where s is the frequency. The leading-order wave ve-
locity field, uw [ ( , ww), is irrotational (i.e., = 3 uwwuh
5 0), and it is assumed to be composed of a linear
superposition of individual components with different
horizontal wavenumbers, each of which has the solution
form

w wu 5 2=w , withk k

kz we ]h (x , t)k hw
w 5 2 , andk k ]t
w

h 5 a cos[k · x 2 s t], (7)k k h h k

where , , and are the k th component of thew w wu w hk k k

velocity, velocity potential, and the free surface ele-
vation, respectively. These gravity waves arise primarily
through the interaction of the wind with the ocean sur-
face. We will take their spectrum as given (see section
4) and ignore in this study the dynamics of their gen-
eration and dissipation. The dynamics of these waves,
to leading order, are not influenced by the stratification;
however, there is a wave-correlated component of the
buoyancy and tracer fields, bw and u

w, due to the strat-
ification. The leading-order, nondiffusive buoyancy bal-
ance and its resulting wave solution are

w
]b

2 w
5 2N (z)w

]t
w 2 kz⇒ b 5 2a N (z)e cos[k · x 2 s t], (8)k k h h k

with analogous relations for u

w.
We nondimensionalize (1)–(6) by characteristic

wave-propagation scales, that is, by the timescale 1/s0
and the space scale 1/k0. The corresponding velocity
scale is s0/k0, the pressure scale is r0(s0/k0)2, the buoy-
ancy scale is ( /k0)B0, and the tracer scale is2

s 0
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The t-average of (11) yields
]v0 2 w 2

g 5 e = 3 ^u 3 v & 1 g= 3 (v 3 v )1 gnπ v1 0 0 0
]ts

1 g= 3 (v 3 2V) 1 g= 3 (b ẑ),0 0 (15)
where we have used the relations in (13).
As shown in appendix A, the procedure described in

CL enables us to derive the ‘‘vortex force,’’
= 3 ^uw 3 v1& 5 (v0 1 2V) ·=us 2 us ·=(v0 1 2V)

5 = 3 [us 3 (v0 1 2V)], (16)
where the quantity

t
s w wu 5 u (x, s) ds · =u (17)E7 8

is the rescaled Stokes-drift velocity (i.e., with a dimen-
sionalizing scale of e

2
s0/k0). Incorporating (16) into

(15) and dividing by g yields the equation for the lead-
ing-order, slow-time vorticity balance:

]v0 2
2 = 3 [V 3 Z] 2 = 3 b ẑ 5 nπ v , (18)0 0

]ts
where j 5 e

2/g 5 e/d is a measure of the wave-added
terms in these dynamics, V 5 v0 1 jus, and Z 5 2V

1 v0. Equation (18) is similar to one derived in Holm
(1996).
The curl operator can be made to operate explicitly

on each term of the vorticity equation, which allows us
to identify the compatible momentum equation. Since
the divergence of the Stokes drift is zero and

2|v |0
2= 3 (v 3 v ) 5 2= 3 = 2 v · =v ,0 0 0 01 2[ ]2

we can express the momentum equation as
]v0 2

2 V 3 Z 1 =F 2 b ẑ 5 nπ v , (19)0 0
]ts

where we define
1

2
F 5 p 1 V (20)0 2

as the nondimensional, generalized geopotential func-
tion. Since v0 is incompressible, the divergence of the
momentum equation yields an elliptical problem for de-
termining F:

π

2
F 5 = · (V 3 Z 1 b0 ẑ 1 nπ

2v0). (21)
To obtain the boundary conditions for the slow-time

vorticity and momentum balances, the boundary con-
ditions (6) at the free surface z 5 h* are made nondi-
mensional, analytically continued to the mean sea level
z 5 0 [i.e., r(h*)5 r(0)1 h*]r/]z(0)1 · · · ], expanded
in wave and current components as above, and finally
time averaged. The nondimensional surface elevation
and pressure are assumed to have the forms

w
h* 5 e[h 1 d(h 1 eh · · ·)],0 1

wp* 5 e[p 1 d(p 1 ep · · ·)]. (22)0 1

First we consider the kinematic condition in (6). Its
leading-order, fast-time balance is the familiar wave
condition, ww

5 . The time-averaged balance isw
ht

w0 5 j= ·M at z 5 0, (23)

where

M [ ^uw(xh, 0, t)hw(xh, t)&. (24)

In (23) we have used the fact that the term ^Dh0/Dt& is
smaller by O(g). On the other hand, if we were to as-
sume that the horizontal variation of both the currents
and wave statistics were on a slow scale Xh 5 gxh, then
the amplitude of w0 would be smaller by g (for 3D
continuity balance), and the boundary condition (23)
would be generalized by the addition of ]h0/]ts on the
right-hand side. This addition would formally permit
very long (i.e., shallow water) surface gravity waves in
the current dynamics.
The nondimensional quantity M represents the net

mass flux per unit width associated with the waves. It
is numerically equal to the mean wave momentum per
unit area, ^f w

=h

w
&, to second order in e, since the mean

of the quantity =(hw
f

w) is zero when the flow is pe-
riodic both in space and time. The wave momentum
term in the kinematic condition also appears in Has-
selmann’s (1971) study of the interaction of long and
short gravity waves. The pressure condition in (6) has
the fast-time balance pw 5 h

w and the slow-time balance,

p0 5 h0 1 pa0 2 jP at z 5 0, (25)

where we have assumed that the slow atmospheric pres-
sure variations pa0 scale in a similar way to p0, and the
wave-added pressure adjustment term is

P [ ^ (xh, 0, t)hw(xh, t)& 5 ^( )2& 5 ^(ww)2&,w wp hz t
(26)

with the second and third expressions obtained from the
first one by using the linear balances that underlie the
wave solution in (7). The stress condition in (6) is ir-
relevant to the leading-order wave dynamics because n0
is small in (13). The slow-time stress condition is

]v0
n 1 jS 5 t at z 5 0, (27)1 2

]z

where

Is this the correct boundary condition anyway? Most momentum is 
transferred by a correlation between        and  pa ⌘
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2 w
] u (x , 0, t)h wS [ h (x , t) (28)h27 8

]z

is the wave-added correction.1
Next we derive the slow-time tracer equation and

thereby an equation for the evolution of the buoyancy.
Leibovich (1977b) derives such an equation, albeit with
an error later declared in Leibovich (1983). The tracer
equation (3) is

]u ]u

w 2
1 g 5 2e(u 1 dv) · =u 1 gkπ u, (29)

]t ]ts
as a consequence of (10), (12), and (13). Expanding

u 5 u0 1 eu1 1 · · ·
and substituting into (29), the balance of terms leads to
u0 5 u0(xh, z, ts), to lowest order. Integration in time
of the next-order balance yields

u1 5 2U · =u0, (30)
which implies that ^u& 5 u0 1 O(e) and u9 5 eu1 1

O(e2).
The t-average of (29) yields
]u0 2 w 2

g 5 2e ^u · =u & 2 gv · =u 1 gkπ u . (31)1 0 0 0
]ts

Substitution of (30) into the above equation and division
by g leads to the slow-time tracer equation (see appendix
C):

]u0 2
1 V · =u 5 kπ u . (32)0 0

]ts
The tracer surface boundary condition (6) is particularly
simple here: its fast-time expression is irrelevant to the
wave dynamics because n0 is small, as in the stress
condition above, and the wave-added terms in its slow-
time form are negligible because /B0 5 e. Thus, thewB0
slow-time boundary condition is the same as without
surface waves,

]u0
k 5 T at z 5 0. (33)

]z

We now summarize the model we have derived for
the wave-averaged dynamics by reference to the pre-

1 This truncated Taylor series expansion, while formally correct to
leading order, neglects higher-order effects that arise due to the thin
viscous boundary layer for waves whose thickness, n/s, is usuallyœ
much smaller than ^h& in the ocean. Here we are not concerned with
its effects on the waves themselves, but there is a ‘‘mean streaming’’
contribution to the current dynamics from this wave boundary layer
[e.g., see section 3.4 in Phillips (1977)], which a more relevant form
of this boundary condition perhaps should incorporate. However,
since viscous stress is so much smaller than turbulent Reynolds stress
almost everywhere in the upper ocean, we do not here attempt to
incorporate this type of correction in (27), since it is unlikely to be
used in a circulation model anyway [e.g., see (33) below].

ceding nondimensional equations and surface boundary
conditions to be applied at the mean sea level z 5 0:
momentum (19), vorticity (18), pressure (21), continuity
(= · v0 5 0), tracer (32), surface velocity (23), surface
pressure (25), surface stress (27), and surface tracer flux
(33). Their dimensional counterparts are easily inferred
by making the obvious reinterpretation of both the co-
ordinates and variables and by dropping the expansion
subscripts and the parameter j.
The equations thus derived have obvious parallels

with the original Boussinesq system and the tracer equa-
tion if the velocity q is replaced by V, the sum of the
lowest-order solenoidal velocity and the (steady) drift
velocity, but with modified boundary conditions, which
now preclude surface gravity wave solutions. Hence,
many classical results with the rigid-lid approximation
carry over to the wave-added dynamics. For example,
the domain-integrated energy balance can be written in
terms of V as

d 1 ]b02V 2 zb dx 5 2 n=V: =v 2 k dx,E 0 E 0[ ] [ ]dt 2 ]z

when we assume that us is time invariant and the bound-
ary conditions are either periodic or have zero normal
component for V (fn2), and we neglect any boundary
fluxes of momentum or buoyancy. Furthermore, by us-
ing the preceding vorticity and tracer equations, we can
derive an expression for the potential vorticity balance,
namely,

]Q
2 2

1 V · =Q 5 n=b · π v 1 kZ · =(π b ),0 0 0
]t

where the Ertel potential vorticity is defined as
Q 5 Z · =b0,

and contains no additional terms due to the wave av-
eraging.
All effects arising from averaging over the wave mo-

tions appear multiplied by the parameter j. The wave-
added terms in the momentum and tracer equations are
proportional to the Stokes drift; they are the vortex force
of CL, an analogous Coriolis vortex force, and a tracer
advection. This latter effect may also be derived by
comparing time-averaged Lagrangian and Eulerian rep-
resentations of the motion of a passive tracer in which
the velocity field is known, as in Longuet-Higgins
(1953); in fact, the momentum equation can also be
derived using Longuet-Higgins’ prescription. These as-
ymptotic theories can be contrasted to the GLM ap-
proach in which the drift terms are equivalent to the
results given above only when the wave-induced dif-

2 In particular, we have used W 5 w0 1 ws
5 0 at z 5 0. This is

derived from (23), the vertical integral of = · us 5 0, the assumption
that us at z 5 2D, and the identification of us dz with M in (24)0#

2D

for the particular wave solution form (7); see section 3.
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The t-average of (11) yields
]v0 2 w 2

g 5 e = 3 ^u 3 v & 1 g= 3 (v 3 v )1 gnπ v1 0 0 0
]ts

1 g= 3 (v 3 2V) 1 g= 3 (b ẑ),0 0 (15)
where we have used the relations in (13).
As shown in appendix A, the procedure described in

CL enables us to derive the ‘‘vortex force,’’
= 3 ^uw 3 v1& 5 (v0 1 2V) ·=us 2 us ·=(v0 1 2V)

5 = 3 [us 3 (v0 1 2V)], (16)
where the quantity

t
s w wu 5 u (x, s) ds · =u (17)E7 8

is the rescaled Stokes-drift velocity (i.e., with a dimen-
sionalizing scale of e

2
s0/k0). Incorporating (16) into

(15) and dividing by g yields the equation for the lead-
ing-order, slow-time vorticity balance:

]v0 2
2 = 3 [V 3 Z] 2 = 3 b ẑ 5 nπ v , (18)0 0

]ts
where j 5 e

2/g 5 e/d is a measure of the wave-added
terms in these dynamics, V 5 v0 1 jus, and Z 5 2V

1 v0. Equation (18) is similar to one derived in Holm
(1996).
The curl operator can be made to operate explicitly

on each term of the vorticity equation, which allows us
to identify the compatible momentum equation. Since
the divergence of the Stokes drift is zero and

2|v |0
2= 3 (v 3 v ) 5 2= 3 = 2 v · =v ,0 0 0 01 2[ ]2

we can express the momentum equation as
]v0 2

2 V 3 Z 1 =F 2 b ẑ 5 nπ v , (19)0 0
]ts

where we define
1

2
F 5 p 1 V (20)0 2

as the nondimensional, generalized geopotential func-
tion. Since v0 is incompressible, the divergence of the
momentum equation yields an elliptical problem for de-
termining F:

π

2
F 5 = · (V 3 Z 1 b0 ẑ 1 nπ

2v0). (21)
To obtain the boundary conditions for the slow-time

vorticity and momentum balances, the boundary con-
ditions (6) at the free surface z 5 h* are made nondi-
mensional, analytically continued to the mean sea level
z 5 0 [i.e., r(h*)5 r(0)1 h*]r/]z(0)1 · · · ], expanded
in wave and current components as above, and finally
time averaged. The nondimensional surface elevation
and pressure are assumed to have the forms

w
h* 5 e[h 1 d(h 1 eh · · ·)],0 1

wp* 5 e[p 1 d(p 1 ep · · ·)]. (22)0 1

First we consider the kinematic condition in (6). Its
leading-order, fast-time balance is the familiar wave
condition, ww

5 . The time-averaged balance isw
ht

w0 5 j= ·M at z 5 0, (23)

where

M [ ^uw(xh, 0, t)hw(xh, t)&. (24)

In (23) we have used the fact that the term ^Dh0/Dt& is
smaller by O(g). On the other hand, if we were to as-
sume that the horizontal variation of both the currents
and wave statistics were on a slow scale Xh 5 gxh, then
the amplitude of w0 would be smaller by g (for 3D
continuity balance), and the boundary condition (23)
would be generalized by the addition of ]h0/]ts on the
right-hand side. This addition would formally permit
very long (i.e., shallow water) surface gravity waves in
the current dynamics.
The nondimensional quantity M represents the net

mass flux per unit width associated with the waves. It
is numerically equal to the mean wave momentum per
unit area, ^f w

=h

w
&, to second order in e, since the mean

of the quantity =(hw
f

w) is zero when the flow is pe-
riodic both in space and time. The wave momentum
term in the kinematic condition also appears in Has-
selmann’s (1971) study of the interaction of long and
short gravity waves. The pressure condition in (6) has
the fast-time balance pw 5 h

w and the slow-time balance,

p0 5 h0 1 pa0 2 jP at z 5 0, (25)

where we have assumed that the slow atmospheric pres-
sure variations pa0 scale in a similar way to p0, and the
wave-added pressure adjustment term is

P [ ^ (xh, 0, t)hw(xh, t)& 5 ^( )2& 5 ^(ww)2&,w wp hz t
(26)

with the second and third expressions obtained from the
first one by using the linear balances that underlie the
wave solution in (7). The stress condition in (6) is ir-
relevant to the leading-order wave dynamics because n0
is small in (13). The slow-time stress condition is

]v0
n 1 jS 5 t at z 5 0, (27)1 2

]z

where
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The t-average of (11) yields
]v0 2 w 2
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where we have used the relations in (13).
As shown in appendix A, the procedure described in

CL enables us to derive the ‘‘vortex force,’’
= 3 ^uw 3 v1& 5 (v0 1 2V) ·=us 2 us ·=(v0 1 2V)

5 = 3 [us 3 (v0 1 2V)], (16)
where the quantity

t
s w wu 5 u (x, s) ds · =u (17)E7 8

is the rescaled Stokes-drift velocity (i.e., with a dimen-
sionalizing scale of e

2
s0/k0). Incorporating (16) into

(15) and dividing by g yields the equation for the lead-
ing-order, slow-time vorticity balance:

]v0 2
2 = 3 [V 3 Z] 2 = 3 b ẑ 5 nπ v , (18)0 0

]ts
where j 5 e

2/g 5 e/d is a measure of the wave-added
terms in these dynamics, V 5 v0 1 jus, and Z 5 2V

1 v0. Equation (18) is similar to one derived in Holm
(1996).
The curl operator can be made to operate explicitly

on each term of the vorticity equation, which allows us
to identify the compatible momentum equation. Since
the divergence of the Stokes drift is zero and
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2= 3 (v 3 v ) 5 2= 3 = 2 v · =v ,0 0 0 01 2[ ]2

we can express the momentum equation as
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where we define
1

2
F 5 p 1 V (20)0 2

as the nondimensional, generalized geopotential func-
tion. Since v0 is incompressible, the divergence of the
momentum equation yields an elliptical problem for de-
termining F:

π

2
F 5 = · (V 3 Z 1 b0 ẑ 1 nπ

2v0). (21)
To obtain the boundary conditions for the slow-time

vorticity and momentum balances, the boundary con-
ditions (6) at the free surface z 5 h* are made nondi-
mensional, analytically continued to the mean sea level
z 5 0 [i.e., r(h*)5 r(0)1 h*]r/]z(0)1 · · · ], expanded
in wave and current components as above, and finally
time averaged. The nondimensional surface elevation
and pressure are assumed to have the forms
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h* 5 e[h 1 d(h 1 eh · · ·)],0 1

wp* 5 e[p 1 d(p 1 ep · · ·)]. (22)0 1

First we consider the kinematic condition in (6). Its
leading-order, fast-time balance is the familiar wave
condition, ww

5 . The time-averaged balance isw
ht

w0 5 j= ·M at z 5 0, (23)

where

M [ ^uw(xh, 0, t)hw(xh, t)&. (24)

In (23) we have used the fact that the term ^Dh0/Dt& is
smaller by O(g). On the other hand, if we were to as-
sume that the horizontal variation of both the currents
and wave statistics were on a slow scale Xh 5 gxh, then
the amplitude of w0 would be smaller by g (for 3D
continuity balance), and the boundary condition (23)
would be generalized by the addition of ]h0/]ts on the
right-hand side. This addition would formally permit
very long (i.e., shallow water) surface gravity waves in
the current dynamics.
The nondimensional quantity M represents the net

mass flux per unit width associated with the waves. It
is numerically equal to the mean wave momentum per
unit area, ^f w

=h

w
&, to second order in e, since the mean

of the quantity =(hw
f

w) is zero when the flow is pe-
riodic both in space and time. The wave momentum
term in the kinematic condition also appears in Has-
selmann’s (1971) study of the interaction of long and
short gravity waves. The pressure condition in (6) has
the fast-time balance pw 5 h

w and the slow-time balance,

p0 5 h0 1 pa0 2 jP at z 5 0, (25)

where we have assumed that the slow atmospheric pres-
sure variations pa0 scale in a similar way to p0, and the
wave-added pressure adjustment term is

P [ ^ (xh, 0, t)hw(xh, t)& 5 ^( )2& 5 ^(ww)2&,w wp hz t
(26)

with the second and third expressions obtained from the
first one by using the linear balances that underlie the
wave solution in (7). The stress condition in (6) is ir-
relevant to the leading-order wave dynamics because n0
is small in (13). The slow-time stress condition is

]v0
n 1 jS 5 t at z 5 0, (27)1 2
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] u (x , 0, t)h wS [ h (x , t) (28)h27 8

]z

is the wave-added correction.1
Next we derive the slow-time tracer equation and

thereby an equation for the evolution of the buoyancy.
Leibovich (1977b) derives such an equation, albeit with
an error later declared in Leibovich (1983). The tracer
equation (3) is

]u ]u

w 2
1 g 5 2e(u 1 dv) · =u 1 gkπ u, (29)

]t ]ts
as a consequence of (10), (12), and (13). Expanding

u 5 u0 1 eu1 1 · · ·
and substituting into (29), the balance of terms leads to
u0 5 u0(xh, z, ts), to lowest order. Integration in time
of the next-order balance yields

u1 5 2U · =u0, (30)
which implies that ^u& 5 u0 1 O(e) and u9 5 eu1 1

O(e2).
The t-average of (29) yields
]u0 2 w 2

g 5 2e ^u · =u & 2 gv · =u 1 gkπ u . (31)1 0 0 0
]ts

Substitution of (30) into the above equation and division
by g leads to the slow-time tracer equation (see appendix
C):

]u0 2
1 V · =u 5 kπ u . (32)0 0

]ts
The tracer surface boundary condition (6) is particularly
simple here: its fast-time expression is irrelevant to the
wave dynamics because n0 is small, as in the stress
condition above, and the wave-added terms in its slow-
time form are negligible because /B0 5 e. Thus, thewB0
slow-time boundary condition is the same as without
surface waves,

]u0
k 5 T at z 5 0. (33)

]z

We now summarize the model we have derived for
the wave-averaged dynamics by reference to the pre-

1 This truncated Taylor series expansion, while formally correct to
leading order, neglects higher-order effects that arise due to the thin
viscous boundary layer for waves whose thickness, n/s, is usuallyœ
much smaller than ^h& in the ocean. Here we are not concerned with
its effects on the waves themselves, but there is a ‘‘mean streaming’’
contribution to the current dynamics from this wave boundary layer
[e.g., see section 3.4 in Phillips (1977)], which a more relevant form
of this boundary condition perhaps should incorporate. However,
since viscous stress is so much smaller than turbulent Reynolds stress
almost everywhere in the upper ocean, we do not here attempt to
incorporate this type of correction in (27), since it is unlikely to be
used in a circulation model anyway [e.g., see (33) below].

ceding nondimensional equations and surface boundary
conditions to be applied at the mean sea level z 5 0:
momentum (19), vorticity (18), pressure (21), continuity
(= · v0 5 0), tracer (32), surface velocity (23), surface
pressure (25), surface stress (27), and surface tracer flux
(33). Their dimensional counterparts are easily inferred
by making the obvious reinterpretation of both the co-
ordinates and variables and by dropping the expansion
subscripts and the parameter j.
The equations thus derived have obvious parallels

with the original Boussinesq system and the tracer equa-
tion if the velocity q is replaced by V, the sum of the
lowest-order solenoidal velocity and the (steady) drift
velocity, but with modified boundary conditions, which
now preclude surface gravity wave solutions. Hence,
many classical results with the rigid-lid approximation
carry over to the wave-added dynamics. For example,
the domain-integrated energy balance can be written in
terms of V as

d 1 ]b02V 2 zb dx 5 2 n=V: =v 2 k dx,E 0 E 0[ ] [ ]dt 2 ]z

when we assume that us is time invariant and the bound-
ary conditions are either periodic or have zero normal
component for V (fn2), and we neglect any boundary
fluxes of momentum or buoyancy. Furthermore, by us-
ing the preceding vorticity and tracer equations, we can
derive an expression for the potential vorticity balance,
namely,

]Q
2 2

1 V · =Q 5 n=b · π v 1 kZ · =(π b ),0 0 0
]t

where the Ertel potential vorticity is defined as
Q 5 Z · =b0,

and contains no additional terms due to the wave av-
eraging.
All effects arising from averaging over the wave mo-

tions appear multiplied by the parameter j. The wave-
added terms in the momentum and tracer equations are
proportional to the Stokes drift; they are the vortex force
of CL, an analogous Coriolis vortex force, and a tracer
advection. This latter effect may also be derived by
comparing time-averaged Lagrangian and Eulerian rep-
resentations of the motion of a passive tracer in which
the velocity field is known, as in Longuet-Higgins
(1953); in fact, the momentum equation can also be
derived using Longuet-Higgins’ prescription. These as-
ymptotic theories can be contrasted to the GLM ap-
proach in which the drift terms are equivalent to the
results given above only when the wave-induced dif-

