Annals of Fuzzy Mathematics and Informatics Volume 2, No. 2, (October 2011), pp. 207- 217 ISSN 2093–9310 http://www.afmi.or.kr

©FMI © Kyung Moon Sa Co. http://www.kyungmoon.com

(L, \odot) -smooth topogenous spaces and (L, \odot) -smooth quasi-uniform spaces

M. A. Abdel-Sattar

Received 18 January 2011; Revised 16 March 2011; Accepted 11 April 2011

ABSTRACT. In this paper we study the concept of (L, \odot) -smooth topogenous structures in the framework of (L, \odot) -smooth topologies and (L, \odot) -smooth quasi-proximities. Some fundamental properties of them are studied. The relationship between (L, \odot) -smooth topogenous structures and (L, \odot) -smooth quasi-uniformities is established.

2010 AMS Classification: 54A40, 06D72, 03B52

Keywords: (L, \odot) -smooth topological spaces, (L, \odot) -smooth topogenous spaces, (L, \odot) -smooth quasi-uniform spaces.

Corresponding Author: M. A. Abdel-Sattar (mabdelsattar2002@yahoo.com)

1. INTRODUCTION

Katsaras and Petalas [10] introduced the concept of fuzzy syntopogenous structures as the foundations of the theories of Chang fuzzy topological spaces [3], Hutton fuzzy uniform spaces [5], Katsaras fuzzy proximity spaces [6, 7]. Katsaras [8, 9] developed the notions of a fuzzy syntopogenous structures in the sense of Lowen fuzzy topological spaces [13], Lowen fuzzy uniform spaces [14] and Artico-Moresco fuzzy proximity spaces [1, 2]. Moreover, Šostak [21] and Ramadan [16] expanded a fuzzy syntopogenous structures in the sense of Šostak fuzzy topological spaces [20]. Šostak [20] introduced the notion of (L, \wedge)-fuzzy topological spaces as a generalization of L-topological spaces [13]. Höhle and Šostak substitute a complete quasi-monoidal lattice (or GL -monoid) instead of a completely distributive lattice or an unit interval. Ramadan et al [18] introduce the concept of L-fuzzy topogenous spaces and L-fuzzy quasi- uniform spaces.

In this paper, we introduce the (L, \odot) -smooth topogenous spaces in the sense of Šostak fuzzy topological spaces [20], Samanta fuzzy proximities and unformities [19], and Yue et al. fuzzy quasi-uniform spaces [22]. It is different from the definitions of *L*-fuzzy topogenous structures [8, 9, 16, 17, 18, 19]. We study a natural relationship between (L, \odot) -fuzzy topogenous structures and (L, \odot) -fuzzy quasi-uniformities.

2. Preliminaries

Throughout this paper, let X be a nonempty set. $L = (L, \leq, \lor, \odot, ', 0, 1)$ denotes a completely distributive lattice with order-reversing involution ' which has the least and greatest elements, say 0 and 1, respectively. Let L^X be the family of all L-fuzzy subsets of X. For $\alpha \in L$, $\overline{\alpha}(x) = \alpha$ for all $x \in X$.

Definition 2.1 ([4]). A triple (L, \leq, \odot) is called a strictly two-sided, commutative quantal (stsc-quantale, for short) iff it satisfies the following properties:

- (L1) (L, \odot) is a commutative semigroup.
- (L2) $a = a \odot 1$, for each $a \in L$.
- (L3) \odot is distributive over arbitrary joins, i.e., $\left(\bigvee_{i\in\Gamma}a_i\right)\odot b=\bigvee_{i\in\Gamma}(a_i\odot b).$

Remark 2.2 ([4]). (1) Each frame is a stsc-quantale. In particular, the unit interval $([0,1], \leq, \wedge, 0, 1)$ is a stsc-quantales.

- (2) Every continuous t-norm T on $([0,1], \leq, t)$ with $\odot = t$ is a stsc-quantales.
- (3) Every GL-monoid is a stsc-quantale.
- (4) Let (L, \leq, \odot) be a stsc-quantale. For each $x, y \in L$, we define

$$x \to y = \bigvee \{ z \in L \mid x \odot z \le y \}.$$

Then it satisfies Galois correspondence, that is,

$$(x \odot y) \le z \Leftrightarrow x \le (y \to z).$$

(5) $(L, \leq, \odot, \oplus, *)$ is a stsc-quantale with an order-reversing involution * defined by $x \oplus y = (x^* \odot y^*)^*$ unless otherwise specified.

