
'

&

$

%

Introduction to Head-driven Phrase Structure
Grammar

Steve Harlow

May 4, 2010

1

'

&

$

%

1 Signs

sign

phon list(phonstring)

synsem synsem

synsem

loc local

nonloc non-local

local

cat cat

content content

2

'

&

$

%

Valence information (also commonly known as

subcategorisation).

cat

head head

lex boolean

subj list(synsem)

comps list(synsem)

arg-str list(synsem)

3

'

&

$

%

head

subst

noun verb prep adj

func

det . . .

Figure 1: The head sortal hierarchy.

4

'

&

$

%

sign

phon 〈likes〉

synsem

synsem

loc

local

cat

cat

head verb

lex +

Figure 2: Partial description of the verb “likes”

5

'

&

$

%

2 Valence

list

elist

nelist

first >

rest list

6

'

&

$

%

The subj and comps values for “likes” look like this.

cat

subj

nelist

first NP

rest elist

comps

nelist

first NP

rest elist

7

'

&

$

%

For a verb such as “gives”, which takes two NP complements (in

examples like “Kim gives her friends a lot of attention”), the

comps value would look like this.

cat

comps

nelist

first NP

rest

nelist

first NP

rest elist

8

'

&

$

%

List notation

cat

subj 〈NP〉

comps 〈NP〉

cat

subj 〈NP〉

comps 〈NP, NP〉

cat

subj 1 〈NP〉

comps 2 〈NP〉

arg-str 1 ⊕ 2

9

'

&

$

%

sign

phon 〈likes〉

synsem

synsem

loc

local

cat

cat

head verb

lex +

subj 1 〈NP〉

comps 2 〈NP〉

arg-str 1 ⊕ 2

Figure 3: Partial description the verb “likes” with valence values

added.

10

'

&

$

%

3 Words and phrases

[

sign

phon list(phonstring)

synsem synsem

]

word

synsem | loc | cat

[

cat

lex +

arg-str list(synsem)

]

phrase

synsem | loc | cat

[

cat

lex –

]

daughters daughters

Figure 4: The sortal hierarchy for sign

11

'

&

$

%

phrase

headed-ph

hd-nexus-ph

hd-valence-ph

hd-subject-ph hd-specifier-ph hd-complement-ph

hd-filler-ph

hd-adjunct-ph

non-headed-ph

Figure 5: The sortal hierarchy for phrase

12

'

&

$

%

Table 1: Examples of phrases

SORT EXAMPLE

hd-adjunct-ph

VP

VP

(head-dtr)

drank the soup

AdvP

(non-hd-dtrs)

very noisily

13

'

&

$

%

SORT EXAMPLE

hd-filler-ph

S

NP

(non-hd-dtrs)

Ice cream

S

(head-dtr)

I like

hd-subject-ph

S

NP

(non-hd-dtrs)

Toby

VP

(head-dtr)

drank scotch

14

'

&

$

%

SORT EXAMPLE

hd-complement-ph

VP

V

(head-dtr)

drank

NP

(non-hd-dtrs)

scotch

hd-specifier-ph

NP

Det

(non-hd-dtrs)

the

Nbar

(head-dtr)

book

15

'

&

$

%

3.1 Complements

headed-phrase =⇒

dtrs

dtrs

head-dtr sign

non-hd-dtrs list(sign)

16

'

&

$

%

Head-Complement Phrase

hd-comp-ph =⇒

synsem | . . .

subj 1

spr 2

comps 〈 〉

dtrs

hd-dtr

word

synsem | . . .

subj 1

spr 2

comps 〈 3 , . . ., n 〉

non-hd-dtrs 〈[synsem 3], . . ., [synsem n]〉

17

'

&

$

%

This states that a well-formed head-complement-phrase

• must have a lexical head daughter (of sort word),

• must have an empty comps value

• the values of its head daughter’s comps attribute must be

token identical to the synsem values of its non-head daughters,

and

• its subj and spr values are identical to those of its head

daughter

18

'

&

$

%

hd-comp-ph

synsem | loc |cat

[

subj 1

comps 〈 〉

]

dtrs

hd-dtr

word

phon 〈likes〉

synsem

synsem

loc

local

cat

cat

head verb

lex +

subj 1 〈NP〉

comps 2 〈 3 NP〉

arg-str 1 ⊕ 2

non-hd-dtrs 〈

[

synsem 3

]

〉

Figure 6: A head complement phrase.
19

'

&

$

%

Abbreviations:

For
[

headed-ph

synsem | loc |cat |head verb

]

we will simply write
[

headed-ph

head verb

]

20

'

&

$

%

The Head Feature Principle

headed-ph =⇒

head 1

hd-dtr
[

head 1

]

The Head Feature Principle requires that the sign’s head value be

token identical to that of its head daughter.

21

'

&

$

%

hd-comp-ph

synsem | loc | cat

head 1

subj 2

comps 〈 〉

dtrs

hd-dtr

word

phon 〈likes〉

synsem

synsem

loc

local

cat

cat

head 1 verb

lex +

subj 2 〈NP〉

comps 3 〈 4 NP〉

arg-str 2 ⊕ 3

non-hd-dtrs 〈
[

synsem 4

]

〉

Figure 7: A verb phrase.

22

'

&

$

%

[

hd-comp-ph

comps 〈 〉

]

(hd-dtr)

[

word

comps 〈 1 〉

]

likes

(non-hd-dtrs)

[

synsem 1 NP
]

Figure 8: Tree illustrating a head complement phrase.

23

'

&

$

%

hd-comp-ph

phon 1 ⊕ 2

head 3

subj 4

comps 〈 〉

hd-dtr

word

phon 1 〈likes〉

synsem

synsem

loc

local

cat

cat

head 3 verb

lex +

subj 4 〈NP〉

comps 5 〈 6 NP〉

arg-str 4 ⊕ 5

non-hd-dtrs 〈

[

sign

phon 2 〈scotch〉

synsem 6

]

〉

Figure 9: Partial description of the VP “likes scotch”.

24

'

&

$

%

For ditransitives such as “gives”, which can take two NP
complements, the only modification that we need to make is the

addition of a lexical entry for “gives”. This requires a comps value

which is a list of two NPs:
[

comps 〈NP, NP〉
]

25

'

&

$

%

3.2 Subjects

Head-Subject Phrase

hd-subj-ph =⇒

phon 1 ⊕ 2

subj 〈 〉

spr 3

comps 4

head-dtr

phrase

phon 2

subj 〈 5 〉

spr 3 〈 〉

comps 4 〈 〉

non-hd-dtrs 〈

sign

phon 1

synsem 5

〉

26

'

&

$

%

hd-subj-ph

phon 1 ⊕ 2

head 3

subj 〈 〉

comps 〈 〉

lex –

hd-dtr

phrase

phon 2 〈likes, scotch〉

head 3 verb

subj 〈 4 〉

comps 〈 〉

lex –

non-hd-dtrs

〈

phrase

phon 1 〈Toby〉

synsem 4 NP

〉

Figure 10: Partial AVM for the sentence “Toby likes scotch”.

27

'

&

$

%

Table 2: Verbal projections.

Verb

word

head verb

subj 1 〈synsem〉

comps 2 list(synsem)

arg-str 1 ⊕ 2

lex +

28

'

&

$

%

Verb Phrase

hd-comp-ph

head verb

subj 〈synsem〉

comps 〈 〉

lex –

hd-dtr word

non-hd-dtrs list(sign)

Sentence

hd-subj-ph

head verb

subj 〈 〉

comps 〈 〉

lex –

hd-dtr phrase

non-hd-dtrs 〈sign〉

29

'

&

$

%

3.3 Nouns and Noun Phrases

The sort head has noun as one of its subsorts. The sort noun is in

its turn defined for the feature case, with value case.
[

noun

case case

]

case

nom acc

30

'

&

$

%

A proper noun such as “Toby” will a have feature structure very

similar to that for the verb “likes” in figure 3. The only differences

will be

• phonology, which has the value 〈Toby〉, rather than 〈likes〉,

• head, which will have the value

noun

case case

, rather than

verb, and

• the valence values subj and comps, which will both have the

empty list as value, since proper nouns take neither

complements nor subjects

31

'

&

$

%

The result is shown in the AVM in figure 11.

word

phon 〈Toby〉

synsem

synsem

loc

local

cat

cat

head

[

noun

case case

]

lex +

subj 1 〈 〉

comps 2 〈 〉

arg-str 1 ⊕ 2

Figure 11: Partial AVM for the proper noun “Toby”.

32

'

&

$

%

This lexical entry satisfies the definition of the head daughter in a

head-complement phrase, which, together with the Head Feature,

licenses the head-complement phrase shown in figure 12. This is

the nominal counterpart of the verb phrase shown in figure 9.

33

'

&

$

%

hd-comp-ph

phon 1

head 3

subj 5

comps 〈 〉

lex –

hd-dtr

word

phon 1 〈Toby〉

head 3

[

noun

case case

]

subj 5 〈 〉

comps 〈 〉

lex +

non-hd-dtrs 〈 〉

Figure 12: Partial AVM for the Nbar “Toby”.

34

'

&

$

%

It is tempting to think that determiners are the nominal

counterpart to subjects – where verbs require subjects, nouns may

require determiners. However, things turn out to be more complex,

since common nouns can have both a subject and a determiner, as

does the common noun “clown” in the following examples.

(1) “Toby is a clown.”

(2) “Everybody considered Toby a clown.”

Note that the semantics of both of these sentences require the

sub-translation clown1(t) as a component, exactly parallel to

drink1(t) for the semantics of “Toby drinks”, in which the

argument t is indisputably the translation of the subject NP.