2 In particular, we have used W 5 w0 1 ws
5 0 at z 5 0. This is

derived from (23), the vertical integral of = · us 5 0, the assumption
that us at z 5 2D, and the identification of us dz with M in (24)0#

2D

for the particular wave solution form (7); see section 3.
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ditions (6) at the free surface z 5 h* are made nondi-
mensional, analytically continued to the mean sea level
z 5 0 [i.e., r(h*)5 r(0)1 h*]r/]z(0)1 · · · ], expanded
in wave and current components as above, and finally
time averaged. The nondimensional surface elevation
and pressure are assumed to have the forms
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First we consider the kinematic condition in (6). Its
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5 . The time-averaged balance isw
ht

w0 5 j= ·M at z 5 0, (23)

where

M [ ^uw(xh, 0, t)hw(xh, t)&. (24)

In (23) we have used the fact that the term ^Dh0/Dt& is
smaller by O(g). On the other hand, if we were to as-
sume that the horizontal variation of both the currents
and wave statistics were on a slow scale Xh 5 gxh, then
the amplitude of w0 would be smaller by g (for 3D
continuity balance), and the boundary condition (23)
would be generalized by the addition of ]h0/]ts on the
right-hand side. This addition would formally permit
very long (i.e., shallow water) surface gravity waves in
the current dynamics.
The nondimensional quantity M represents the net

mass flux per unit width associated with the waves. It
is numerically equal to the mean wave momentum per
unit area, ^f w

=h

w
&, to second order in e, since the mean

of the quantity =(hw
f

w) is zero when the flow is pe-
riodic both in space and time. The wave momentum
term in the kinematic condition also appears in Has-
selmann’s (1971) study of the interaction of long and
short gravity waves. The pressure condition in (6) has
the fast-time balance pw 5 h

w and the slow-time balance,

p0 5 h0 1 pa0 2 jP at z 5 0, (25)

where we have assumed that the slow atmospheric pres-
sure variations pa0 scale in a similar way to p0, and the
wave-added pressure adjustment term is

P [ ^ (xh, 0, t)hw(xh, t)& 5 ^( )2& 5 ^(ww)2&,w wp hz t
(26)

with the second and third expressions obtained from the
first one by using the linear balances that underlie the
wave solution in (7). The stress condition in (6) is ir-
relevant to the leading-order wave dynamics because n0
is small in (13). The slow-time stress condition is

]v0
n 1 jS 5 t at z 5 0, (27)1 2

]z
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2v0). (21)
To obtain the boundary conditions for the slow-time

vorticity and momentum balances, the boundary con-
ditions (6) at the free surface z 5 h* are made nondi-
mensional, analytically continued to the mean sea level
z 5 0 [i.e., r(h*)5 r(0)1 h*]r/]z(0)1 · · · ], expanded
in wave and current components as above, and finally
time averaged. The nondimensional surface elevation
and pressure are assumed to have the forms

w
h* 5 e[h 1 d(h 1 eh · · ·)],0 1

wp* 5 e[p 1 d(p 1 ep · · ·)]. (22)0 1

First we consider the kinematic condition in (6). Its
leading-order, fast-time balance is the familiar wave
condition, ww

5 . The time-averaged balance isw
ht

w0 5 j= ·M at z 5 0, (23)

where

M [ ^uw(xh, 0, t)hw(xh, t)&. (24)

In (23) we have used the fact that the term ^Dh0/Dt& is
smaller by O(g). On the other hand, if we were to as-
sume that the horizontal variation of both the currents
and wave statistics were on a slow scale Xh 5 gxh, then
the amplitude of w0 would be smaller by g (for 3D
continuity balance), and the boundary condition (23)
would be generalized by the addition of ]h0/]ts on the
right-hand side. This addition would formally permit
very long (i.e., shallow water) surface gravity waves in
the current dynamics.
The nondimensional quantity M represents the net

mass flux per unit width associated with the waves. It
is numerically equal to the mean wave momentum per
unit area, ^f w

=h

w
&, to second order in e, since the mean

of the quantity =(hw
f

w) is zero when the flow is pe-
riodic both in space and time. The wave momentum
term in the kinematic condition also appears in Has-
selmann’s (1971) study of the interaction of long and
short gravity waves. The pressure condition in (6) has
the fast-time balance pw 5 h

w and the slow-time balance,

p0 5 h0 1 pa0 2 jP at z 5 0, (25)

where we have assumed that the slow atmospheric pres-
sure variations pa0 scale in a similar way to p0, and the
wave-added pressure adjustment term is

P [ ^ (xh, 0, t)hw(xh, t)& 5 ^( )2& 5 ^(ww)2&,w wp hz t
(26)

with the second and third expressions obtained from the
first one by using the linear balances that underlie the
wave solution in (7). The stress condition in (6) is ir-
relevant to the leading-order wave dynamics because n0
is small in (13). The slow-time stress condition is

]v0
n 1 jS 5 t at z 5 0, (27)1 2

]z

where

OCTOBER 1999 2527M C W I L L I A M S A N D R E S T R E P O

The t-average of (11) yields
]v0 2 w 2

g 5 e = 3 ^u 3 v & 1 g= 3 (v 3 v )1 gnπ v1 0 0 0
]ts

1 g= 3 (v 3 2V) 1 g= 3 (b ẑ),0 0 (15)
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sure variations pa0 scale in a similar way to p0, and the
wave-added pressure adjustment term is

P [ ^ (xh, 0, t)hw(xh, t)& 5 ^( )2& 5 ^(ww)2&,w wp hz t
(26)

with the second and third expressions obtained from the
first one by using the linear balances that underlie the
wave solution in (7). The stress condition in (6) is ir-
relevant to the leading-order wave dynamics because n0
is small in (13). The slow-time stress condition is

]v0
n 1 jS 5 t at z 5 0, (27)1 2

]z

where
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2 w
] u (x , 0, t)h wS [ h (x , t) (28)h27 8

]z

is the wave-added correction.1
Next we derive the slow-time tracer equation and

thereby an equation for the evolution of the buoyancy.
Leibovich (1977b) derives such an equation, albeit with
an error later declared in Leibovich (1983). The tracer
equation (3) is

]u ]u

w 2
1 g 5 2e(u 1 dv) · =u 1 gkπ u, (29)

]t ]ts
as a consequence of (10), (12), and (13). Expanding

u 5 u0 1 eu1 1 · · ·
and substituting into (29), the balance of terms leads to
u0 5 u0(xh, z, ts), to lowest order. Integration in time
of the next-order balance yields

u1 5 2U · =u0, (30)
which implies that ^u& 5 u0 1 O(e) and u9 5 eu1 1

O(e2).
The t-average of (29) yields
]u0 2 w 2

g 5 2e ^u · =u & 2 gv · =u 1 gkπ u . (31)1 0 0 0
]ts

Substitution of (30) into the above equation and division
by g leads to the slow-time tracer equation (see appendix
C):

]u0 2
1 V · =u 5 kπ u . (32)0 0

]ts
The tracer surface boundary condition (6) is particularly
simple here: its fast-time expression is irrelevant to the
wave dynamics because n0 is small, as in the stress
condition above, and the wave-added terms in its slow-
time form are negligible because /B0 5 e. Thus, thewB0
slow-time boundary condition is the same as without
surface waves,

]u0
k 5 T at z 5 0. (33)

]z

We now summarize the model we have derived for
the wave-averaged dynamics by reference to the pre-

1 This truncated Taylor series expansion, while formally correct to
leading order, neglects higher-order effects that arise due to the thin
viscous boundary layer for waves whose thickness, n/s, is usuallyœ
much smaller than ^h& in the ocean. Here we are not concerned with
its effects on the waves themselves, but there is a ‘‘mean streaming’’
contribution to the current dynamics from this wave boundary layer
[e.g., see section 3.4 in Phillips (1977)], which a more relevant form
of this boundary condition perhaps should incorporate. However,
since viscous stress is so much smaller than turbulent Reynolds stress
almost everywhere in the upper ocean, we do not here attempt to
incorporate this type of correction in (27), since it is unlikely to be
used in a circulation model anyway [e.g., see (33) below].

ceding nondimensional equations and surface boundary
conditions to be applied at the mean sea level z 5 0:
momentum (19), vorticity (18), pressure (21), continuity
(= · v0 5 0), tracer (32), surface velocity (23), surface
pressure (25), surface stress (27), and surface tracer flux
(33). Their dimensional counterparts are easily inferred
by making the obvious reinterpretation of both the co-
ordinates and variables and by dropping the expansion
subscripts and the parameter j.
The equations thus derived have obvious parallels

with the original Boussinesq system and the tracer equa-
tion if the velocity q is replaced by V, the sum of the
lowest-order solenoidal velocity and the (steady) drift
velocity, but with modified boundary conditions, which
now preclude surface gravity wave solutions. Hence,
many classical results with the rigid-lid approximation
carry over to the wave-added dynamics. For example,
the domain-integrated energy balance can be written in
terms of V as

d 1 ]b02V 2 zb dx 5 2 n=V: =v 2 k dx,E 0 E 0[ ] [ ]dt 2 ]z

when we assume that us is time invariant and the bound-
ary conditions are either periodic or have zero normal
component for V (fn2), and we neglect any boundary
fluxes of momentum or buoyancy. Furthermore, by us-
ing the preceding vorticity and tracer equations, we can
derive an expression for the potential vorticity balance,
namely,

]Q
2 2

1 V · =Q 5 n=b · π v 1 kZ · =(π b ),0 0 0
]t

where the Ertel potential vorticity is defined as
Q 5 Z · =b0,

and contains no additional terms due to the wave av-
eraging.
All effects arising from averaging over the wave mo-

tions appear multiplied by the parameter j. The wave-
added terms in the momentum and tracer equations are
proportional to the Stokes drift; they are the vortex force
of CL, an analogous Coriolis vortex force, and a tracer
advection. This latter effect may also be derived by
comparing time-averaged Lagrangian and Eulerian rep-
resentations of the motion of a passive tracer in which
the velocity field is known, as in Longuet-Higgins
(1953); in fact, the momentum equation can also be
derived using Longuet-Higgins’ prescription. These as-
ymptotic theories can be contrasted to the GLM ap-
proach in which the drift terms are equivalent to the
results given above only when the wave-induced dif-

2 In particular, we have used W 5 w0 1 ws
5 0 at z 5 0. This is

derived from (23), the vertical integral of = · us 5 0, the assumption
that us at z 5 2D, and the identification of us dz with M in (24)0#

2D

for the particular wave solution form (7); see section 3.
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The t-average of (11) yields
]v0 2 w 2

g 5 e = 3 ^u 3 v & 1 g= 3 (v 3 v )1 gnπ v1 0 0 0
]ts

1 g= 3 (v 3 2V) 1 g= 3 (b ẑ),0 0 (15)
where we have used the relations in (13).
As shown in appendix A, the procedure described in

CL enables us to derive the ‘‘vortex force,’’
= 3 ^uw 3 v1& 5 (v0 1 2V) ·=us 2 us ·=(v0 1 2V)

5 = 3 [us 3 (v0 1 2V)], (16)
where the quantity

t
s w wu 5 u (x, s) ds · =u (17)E7 8

is the rescaled Stokes-drift velocity (i.e., with a dimen-
sionalizing scale of e

2
s0/k0). Incorporating (16) into

(15) and dividing by g yields the equation for the lead-
ing-order, slow-time vorticity balance:

]v0 2
2 = 3 [V 3 Z] 2 = 3 b ẑ 5 nπ v , (18)0 0

]ts
where j 5 e

2/g 5 e/d is a measure of the wave-added
terms in these dynamics, V 5 v0 1 jus, and Z 5 2V

1 v0. Equation (18) is similar to one derived in Holm
(1996).
The curl operator can be made to operate explicitly

on each term of the vorticity equation, which allows us
to identify the compatible momentum equation. Since
the divergence of the Stokes drift is zero and

2|v |0
2= 3 (v 3 v ) 5 2= 3 = 2 v · =v ,0 0 0 01 2[ ]2

we can express the momentum equation as
]v0 2

2 V 3 Z 1 =F 2 b ẑ 5 nπ v , (19)0 0
]ts

where we define
1

2
F 5 p 1 V (20)0 2

as the nondimensional, generalized geopotential func-
tion. Since v0 is incompressible, the divergence of the
momentum equation yields an elliptical problem for de-
termining F:

π

2
F 5 = · (V 3 Z 1 b0 ẑ 1 nπ

2v0). (21)
To obtain the boundary conditions for the slow-time

vorticity and momentum balances, the boundary con-
ditions (6) at the free surface z 5 h* are made nondi-
mensional, analytically continued to the mean sea level
z 5 0 [i.e., r(h*)5 r(0)1 h*]r/]z(0)1 · · · ], expanded
in wave and current components as above, and finally
time averaged. The nondimensional surface elevation
and pressure are assumed to have the forms

w
h* 5 e[h 1 d(h 1 eh · · ·)],0 1

wp* 5 e[p 1 d(p 1 ep · · ·)]. (22)0 1

First we consider the kinematic condition in (6). Its
leading-order, fast-time balance is the familiar wave
condition, ww

5 . The time-averaged balance isw
ht

w0 5 j= ·M at z 5 0, (23)

where

M [ ^uw(xh, 0, t)hw(xh, t)&. (24)

In (23) we have used the fact that the term ^Dh0/Dt& is
smaller by O(g). On the other hand, if we were to as-
sume that the horizontal variation of both the currents
and wave statistics were on a slow scale Xh 5 gxh, then
the amplitude of w0 would be smaller by g (for 3D
continuity balance), and the boundary condition (23)
would be generalized by the addition of ]h0/]ts on the
right-hand side. This addition would formally permit
very long (i.e., shallow water) surface gravity waves in
the current dynamics.
The nondimensional quantity M represents the net

mass flux per unit width associated with the waves. It
is numerically equal to the mean wave momentum per
unit area, ^f w

=h

w
&, to second order in e, since the mean

of the quantity =(hw
f

w) is zero when the flow is pe-
riodic both in space and time. The wave momentum
term in the kinematic condition also appears in Has-
selmann’s (1971) study of the interaction of long and
short gravity waves. The pressure condition in (6) has
the fast-time balance pw 5 h

w and the slow-time balance,

p0 5 h0 1 pa0 2 jP at z 5 0, (25)

where we have assumed that the slow atmospheric pres-
sure variations pa0 scale in a similar way to p0, and the
wave-added pressure adjustment term is

P [ ^ (xh, 0, t)hw(xh, t)& 5 ^( )2& 5 ^(ww)2&,w wp hz t
(26)

with the second and third expressions obtained from the
first one by using the linear balances that underlie the
wave solution in (7). The stress condition in (6) is ir-
relevant to the leading-order wave dynamics because n0
is small in (13). The slow-time stress condition is

]v0
n 1 jS 5 t at z 5 0, (27)1 2

]z

where
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The t-average of (11) yields
]v0 2 w 2

g 5 e = 3 ^u 3 v & 1 g= 3 (v 3 v )1 gnπ v1 0 0 0
]ts

1 g= 3 (v 3 2V) 1 g= 3 (b ẑ),0 0 (15)
where we have used the relations in (13).
As shown in appendix A, the procedure described in

CL enables us to derive the ‘‘vortex force,’’
= 3 ^uw 3 v1& 5 (v0 1 2V) ·=us 2 us ·=(v0 1 2V)

5 = 3 [us 3 (v0 1 2V)], (16)
where the quantity

t
s w wu 5 u (x, s) ds · =u (17)E7 8

is the rescaled Stokes-drift velocity (i.e., with a dimen-
sionalizing scale of e

2
s0/k0). Incorporating (16) into

(15) and dividing by g yields the equation for the lead-
ing-order, slow-time vorticity balance:

]v0 2
2 = 3 [V 3 Z] 2 = 3 b ẑ 5 nπ v , (18)0 0

]ts
where j 5 e

2/g 5 e/d is a measure of the wave-added
terms in these dynamics, V 5 v0 1 jus, and Z 5 2V

1 v0. Equation (18) is similar to one derived in Holm
(1996).
The curl operator can be made to operate explicitly

on each term of the vorticity equation, which allows us
to identify the compatible momentum equation. Since
the divergence of the Stokes drift is zero and

2|v |0
2= 3 (v 3 v ) 5 2= 3 = 2 v · =v ,0 0 0 01 2[ ]2

we can express the momentum equation as
]v0 2

2 V 3 Z 1 =F 2 b ẑ 5 nπ v , (19)0 0
]ts

where we define
1

2
F 5 p 1 V (20)0 2

as the nondimensional, generalized geopotential func-
tion. Since v0 is incompressible, the divergence of the
momentum equation yields an elliptical problem for de-
termining F:

π

2
F 5 = · (V 3 Z 1 b0 ẑ 1 nπ

2v0). (21)
To obtain the boundary conditions for the slow-time

vorticity and momentum balances, the boundary con-
ditions (6) at the free surface z 5 h* are made nondi-
mensional, analytically continued to the mean sea level
z 5 0 [i.e., r(h*)5 r(0)1 h*]r/]z(0)1 · · · ], expanded
in wave and current components as above, and finally
time averaged. The nondimensional surface elevation
and pressure are assumed to have the forms

w
h* 5 e[h 1 d(h 1 eh · · ·)],0 1

wp* 5 e[p 1 d(p 1 ep · · ·)]. (22)0 1

First we consider the kinematic condition in (6). Its
leading-order, fast-time balance is the familiar wave
condition, ww

5 . The time-averaged balance isw
ht

w0 5 j= ·M at z 5 0, (23)

where

M [ ^uw(xh, 0, t)hw(xh, t)&. (24)

In (23) we have used the fact that the term ^Dh0/Dt& is
smaller by O(g). On the other hand, if we were to as-
sume that the horizontal variation of both the currents
and wave statistics were on a slow scale Xh 5 gxh, then
the amplitude of w0 would be smaller by g (for 3D
continuity balance), and the boundary condition (23)
would be generalized by the addition of ]h0/]ts on the
right-hand side. This addition would formally permit
very long (i.e., shallow water) surface gravity waves in
the current dynamics.
The nondimensional quantity M represents the net

mass flux per unit width associated with the waves. It
is numerically equal to the mean wave momentum per
unit area, ^f w

=h

w
&, to second order in e, since the mean

of the quantity =(hw
f

w) is zero when the flow is pe-
riodic both in space and time. The wave momentum
term in the kinematic condition also appears in Has-
selmann’s (1971) study of the interaction of long and
short gravity waves. The pressure condition in (6) has
the fast-time balance pw 5 h

w and the slow-time balance,

p0 5 h0 1 pa0 2 jP at z 5 0, (25)

where we have assumed that the slow atmospheric pres-
sure variations pa0 scale in a similar way to p0, and the
wave-added pressure adjustment term is

P [ ^ (xh, 0, t)hw(xh, t)& 5 ^( )2& 5 ^(ww)2&,w wp hz t
(26)

with the second and third expressions obtained from the
first one by using the linear balances that underlie the
wave solution in (7). The stress condition in (6) is ir-
relevant to the leading-order wave dynamics because n0
is small in (13). The slow-time stress condition is

]v0
n 1 jS 5 t at z 5 0, (27)1 2

]z

where
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2 w
] u (x , 0, t)h wS [ h (x , t) (28)h27 8

]z

is the wave-added correction.1
Next we derive the slow-time tracer equation and

thereby an equation for the evolution of the buoyancy.
Leibovich (1977b) derives such an equation, albeit with
an error later declared in Leibovich (1983). The tracer
equation (3) is

]u ]u

w 2
1 g 5 2e(u 1 dv) · =u 1 gkπ u, (29)

]t ]ts
as a consequence of (10), (12), and (13). Expanding

u 5 u0 1 eu1 1 · · ·
and substituting into (29), the balance of terms leads to
u0 5 u0(xh, z, ts), to lowest order. Integration in time
of the next-order balance yields

u1 5 2U · =u0, (30)
which implies that ^u& 5 u0 1 O(e) and u9 5 eu1 1

O(e2).
The t-average of (29) yields
]u0 2 w 2

g 5 2e ^u · =u & 2 gv · =u 1 gkπ u . (31)1 0 0 0
]ts

Substitution of (30) into the above equation and division
by g leads to the slow-time tracer equation (see appendix
C):

]u0 2
1 V · =u 5 kπ u . (32)0 0

]ts
The tracer surface boundary condition (6) is particularly
simple here: its fast-time expression is irrelevant to the
wave dynamics because n0 is small, as in the stress
condition above, and the wave-added terms in its slow-
time form are negligible because /B0 5 e. Thus, thewB0
slow-time boundary condition is the same as without
surface waves,

]u0
k 5 T at z 5 0. (33)

]z

We now summarize the model we have derived for
the wave-averaged dynamics by reference to the pre-

1 This truncated Taylor series expansion, while formally correct to
leading order, neglects higher-order effects that arise due to the thin
viscous boundary layer for waves whose thickness, n/s, is usuallyœ
much smaller than ^h& in the ocean. Here we are not concerned with
its effects on the waves themselves, but there is a ‘‘mean streaming’’
contribution to the current dynamics from this wave boundary layer
[e.g., see section 3.4 in Phillips (1977)], which a more relevant form
of this boundary condition perhaps should incorporate. However,
since viscous stress is so much smaller than turbulent Reynolds stress
almost everywhere in the upper ocean, we do not here attempt to
incorporate this type of correction in (27), since it is unlikely to be
used in a circulation model anyway [e.g., see (33) below].

ceding nondimensional equations and surface boundary
conditions to be applied at the mean sea level z 5 0:
momentum (19), vorticity (18), pressure (21), continuity
(= · v0 5 0), tracer (32), surface velocity (23), surface
pressure (25), surface stress (27), and surface tracer flux
(33). Their dimensional counterparts are easily inferred
by making the obvious reinterpretation of both the co-
ordinates and variables and by dropping the expansion
subscripts and the parameter j.
The equations thus derived have obvious parallels

with the original Boussinesq system and the tracer equa-
tion if the velocity q is replaced by V, the sum of the
lowest-order solenoidal velocity and the (steady) drift
velocity, but with modified boundary conditions, which
now preclude surface gravity wave solutions. Hence,
many classical results with the rigid-lid approximation
carry over to the wave-added dynamics. For example,
the domain-integrated energy balance can be written in
terms of V as

d 1 ]b02V 2 zb dx 5 2 n=V: =v 2 k dx,E 0 E 0[ ] [ ]dt 2 ]z

when we assume that us is time invariant and the bound-
ary conditions are either periodic or have zero normal
component for V (fn2), and we neglect any boundary
fluxes of momentum or buoyancy. Furthermore, by us-
ing the preceding vorticity and tracer equations, we can
derive an expression for the potential vorticity balance,
namely,