Definition 2.3 ([4]). A stsc-quantale $(L, \leq, \odot, *)$ is called a complete MV-algebra iff it satisfies the following property:

(MV) $(x \to y) \to y = x \lor y, \forall x, y \in L$ which is defined as $x \to y = \lor \{z \in L \mid x \odot z \le y\}, x^* = x \to 0.$

Lemma 2.4 ([4]). Let $(L, \leq, \odot, \oplus, *)$ be a stsc-quantale with an order-reversing involution *. For each $x, y, z \in L, \{y_i \mid i \in \Gamma\} \subset L$, we have the following properties:

- (1) If $y \leq z$ then $(x \odot y) \leq (x \odot z)$ and $(x \oplus y) \leq (x \oplus z)$.
- (2) $x \odot y \le x \land y \le x \lor y \le x \oplus y$.
- (3) $\wedge_{i\in\Gamma} y_i^* = (\vee_{i\in\Gamma} y_i)^* \text{ and } \vee_{i\in\Gamma} y_i^* = (\wedge_{i\in\Gamma} y_i)^*.$
- (4) $x \oplus (\wedge_{i \in \Gamma} y_i) = \wedge_{i \in \Gamma} (x \oplus y_i).$
- (5) $(x \lor y) \odot (z \lor w) \le (x \lor z) \lor (y \odot w) \le (x \oplus z) \lor (y \odot w).$
- (6) $x \odot (x \to y) \le y$ and $x \to y \le (y \to z) \to (x \to z)$.
- (7) If $x^* = x \to 0$, then $x \to y = y^* \to x^*$.
- (8) If $x^* = x \to 0$, then $x \odot (x^* \oplus y^*) \le y^*$.
- (9) If L is a complete MV-algebra, then
 - $\begin{aligned} x \odot y &= (x \to y^*)^*, \quad (x \oplus y) = x^* \to y, \\ (x \oplus z) \odot y &\leq x \oplus (y \odot z), \\ (x \odot y) \odot (z \oplus w) &\leq (x \odot z) \oplus (y \odot w), \\ x \oplus (\lor_{i \in \Gamma} y_i) &= \lor_{i \in \Gamma} (x \oplus y_i) \text{ and} \\ x \odot (\land_{i \in \Gamma} y_i) &= \land_{i \in \Gamma} (x \odot y_i). \end{aligned}$

All algebraic operations on L can be extended pointwise to the set L^X as follows:

- (1) $\lambda < \mu$ iff $\lambda(x) < \mu(x), \forall x \in X$.
- (2) $(\lambda \odot \mu)(x) = \lambda(x) \odot \mu(x), \forall x \in X.$
- (3) $(\lambda \to \mu)(x) = \lambda(x) \to \mu(x), \forall x \in X.$

Definition 2.5 ([4, 12, 15]). A map $\tau : L^X \to L$ is called an (L, \odot) -smooth topology if it satisfies the following conditions:

- (o1) $\tau(\underline{0}) = \tau(\underline{1}) = 1$,
- (o2) $\tau(\mu_1 \odot \mu_2) \ge \tau(\mu_1) \odot \tau(\mu_2), \ \forall \ \mu_1, \mu_2 \in L^X.$
- (o3) $\tau(\vee_{i\in\Gamma}\mu_i) \ge \wedge_{i\in\Gamma}\tau(\mu_i)$ for any $\{\mu_i\}_{i\in\Gamma} \subset L^X$.

The pair (X, τ) is called an (L, \odot) -smooth topological spaces.

Let τ_1 and τ_2 be (L, \odot) -smooth topologies on X. We say that τ_1 is finer than τ_2 (τ_2 is coarser than τ_1), denoted by $\tau_2 \leq \tau_1$, if $\tau_2(\lambda) \leq \tau_1(\lambda)$ for all $\lambda \in L^X$.

Let (X, τ_1) and (Y, τ_2) be (L, \odot) -smooth topological spaces.

A function $f: (X, \tau_1) \to (Y, \tau_2)$ is called (L, \odot) -smooth continuous map if $\tau_2(\lambda) \leq$ $\tau_1(f^{-1}(\lambda))$ for all $\lambda \in L^Y$.