35

'

&

$

%

The HPSG solution to this is to posit an additional valence feature

called specifier (abbreviated to spr) which specifies what

determiner if any the head requires. This requires the following

modification of the features appropriate to the sort category .

cat

head head

lex boolean

subj 6 list(synsem)

spr 7 list(synsem)

comps 8 list(synsem)

arg-str 6 ⊕ 7 ⊕ 8

36

'

&

$

%

“Dagger” will therefore have the following category specification.

cat

head

[

noun

case case

]

lex +

subj 1 〈 〉

spr 2 〈DetP〉

comps 3 〈 〉

arg-str 1 ⊕ 2 ⊕ 3

37

'

&

$

%

Specifiers comprise a broader class than determiners and include

the underlined items in the following examples.

(3) “Macbeth was very/too/six feet tall.”

(4) “Glamis is just/right/four miles over the border.”

(5) “Toby drank too/very/very much too fast.”

Heads select their specifiers, just as they select their subject and

complements, so common nouns like “dagger” will contain the

valence specification [spr 〈DetP〉] while proper nouns like “Toby”

will have [spr 〈 〉].

However, in contrast to subjects and complements, specifiers also

select the head with which they co-occur; determiners require a

nominal sister, degree specifiers like “very” and “too” require an

adjectival sister and so on.

38

'

&

$

%

Restricting attention to determiners, recall that the sort det is a

subsort of head (cf. the sortal hierarchy on page 3). The sort det is

appropriate for a new feature specified (abbreviated spec) which

determines the kind of category with which the determiner

combines. So the head value for determiners looks like this

cat

head

[

det

spec Nbar

]

lex +

subj 〈 〉

spr 〈 〉

comps 〈 〉

in which Nbar abbreviates the following feature description.

39

'

&

$

%

synsem

loc |cat

head noun

spr 〈DetP〉

comps 〈 〉

lex –

40

'

&

$

%

word

phon 〈the〉

ss 1

synsem

l | c

head

det

spec

synsem

l | c

head noun

spr

〈[

synsem

loc | . . . | spec 1

]〉

comps 〈 〉

lex –

subj 〈 〉

spr 〈 〉

comps 〈 〉

lex +

Figure 13: Partial feature structure of the determiner “the”.

41

'

&

$

%

word

phon 〈dagger〉

synsem 1

synsem

loc | cat

head noun

subj 〈 〉

spr

〈

synsem

loc | cat | head

[

det

spec 1

]

lex –

〉

comps 〈 〉

lex +

Figure 14: Partial feature structure of the common noun “dagger”.

42

'

&

$

%

Head-Specifier Phrase

hd-spr-ph =⇒

phon 1 ⊕ 2

spr 〈 〉

hd-dtr

phrase

phon 2

spr 〈 3 〉

non-hd-dtrs

〈

phrase

phon 1

synsem 〈 3 〉

〉

43

'

&

$

%

hd-spr-phr

phon 1 ⊕ 2

ss | loc | cat

[

head 3

spr 〈 〉

]

hd-dtr

hd-comp-phr

phon 2

ss | 4 loc | cat

[

head 3

spr 〈 5 〉

]

hd-dtr

word

phon 2 〈dagger〉

loc

[

head 3 noun

spr 〈 5 〉

]

non-hd-dtrs 〈 〉

non-hd-dtrs

〈

hd-comp-phr

phon 1

ss | 5 loc | cat

[

head 6

]

hd-dtr

word

phon 1 〈the〉

loc

[

head 6

[

det

spec 4

]]

non-hd-dtrs 〈 〉

〉

Figure 15: Partial description of the noun phrase “the dagger”.

44

'

&

$

%

• We will use the symbol X to stand for categories of sort word ,

i.e. lexical categories which contain the feature specification

[lex +])

• We will use the symbol XP to stand for an object of sort phrase

• We will use X′a to stand for an object of sort

phrase

spr 〈[]〉

, i.e. a

phrase with a non-empty spr value

• We will use X′′b to stand for an object of sort

phrase

spr 〈 〉

• We will use the symbol VP as an alias for XP

verb

subj 〈[]〉

aPronounced “X-bar”.
bPronounced “X-double-bar”.

45

'

&

$

%

• We will use the symbol S as an alias for XP

verb

subj 〈 〉

• We will also replace X in the above by N, A, P, Det and so on,

to abbreviate X
[

head noun
]

etc.

46

'

&

$

%

NP

2 DetP

[

spec 1

]

Det

[

spec 1

]

the

1 N′

[

spr 2

]

N

[

spr 2

]

dagger

Figure 16: The NP “the dagger” in tree notation.

47

'

&

$

%

Nouns with complements

(6) “Your disapproval of our plans.”

(7) “A book about linguistics.”

(8) “Her delight at winning.”

(9) “That photograph of your brother.”

All that is necessary to accommodate such cases is the inclusion in

the grammar of the relevant lexical entries along the following lines

(details omitted).

phon disapproval

subj 〈 〉

comps 〈PP〉

48

'

&

$

%

N′

N

[

comps 〈 1 〉
]

disapproval

1 PP

of our plans

49

'

&

$

%

3.4 Prepositions and PPs

pform

about at on to . . .

50

'

&

$

%

phon 〈about〉

head

prep

pform about

subj 〈 〉

comps 〈NP[acc]〉

phon 〈disapproval〉

subj 〈 〉

comps 〈PP[of]〉

51

'

&

$

%

NP

[

spr 〈 〉

comps 〈 4 〉

]

3 DetP 1

Det

1

[

spec 2

]

a

2 N′

[

spr 〈 3 〉

comps 〈 4 〉

]

N

[

spr 〈 3 〉

comps 〈 4 〉

]

book

4 PP 6

[

comps 〈 〉

]

P

[

comps 〈 5 〉

6 pform about

]

about

5 NP 7

N′ 7

N

7 [acc]

linguistics

Figure 17: Tree representation for “a book about linguistics”.

52

'

&

$

%

3.5 Verbs and auxiliaries

Verbs selecting VPs as their complements.

(10) “Toby may drink scotch.”

(11) “Toby is drinking scotch.”

(12) “Toby has drunk scotch.”

We assume without discussion that sentences like these have the

structure shown in figure 18.

S

NP VP

V VP

Figure 18: Constituent structure for auxiliary verbs.

53

'

&

$

%

There are a number of interesting things to note about examples

like these.

• Firstly, the verb drink appears in a range of different forms

(“drink”, “drinking”, “drunk”),

• secondly, the appropriate form of drink in each example is

determined by the preceding verb. For example, “is” (or any

other form of the lexeme be) requires “drinking”, any other

choice is ungrammatical (*“Toby is drink scotch”, *“Toby is

drunk scotch”), and,

• thirdly, “Toby” is the subject of the second verb as well as the

first one. (Who is doing the drinking?)

54

'

&

$

%

English verbs can appear in a range of different forms, as

illustrated in table 3 with the lexeme drink, each with a

distinctive distribution.

Finite present tense “Toby drinks”

past tense “Toby drank”

Present participle “Toby is drinking”

Past participle “Toby has drunk”

Base “Toby can drink”

Gerund “Toby likes drinking”

Table 3: Table of English verb forms

55

'

&

$

%

To distinguish between these different forms of the verb, we will

introduce the attribute vform, with the value vform. The sort

vform has the subsorts shown in figure 19, whose names are drawn

from the labels in table 3.

vform

finite

pres past

prp psp bse ger

Figure 19: Sortal hierarchy for vform.

56

'

&

$

%

The attribute vform is appropriate for the head subsort verb, so

every verbal category will contain the following feature structure.

cat

head

[

verb

vform vform

]

57

'

&

$

%

Verbs may possess the complete range of verbal forms (as drink

does), or may be restricted to some subset of them. Among the

first verbs in the sequences in (10)-(12), be has all the forms shown

for drink, whereas may lacks all except the finite forms. (There

are no forms *“maying” or *“mayed”).

58

'

&

$

%

However, be, may and have also possess grammatical

characteristics that are not shared by other verbs such as drink.

These are neatly summed up by the acronym NICE.

Negation: “Toby isn’t tall.”

Inversion: “Is Toby tall?”

Contraction: “Toby’s tall.”

Ellipsis: “People say Toby is tall, and he is.”

59

'

&

$

%

• Negation: the verb has a distinct negative form, usually

represented orthographically with n’t.

• Inversion: the capacity of the verb to precede the subject in

interrogatives and some other sentence-types.

• Contraction: the verb has an alternative pronunciation which

is shorter than its citation form – sometimes this is given

orthographic recognition as with ‘s for “is” and “has”,

sometimes not, as with the contracted version of “can” (rather

like “c’n”).

• Ellipsis: a constituent which normally follows the verb may be

omitted and its interpretation recovered from the context.

• Verbs that exhibit some or all of these properties are known as

auxiliary verbs, or simply auxiliaries.

60

'

&

$

%

In contrast to main verbs, auxiliaries may precede or follow the

subject - a phenomenon known as subject-auxiliary inversion

(SAI).

One further detail of SAI is that the form of the verb which occurs

in pre-subject position may be different to the one that occurs in

post-subject position.

(13) “I am not happy.”/ “I’m not happy.”/*“I aren’t happy.”

(14) “Aren’t I happy.”

61

'

&

$

%

“Aren’t” can only co-occur with a first person singular subject if it

precedes it, not if it follows it.

These distinctions motivate the postulation of two additional head

features for verbs: aux and inv.

aux is boolean valued and partitions the class of verbs into

auxiliaries ([aux +]) and non-auxiliaries ([aux –]).

[inv +] identifies those forms of auxiliaries that precede the

subject, [inv –] those that follow it.