]Q
2 2

1 V · =Q 5 n=b · π v 1 kZ · =(π b ),0 0 0
]t

where the Ertel potential vorticity is defined as
Q 5 Z · =b0,

and contains no additional terms due to the wave av-
eraging.
All effects arising from averaging over the wave mo-

tions appear multiplied by the parameter j. The wave-
added terms in the momentum and tracer equations are
proportional to the Stokes drift; they are the vortex force
of CL, an analogous Coriolis vortex force, and a tracer
advection. This latter effect may also be derived by
comparing time-averaged Lagrangian and Eulerian rep-
resentations of the motion of a passive tracer in which
the velocity field is known, as in Longuet-Higgins
(1953); in fact, the momentum equation can also be
derived using Longuet-Higgins’ prescription. These as-
ymptotic theories can be contrasted to the GLM ap-
proach in which the drift terms are equivalent to the
results given above only when the wave-induced dif-

2 In particular, we have used W 5 w0 1 ws
5 0 at z 5 0. This is

derived from (23), the vertical integral of = · us 5 0, the assumption
that us at z 5 2D, and the identification of us dz with M in (24)0#

2D

for the particular wave solution form (7); see section 3.
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The t-average of (11) yields
]v0 2 w 2

g 5 e = 3 ^u 3 v & 1 g= 3 (v 3 v )1 gnπ v1 0 0 0
]ts

1 g= 3 (v 3 2V) 1 g= 3 (b ẑ),0 0 (15)
where we have used the relations in (13).
As shown in appendix A, the procedure described in

CL enables us to derive the ‘‘vortex force,’’
= 3 ^uw 3 v1& 5 (v0 1 2V) ·=us 2 us ·=(v0 1 2V)

5 = 3 [us 3 (v0 1 2V)], (16)
where the quantity

t
s w wu 5 u (x, s) ds · =u (17)E7 8

is the rescaled Stokes-drift velocity (i.e., with a dimen-
sionalizing scale of e

2
s0/k0). Incorporating (16) into

(15) and dividing by g yields the equation for the lead-
ing-order, slow-time vorticity balance:

]v0 2
2 = 3 [V 3 Z] 2 = 3 b ẑ 5 nπ v , (18)0 0

]ts
where j 5 e

2/g 5 e/d is a measure of the wave-added
terms in these dynamics, V 5 v0 1 jus, and Z 5 2V

1 v0. Equation (18) is similar to one derived in Holm
(1996).
The curl operator can be made to operate explicitly

on each term of the vorticity equation, which allows us
to identify the compatible momentum equation. Since
the divergence of the Stokes drift is zero and

2|v |0
2= 3 (v 3 v ) 5 2= 3 = 2 v · =v ,0 0 0 01 2[ ]2

we can express the momentum equation as
]v0 2

2 V 3 Z 1 =F 2 b ẑ 5 nπ v , (19)0 0
]ts

where we define
1

2
F 5 p 1 V (20)0 2

as the nondimensional, generalized geopotential func-
tion. Since v0 is incompressible, the divergence of the
momentum equation yields an elliptical problem for de-
termining F:

π

2
F 5 = · (V 3 Z 1 b0 ẑ 1 nπ

2v0). (21)
To obtain the boundary conditions for the slow-time

vorticity and momentum balances, the boundary con-
ditions (6) at the free surface z 5 h* are made nondi-
mensional, analytically continued to the mean sea level
z 5 0 [i.e., r(h*)5 r(0)1 h*]r/]z(0)1 · · · ], expanded
in wave and current components as above, and finally
time averaged. The nondimensional surface elevation
and pressure are assumed to have the forms

w
h* 5 e[h 1 d(h 1 eh · · ·)],0 1

wp* 5 e[p 1 d(p 1 ep · · ·)]. (22)0 1

First we consider the kinematic condition in (6). Its
leading-order, fast-time balance is the familiar wave
condition, ww

5 . The time-averaged balance isw
ht

w0 5 j= ·M at z 5 0, (23)

where

M [ ^uw(xh, 0, t)hw(xh, t)&. (24)

In (23) we have used the fact that the term ^Dh0/Dt& is
smaller by O(g). On the other hand, if we were to as-
sume that the horizontal variation of both the currents
and wave statistics were on a slow scale Xh 5 gxh, then
the amplitude of w0 would be smaller by g (for 3D
continuity balance), and the boundary condition (23)
would be generalized by the addition of ]h0/]ts on the
right-hand side. This addition would formally permit
very long (i.e., shallow water) surface gravity waves in
the current dynamics.
The nondimensional quantity M represents the net

mass flux per unit width associated with the waves. It
is numerically equal to the mean wave momentum per
unit area, ^f w

=h

w
&, to second order in e, since the mean

of the quantity =(hw
f

w) is zero when the flow is pe-
riodic both in space and time. The wave momentum
term in the kinematic condition also appears in Has-
selmann’s (1971) study of the interaction of long and
short gravity waves. The pressure condition in (6) has
the fast-time balance pw 5 h

w and the slow-time balance,

p0 5 h0 1 pa0 2 jP at z 5 0, (25)

where we have assumed that the slow atmospheric pres-
sure variations pa0 scale in a similar way to p0, and the
wave-added pressure adjustment term is

P [ ^ (xh, 0, t)hw(xh, t)& 5 ^( )2& 5 ^(ww)2&,w wp hz t
(26)

with the second and third expressions obtained from the
first one by using the linear balances that underlie the
wave solution in (7). The stress condition in (6) is ir-
relevant to the leading-order wave dynamics because n0
is small in (13). The slow-time stress condition is

]v0
n 1 jS 5 t at z 5 0, (27)1 2

]z

where
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FIG. 1. Annual-mean wind, Ua, at a height of 10 m above the sea
surface: (a) Northern Hemisphere; (b) Southern Hemisphere.

FIG. 2. Annual-mean wave height variance, ^(hw)2&, from (66): (a)
Northern Hemisphere; (b) Southern Hemisphere.

matology of Kalnay et al. (1996). This climatology con-
tains a wind field every 6 h on a T62 spatial grid (i.e.,
with a lat–long resolution finer than 28). In this paper
we show only the time-mean fields, in a polar stereo-
graphic format separately for each hemisphere.
The near-surface wind pattern in this climatology

(Fig. 1) shows the expected features: zonally oriented
tropical trade winds, midlatitude westerlies, and weak
polar easterlies; the Afro–Asian monsoon; and the

standing-eddy circulations of subtropical anticyclones
and subpolar cyclones.
The mean strength of the waves, ^(hw)2& from (66),

is shown in Fig. 2. The waves are strongest in the midst
of the westerly winds, away from land, and the variance
ranges from less than 0.5 m2 in the Tropics to more
than 3 m2 in both hemispheres.
The mean wave-averaged correction to the surface

pressure boundary condition (25), that is P 5 ^( )2&w
ht

from (66), is shown in Fig. 3, with a further division
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FIG. 1. Annual-mean wind, Ua, at a height of 10 m above the sea
surface: (a) Northern Hemisphere; (b) Southern Hemisphere.

FIG. 2. Annual-mean wave height variance, ^(hw)2&, from (66): (a)
Northern Hemisphere; (b) Southern Hemisphere.

matology of Kalnay et al. (1996). This climatology con-
tains a wind field every 6 h on a T62 spatial grid (i.e.,
with a lat–long resolution finer than 28). In this paper
we show only the time-mean fields, in a polar stereo-
graphic format separately for each hemisphere.
The near-surface wind pattern in this climatology

(Fig. 1) shows the expected features: zonally oriented
tropical trade winds, midlatitude westerlies, and weak
polar easterlies; the Afro–Asian monsoon; and the

standing-eddy circulations of subtropical anticyclones
and subpolar cyclones.
The mean strength of the waves, ^(hw)2& from (66),

is shown in Fig. 2. The waves are strongest in the midst
of the westerly winds, away from land, and the variance
ranges from less than 0.5 m2 in the Tropics to more
than 3 m2 in both hemispheres.
The mean wave-averaged correction to the surface

pressure boundary condition (25), that is P 5 ^( )2&w
ht

from (66), is shown in Fig. 3, with a further division
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FIG. 1. Annual-mean wind, Ua, at a height of 10 m above the sea
surface: (a) Northern Hemisphere; (b) Southern Hemisphere.

FIG. 2. Annual-mean wave height variance, ^(hw)2&, from (66): (a)
Northern Hemisphere; (b) Southern Hemisphere.
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tains a wind field every 6 h on a T62 spatial grid (i.e.,
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(Fig. 1) shows the expected features: zonally oriented
tropical trade winds, midlatitude westerlies, and weak
polar easterlies; the Afro–Asian monsoon; and the
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and subpolar cyclones.
The mean strength of the waves, ^(hw)2& from (66),

is shown in Fig. 2. The waves are strongest in the midst
of the westerly winds, away from land, and the variance
ranges from less than 0.5 m2 in the Tropics to more
than 3 m2 in both hemispheres.
The mean wave-averaged correction to the surface

pressure boundary condition (25), that is P 5 ^( )2&w
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from (66), is shown in Fig. 3, with a further division

How big is the correction due to the surface pressure?
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FIG. 3. Annual-mean increment to the surface-pressure boundary
condition, that is, g21P from (66): (a) Northern Hemisphere; (b)
Southern Hemisphere.

FIG. 4. Annual-mean Stokes transport, Tst from (67): (a) Northern
Hemisphere; (b) Southern Hemisphere.

by g so that it can be interpreted as an equivalent sea
level correction. The spatial pattern is qualitatively sim-
ilar to that in Fig. 2, ranging from about 0.04 m in the
Tropics to above 0.12 m (Northern Hemisphere) or 0.14
m (southern) in the subpolar regions. This quantity
weakens near Antarctica and in the Arctic Ocean, where
in addition sea ice frequently suppresses the surface
waves altogether.
The Stokes transport, Tst from (67), is shown in Fig.

4. The nonlinear dependence on the near-surface wind
enhances the spatial contrast in amplitude here, but the
directions are similar to those in Fig. 1. The westerly
wind regimes between about 408 and 608 have the stron-
gest Stokes transports, with a magnitude approaching 1
m2 s21.
For comparison, the Lagrangian Ekman transport,2ẑ

3 (1/ fr0)t t from (51) and (68), is shown in Fig. 5. Its
pattern differs from that of Tst both in its larger tropical
and subtropical magnitudes and its approximate or-
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The t-average of (11) yields
]v0 2 w 2

g 5 e = 3 ^u 3 v & 1 g= 3 (v 3 v )1 gnπ v1 0 0 0
]ts

1 g= 3 (v 3 2V) 1 g= 3 (b ẑ),0 0 (15)
where we have used the relations in (13).
As shown in appendix A, the procedure described in

CL enables us to derive the ‘‘vortex force,’’
= 3 ^uw 3 v1& 5 (v0 1 2V) ·=us 2 us ·=(v0 1 2V)

5 = 3 [us 3 (v0 1 2V)], (16)
where the quantity

t
s w wu 5 u (x, s) ds · =u (17)E7 8

is the rescaled Stokes-drift velocity (i.e., with a dimen-
sionalizing scale of e

2
s0/k0). Incorporating (16) into

(15) and dividing by g yields the equation for the lead-
ing-order, slow-time vorticity balance:

]v0 2
2 = 3 [V 3 Z] 2 = 3 b ẑ 5 nπ v , (18)0 0

]ts
where j 5 e

2/g 5 e/d is a measure of the wave-added
terms in these dynamics, V 5 v0 1 jus, and Z 5 2V

1 v0. Equation (18) is similar to one derived in Holm
(1996).
The curl operator can be made to operate explicitly

on each term of the vorticity equation, which allows us
to identify the compatible momentum equation. Since
the divergence of the Stokes drift is zero and