From [4, 5, 10, 11], let Ω_X denote the family of all functions $f: L^X \to L^X$ with the following properties:

(a) $f(\overline{0}) = \overline{0}$ and $\mu \leq f(\mu)$, for every $\mu \in L^X$. (b) $f(\bigvee_{i\in\Gamma}\mu_i) = \bigvee_{i\in\Gamma}f(\mu_i)$, for $\{\mu_i\}_{i\in\Gamma} \subset L^X$. For $f \in \Omega_X$, the function $f^{-1} \in \Omega_X$ is defined by

$$f^{-1}(\mu) = \bigwedge \{ \rho \mid f(\rho') \le \mu' \}.$$

For $f, g \in \Omega_X$, we define, for all $\mu \in L^X$,

$$(f \odot g)(\mu) = \bigwedge \{ f(\mu_1) \lor g(\mu_2) \mid \mu_1 \lor \mu_2 = \mu \}, \quad f \circ g(\mu) = f(g(\mu)).$$

Then $f \odot g, f \circ g \in \Omega_X$.

Lemma 2.6. For every $f, g, h, f_1, g_1 \in \Omega_X$, the following properties hold:

- (1) If $f \leq f_1, g \leq g_1$, then $f \odot g \leq f_1 \odot g_1$.
- (2) $f \odot g \le f$, $f \odot g \le g$ and $f \odot f = f$. (3) $(f^{-1})^{-1} = f$.
- (4) $f \le g \ iff \ f^{-1} \le g^{-1}$.
- (5) $f(\mu) \leq \rho$ iff $f^{-1}(\rho') \leq \mu'$. (6) Let a function $f_{\overline{1},\overline{1}}: L^X \to L^X$ be defined by

$$f_{\overline{1},\overline{1}}(\mu) = \begin{cases} \overline{1} & \text{if } \mu \neq \overline{0}, \\ \overline{0} & \text{if } \mu = \overline{0}. \end{cases}$$

Then $f_{\overline{1},\overline{1}} = f_{\overline{1},\overline{1}}^{-1} \in \Omega_X$ and $f \odot f_{\overline{1},\overline{1}} = f$. (7) $(f \circ g)^{-1} = f^{-1} \circ g^{-1}$. (8) $(f \odot g)^{-1} = f^{-1} \odot g^{-1}$.

- (9) $(f \odot q) \odot h = f \odot (q \odot h).$

When $L = (L, \leq, \lor, \odot, ', 0, 1) = (L, \leq, \lor, \land, ', 0, 1)$ we have the definition 209

Definition 2.7 ([4, 19]). A function $\mathcal{U} : \Omega_X \to L$ is said to be an (L, \wedge) -smooth quasi-uniformity on X if it satisfies the following conditions:

(FQU1) If $f \leq g$, then $\mathcal{U}(f) \leq \mathcal{U}(g)$.

(FQU2) $\mathcal{U}(f \wedge g) \geq \mathcal{U}(f) \wedge \mathcal{U}(g)$, for each $f, g \in \Omega_X$.

(FQU3) For each $f \in \Omega_X$, $\bigvee \{ \mathcal{U}(g) \mid g \circ g \leq f \} \geq \mathcal{U}(f)$.

(FQU4) There exists $f \in \Omega_X$ such that $\mathcal{U}(f) = 1$.

The pair (X, \mathcal{U}) is said to be (L, \wedge) -smooth quasi-uniform space. The (L, \wedge) -smooth quasi-uniform space (X, \mathcal{U}) is called an (L, \wedge) -smooth uniform space if it satisfies

(FU) For each $f \in \Omega_X$, $\bigvee \{ \mathcal{U}(g) \mid g \leq f^{-1} \} \geq \mathcal{U}(f)$.

Let \mathcal{U}_1 and \mathcal{U}_2 be two (L, \wedge) -smooth (quasi-)uniformities on X. \mathcal{U}_1 is finer than \mathcal{U}_2 (or \mathcal{U}_2 is coarser than \mathcal{U}_1), denoted by $\mathcal{U}_2 \leq \mathcal{U}_1$, iff for any $f \in \Omega_X$, $\mathcal{U}_2(f) \leq \mathcal{U}_1(f)$.

Remark 2.8. (1) Let (X, \mathcal{U}) be an (L, \wedge) -smooth quasi-uniform space. Put

$$\mathcal{U}_r = \{ f \in \Omega_X \mid \mathcal{U}(f) > r \}$$

for each $r \in L - \{1\}$, where L = [0, 1], then \mathcal{U}_r is a Hunton fuzzy uniformity on X (see [5]).

(2) Let (X, \mathcal{U}) be an (L, \wedge) -smooth quasi-uniform space. By (FQU1), (FQU2) and Lemma 2.6(2), we have $\mathcal{U}(f \wedge g) = \mathcal{U}(f) \wedge \mathcal{U}(g)$, where L = [0, 1].