62

'

&

$

%

If we put these developments together, the value of head for verbal

projections looks like this.

head

verb

vform vform

aux bool

inv bool

63

'

&

$

%

What appears on the comps list of an auxiliary is a description of

the following kind.

head

[

verb

inv –

]

subj 〈[]〉

comps 〈 〉

64

'

&

$

%

head

[

verb

aux +

]

subj 1

comps

〈

head

verb

vform prp

inv –

subj 1

comps 〈 〉

〉

Figure 20: Partial lexical entry for the auxiliary verb “be”.

65

'&

$%

S

[

head 2

subj 〈 〉

comps 〈 〉

]

1 NP

Toby

VP

[

head 2

subj 〈 1 〉

comps 〈 〉

]

V

head 2

[

vform fin

aux +

inv –

]

subj 〈 1 〉

comps 〈 3 〉

is

3 VP

[

head 4

subj 〈 1 〉

comps 〈 〉

]

V

head 4

[

vform prp

aux –

inv –

]

subj 〈 1 〉

comps 〈 5 〉

drinking

5 NP

scotch

Figure 21: “Toby is drinking scotch.”

6
6

'

&

$

%

May belongs to a large subclass of auxiliaries known as modals.

Other modals are “can”, “could”, “will”, “would”, “shall”,

“should”, “might”, “must”.

These require that their complement contains the base form of the

verb and

they exhibit the peculiarity (mentioned in respect of may above)

that they are defective and possess only the finite form. (Which

precludes them from following any other auxiliary, since no

auxiliaries select a finite VP.)

67

'

&

$

%

Their lexical entries therefore look like figure 22.

head

verb

vform fin

aux +

subj 6

comps

〈

head

verb

vform bse

inv –

subj 6

comps 〈 〉

〉

Figure 22: Partial lexical entry for a modal auxiliary.

68

'

&

$

%

Have requires that its complement be in the past participle form,

giving the lexical entry in figure 23.

head

[

verb

aux +

]

subj 6

comps

〈

head

verb

vform psp

inv –

subj 6

comps 〈 〉

〉

Figure 23: Partial lexical entry for the auxiliary verb have.

69

'

&

$

%

A potentially confusing property of have is that it represents the

pronunciation of more than one lexical category: both an auxiliary

and a main verb.

The version which subcategorises for a VP is an auxiliary and

exhibits all the NICE properties.

• Negation: “Toby hasn’t drunk the scotch.”

• Inversion: “Has Toby drunk the scotch?”

• Contraction: “Toby’s drunk the scotch.”

• Ellipsis: “People say Toby’s drunk the scotch, and he has.”

70

'

&

$

%

The version that subcategorises for an NP, for many speakers, does

not, and shares the distribution of main verbs like drink.

(15) (a) “Toby has a book.”

(b) “Toby drinks scotch.”

(16) (a) “Toby doesn’t have a book.”

(b) “Toby doesn’t drink scotch.”

(17) (a) “Does Toby have a book.”

(b) “Does Toby drink scotch.”

(18) (a) “I don’t have a book, but Toby does.”

(b) “I don’t drink scotch, but Toby does.”

71

'

&

$

%

For some speakers (mainly British), this version of “have” can also

behave as an auxiliary, giving

(i) “Toby hasn’t a book.”

(ii) “Has Toby a book?”

(iii) “I haven’t a book, but Toby has.”

For such speakers, “have” has three lexical entries:

1. an auxiliary selecting a VP complement

2. an auxiliary selecting a NP complement

3. a main verb selecting a NP complement.

72

'

&

$

%

With main verbs, in the NICE contexts, a ‘dummy’ auxiliary verb

“do” is required.

Auxiliary do, like the modals, requires its complement to contain

the base form of a verb.

Like have, do leads a double life, as both auxiliary and main verb,

giving rise to sentences in which both auxiliary and main verb do

co-occur, such as “What did you do?”

73

'

&

$

%

The auxiliaries have and do are both defective. Auxiliary have

lacks present and past participle forms, thus disallowing sentences

like the following.

* “Toby is having drunk scotch.”

* “Toby has had drunk scotch.”

Auxiliary do, like the modals, lacks all but the finite form and, in

addition, requires VP complements which are [aux –] (thus

precluding sentences like *“Toby doesn’t have drunk the scotch”).

74

'

&

$

%

The final auxiliary that we will discuss is to in sentences such as

“Toby wants to leave”.

This is a highly defective auxiliary (it lacks finite, contracted and

negated forms), but it does allow ellipsis: “Toby says he isn’t

leaving, but I’m sure he really wants to”.

To requires us to posit an additional subsort of vform, inf , giving

it the lexical entry shown in figure 24.

The phrase “wants to drink” will have the analysis shown in

figure 25, in which “wants” selects a VP[vform inf].

75

'

&

$

%

head

verb

vform inf

aux +

inv –

subj 6

comps

〈

head

verb

vform bse

inv –

subj 6

comps 〈 〉

〉

Figure 24: Partial lexical entry for the auxiliary verb to.

76

'

&

$

%

VP[fin]

V[fin]

wants

VP[inf]

V[inf]

to

VP[bse]

drink

Figure 25: Tree for the phrase “wants to drink” showing vform

values.

77

'

&

$

%

As a conclusion to this section, we observe that the lexical entries

for auxiliaries that we have discussed here, together with the Head

Feature Principle and the definition of head-complement-phrase,

allow for sentences containing sequences of auxiliary verbs.

(19) “Toby may be drinking scotch.”

(20) “Toby may have been drinking scotch.”

(21) “Toby has been drinking scotch.”

78

'

&

$

%

The flow of vform and valence information for (20) can be seen in

the tree in figure 26.

79

'&

$%

S

[

vform 2 fin

]

1 NP

Toby

VP

[

vform 2 fin

subj 〈 1 〉

]

V

[

vform 2 fin

subj 〈 1 〉

comps 〈 3 〉

]

may

3 VP

[

vform 4 bse

subj 〈 1 〉

]

V

[

vform 4 bse

subj 〈 1 〉

comps 〈 5 〉

]

have

5 VP

[

vform 6 psp

subj 〈 1 〉

]

V

[

vform 6 psp

subj 〈 1 〉

comps 〈 7 〉

]

been

7 VP

[

vform 8 prp

subj 〈 1 〉

]

V

[

vform 8 prp

subj 〈 1 〉

comps 〈 9 〉

]

drinking

9 NP

scotch

Figure 26: “Toby may have been drinking scotch.”

8
0

'

&

$

%

3.6 Clauses

Clauses (i.e. sentences) are projections of verbs.

As a consequence of this and the way the Head Feature Principle

operates, the vform value of the clause will be shared with that of

the the ‘highest’ verb in the clause.

81

'

&

$

%

This means that it is straightforward to account for the following

patterns of distribution.

(22) “Andrew said Toby was drinking.”

(23) “Andrew said that Toby was drinking.”

(24) “That Toby was drinking surprised Andrew.”

(25) “For Toby to be drinking is most unusual.”

(26) “Andrew demanded that Toby stop drinking.”

(27) *“Andrew said Toby be drinking.”

(28) *“Andrew said (for) Toby to be drinking.”

82

'

&

$

%

(22)-(28) are all examples of sentences which contain a subordinate

clause.

In (22) the subordinate clause “Toby was drinking” is headed by a

finite verb (“was”).

Examples (27) and (28) show that the verb “say” cannot be

followed by a subordinate clause headed by a bse (be) or an inf

verb (to).

83

'

&

$

%

All that is required is that the comps value of say is specified as

being 〈S[fin]〉.

comps

〈

synsem

head

verb

vform fin

subj 〈 〉

comps 〈 〉

lex –

〉

84

'

&

$

%

Example (23) is very similar, but the subordinate clause is

introduced by the complementiser “that”.

Complementisers are lexical items which select a clausal

complement, forming a constituent called a complementiser

phrase (CP).

Many verbs which subcategorise for a clausal complement are, like

“say”, indifferent as to whether it is S or CP.

85

'

&

$

%

Define a new sort for complementisers, comp, and introduce a new

sort verbal of which comp and verb are subsorts.

The features vform, aux and inv are appropriate for the new

supersort and consequently are inherited by both subsorts.

verbal

vform vform

aux bool

inv bool

comp verb

86

'

&

$

%

Since “that” introduces finite clauses, it is defined in feature

structure terms as follows.

word

phon 〈that〉

head

[

comp

vform 10 fin

]

subj 〈 〉

spr 〈 〉

comps 〈S[vform 10]〉

87

'

&

$

%

CP

[

head 1

]

C

head 1

[

comp

vform 2 fin

]

subj 〈 〉

comps 〈 3 〉

that

3 S

[

head

[

verb

vform 2

]]

Toby was drinking

Figure 27: Tree for “that Toby was drinking”

Verbs like “say” are defined as taking a complement specified as

88

'

&

$

%

head

[

verbal

vform fin

]

subj 〈 〉

comps 〈 〉

which subsumes both S and CP.

89

'

&

$

%

It requires only a slight modification to the lexical entry for the

complementiser “that” to accommodate example (26) in which

demand selects a CP headed by a bse verb – changing the vform

value from fin to fin∨bse, as shown below.

word

phon 〈that〉

head

[

comp

vform 2 fin∨bse

]

subj 〈 〉

comps 〈S[vform 2]〉

90

'

&

$

%

The contrast between the subcategorisation requirements of verbs

like say and verbs like demand is that the latter require a comps

value which is 〈CP[vform bse]〉.

91

'

&

$

%

Surprise in sentence (24) differs from the previous examples in

taking a finite CP as its subject. One of its subcategorisation

requirements is therefore the following.
[

subj 〈CP[fin]〉

comps 〈NP〉

]

92

'

&

$

%

Example (25) is one in which the subject of “is surprising” is an

infinitival clause (i.e. one whose head contains [vform inf]).