2|v |0
2= 3 (v 3 v ) 5 2= 3 = 2 v · =v ,0 0 0 01 2[ ]2

we can express the momentum equation as
]v0 2

2 V 3 Z 1 =F 2 b ẑ 5 nπ v , (19)0 0
]ts

where we define
1

2
F 5 p 1 V (20)0 2

as the nondimensional, generalized geopotential func-
tion. Since v0 is incompressible, the divergence of the
momentum equation yields an elliptical problem for de-
termining F:

π

2
F 5 = · (V 3 Z 1 b0 ẑ 1 nπ

2v0). (21)
To obtain the boundary conditions for the slow-time

vorticity and momentum balances, the boundary con-
ditions (6) at the free surface z 5 h* are made nondi-
mensional, analytically continued to the mean sea level
z 5 0 [i.e., r(h*)5 r(0)1 h*]r/]z(0)1 · · · ], expanded
in wave and current components as above, and finally
time averaged. The nondimensional surface elevation
and pressure are assumed to have the forms

w
h* 5 e[h 1 d(h 1 eh · · ·)],0 1

wp* 5 e[p 1 d(p 1 ep · · ·)]. (22)0 1

First we consider the kinematic condition in (6). Its
leading-order, fast-time balance is the familiar wave
condition, ww

5 . The time-averaged balance isw
ht

w0 5 j= ·M at z 5 0, (23)

where

M [ ^uw(xh, 0, t)hw(xh, t)&. (24)

In (23) we have used the fact that the term ^Dh0/Dt& is
smaller by O(g). On the other hand, if we were to as-
sume that the horizontal variation of both the currents
and wave statistics were on a slow scale Xh 5 gxh, then
the amplitude of w0 would be smaller by g (for 3D
continuity balance), and the boundary condition (23)
would be generalized by the addition of ]h0/]ts on the
right-hand side. This addition would formally permit
very long (i.e., shallow water) surface gravity waves in
the current dynamics.
The nondimensional quantity M represents the net

mass flux per unit width associated with the waves. It
is numerically equal to the mean wave momentum per
unit area, ^f w

=h

w
&, to second order in e, since the mean

of the quantity =(hw
f

w) is zero when the flow is pe-
riodic both in space and time. The wave momentum
term in the kinematic condition also appears in Has-
selmann’s (1971) study of the interaction of long and
short gravity waves. The pressure condition in (6) has
the fast-time balance pw 5 h

w and the slow-time balance,

p0 5 h0 1 pa0 2 jP at z 5 0, (25)

where we have assumed that the slow atmospheric pres-
sure variations pa0 scale in a similar way to p0, and the
wave-added pressure adjustment term is

P [ ^ (xh, 0, t)hw(xh, t)& 5 ^( )2& 5 ^(ww)2&,w wp hz t
(26)

with the second and third expressions obtained from the
first one by using the linear balances that underlie the
wave solution in (7). The stress condition in (6) is ir-
relevant to the leading-order wave dynamics because n0
is small in (13). The slow-time stress condition is

]v0
n 1 jS 5 t at z 5 0, (27)1 2

]z

where



Strongest in westerly wind regimes

How big is the correction due to Stokes drift?
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FIG. 3. Annual-mean increment to the surface-pressure boundary
condition, that is, g21P from (66): (a) Northern Hemisphere; (b)
Southern Hemisphere.

FIG. 4. Annual-mean Stokes transport, Tst from (67): (a) Northern
Hemisphere; (b) Southern Hemisphere.

by g so that it can be interpreted as an equivalent sea
level correction. The spatial pattern is qualitatively sim-
ilar to that in Fig. 2, ranging from about 0.04 m in the
Tropics to above 0.12 m (Northern Hemisphere) or 0.14
m (southern) in the subpolar regions. This quantity
weakens near Antarctica and in the Arctic Ocean, where
in addition sea ice frequently suppresses the surface
waves altogether.
The Stokes transport, Tst from (67), is shown in Fig.

4. The nonlinear dependence on the near-surface wind
enhances the spatial contrast in amplitude here, but the
directions are similar to those in Fig. 1. The westerly
wind regimes between about 408 and 608 have the stron-
gest Stokes transports, with a magnitude approaching 1
m2 s21.
For comparison, the Lagrangian Ekman transport,2ẑ

3 (1/ fr0)t t from (51) and (68), is shown in Fig. 5. Its
pattern differs from that of Tst both in its larger tropical
and subtropical magnitudes and its approximate or-

Tst =

Z 0

�D
us dz

Mainly in the direction of the 
wind



How big is the Ekman transport?
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FIG. 5. Annual-mean Lagrangian Ekman transport 2ẑ 3 (1/ fr0)t t

from (68): (a) Northern Hemisphere; (b) Southern Hemisphere.
FIG. 6. The ratio of the wave- and wind-driven components in (51),

1/R from (54), using the fields in Figs. 4–5. The contour interval is
0.1. The largest contour of 1.0 is approached only where |Ua| → 0.

thogonality in direction (which, again, indicates that this
aspect is not changed by the nonlinearity of the wind
dependences). The magnitude of the Lagrangian Ekman
transport is much larger than Tst near the equator, but
these two quantities have opposite trends with increas-
ing latitude. The Stokes transport fraction grows to a
level of more than 40% of the Lagrangian Ekman trans-
port at higher latitudes. This confirms the estimate in
(69).
Previous empirical tests of Ekman and Sverdrup

transport relations have largely been confined to rela-
tively low latitudes. From Fig. 6, it is clear that this is
a region where they are best satisfied and the wave
effects are smallest. For example, Chereskin (1995)
found an empirical agreement in the California Current
between the Ekman transport relation to the surface
wind stress, with a relative uncertainty of about 20%.
This analysis is for the summer half of the year and
neglects wave effects. This conclusion is marginally

Mainly perpendicular to the 
wind

About 4x the size of the 
Stokes transport



How big is the correction due to Stokes drift?

Wave effects are biggest 
at higher latitudes
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FIG. 5. Annual-mean Lagrangian Ekman transport 2ẑ 3 (1/ fr0)t t

from (68): (a) Northern Hemisphere; (b) Southern Hemisphere.
FIG. 6. The ratio of the wave- and wind-driven components in (51),

1/R from (54), using the fields in Figs. 4–5. The contour interval is
0.1. The largest contour of 1.0 is approached only where |Ua| → 0.

thogonality in direction (which, again, indicates that this
aspect is not changed by the nonlinearity of the wind
dependences). The magnitude of the Lagrangian Ekman
transport is much larger than Tst near the equator, but
these two quantities have opposite trends with increas-
ing latitude. The Stokes transport fraction grows to a
level of more than 40% of the Lagrangian Ekman trans-
port at higher latitudes. This confirms the estimate in
(69).
Previous empirical tests of Ekman and Sverdrup

transport relations have largely been confined to rela-
tively low latitudes. From Fig. 6, it is clear that this is
a region where they are best satisfied and the wave
effects are smallest. For example, Chereskin (1995)
found an empirical agreement in the California Current
between the Ekman transport relation to the surface
wind stress, with a relative uncertainty of about 20%.
This analysis is for the summer half of the year and
neglects wave effects. This conclusion is marginally
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FIGURE 1.  Variation of n/u with wind velocity. 

The inclusion of the sea state may yield new insight into the study of large-scale 
air-sea interaction and a more complete understanding of ocean circulation. 

The expression given in (22) links the sea-state condition with the fundamental 
Ekman circulation. This was achieved under a rather restrictive Ekman-type assump- 
tion, i.e. that all the motions are horizontal and all the functions depend on z alone. 
Nevertheless, the rigorous development presented in this analysis enables a discussion 
of the more general conditions of the surface drift currents under the influence of both 
the wave motion and the wind stress. 

For more detailed physical discussions, examine the generalized Ekman equation 
( 19). In  the derivation of this equation the scaling of the terms .R/coe2 and v, k$,/co e2 
must be comparable with the rest of the terms, or the whole analysis would be wrong. 
Assume that the waves are all wind generated, then the dominant wave frequency 
a. can be related to the wind velocity W (see, for example, Phillips 1966) by 

This gives 
a. = g/w. 

R/aos2 = s1 W/g& 
Figure 1 presents Q/a, or SZ W/g as a function of the wind speed. For a typical wind 

of 10m/s, a/c0 is the order of to make 
the Q/a, €2 terms comparable to the other terms in the generalized Ekman equation. 
The stability limitation on the gravity waves allows wave slopes up to the order of 

but this value applies only to the higher wavenumbers, where the individual 
waves are actively breaking. The main energy-containing components over most of 
the open ocean are far more gentle than the breaking waves. On the basis of the most 
recent JONSWAP data reported by Hasselmann et al. (1973, 1976), the mean slope 
of the waves, defined by Fk2, with k = g /  W 2 ,  is around 10-3-10--5. Next we have to 

This requires an E of the order of 
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This requires an E of the order of 

✏ ⇡ 10�2
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Observe that the Stokes drift @s can be written as 

CiYsi = %2i,j ajar .  (17) S 
Following the scheme used by Craik & Leibovich (1976), we can write the Coriolis 

terms in (16) as 
1 

E2 ej ( @ k  s @ i , j k d ?  - @ i , k / ‘ @ k , j d T )  
VO E 

2R t 
= z e j  ( - @ . i , j + @ f , , j I  @ k d T + @ , / l @ i , j k d T )  

Then by combining (14), (16) and (18),  the following is obtained: 

v IC2 2R 
V, €2 VOE 

-- O V2Po = (Go. V) (0, i- as) - (8, + as). V m , + y  ( e  . V) (To + as). (19) 

This is the same expression as equation (14) in Craik & Leibovich (1976) with the 
addition of the extra term representing Coriolis forces. Equation (19) is the generalized 
Ekman equation with wave motion included. 

3. Specific results 
Having derived the generalized Ekman equation, we can seek an Ekman-type 

solution by assuming that all the mean motions are functions of z alone; then the 
relations for the velocity components can be written as 

where = f / v , k i  is an Ekman-type number, with f = S2. e3, the local component of 
the earth’s rotation, and e3 the unit vector in the local vertical direction. The sig- 
nificance of the Elrman-type number I? (or more generally, E = Q/v ,k ; )  will be dis- 
cussed in detail later. 

For a random gravity wave field, the Stokes drift can be expressed, as in Huang 
(1971), as 

42; = jkIn 2nkX(k,n)exp (21klz)dkdn, (21) 

where k is the wavenumber vector, n is the frequency and X(k, n)  is the directional 
wave energy spectrum. If we define the current a t  the surface as a;, then the solution 
of (20) expressed in dimensional form will be 

- 
0; = 0; exp { f /v,)$ (1 + i) z ’ }  

where the relationship 0; = v; + iv; holds. 

⌦/�0✏
2 ⇡ 1if

This is true in the open 
ocean for low frequency 
waves

✏ < 10�2



Low frequency waves are more important for Stokes drift?
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FIGURE 2. Classification chart for the surface-layer drift currents. Value of v, from: ---, Neummn 
& Pierson (1964); -. .-, Ichiye (1967); . . . . ., Leibovich & Radhakrishnan (1977). The Ekman 
zone is defined by 0.1 < E d 10. 

prove that the main contribution to the Stokes drift actually comes from the low 
frequency waves. This can be shown as follows. Let the contribution to the Stokes 
drift from a specific frequency range u to u k A u  be Aa8;  then 

A a 8  = [ A m  ku = [AF] c+/g, (31) - 
where [Ac2] represents the energy in the frequency band (T to u k Au. The dispersion 
relationship has been used in (31). By using the equilibrium form of the spectrum 
proposed by Phillips (1958), [ A m  can be written as 

(32) 

where the non-dimensional constant a is of the order of 10-2. Now, combining (31) 
and (32), we get, 

[AFJ = "g2 -p ~ A u ,  

"9 
U2 

A a S  = - ~ A u .  
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Low frequency waves are more important in generating the Stokes drift. 
Is this true???