(3) If (X, \mathcal{U}) is an (L, \wedge) -smooth uniform space, then, by (FU), (FQU1) and Lemma 2.6(3), we have $\mathcal{U}(f) = \mathcal{U}(f^{-1})$.

(4) Let (X, \mathcal{U}) be an (L, \wedge) -smooth quasi-uniform space. By Lemma 2.6(6) and (FQU4), since $f \leq f_{\overline{1},\overline{1}}$ for all $f \in \Omega_X$, we have $\mathcal{U}(f_{\overline{1},\overline{1}}) = 1$.

3. (L, \odot) -smooth topogenous spaces and (L, \odot) -smooth quasi-uniform spaces

Definition 3.1. A function $\eta: L^X \times L^X \to L$ is called an (L, \odot) -smooth topogenous structure on X if it satisfies the following axioms for any $\lambda, \lambda_1, \lambda_2, \mu, \mu_1, \mu_2 \in L^X$:

 $\begin{array}{l} (\mathrm{T1}) \ \eta(\overline{1},\overline{1}) = \eta(\overline{0},\overline{0}) = 1. \\ (\mathrm{T2}) \ \mathrm{If} \ \eta(\lambda,\mu) \neq 0, \ \mathrm{then} \ \lambda \leq \mu. \\ (\mathrm{T3}) \ \mathrm{If} \ \lambda \leq \lambda_1 \ \mathrm{and} \ \mu_1 \leq \mu, \ \mathrm{then} \ \eta(\lambda_1,\mu_1) \leq \eta(\lambda,\mu). \\ (\mathrm{T4}) \ \eta(\lambda_1 \lor \lambda_2,\mu) \geq \eta(\lambda_1,\mu) \odot \eta(\lambda_2,\mu). \\ (\mathrm{T5}) \ \eta(\lambda,\mu_1 \odot \mu_2) \geq \eta(\lambda,\mu_1) \odot \eta(\lambda,\mu_2). \\ (\mathrm{T6}) \ \eta \leq \eta \circ \eta \ \mathrm{where, \ for \ any } \ \lambda,\mu \in L^X, \end{array}$

$$\eta \circ \eta(\lambda, \mu) = \bigvee_{\nu \in L^X} (\eta(\lambda, \nu) \odot \eta(\nu, \mu)).$$

The pair (X, η) is called the (L, \odot) -smooth topogenous space.

The (L, \odot) -smooth topogenous structure η is called *symmetric* if $\eta = \eta^s$ where

$$\eta^s(\lambda,\mu) = \eta(\mu',\lambda'), \ \forall \lambda,\mu \in L^X.$$

Let η_1 and η_2 be two (L, \odot) -smooth topogenous structures on X. η_1 is finer than η_2 (η_2 is coarser than η_1), denoted by $\eta_2 \leq \eta_1$, if $\eta_2(\lambda, \mu) \leq \eta_1(\lambda, \mu)$ for each $\lambda, \mu \in L^X$.

Remark 3.2. Let (X, η) be an (L, \odot) -smooth topogenous space. Then (1) From (T3), (T4) and (T5), we have the following conditions:

 $(T4)' \eta(\lambda_1 \vee \lambda_2, \mu) = \eta(\lambda_1, \mu) \odot \eta(\lambda_2, \mu).$

 $(T5)' \eta(\lambda, \mu_1 \odot \mu_2) = \eta(\lambda, \mu_1) \odot \eta(\lambda, \mu_2).$

(2) If L = [0,1] and $\odot = \land$ we put $\eta_r = \{(\lambda,\mu) \in L^X \times L^X \mid \eta(\lambda,\mu) > r\}$ for each $r \in L - \{1\}$. Define $(\lambda, \mu) \in \eta_r$ iff $\lambda \leq \mu$. Then η_r is a Katsaras fuzzy topogenous structure on X.

Example 3.3. We define a function $\eta: L^X \times L^X \to L$, where L = [0, 1] and $\odot = \land$ as follows

$$\eta(\lambda,\mu) = \begin{cases} 1, & \text{if } \lambda = \overline{0} \text{ or } \mu = \overline{1}, \\ \frac{2}{3}, & \text{if } \overline{0} \neq \lambda \le \mu \neq \overline{1}, \\ 0, & \text{otherwise.} \end{cases}$$

Then η is an (L, \odot) -smooth topogenous structure on X because for $\overline{0} \neq \lambda \leq \mu \neq \overline{1}$, $\eta \circ \eta(\lambda,\mu) \ge \eta(\lambda,\mu) \wedge \eta(\mu,\mu) = \frac{2}{3}$, other cases and other conditions are easily proved.