Infinitival clauses take a different complementiser, “for”, whose

syntax is defined as follows.

word

phon 〈for〉

head

[

comp

vform 2 inf

]

subj 〈 〉

comps

〈

4 NP, VP

[

vform 2

subj 〈 4 〉

]〉

93

'

&

$

%

Note that the valence values of this complementiser are different to

those of the complementiser “that”. “That” takes a single

(sentential) complement, whereas “for” take a sequence of two

complements, an NP and a VP. In tree terms, the constituent

structure of non-finite clauses defined by this lexical entry for “for”

is the following.

CP

COMP

for

NP VP

The subj value of expressions like “is most unusual” is simply

〈CP[inf]〉.

94

'

&

$

%

Before we conclude this section, there is a further comment to be

made about the relationship between vform values and the case of

NPs.

pronouns in English exhibit differences in case marking, depending

upon the syntactic position in which they occur.

These differences are related to the kind of clause in which they

occur:

the subjects of finite clauses are nominative, other NPs are

accusative.

This can be handled by specifying that when a finite verb takes an

NP subject, it specifies its subj value as 〈NP[nom]〉. Any NP on a

comps list, on the other hand, is specified as NP[acc]. A

description of the finite transitive verb “drinks” will therefore

contain the following, where the case values are inherited from a

supersort.

95

'

&

$

%

word

phon 〈drinks〉

head

verb

vform fin

aux –

inv –

subj 〈NP[nom]〉

comps 〈NP[acc]〉

96

'

&

$

%

3.7 Subject-auxiliary Inversion (SAI)

The clauses that we have looked at so far have all taken the form

NP VP.

There are also English clauses in which an auxiliary verb precedes

the subject:

(29) “Is Toby drinking scotch.”

(30) “What is Toby drinking.”

(31) “Seldom did Toby drink scotch.”

97

'

&

$

%

We take the view that clauses like these simply have a flat

structure in which the auxiliary, subject and post-subject

constituent are sisters:

S

V

[

aux +
]

Is

NP

Toby

VP

drinking scotch

98

'

&

$

%

We need a way of providing for these constructions and do so by

introducing a new type of clausal construction, sai-ph, a subsort of

hd-nexus-ph, with the following constraint:

sai-phrase

sai-ph =⇒

subj 〈 〉

hd-dtr

word

inv +

aux +

subj 〈 1 〉

comps 2

non-hd-dtrs 〈 1 〉 ⊕ 2

This constraint ensures that only verbs marked as [aux +, inv +]

99

'

&

$

%

will appear in such clauses and that the sister constituents will

obey the constraints imposed by such verbs on their subject and

complements.

100

'

&

$

%

4 The Lexicon

We have seen in the preceding sections of this chapter how HPSG

represents linguistic information in terms of feature structure

descriptions. Since HPSG is strongly lexical, the bulk of the

information required by the grammar is encoded in lexical entries,

as shown in a typical lexical entry (for the transitive verb like) in

figure 28.

101

'

&

$

%

word

phon 〈like〉

cat

head

verb

vform fin

aux –

inv –

lex +

subj 3 〈NP〉

spr 4 〈 〉

comps 5 〈NP[acc]〉

arg-str 3 ⊕ 4 ⊕ 5

Figure 28: Lexical entry for like.

Now, this is the lexical entry for just a single English word.

102

'

&

$

%

Since every English other mono-transitive verb will require an

almost identical lexical entry, it looks as if the lexicon will contain

massive amounts of repetition.

However, looked at from a different perspective, the fact that much

of this information is shared with other verbs provides the

opportunity to avoid unnecessary redundancy by organising lexical

entries as an inheritance hierarchy.

Like shares all the information in figure 28 except its

pronunciation with every other mono-transitive verb; the value of

head is shared by every other verb, irrespective of valence; its

value for subj is shared by many other finite verbs, and so on.

103

'

&

$

%

These observations lead to the conclusion that the lexicon can be

structured into an inheritance hierarchy in which it is necessary to

specify in the lexicon only the most idiosyncratic information for

any given word.

104

'

&

$

%

Let us pursue this idea by first of all looking at parts of speech (i.e.

noun, verb, etc.), and set up a sortal hierarchy of lexical types, i.e.

partitions of the sort word .

105

'&

$%

Table 4: Hierarchy of lexical parts of speech
SORT CONSTRAINT ISA

sign

phon list(phonstring)

synsem

synsem

local

local

cat

[

cat

subj list(ss)

spr list(ss)

comps list(ss)

]

>

word

cat

lex +

subj 1

spr 2

comps 3

arg-str 1 ⊕ 2 ⊕ 3

sign

verb-wd

head

[

verb

vform vform

aux bool

inv bool

]

subj 〈synsem〉

spr 〈 〉

word

1
0
6

'

&

$

%

SORT CONSTRAINT ISA

main-verb-wd

[

head

[

aux –

inv –

]]

verb-wd

aux-verb-wd
[

head

[

aux +

]

arg-str 〈synsem, VP〉

]

verb-wd

noun-wd

[

head

[

noun

case case

]]

word

prep-wd

[

head

[

prep

pform pform

]]

word

107

'

&

$

%

sign

word

verb-wd

main-vb-wd aux-vb-wd

noun-wd prep-wd

phrase

Figure 29: Part of speech hierarchy.

108

'

&

$

%

With the definitions in this sortal hierarchy, we can simplify the

lexical entry for “like” to that below. All the other information

specified in figure 28 is inherited from the sort main-verb-wd .

main-vb-wd

phon 〈like〉

cat

head
[

vform bse
]

subj 〈NP〉

comps 〈NP〉

109

'

&

$

%

Let us now turn our attention to valence and show that a similar

inheritance hierarchy is possible.

We will consider separately the set of possibilities in subject

position and the set of possible complements.

We start by drawing a distinction between words which require a

subject (such as verbs) and those which do not (such as

prepositions), assigning the former to the sort predicator-wd and

the latter to non-predicator-wd .

110

'

&

$

%

The sort predicator-wd can be subdivided into those words which

require an NP subject (np-predicator-wd) and

those that require a CP subject (cp-predicator-wd).

The sort cp-predicator-wd can be further partitioned into words

requiring a finite CP (finite-cp-predicator-wd) or an infinitival CP
(infinitival-cp-predicator-wd).

This hierarchy and the constraints associated with the various

subsorts are listed in table 5 and shown in diagrammatic form in

figure 30.

111

'&

$%

SORT CONSTRAINT ISA

non-predicator-wd
[

subj 〈 〉

]

word

predicator-wd
[

subj 〈synsem〉

]

word

np-predicator-wd
[

subj 〈NP〉

]

prd-wd

cp-predicator-wd
[

subj 〈CP〉

]

prd-wd

finite-cp-prd-wd
[

subj 〈CP[fin]〉

]

cp-prd-wd

infinitival-cp-prd-wd
[

subj 〈CP[inf]〉

]

cp-prd-wd

Table 5: Subject valence hierarchy.

1
1
2

'

&

$

%

Figure 30: Subject valence hierarchy diagram.

word

non-prd-wd prd-wd

np-prd-wd cp-prd-wd

fin-cp-prd-wd inf-cp-prd-wd

113

'

&

$

%

Table 6: Complement valence hierarchy

SORT CONSTRAINT ISA

intran-wd word

strict-intran-wd
[

arg-str
[

first synsem
]

]

intran-wd

intran-xcomp-wd
[

arg-str

[

rest
[

first XP[subj 〈synsem〉]
]

]

]

intran-wd

ssr-wd

[

arg-str 〈 1 ,

[

subj 1

comps 〈 〉

]

〉

]

intran-xcomp-wd

trans-wd
[

arg-str

[

rest
[

first NP[acc]
]

]

]

word

114

'

&

$

%

SORT CONSTRAINT ISA

mono-trans-wd
[

arg-str

[

rest
[

rest 〈 〉
]

]

]

trans-wd

poly-trans-wd
[

arg-str

[

rest
[

rest nelist(synsem)
]

]

]

trans-wd

di-trans-wd

[

arg-str

[

rest
[

rest 〈 NP[acc]〉
]

]

]

poly-trans-wd

to-trans-wd

[

arg-str

[

rest
[

rest 〈PP[to]〉
]

]

]

poly-trans-wd

trans-scomp-wd

[

arg-str

[

rest
[

rest 〈XP[verbal]〉
]

]

]

poly-trans-wd

115

'

&

$

%

Figure 31: Complement valence hierarchy diagram.

word

int-wd

str-int-wd int-xcomp-wd

ssr-wd

tr-wd

mono-tr-wd poly-tr-wd

di-tr-wd to-tr-wd tr-scomp-wd

116

'

&

$

%

The part of speech hierarchy and the valence hierarchies classify

words along three different dimensions

A given token of a word can possess properties from more than one

of them, e.g. it can be both a verb and intransitive or take both an

NP subject and an NP direct object.

Figure 32 shows the place of a mono-transitive verb such as “like”

in terms of the different dimensions of the word sort. The labels for

the different dimensions are placed in boxes to indicate that they

are not themselves sorts and are not disjoint partitions of word .

The lowest subsort np-predicator-mono-transitive-wd inherits from

all three dimensions, POS (Part of Speech), SUBJ-VAL (Subject

Valence) and COMP-VAL (Complement Valence), a phenomenon

known as multiple inheritance.

117

'

&

$

%

This allows us to further simplify the lexical entry for “likes”, to

that shown below. The sort np-predicator-mono-transitive-wd is

the meet of three sorts (main-vb-wd∧np-predicator-wd∧

mono-transitive-wd).

np-prd-mono-tr-wd

phon 〈likes〉

head
[

vform fin
]

118

'

&

$

%

word

POS SUBJ-VAL COMP-VAL

vb-wd prd-wd trans-wd

main-vb-wd np-prd-mono-tr-wd mono-tr-wd

np-prd-wd

Figure 32: The place of “like” in the lexical hierarchy.