(using Phillips spectrum assumption)
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FIGURE 3. A proposed model of surface-layer drift currents. 

energy-containing waves. Within this layer the turbulent intensity is high, and E 1.  
The next layer, which may coexist with the Langmuir layer, is the Ekman layer, 
where the Coriolis force and the viscous force are of equal importance. This does not 
imply that the flow is of the same form as the classical Ekman solution. Vertical 
motions may still play a important role. It is called an Ekman layer only because of 
the balance between the Coriolis and the frictional forces. Depending upon the local 
state of the sea, and hence the magnitude and vertical variation of the eddy viscosity, 
the Langmuir layer may disappear or coexist with the Ekman layer in a complica.ted 
way. An inertial layer wilI exist below the region of influence of active wave motion 
and wind stresses. The fact that classical Ekman drift has not been observed con- 
sistently can be explained by this modified surface-layer model. Most wind-generated 
ocean circulation models (see, for example, Stern 1975) accept the Ekman drift model 
as the interface mechanism. This mechanism needs to be re-examined, particularly 
in light of Leibovich's major breakthrough. A unified method incorporating the 
contributions from both the wind and the wave motions is proposed in this model of 
surface-layer drift currents. 
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Hence the contribution to the Stokes drift from a specific frequency band is inversely 
proportional to the square of the frequency. Therefore the low frequency waves are 
more important in the drift-current generation. For these low frequency waves, it is 
not unreasonable to use c2 = O(i0-4). Consequently, the assumption !2/voe2 = O(1) is 
well within reasonable limits. 

Having established the order of rR/v,, we can discuss the magnitude of the viscous 
term by forming the ratio of the two terms. This results in a wave-related, Ekman- 
number-like parameter E defined as 

E = !2/v,ki. 
For a wind wave field, k, can be related to the wind field as k, = g/ W2, then 

E = !2 W4/veg. 
The value of E is plotted in figure 2 as a contour map in v,, W space. For a typical 

wind speed of 10m/s, E = I requires a value of v, of 75cm2/s; but for E = 0 ( 1 ) ,  a 
range of v, of 10-1000cm2/s is satisfactory. These values are all well within the range 
of commonly adopted v, values. Thus, under most natural conditions, the surface 
flow will have an E of order one, i.e. the viscous term and the Coriolis term are of the 
same order. Since the wind conditions and the relationship between the wind and the 
wavenumber of the energy-containing waves are all well defined, the detailed dis- 
cussion of the surface drift will hinge on the value of the eddy viscosity. 
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where W is the wind speed in cm/s and v, is in cm2/s. Since it is dimensionally in- 
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Ve = 2-84 x 10-5 w3/g. 
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Both of these expressions relate v, to the surface wind speed directly. The second, 
being consistent dimensionally, is more meaningful dynamically. The third expression 
relating v, to the sea state is a modified version of the expression proposed by Ichiye 
(1967): 

where H i s  the wave height and T is the wave period. This viscosity can also be related 
to the wind speed. 
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V ,  = 0.028 H2/T,  

w* W ( z )  = -In -, 
K 20 

(33) 

in which W ,  is the frictional velocity K is the von K&rman constant and zo, is a rough- 
ness parameter. With the velocity profile given as (33)) and the constant-stress 
assumption, upon which (33) is based, it is easy to show that 
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orbital velocities of the large waves. Therefore the dominance of the Langmuir 
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Observe that the Stokes drift @s can be written as 

CiYsi = %2i,j ajar .  (17) S 
Following the scheme used by Craik & Leibovich (1976), we can write the Coriolis 

terms in (16) as 
1 

E2 ej ( @ k  s @ i , j k d ?  - @ i , k / ‘ @ k , j d T )  
VO E 

2R t 
= z e j  ( - @ . i , j + @ f , , j I  @ k d T + @ , / l @ i , j k d T )  

Then by combining (14), (16) and (18),  the following is obtained: 

v IC2 2R 
V, €2 VOE 

-- O V2Po = (Go. V) (0, i- as) - (8, + as). V m , + y  ( e  . V) (To + as). (19) 

This is the same expression as equation (14) in Craik & Leibovich (1976) with the 
addition of the extra term representing Coriolis forces. Equation (19) is the generalized 
Ekman equation with wave motion included. 

3. Specific results 
Having derived the generalized Ekman equation, we can seek an Ekman-type 

solution by assuming that all the mean motions are functions of z alone; then the 
relations for the velocity components can be written as 

where = f / v , k i  is an Ekman-type number, with f = S2. e3, the local component of 
the earth’s rotation, and e3 the unit vector in the local vertical direction. The sig- 
nificance of the Elrman-type number I? (or more generally, E = Q/v ,k ; )  will be dis- 
cussed in detail later. 

For a random gravity wave field, the Stokes drift can be expressed, as in Huang 
(1971), as 

42; = jkIn 2nkX(k,n)exp (21klz)dkdn, (21) 

where k is the wavenumber vector, n is the frequency and X(k, n)  is the directional 
wave energy spectrum. If we define the current a t  the surface as a;, then the solution 
of (20) expressed in dimensional form will be 

- 
0; = 0; exp { f /v,)$ (1 + i) z ’ }  

where the relationship 0; = v; + iv; holds. 
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WAMDI Group (1988) currently in use at the European
Centre for Medium-Range Weather Forecasts.
To make the estimates, we rely on the empirically

fitted wave spectrum of Pierson and Moskowitz (1964).
We shall assume that the wave dynamics are linear and
conservative to leading order, as in section 2, to derive
wave–wind relations in a way that closely parallels Ken-
yon (1969). As in Phillips (1977, chapter 4), we define
the directional horizontal wavenumber spectrum,

, for the surface waves asP (k, a)
1`

w 2
^(h ) & 5 F(k ) dkEE h h

2`

` 2p

5 P (k, a)k dk da, (58)E E
0 0

where (k, a) is a cylindrical coordinate representation
of kh. We assume local isotropy in the wave spectra on
large spatial scales, so that

ds
kP (k, a) 5 f (s)S(a), (59)) )dk

where
2p

S(a) da 5 1,E
0

and s 5 gk. Thus,œ
`

w 2
^(h ) & 5 f (s) ds. (60)E

0

Likewise, referring to (25),
`

w 2 2P 5 ^(h ) & 5 s f (s) ds, (61)t E
0

and the Stokes drift velocity, as previously derived by
Kenyon [1969, Eq. (8)], is

` 22 2s z
s 3u 5 ê f (s)s exp ds, (62)h E [ ]g g0

where êh is the dominant direction of wave propagation,
which is assumed to coincide with the wind direction.
Pierson and Moskowitz (1964) fitted empirical spec-

tra of the following form for the ocean wave field under
fully developed conditions in deep water:

n2a g gnf (s) 5 exp 2b , (63)n n5 1 2[ ]
s Ws

where n 5 2, 3, 4 are alternative fits, W 5 |Ua| is the
wind speed, and the associated constants are

f 5o 5 5/n na 5 (2pn ) e , b 5 (2pn ) ,n o n o1 2 1 22p n

f 5 0.0275, n 5 0.140. (64)o o

After inserting (63) into (60) and (61), we obtain the
closed-form expressions

4a W 5nw 2
^(h ) & 5 G 1 1

2 4/n [ ]ng b nn

2a W 3nP 5 G 1 1 , (65)
2/n [ ]nb nn

by making use of the definition of the Gamma function,
G[g] 5 sg11e2s ds. Kenyon [1969, Eq. (13)] gives a`#0
closed-form expression for the drift velocity using the
Pierson–Moskowitz spectra when n 5 2. Accordingly,
we restrict our estimates to the n 5 2 fit, whence the
final formulas for the wave quantities in our wind-fitted
model are

w 2 24 4 22 4
^(h ) & 5 (1.3 3 10 s m )W

1
23 2 21 2P 5 (1.0 3 10 s m )W

g

4œg|z|
su (z) 5 0.04U exp 2 . (66)a [ ]W

Furthermore, we can readily integrate the Stokes-drift
profile in the vertical to obtain a Stokes transport for-
mula,

Tst 5 (5.1 3 1024 s2 m21)W 2Ua, (67)
which is equal toM from (23) for periodic linear waves.
An empirically established bulk formula for wind

stress is
t 5 raCDWUa, (68)

where ra is the atmospheric surface density and CD is
the drag coefficient. We use the formulation of Large
and Pond (1982) for CD, and then calculate t by (68)
by the procedure described in Trenberth et al. (1989).
Using the preceding relations for the Stokes transport

and wind stress, we can derive an alternative formula
for R , defined in (54), which exposes its dependencies
on the most geographically variable quantities (viz., f
and Ua), ignoring its other dependencies. The result is

1
R } . (69)

| fU |a
Thus, we see that a high wind regime favors the wave-
driving influence, while weak winds favor the wind
driving unless the local waves are enhanced through
remotely generated swell. Moreover, the wave-driving
influence tends to increase with latitude since | f | does,
and from (56), we can attribute this to the decrease in
the Ekman-layer depth. Since wind speeds also tend to
be larger in middle and high latitudes, at least in winter,
both factors in (69) indicate that the wave driving is
relatively more important in these regions.
Equations (66)–(68) are fully determined from

Ua(xh, t), which we obtain from the 17-yr wind cli-
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s 3u 5 ê f (s)s exp ds, (62)h E [ ]g g0
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remotely generated swell. Moreover, the wave-driving
influence tends to increase with latitude since | f | does,
and from (56), we can attribute this to the decrease in
the Ekman-layer depth. Since wind speeds also tend to
be larger in middle and high latitudes, at least in winter,
both factors in (69) indicate that the wave driving is
relatively more important in these regions.
Equations (66)–(68) are fully determined from

Ua(xh, t), which we obtain from the 17-yr wind cli-

W = 10m/s d =
W 2

16g
⇡ 5

8
mfor                         , depth scale



Conclusions

• Stokes drift should be include when modeling the Ekman layer 
!
• Stokes drift might well be important in modeling the ocean, 

especially at high latitudes. Waves both cause the Stokes drift 
and alter the boundary conditions.
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FIG. 1. Annual-mean wind, Ua, at a height of 10 m above the sea
surface: (a) Northern Hemisphere; (b) Southern Hemisphere.

FIG. 2. Annual-mean wave height variance, ^(hw)2&, from (66): (a)
Northern Hemisphere; (b) Southern Hemisphere.

matology of Kalnay et al. (1996). This climatology con-
tains a wind field every 6 h on a T62 spatial grid (i.e.,
with a lat–long resolution finer than 28). In this paper
we show only the time-mean fields, in a polar stereo-
graphic format separately for each hemisphere.
The near-surface wind pattern in this climatology

(Fig. 1) shows the expected features: zonally oriented
tropical trade winds, midlatitude westerlies, and weak
polar easterlies; the Afro–Asian monsoon; and the

standing-eddy circulations of subtropical anticyclones
and subpolar cyclones.
The mean strength of the waves, ^(hw)2& from (66),

is shown in Fig. 2. The waves are strongest in the midst
of the westerly winds, away from land, and the variance
ranges from less than 0.5 m2 in the Tropics to more
than 3 m2 in both hemispheres.
The mean wave-averaged correction to the surface

pressure boundary condition (25), that is P 5 ^( )2&w
ht

from (66), is shown in Fig. 3, with a further division



Wave strength

Waves are strongest far from 
land, and where the winds are 

strong and westerly
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FIG. 1. Annual-mean wind, Ua, at a height of 10 m above the sea
surface: (a) Northern Hemisphere; (b) Southern Hemisphere.