119

'

&

$

%

Ditransitive verbs such as “give” which take two NP complements,

are assigned to the sort np-predicator-di-transitive-wd, defined as

inheriting from main-verb-wd , np-predicator-wd and

di-transitive-wd.

The lexical entry for “gives” is simply the following.

np-prd-di-tr-wd

phon 〈gives〉

head
[

vform fin
]

120

'

&

$

%

SORT CONSTRAINT ISA

inf-wd

[

head

[

vform inf

]

]

verb-wd

fin-wd

[

head

[

vform fin

]

]

verb-wd

bse-wd

[

head

[

vform bse

]

]

verb-wd

prp-wd

[

head

[

vform prp

]

]

verb-wd

psp-wd

[

head

[

vform psp

]

]

verb-wd

Table 7: Lexical hierarch of vform values.

121

'

&

$

%

word

POS SUBJ-VAL COMP-VAL

vb-wd prd-wd trans-wd

VFORM AUX/MAIN np-prd-wd mono-tr-wd

fin-wd main-vb-wd

fin-mn-vb-wd

fin-np-prd-mono-tr-mn-vb-wd

Figure 33: The place of finite mono-transitive verbs in the inheri-

tance hierarchy 122

'

&

$

%

This allows us to provide the following lexical entry for a verb such

as “likes”.
[

fin-np–mono-tr-vb-wd

phon 〈likes〉

]

123

'

&

$

%

To conclude this section, we will present a classification of the

auxiliaries, i.e. subsorts of aux-verb-wd . This is shown in table 8.

SORT CONSTRAINT ISA INSTANCE

perf-cmp-aux-vb-wd
[

comps 〈VP[psp]〉
]

aux-vb-wd “have”

prog-cmp-aux-vb-wd
[

comps 〈VP[prp]〉
]

aux-vb-wd “be”

bse-cmp-aux-vb-wd
[

comps 〈VP[bse]〉
]

aux-vb-wd “may”

do-aux-vb-wd

[

comps 〈VP

[

vform bse

aux –

]

〉

]

bse-cmp-aux-vb-wd “do”

Table 8: Auxiliary verb hierarchy

124

'

&

$

%

The constraints specify the vform values of the VP complements

which these verbs select (discussed in section 3.5). We can define

the lexical entry of, for example, the auxiliary“has” as a sort

has-wd which inherits from the sorts perf-comp-aux-vb-wd , fin-wd ,

prd-wd and ssr-wd , giving simply the following.

has-wd

phon 〈has〉

vform pres

125

'

&

$

%

This requires the feature structure corresponding to “has” to

satisfy the following cascade of constraints. To be a has-wd it must

be a perf-comp-aux-vb-wd. Therefore,

• It must be a word (table 4):

cat

lex +

subj 1 〈synsem〉

spr 2 list(synsem)

comps 3 list(synsem)

arg-str 1 ⊕ 2 ⊕ 3

126

'

&

$

%

• It must be a verb-wd (table 4):

vb-wd

cat

head

verb

vform vform

aux bool

inv bool

spr 〈 〉

127

'

&

$

%

• It must be an aux-verb-wd (table 4):

aux-verb-wd

cat
[

aux +
]

128

'

&

$

%

• It must be a perf-aux-verb-wd (table 4):
[

comps 〈VP[psp]〉
]

129

'

&

$

%

In addition, it must unify with fin-wd which entails that it satisfy

the following pair of constraints.

• It must be a verb-wd (table 7).

• It must be a fin-wd (table 7):

fin-wd

head
[

vform fin
]

130

'

&

$

%

It must also unify with prd-wd which requires that it satisfy the

following constraint (table 5).

•
[

prd-wd

subj 〈synsem〉

]

131

'

&

$

%

It must unify with ssr-wd which entails that it satisfy in addition

the following cascade of constraints.

• It must be an intran-xcomp-wd (table 6).
[

intran-xcomp-wd

comps 〈XP[subj 〈synsem〉]〉

]

• It must be an ssr-wd (table 6).

ssr-wd

subj 1

comps
[

subj 1

]

132

'

&

$

%

And, finally,

• it must satisfy the constraints stipulated in its lexical entry:
[

phon 〈has〉

vform pres

]

133

'

&

$

%

The unification of all of these constraints results in the description

in figure 34.

134

'

&

$

%

word

phon 〈has〉

cat

head

verb

vform fin

aux +

inv bool

lex +

subj 1

spr 2 〈 〉

comps 3 〈VP
[

subj 1 〈synsem〉
]

〉

arg-str 1 ⊕ 2 ⊕ 3

Figure 34: AVM for auxiliary “has”.

135

'

&

$

%

5 Semantics

sign

synsem

synsem

local

local

cat category

content content

136

'

&

$

%

content forms the top of sortal hierarchy with subsorts

parameterised-state-of-affairs, nominal-object and quantifier, as

shown below.

content

psoa nom-obj quant

These three sorts are used to define the semantics for different

classes of syntactic objects.

Verbs and verbal projections have psoa content values,

nouns and nominal projections nom-obj values and

determiners quantifier values.

137

'

&

$

%

The sort psoa corresponds very roughly in FOL terms to a

predicate whose argument positions are occupied by variables (the

‘parameters’ of the name). It has the following constraint.

psoa

quants list(quantifier)

nucleus relation

The value of nucleus is the sort relation. The idea is that in psoas

the quantificational information appears as the value of quants

and is segregated from the quantifier-free component of the

semantics in nucleus. Let us move rapidly to a concrete example

by giving the content value for “like”.

138

'

&

$

%

psoa

quants 〈 〉

nucleus

like-rel

liker index

liked index

Relations form a sortal hierarchy, which permits a systematic

structuring of lexical relations.

quants has the empty list as value because this is an unquantified

expression.

139

'

&

$

%

The content of NPs is of sort nominal-object and has the

following attributes.

nom-obj

index index

restriction set(psoa)

The sort index is further partitioned into subsorts referential, there

and it.

The referential indices are used for contentful nouns and PPs in

argument positions;

there and it for the non-referential ‘dummy’ NPs “there” and “it”

in sentences such as “There appears to be a unicorn in the garden”

or “It is easy to see you don’t like ice cream”.

To be interpreted, an index needs to model-theoretically anchored

to some appropriate real-world entity.

140

'

&

$

%

The sort index has the following constraint.

index

person person

number number

gender gender

141

'

&

$

%

The sign for a proper noun such as “Toby” will have the following

content value, in which the value of the restriction attribute is

empty,

phon 〈Toby〉

content

nom-obj

index

ref

person 3

number sing

gender masc

restr { }

142

'

&

$

%

A common noun, such as “book”, will look like the following.

phon 〈book〉

content

nom-obj

index 1

ref

person 3

number sing

gender neut

restr

psoa

quants 〈 〉

nucleus

[

book-rel

instance 1

]

The restriction value for “book” corresponds to the FOL

book1(x).

143

'

&

$

%

5.1 The semantics of verbs.

Abbreviation Simplified AVM

NP i

loc

cat

head noun

subj 〈 〉

comps 〈 〉

lex –

content | index i

Figure 35: Abbreviation for the NP synsem value.

144

'

&

$

%

word

phon 〈likes〉

local

cat

head verb

subj 〈 1 NP[nom] i [3rd, sing]
〉

comps 〈 2 NP[acc] j 〉

arg-str 〈 1 , 2 〉

content

psoa

quants 〈 〉

nucl

like-rel

liker i

liked j

Figure 36: The syntax and semantics of “likes”.

145

'

&

$

%

word

phon 〈laughs〉

subj 〈 1 NP[nom] i [3rd, sing]
〉

arg-str 〈 1 〉

cont

psoa

quants 〈 〉

nucl

[

laugh-rel

laugher i

]

word

phon 〈gives〉

subj 〈 1 NP[nom] i [3rd, sing]
〉

comps 〈 2 NP[acc] j , 3 PP[to]
k
〉

arg-str 〈 1 , 2 , 3 〉

cont

psoa

quants 〈 〉

nucl

give-rel

giver i

given k

gift j

(a) (b)

Figure 37: Simplified AVMs for “laughs” and “gives”.

146

'

&

$

%

The Content Principle

hd-nexus-ph =⇒

content 1

hd-dtr
[

content 1

]

This is a constraint on head-nexus-phrase, which subsumes all

subsorts of headed-phrase except head-adjunct-phrase.

It will therefore be applicable to all the structures that we have

discussed so far in this chapter.

147

'

&

$

%

We will briefly illustrate its effect with respect to two

examples: (32) with normal constituent order and (33) its

counterpart with a UDC in which the complement NP has been

displaced to the front of the clause.

(32) “Toby likes Andrew.”

(33) “Andrew, Toby likes.”

148

'&

$%

S

[

cont 3

]

NP

1

[

synsem

index i

]

Toby

VP

hd-dtr

[

subj 〈 1 〉

cont 3

]

V

hd-dtr

subj 〈 1 〉

comps 〈 2 〉

arg-str 〈 1 2 〉,

content 3

psoa

quants 〈 〉

nucl

[

like-rel

liker i

liked j

]

likes

NP

2

[

synsem

index j

]

Andrew

Figure 38: The content values of “Toby likes An-

drew”.

1
4
9

'

&

$

%

The content value of the whole sentence is

quants 〈 〉

nucleus

like-rel

liker i

liked j

where the tags i and j are keyed to the individuals denoted by the

subject and object NPs “Toby” and “Andrew” respectively. This

nucleus value is identical to that of the head verb “likes” and is

shared by each of the projections of the head daughter as a

consequence of the Content Principle.

150

'&

$%

S

[

content 3

slash { }

]

NP

[

synsem

loc 1

[

index j

]

]

Andrew

S

[

content 3

slash { 1 }

]

NP

2

[

synsem

index i

]

Toby

VP

[

subj 〈 2 〉

cont 3

slash { 1 }

]

V

subj 〈 2 〉

comps 〈 〉

arg-str

〈

2 ,

[

local 1

slash { 1 }

]〉

cont 3

psoa

quants 〈 〉

nucl

[

like-rel

liker i

liked j

]

slash { 1 }

likes

Figure 39: The content values of the UDC “An-

drew, Toby likes”.

1
5
1

'

&

$

%

The second example (33), whose tree is given in figure 39, is

particularly interesting from the point of view of its semantics,

because, despite its radically different syntax, absolutely nothing

more needs to be said about content values. The values of the

roles liker and liked are supplied by the index values of the

members of the arg-str list of the head verb “likes”, in exactly

the same way as for (32). The structure sharing of local values in

UDCs ensures that this relationship between a head and its

arguments is preserved in the UDC.

152

'

&

$

%

5.1.1 Context

In figure 39 we have lost information about the names of the

individuals involved in the liking relationship. In FOL terms, we

have a representation akin to like1(x, y), with x and y anchored to

two individuals in the Universe of Discourse.

The HPSG solution to this omission is to assume that meaning not

only consists of content values, but also includes contextual

information. With this information added, the structure of signs

looks like this:

153

'

&

$

%

sign

synsem

cat cat

content content

context

contextual-indices

speaker index

hearer index

. . .

background set(relation)

154

'

&

$

%

Adding background information to the lexical entry for a proper

noun such as “Toby” gives the following:

phon 〈Toby〉

synsem

content

nom-obj

index 1

ref

person 3

number sing

gender masc

restr { }

context

bkgrnd {

name-rel

bearer 1

name Toby

}

155

'

&

$

%

The contribution of background values to the larger structures in

which they occur is determined by the following constraint:

Principle of Contextual Consistency

The context|background value of a given phrase is the

union of the context|background values of the

daughters.

156

'

&

$

%

content value for “Toby likes Andrew”

ss

cont 2

psoa

quants 〈 〉

nucl

like-rel

liker i

liked j

cxt

bkgrnd {

name-rel

bearer i

name Toby

,

name-rel

bearer j

name Andrew

}

157

'

&

$

%

5.2 Prepositional Phrases

In section 3.4 we discussed the syntax of those PPs that occur on

the argument structure list of another head, as in examples like

“Toby gave a drink to Andrew”.

From a semantic point of view, apart from indicating that Andrew

is the recipient of the drink, the preposition “to” does not have any

significant semantic content.

158

'

&

$

%

This can be accounted for if we assign such prepositions the

following kind of feature structure.

phon 〈to〉

comps 〈NP[content 1]〉

content 1

According to this, the content of the preposition is simply the

content of its NP complement. Because the value of this

content is of sort nominal-object, the Content Principle requires

that any PP of which this preposition is the head daughter has an

identical content value, and so the PP inherits an NP denotation.

6 Lexical Relations

Consider the following pair of sentences.

159

'

&

$

%

(34) “Andrew gave Toby scotch”

(35) “Toby was given scotch by Andrew”

There are obvious systematic syntactic and semantic relationships

between such pairs.

• They have the same truth conditions

• The subject of (34) appears as the object of the preposition

“by” in (35)

• The direct object of (34) appears as the subject in (35)

• The verb of (34) appears in a related form in (35) and is

preceded by a form of the auxiliary verb “be”

Sentences like (34) are called active sentences and those like (35)

are called passive sentences, and any descriptively adequate

account of English grammmar should explicitly recognise the

existence of such systematic correspondences. A long-standing way

160

'

&

$

%

of doing this is to take one of the sentences as being more basic

(typically the active one) and to map it onto the other. More

recently, in highly lexicalised frameworks, such as HPSG, it is

argued that the relationship can be captured in terms of a

relationship between the active and passive forms of verbs (e.g.

“give” and “given”).

161

'

&

$

%

Figure 40: Lexical entries for the active and passive forms of the

verb “give”.

active

phon 〈give〉

head

[

vform bse

]

arg-str 〈 1 NP
i
, 2 NP

j
, 3 PP[to]

k
〉

subj 〈 1 〉

comps 〈 2 , 3 〉

cont

quants 〈 〉

nucl

give-rel

giver i

gift j

recipient k

162

'

&

$

%

passive

phon 〈given〉

head
[

vform pas
]

arg-str 〈 1 NP j , 2 PP[to] k , 3 PP[by] i 〉

subj 〈 1 〉

comps 〈 2 , 3 〉

cont

quants 〈 〉

nucl

give-rel

giver i

gift j

recipient k

163

'

&

$

%

If we look at AVMs for the active and passive forms of the verb

“give”, shown in figure 40, it is easy to see the general nature of

the relationship. From a comparison of the two AVMs, it is clear

that, although they differ in a number of respects, quite a lot of

information is also shared between the two forms.

There are a number of different ways in HPSG of treating this kind

of relationship. The most traditional approach is is to map one

form onto the other, preserving the similarities and that is what we

will sketch out here. This kind of mapping is called a lexical rule.

Lexical rules are statements of the form “if a word of form A (the

‘input’ to the rule) exists in the lexicon, then a word of form B (the

‘output’ of the rule) is also in the lexicon”, where B is the result of

applying some function to A.

164

'

&

$

%

For example, a lexical rule for passive verbs might look like

figure 41.

trans-mn-vb-wd

phon 〈 1 〉

head
[

vform bse
]

arg-str 〈 2 i , 3 〉 ⊕ 4

cont 5

=⇒

pass-mn-vb-wd

phon 〈f pass (1)〉

head
[

vform pas
]

arg-str 〈 3 〉 ⊕ 4 ⊕ (〈PP[by] i 〉)

cont 5

Figure 41: Passive lexical rule.

165

'

&

$

%

The derived lexical entry for passive verbs, together with other

constraints of the grammar of English, will give us passive verb

phrases containing passive verbs and there complements, but we

also need some way of allowing passive VPs to form sentences.

Passive VPs can appear in a range of constructions.

(36) “Duncan was killed by Macbeth”

(37) “Painted by Leonardo, the Mona Lisa is one of the most

famous paintings in the world”

(38) “I’m looking for a book written by a linguist”

Here will limit ourselves to sentential passives like (36).

166

'

&

$

%

These are introduced by the auxiliary be. We already have a

lexical entry for be (figure 20 on 66), but that entry specifies that

its complement must be a verb phrase bearing the specification

[vform prp]. It would, of course, be possibly to simply add

another lexical entry, identical to figure 20, except for the

specification [vform prp], but a further look at be suggests that

this would not be a good move.

167

'

&

$

%

be is not restricted to taking the two sorts of complements

(VP[vform prp] and VP[vform pas]) that we have encountered so

far.

(39) “Macbeth is in Glamis.” (PP)

(40) “Duncan was (the) king of Scotland.” (NP)

(41) “Toby is fond of scotch.” (AP)

To accommodate these additional examples, we would need a

proliferation of bes.

168

'

&

$

%

Items that can occur as complements of be are traditionally known

as ‘predicative complements’, which suggests that we could capture

their distribution in terms of a boolean-valued head feature pred.

All the kinds of constituents that can appears as complements to

be are [pred +], those that cannot are [pred -]. Passive and

progressive verbs are [pred +], other forms of verbs (finite, past

participle) are [pred -].

The lexical entry for be is modified that that in figure 42

169

'

&

$

%

head

[

verb

aux +

]

subj 6

comps

〈

head

[

verb

pred +

]

subj 6

comps 〈 〉

〉

Figure 42: Revised lexical entry for the auxiliary verb “be”.

170

'

&

$

%

7 Binding Theory

(42)

local

cat category

content

nom-obj

index

index

per person

num number

gend gender

restriction set(psoa)

171

'

&

$

%

(43) Sortal hierarchy of nominal-objects

nom-obj

pron

ana

refl recp

ppro

npro

(44)

pron pronoun

ana anaphor

refl reflexive pronoun herself etc.

recp reciprocal pronoun each other

ppro personal pronoun she, he

npro nonpronominal Kim, Sandy, the book

172

'

&

$

%

(45) Sortal hierarchy of index objects

index

ref there it

173

'

&

$

%

(46) Some nominal objects

herself they

refl

index

ref

per 3

num sing

gend fem

restriction {}

ppro

index

ref

per 3

num plur

restriction {}

174

'

&

$

%

there it

ppro

index

[

there

per 3

]

restriction {}

ppro

index

it

per 3

num sing

restriction {}

175

'

&

$

%

(47) Argument structure

cat

cat

head head

subj 1 list(synsem)

comps 2 list(synsem)

arg-str 1 ⊕a 2

aα ⊗ β = append(α, β)

176

'

&

$

%

(48) Obliqueness

One synsem object is more oblique than another provided it

appears to the right of the other on the arg-str list of a word.

(49) O-command

One referential synsem locally o-commands another provided

that the second is more oblique than the first.

One referential synsem α o-commands another β provided that

α locally o-commands a third synsem γ which dominates β.

(50) O-binding

One referential synsem o-binds another provided that it

o-commands and is coindexed with the other. If an item is not

o-bound, it is o-free.