FIG. 2. Annual-mean wave height variance, ^(hw)2&, from (66): (a)
Northern Hemisphere; (b) Southern Hemisphere.
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tains a wind field every 6 h on a T62 spatial grid (i.e.,
with a lat–long resolution finer than 28). In this paper
we show only the time-mean fields, in a polar stereo-
graphic format separately for each hemisphere.
The near-surface wind pattern in this climatology

(Fig. 1) shows the expected features: zonally oriented
tropical trade winds, midlatitude westerlies, and weak
polar easterlies; the Afro–Asian monsoon; and the

standing-eddy circulations of subtropical anticyclones
and subpolar cyclones.
The mean strength of the waves, ^(hw)2& from (66),

is shown in Fig. 2. The waves are strongest in the midst
of the westerly winds, away from land, and the variance
ranges from less than 0.5 m2 in the Tropics to more
than 3 m2 in both hemispheres.
The mean wave-averaged correction to the surface

pressure boundary condition (25), that is P 5 ^( )2&w
ht

from (66), is shown in Fig. 3, with a further division



Strongest near antarctica
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FIG. 1. Annual-mean wind, Ua, at a height of 10 m above the sea
surface: (a) Northern Hemisphere; (b) Southern Hemisphere.

FIG. 2. Annual-mean wave height variance, ^(hw)2&, from (66): (a)
Northern Hemisphere; (b) Southern Hemisphere.
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tains a wind field every 6 h on a T62 spatial grid (i.e.,
with a lat–long resolution finer than 28). In this paper
we show only the time-mean fields, in a polar stereo-
graphic format separately for each hemisphere.
The near-surface wind pattern in this climatology

(Fig. 1) shows the expected features: zonally oriented
tropical trade winds, midlatitude westerlies, and weak
polar easterlies; the Afro–Asian monsoon; and the

standing-eddy circulations of subtropical anticyclones
and subpolar cyclones.
The mean strength of the waves, ^(hw)2& from (66),

is shown in Fig. 2. The waves are strongest in the midst
of the westerly winds, away from land, and the variance
ranges from less than 0.5 m2 in the Tropics to more
than 3 m2 in both hemispheres.
The mean wave-averaged correction to the surface

pressure boundary condition (25), that is P 5 ^( )2&w
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from (66), is shown in Fig. 3, with a further division
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FIG. 3. Annual-mean increment to the surface-pressure boundary
condition, that is, g21P from (66): (a) Northern Hemisphere; (b)
Southern Hemisphere.

FIG. 4. Annual-mean Stokes transport, Tst from (67): (a) Northern
Hemisphere; (b) Southern Hemisphere.

by g so that it can be interpreted as an equivalent sea
level correction. The spatial pattern is qualitatively sim-
ilar to that in Fig. 2, ranging from about 0.04 m in the
Tropics to above 0.12 m (Northern Hemisphere) or 0.14
m (southern) in the subpolar regions. This quantity
weakens near Antarctica and in the Arctic Ocean, where
in addition sea ice frequently suppresses the surface
waves altogether.
The Stokes transport, Tst from (67), is shown in Fig.

4. The nonlinear dependence on the near-surface wind
enhances the spatial contrast in amplitude here, but the
directions are similar to those in Fig. 1. The westerly
wind regimes between about 408 and 608 have the stron-
gest Stokes transports, with a magnitude approaching 1
m2 s21.
For comparison, the Lagrangian Ekman transport,2ẑ

3 (1/ fr0)t t from (51) and (68), is shown in Fig. 5. Its
pattern differs from that of Tst both in its larger tropical
and subtropical magnitudes and its approximate or-
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The t-average of (11) yields
]v0 2 w 2

g 5 e = 3 ^u 3 v & 1 g= 3 (v 3 v )1 gnπ v1 0 0 0
]ts

1 g= 3 (v 3 2V) 1 g= 3 (b ẑ),0 0 (15)
where we have used the relations in (13).
As shown in appendix A, the procedure described in

CL enables us to derive the ‘‘vortex force,’’
= 3 ^uw 3 v1& 5 (v0 1 2V) ·=us 2 us ·=(v0 1 2V)

5 = 3 [us 3 (v0 1 2V)], (16)
where the quantity

t
s w wu 5 u (x, s) ds · =u (17)E7 8

is the rescaled Stokes-drift velocity (i.e., with a dimen-
sionalizing scale of e

2
s0/k0). Incorporating (16) into

(15) and dividing by g yields the equation for the lead-
ing-order, slow-time vorticity balance:

]v0 2
2 = 3 [V 3 Z] 2 = 3 b ẑ 5 nπ v , (18)0 0

]ts
where j 5 e

2/g 5 e/d is a measure of the wave-added
terms in these dynamics, V 5 v0 1 jus, and Z 5 2V

1 v0. Equation (18) is similar to one derived in Holm
(1996).
The curl operator can be made to operate explicitly

on each term of the vorticity equation, which allows us
to identify the compatible momentum equation. Since
the divergence of the Stokes drift is zero and

2|v |0
2= 3 (v 3 v ) 5 2= 3 = 2 v · =v ,0 0 0 01 2[ ]2

we can express the momentum equation as
]v0 2

2 V 3 Z 1 =F 2 b ẑ 5 nπ v , (19)0 0
]ts

where we define
1

2
F 5 p 1 V (20)0 2

as the nondimensional, generalized geopotential func-
tion. Since v0 is incompressible, the divergence of the
momentum equation yields an elliptical problem for de-
termining F:

π

2
F 5 = · (V 3 Z 1 b0 ẑ 1 nπ

2v0). (21)
To obtain the boundary conditions for the slow-time

vorticity and momentum balances, the boundary con-
ditions (6) at the free surface z 5 h* are made nondi-
mensional, analytically continued to the mean sea level
z 5 0 [i.e., r(h*)5 r(0)1 h*]r/]z(0)1 · · · ], expanded
in wave and current components as above, and finally
time averaged. The nondimensional surface elevation
and pressure are assumed to have the forms

w
h* 5 e[h 1 d(h 1 eh · · ·)],0 1

wp* 5 e[p 1 d(p 1 ep · · ·)]. (22)0 1

First we consider the kinematic condition in (6). Its
leading-order, fast-time balance is the familiar wave
condition, ww

5 . The time-averaged balance isw
ht

w0 5 j= ·M at z 5 0, (23)

where

M [ ^uw(xh, 0, t)hw(xh, t)&. (24)

In (23) we have used the fact that the term ^Dh0/Dt& is
smaller by O(g). On the other hand, if we were to as-
sume that the horizontal variation of both the currents
and wave statistics were on a slow scale Xh 5 gxh, then
the amplitude of w0 would be smaller by g (for 3D
continuity balance), and the boundary condition (23)
would be generalized by the addition of ]h0/]ts on the
right-hand side. This addition would formally permit
very long (i.e., shallow water) surface gravity waves in
the current dynamics.
The nondimensional quantity M represents the net

mass flux per unit width associated with the waves. It
is numerically equal to the mean wave momentum per
unit area, ^f w

=h

w
&, to second order in e, since the mean

of the quantity =(hw
f

w) is zero when the flow is pe-
riodic both in space and time. The wave momentum
term in the kinematic condition also appears in Has-
selmann’s (1971) study of the interaction of long and
short gravity waves. The pressure condition in (6) has
the fast-time balance pw 5 h

w and the slow-time balance,

p0 5 h0 1 pa0 2 jP at z 5 0, (25)

where we have assumed that the slow atmospheric pres-
sure variations pa0 scale in a similar way to p0, and the
wave-added pressure adjustment term is

P [ ^ (xh, 0, t)hw(xh, t)& 5 ^( )2& 5 ^(ww)2&,w wp hz t
(26)

with the second and third expressions obtained from the
first one by using the linear balances that underlie the
wave solution in (7). The stress condition in (6) is ir-
relevant to the leading-order wave dynamics because n0
is small in (13). The slow-time stress condition is

]v0
n 1 jS 5 t at z 5 0, (27)1 2

]z

where



Strongest in westerly wind regimes
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FIG. 3. Annual-mean increment to the surface-pressure boundary
condition, that is, g21P from (66): (a) Northern Hemisphere; (b)
Southern Hemisphere.

FIG. 4. Annual-mean Stokes transport, Tst from (67): (a) Northern
Hemisphere; (b) Southern Hemisphere.

by g so that it can be interpreted as an equivalent sea
level correction. The spatial pattern is qualitatively sim-
ilar to that in Fig. 2, ranging from about 0.04 m in the
Tropics to above 0.12 m (Northern Hemisphere) or 0.14
m (southern) in the subpolar regions. This quantity
weakens near Antarctica and in the Arctic Ocean, where
in addition sea ice frequently suppresses the surface
waves altogether.
The Stokes transport, Tst from (67), is shown in Fig.

4. The nonlinear dependence on the near-surface wind
enhances the spatial contrast in amplitude here, but the
directions are similar to those in Fig. 1. The westerly
wind regimes between about 408 and 608 have the stron-
gest Stokes transports, with a magnitude approaching 1
m2 s21.
For comparison, the Lagrangian Ekman transport,2ẑ

3 (1/ fr0)t t from (51) and (68), is shown in Fig. 5. Its
pattern differs from that of Tst both in its larger tropical
and subtropical magnitudes and its approximate or-

Tst =

Z 0
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wind
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FIG. 5. Annual-mean Lagrangian Ekman transport 2ẑ 3 (1/ fr0)t t

from (68): (a) Northern Hemisphere; (b) Southern Hemisphere.
FIG. 6. The ratio of the wave- and wind-driven components in (51),

1/R from (54), using the fields in Figs. 4–5. The contour interval is
0.1. The largest contour of 1.0 is approached only where |Ua| → 0.

thogonality in direction (which, again, indicates that this
aspect is not changed by the nonlinearity of the wind
dependences). The magnitude of the Lagrangian Ekman
transport is much larger than Tst near the equator, but
these two quantities have opposite trends with increas-
ing latitude. The Stokes transport fraction grows to a
level of more than 40% of the Lagrangian Ekman trans-
port at higher latitudes. This confirms the estimate in
(69).
Previous empirical tests of Ekman and Sverdrup

transport relations have largely been confined to rela-
tively low latitudes. From Fig. 6, it is clear that this is
a region where they are best satisfied and the wave
effects are smallest. For example, Chereskin (1995)
found an empirical agreement in the California Current
between the Ekman transport relation to the surface
wind stress, with a relative uncertainty of about 20%.
This analysis is for the summer half of the year and
neglects wave effects. This conclusion is marginally

Mainly perpendicular to the 
wind

About 4x the size of the 
Stokes transport



How big is the correction due to Stokes drift?

Wave effects are biggest 
at higher latitudes
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FIG. 5. Annual-mean Lagrangian Ekman transport 2ẑ 3 (1/ fr0)t t

from (68): (a) Northern Hemisphere; (b) Southern Hemisphere.
FIG. 6. The ratio of the wave- and wind-driven components in (51),

1/R from (54), using the fields in Figs. 4–5. The contour interval is
0.1. The largest contour of 1.0 is approached only where |Ua| → 0.

thogonality in direction (which, again, indicates that this
aspect is not changed by the nonlinearity of the wind
dependences). The magnitude of the Lagrangian Ekman
transport is much larger than Tst near the equator, but
these two quantities have opposite trends with increas-
ing latitude. The Stokes transport fraction grows to a
level of more than 40% of the Lagrangian Ekman trans-
port at higher latitudes. This confirms the estimate in
(69).
Previous empirical tests of Ekman and Sverdrup

transport relations have largely been confined to rela-
tively low latitudes. From Fig. 6, it is clear that this is
a region where they are best satisfied and the wave
effects are smallest. For example, Chereskin (1995)
found an empirical agreement in the California Current
between the Ekman transport relation to the surface
wind stress, with a relative uncertainty of about 20%.
This analysis is for the summer half of the year and
neglects wave effects. This conclusion is marginally