177

'

&

$

%

(51) Binding theory

a. Principle A: A locally o-commanded anaphor must be

locally o-bound

b. Principle B: A personal pronoun must be locally o-free

c. Principle C: A non-pronoun must be o-free

178

'

&

$

%

(52) a. Sandyi likes himselfi

b.
[

arg-str 〈 NP : npro i , NP :refl i 〉
]

(53) a. *Sandyi likes himi

b.
[

arg-str 〈 NP : npro i , NP :ppro i 〉
]

(54) a. *Hei likes Sandyi

b.
[

arg-str 〈 NP : ppro i , NP :npro i 〉
]

(55) a. *Sandyi says that Mary j likes himselfi

b. Argument structure of likes:
[

arg-str 〈 NP : npro j , NP :refl i 〉
]

179

'

&

$

%

(56) a. *Himselfi likes Sandyi

b. Argument structure of likes:
[

arg-str 〈NP[CASE acc], NP 〉
]

180

'

&

$

%

(57) a. Kimi told Sandyj that Fredk liked heri/j

b. S

1 NP

Kim

VP

V

[

arg-str 〈 1 , 2 , 3 〉
]

told

2 NP

Sandy

3 S

Comp

that

S

4 NP

Fred

VP

V

[

arg-str 〈 4 , 5 〉
]

liked

5 NP

her

181

'

&

$

%

(58) a. Johni was going to get even with Mary. That picture of

himselfi in the paper would really annoy her, as would the

other stunts he had planned.

b. *Mary was quite taken aback by the publicity Johni was

receiving. That picture of himselfi in the paper had really

annoyed her, and there was not much she could do about it.

c.
[

arg-str 〈 NP i 〉
]

d. The reflexive takes as its antecedent an NP whose referent is

the individual whose viewpoint or perspective is somehow

being reflected in a given text

(59) a. The picture of himselfi in Newsweek bothered Johni.

b. *The picture of himselfi in Newsweek bothered Johni’s

father.

c. The bearer of the experiencer role (the direct object of

bother is the individual whose viewpoint is being reflected

182

'

&

$

%

d. The picture of himselfi in Newsweek made Johni’s day.

183

'

&

$

%

8 Control and raising

8.1 Introduction – semantics

(60) a. They try to run

b.

try-rel

tryer 7

soa-arg

psoa

quants 〈 〉

nucleus

run-rel

runner 7 ref

184

'

&

$

%

c. They tend to run

d.

tend-rel

soa-arg

psoa

quants 〈 〉

nucleus

run-rel

runner 7 ref

185

'

&

$

%

8.2 Syntax

(61) try

arg-st
〈

NP 1 , VP[inf, SUBJ 〈NP 1]〉 : 2

〉

content

psoa

quants 〈 〉

nucleus

try-rel

tryer 1 ref

soa-arg 2

186

'

&

$

%

(62) tend

arg-st
〈

1 , VP[inf, SUBJ 〈 1 〉] : 2

〉

content

psoa

quants 〈 〉

nucleus

tend-rel

soa-arg 2

187

'

&

$

%

(63) persuade

arg-st
〈

NP 1 , NP 2 , VP[inf, SUBJ 〈NP 2 〉] : 3

〉

content

psoa

quants 〈 〉

nucleus

persuade-rel

persuader 1 ref

persuadee 2 ref

soa-arg 3

188

'

&

$

%

(64) believe

arg-st
〈

1 NP 2 , 3 , VP[inf, SUBJ 〈 3 〉] : 4

〉

content

psoa

quants 〈 〉

nucleus

believe-rel

believer 2

soa-arg 4

189

'

&

$

%

(65) S

[CONT 2]

NP
1

they

VP

[CONT 2]

V

cont 2

psoa

quants 〈 〉

nucleus

[

try-rel

tryer 1

soa-arg 3

]

try

VP

[SUBJ〈 4 〉 CONT 3]

V[inf]

to

VP[SUBJ〈 4 〉 CONT 3]

V

subj 〈 4 NP
5

〉

cont 3

psoa

quants 〈 〉

nucleus

[

run-rel

runner 1

]

run

190

'

&

$

%

(66) S

[CONT 2]

1 NP

they

VP

[SUBJ〈 1 〉 [CONT 2]

V

cont 2

psoa

quants 〈 〉

nucleus

[

tend-rel

soa-arg 3

]

tend

VP

[SUBJ〈 1 〉 CONT 3]

V[inf]

to

VP

[SUBJ〈 1 〉 CONT 3]

V

subj 〈 1 NP
4

〉

cont 3

psoa

quants 〈 〉

nucleus

[

run-rel

runner 5

]

run

191

'

&

$

%

(67) a. try to run

b.

cont

psoa

quants 〈 〉

nucleus

try-rel

tryer 1

soa-arg

psoa

quants 〈 〉

nucleus

[

run-rel

runner 1

]

192

'

&

$

%

(68) a. tend to run

b.

cont

psoa

quants 〈 〉

nucleus

tend-rel

soa-arg

psoa

quants 〈 〉

nucleus

[

run-rel

runner 1

]

193

'

&

$

%

8.3 Expletives

(69) be

cat

[

head verb[+AUX]

arg-st 〈NP
there[NUM 1]

, 2 NP
[NUM 1]

, XP[+PRED, SUBJ 〈 2 〉]: 3 〉

]

cont 3

VP

[fin, SUBJ 〈NPthere[3rd, sing] 〉]

V

was

1 NP

no-one

AP

[+PRED, SUBJ 〈 1 〉]

absent

194

'

&

$

%

(70) bother: that Sandy snores bothers Kim

arg-st 〈CP[fin], NP 1 ref
〉

cont

psoa

quants 〈 〉

nucleus

bother-rel

bothered 1

(71) bother: it bothers Kim that Sandy snores

arg-st 〈NPit, CP[fin], NP 1 ref
〉

cont

psoa

quants 〈 〉

nucleus

bother-rel

bothered 1

195

'

&

$

%

(72) Lexical rule
[

arg-st 〈CP[fin], NP 1 ref
〉
]

=⇒
[

arg-st 〈NPit, CP[fin], NP 1 ref
〉
]

196

'

&

$

%

9 Unbounded dependency constructions

(73) “Ice cream, I like.”

Unbounded dependency constructions (UDCs) have the

following characteristics.

• there is a dependency between the displaced constituent, the

‘filler,’ and its ‘original’ position, the ‘gap’ – if one of them is

filled, the other must be empty

• the distance which can intervene between the filler and the gap

is potentially unbounded, subject to performance

considerations – “Ice cream, he said that she said that he said

that she said . . . I like.”

197

'

&

$

%

UDCs cover a range of more specific constructions, including

topicalisation (42), wh-questions (43) and relative

clauses (44), cleft sentences (45) and pseudo-clefts (46),

among others.

(74) “Which ice cream do you like?”

(75) “The ice cream which I like is very expensive.”

(76) “It is Portia who I like.”

(77) “What I like is ice-cream.”

198

'

&

$

%

UDCs are handled in HPSG by the synsem‖nonlocal attribute.

This takes as its value a feature structure of sort nonlocal which is

appropriate for the features slash, rel and que, which all take

sets of various sorts as values, as shown in figure 43.

synsem

synsem

nonlocal

nonlocal

slash set(local)

rel set(ref-index)

que set(quantifiers)

Figure 43: nonlocal values.

199

'

&

$

%

S

NP

Ice cream

S/NP

NP

I

VP/NP

V

like

NP/NP

ε

Figure 44: “Ice cream, I like.”

200

'

&

$

%

UDCs can be decomposed into three components:

the top, where the unbounded dependency is introduced,

the bottom, where it is resolved, and

the middle, where the dependency passes through the intervening

structure.

201

'

&

$

%

In Phrase Structure grammar terms, for the top we require a rule

of roughly the following kind.

S → XP S/XP

The intended interpretation of this rule is that a sentence may

consist of some phrase XP, followed by a sentence which contains a

gap of the same type (XP).

202

'

&

$

%

For the bottom, we require a lexical entry of the following kind,

XP/XP → ε

which states that the ‘empty category’ XP/XP has no phonetic

realisation.

203

'

&

$

%

For the middle, we require some general principle which determines

how the slash value is shared between mother and daughters.

204

'

&

$

%

In translating these informal ideas into HPSG, we will start with

the top of the construction, which is defined as a phrase of sort

head-filler-ph (cf. figure 5 on page 11.), with XP being the filler and

S/XP being the head. The sort head-filler-ph has the following

constraints.

205

'

&

$

%

Head Filler Phrase

hd-filler-ph =⇒

nonloc
[

slash { }
]

hd-dtr

head verb

subj 〈 〉

comps 〈 〉

lex –

slash { 1 }

non-hd-dtr 〈
[

loc 1

]

〉

206

'

&

$

%

S

[

head 2 verb

slash { }

]

NP

(non-hd-dtr)

[

loc 1

]

Ice-cream

S

(head-dtr)

head 2

subj 〈 〉

comps 〈 〉

slash { 1 }

I like

Figure 45: The top of an unbounded NP dependency.

207

'

&

$

%

For the bottom of a UDC we have the following lexical entry for an

‘empty category’ – also called a trace.

The Lexical entry for trace

sign

phonology 〈 〉

synsem

local 1

nonlocal
[

slash { 1 }
]

Here the value of the attribute phonology is the empty list and

the sign’s local value is shared with the only member of the

nonlocal‖slash value. (The counterpart of XP/XP).

208

'

&

$

%

Finally, we provide a general constraint on head-valence-ph that

handles the middle of a UDC.

Slash Inheritance Principle

In a object of sort head-valence-ph, the value of slash is

the set union of the slash values of the daughters.

209

'

&

$

%

In addition, we need now to specify that all lexical entries with the

exception of the empty category above contain [nonlocal‖slash

{}].

210

'

&

$

%

S

hd-fill-ph

[

slash { }

]

NP

[

loc 1

]

Ice-cream

S

hd-subj-ph

[

slash { 1 }

]

NP

[

slash { }

]

I

VP

hd-comp-ph

[

slash { 1 }

]

V

[

slash { }

]

like

NP

[

local 1

slash { 1 }

]

Figure 46: HPSG analysis of “Ice cream, I like”.

211

'

&

$

%

The coindexing of the local values of the filler and the gap

ensures that they have the same syntactic category, in this case NP.

Note that case is also a part of local, so that the case

specification of the filler and gap will be identical, guaranteeing

that only (i) is defined as well-formed.

(i) “Me, he likes.”

(ii) *“I, he likes.”

212

'

&

$

%

A more recent alternative treatment of unbounded dependencies in

HPSG proposes the abandonment of the empty category approach

to unbounded dependencies in favour of a lexical one.

This alternative exploits the strongly lexicalist nature of HPSG.

Every lexical sign already encodes, via its valence attributes, the

syntactic arguments with which it combines to form phrases. It is

not necessary, therefore, to actually build phrases in order to

specify that one or more arguments may be missing. This can be

accomplished by modifying the information contained in the lexical

entry itself.

213

'

&

$

%

The lexical version of UDCs requires a number of modifications to

our earlier account. The first is that we modify the constraints

associated with the sort word to include the following.

The Slash Amalgamation Constraint

word =⇒

loc

arg-str 〈
[

slash 1

]

, . . .,
[

slash n

]

〉

bind 2

nonloc
[

slash (1] . . .]a
n) - 2

]

214

'

&

$

%

] denotes the disjoint union of two sets:

A] B ≡ A ∪ B ∧ (A ∩ B = ∅). If, for example, A] B = {a, b, c},

then A and B can have the following values:

{} {a, b, c}

{a} {b, c}

{a, b} {c}

{a, b, c} {}

In contrast to normal set union, what is not possible is

A = {a, b} ∧ B = {b, c}.

215

'

&

$

%

The second modification is to partition the sort synsem into two

subsorts, called canonical-synsem and gap-synsem.

synsem

canon-ss gap-ss

The sort canonical-synsem is just the set of synsem values that we

have been using so far. The sort gap-synsem is defined as follows.

gap-synsem

local 1

nonlocal
[

slash { 1 }
]

In contrast to all previous examples, no actual lexical item in

English (or any other language) contains a non-canonical synsem

value.

216

'

&

$

%

The third modification is to change the constraint on the sort word

which relates the values of the subj, spr, comps and arg-str

attributes. Instead of simply relating them via append, we have the

more complex Argument Realisation Constraint.

The Argument Realisation Constraint

word =⇒

subj 1

spr 2

comps 3 list(canon-ss)

arg-str 1 ⊕ 2 ⊕ (3 © list(gap-ss))

217

'

&

$

%

The symbol © represents the sequence union or shuffle

operator. The shuffle relation holds of three sequences A, B and C

if C is a sequence that contains all and only the elements of A and

B, and the relative order of the elements in A and the relative

order of the elements in B are both preserved in C. Suppose that

C = 〈a, b, c〉 then A © B is true of each of the following pairs of

values of A and B.

218

'

&

$

%

A B

〈a, b, c〉 〈 〉

〈a, b〉 〈c〉

〈a, c〉 〈b〉

〈a〉 〈b, c〉

〈b, c〉 〈a〉

〈b〉 〈a, c〉

〈c〉 〈a, b〉

〈 〉 〈a, b, c〉

219

'

&

$

%

Suppose that the arg-str value of some head is 〈NP1, NP2, PP〉

and that there is no specifier (i.e. the value of the tag 2 is the

empty list). The bracketing of the arg-str list in the definition of

the Argument Realisation Constraint indicates that the shuffle

relation is defined only over arguments to the right of the specifier,

so the tag 1 always has the value 〈NP1〉.

220

'

&

$

%

If both the remaining arguments are of sort canonical-synsem then

the other values in the Argument Realisation Constraint have the

following values,

3 = 〈NP2, PP〉 and list(gap-ss) = 〈 〉.

If, say, PP is of sort gap-synsem, then the values are: 3 = 〈NP2〉

and list(gap-ss) = 〈PP〉.

If both the second and third arguments are of sort gap-synsem,

then the values are: 3 = 〈 〉 and list(gap-ss) = 〈NP2, PP〉.

221

'

&

$

%

A more subtle effect of the Argument Realisation Constraint is that

it says nothing about subj values; it does not constrain them to be

canonical, but, at the same time, it does not allow them to be

‘transferred’ to the slash value. In contrast to complements,

whatever appears in first position on the arg-str list also appears

on the subj list. We will return to the issue of subjects and gaps in

section 7.1.

222

'

&

$

%

The final modification needed is to the Slash Inheritance Principle .

The mother now simply inherits the slash value of its head

daughter.

Slash Inheritance Principle - Revised version

hd-valence-ph =⇒

slash 1

hd-dtr
[

slash 1

]

223

'

&

$

%

Let us now put all these changes together and show their effect on

a mono-transitive verb such as “likes”. The lexical entry for “likes”

is described by the following AVM.

word

phon 〈likes〉

arg-str

〈[

loc NP

slash 1

]

,

[

loc NP[acc]

slash 2

]〉

slash 1] 2

The comps value of this lexical entry can satisfy the Argument

Realisation Constraint in either of the two ways shown in figure 47.

224

'

&

$

%

word

phon 〈likes〉

subj

〈

1

ss

loc NP

slash 2

〉

comps

〈

3

canon-ss

loc NP[acc]

slash 4

〉

arg-str 〈 1 , 3 〉

slash 2] 4

word

phon 〈likes〉

subj

〈

1

ss

loc NP

slash 2

〉

comps 〈 〉

arg-str

〈

1 ,

gap-ss

loc 4

slash

{

4

}

〉

slash 2]

{

4 NP[acc]

}

(a) (b)

Figure 47: Argument realisation for a mono-transitive verb.

225

'

&

$

%

Figure 47(a) is the kind of feature structure which occurs in

sentences in which there is no UDC (e.g. (47)),

and also in sentences in which the slash value of the complement

is non-empty, in which case the gap appears within the

complement, as in (48).

(78) “Toby likes every kind of scotch.”

(79) “Scotch, Toby like every kind of.”

226

'

&

$

%

In figure 47(b), the second argument is a gap-ss and appears in the

slash set of “likes” and is therefore realised as a gap, as in (49)

(80) “Scotch, Toby likes”

227

'

&

$

%

S

[

slash 5

]

NP

1

[

synsem

slash 2 { }

]

Toby

VP

[

slash 5

]

V

subj 〈 1

[

synsem

slash 2

]

〉

comps 〈 3

[

synsem

slash 4

]

〉

slash 5 (2] 4)

arg-str 〈 1 , 3 〉

likes

NP

3

[

synsem

slash 4

]

every kind of (scotch)

Figure 48: The Slash Inheritance Principle.

228

'&

$%

NP

[

slash { 3 }

]

DetP

every

N′

(hd-dtr)

[

slash { 3 }

]

N

(hd-dtr)

[

subj 1 〈 〉

comps 〈 2 〉

slash { 3 }

arg-str 〈 1 , 2 〉

]

kind

PP

2

[

synsem

slash { 3 }

]

P

(hd-dtr)

subj 4 〈 〉

comps 〈 〉

slash { 3 }

arg-str 4 ⊕

〈[

gap-ss

loc 3 NP[acc]

slash { 3 }

]〉

of

Figure 49: An NP containing an NP gap.

2
2
9

'

&

$

%

9.1 Subject extraction

There is a well-known restriction on the distribution of subject

gaps in English (and many other languages), namely that they

cannot occur immediately after a complementiser, as shown by the

contrast between (50) and (51).

(81) *“Who did Andrew say that —— liked scotch?”

(82) “Who did Andrew say —— liked scotch?”

230

'

&

$

%

The lexical analysis of UDCs described in the preceding section

places no sortal restriction on the synsem value of subjects.

Consequently, the theory permits signs such as the following.

word

phon 〈liked〉

subj

〈

1

gap-ss

loc 2

slash { 2 }

〉

comps 〈 3 NP[acc]〉

arg-str 〈 1 , 3 〉

slash { 2 }

231

'

&

$

%

This word, together with the other principles of HPSG, licenses

phrases like that shown in figure 50.

VP

subj

〈[

gap-ss

loc 1

]〉

slash { 1 }

V

[

slash { 1 }
]

liked

NP

[

slash { }
]

scotch

Figure 50: VP with a gap-synsem subj value.

232

'

&

$

%

Examples like (51) can be accounted for if verbs such as “say” are

specified having the particular lexical property of taking,

not a [subj 〈 〉] complement, but

a complement specified as [subj list(gap-ss)].

This means that such a verb can combine with the synsem

component of signs like that in figure 50, as shown in figure 51.

233

'

&

$

%

VP

[

comps 〈 〉

slash { 3 }

]

V

(hd-dtr)

comps

〈

1

synsem

head

[

verbal

vform fin

]

subj 2 list(gap-ss)

comps 〈 〉

〉

slash { 3 }

said

VP

1

synsem

subj 2

〈[

gap-ss

loc 3

]〉

slash { 3 }

liked scotch

Figure 51: A subject ‘gap’ in an unbounded dependency.

234

'

&

$

%

If, on the other hand, the complementiser “that” is specified as

requiring a [subj 〈 〉] complement, (50) is automatically disallowed.

Note that [subj 〈 〉] is one of the possibilities subsumed by [subj

list(gap-ss)] (since elist is a subsort of list), which means that verbs

such as “say” may also take the saturated clausal complements S
and CP.

235

	Signs
	Valence
	Words and phrases
	Complements
	Subjects
	Nouns and Noun Phrases
	Prepositions and PPs
	Verbs and auxiliaries
	Clauses
	Subject-auxiliary Inversion (SAI)

	The Lexicon
	Semantics
	The semantics of verbs.
	Context

	Prepositional Phrases

	Lexical Relations
	Unbounded dependency constructions
	Subject extraction
	Determiners and quantifiers

	Adjuncts
	Adjectival adjuncts
	PP adjuncts
	Relative clauses
	Wh-words and Pied-piping
	The Relative Clause