Theorem 3.4. Let (X, \mathcal{U}) be an (L, \odot) -smooth quasi-uniform space. Define

$$\eta_{\mathcal{U}}(\mu,\rho) = \bigvee \{\mathcal{U}(f) \mid f(\mu) \le \rho\}.$$

Then $(X, \eta_{\mathcal{U}})$ is an (L, \odot) -smooth topogenous space. If (X, \mathcal{U}) is an (L, \odot) -smooth uniform space, $(X, \eta_{\mathcal{U}})$ is a symmetric (L, \odot) -smooth topogenous space.

Proof. (T1) There exists $f \in \Omega_X$ such that $\mathcal{U}(f) = 1$. Since $f(\overline{1}) = \overline{1}$ and $f(\overline{0}) = \overline{0}$, $\eta_{\mathcal{U}}(\overline{1},\overline{1}) = \eta_{\mathcal{U}}(\overline{0},\overline{0}) = 1.$

(T2) If $\eta_{\mathcal{U}}(\mu,\rho) \neq 0$, then there exists $f \in \Omega_X$ such that $\mathcal{U}(f) \neq 0$ and $f(\mu) \leq \rho$. It implies $\mu \leq \rho$.

(T3) If $\lambda \leq \lambda_1$ and $\mu_1 \leq \mu$, then for each $f \in \Omega_X$ with $f(\lambda_1) \leq \mu_1$, we have $f(\lambda) \leq f(\lambda_1) \leq \mu_1 \leq \mu$. Thus, $\eta_{\mathcal{U}}(\lambda_1, \mu_1) \leq \eta_{\mathcal{U}}(\lambda, \mu)$. (T4) Suppose there exist $\lambda_1, \lambda_2, \mu \in L^X$ such that

$$\eta_{\mathcal{U}}(\lambda_1 \vee \lambda_2, \mu) \not\geq \eta_{\mathcal{U}}(\lambda_1, \mu) \odot \eta_{\mathcal{U}}(\lambda_1, \mu).$$

From the definition of $\eta_{\mathcal{U}}(\lambda_i,\mu)$ for $i \in \{1,2\}$, there exists $f_i \in \Omega_X$ with $f_i(\lambda_i) \leq \mu$ such that

 $\eta_{\mathcal{U}}(\lambda_1 \vee \lambda_2, \mu) \not\geq \mathcal{U}(f_1) \odot \mathcal{U}(f_2).$

On the other hand, since $(f_1 \odot f_2)(\lambda_1 \lor \lambda_2) \le f_1(\lambda_1) \lor f_2(\lambda_2) \le \mu$,

$$\eta_{\mathcal{U}}(\lambda_1 \vee \lambda_2, \mu) \geq \mathcal{U}(f_1 \odot f_2).$$

Since $\mathcal{U}(f_1 \odot f_2) \geq \mathcal{U}(f_1) \odot \mathcal{U}(f_2)$, it is a contradiction. Thus, $\eta_{\mathcal{U}}(\lambda_1 \lor \lambda_2, \mu) \geq \mathcal{U}(f_1) \odot \mathcal{U}(f_2)$ $\eta_{\mathcal{U}}(\lambda_1,\mu) \odot \eta_{\mathcal{U}}(\lambda_1,\mu).$

(T5) Suppose there exist $\lambda, \mu_1, \mu_2 \in L^X$ such that

$$\eta_{\mathcal{U}}(\lambda,\mu_1\odot\mu_2) \not\geq \eta_{\mathcal{U}}(\lambda,\mu_1)\odot\eta_{\mathcal{U}}(\lambda,\mu_2).$$
211

From the definition of $\eta_{\mathcal{U}}(\lambda, \mu_i)$ for $i \in \{1, 2\}$, there exists $f_i \in \Omega_X$ with $f_i(\lambda) \leq \mu_i$ such that

$$\eta_{\mathcal{U}}(\lambda,\mu_1\odot\mu_2) \not\geq \mathcal{U}(f_1)\odot\mathcal{U}(f_2).$$

Since $(f_1 \odot f_2)(\lambda) \leq f_1(\lambda) \odot f_2(\lambda) \leq \mu_1 \odot \mu_2$, $\eta_{\mathcal{U}}(\lambda, \mu_1 \odot \mu_2) \geq \mathcal{U}(f_1 \odot f_2)$. Since $\mathcal{U}(f_1 \odot f_2) \geq \mathcal{U}(f_1) \odot \mathcal{U}(f_2)$, it is a contradiction.

(T6) Suppose there exist $\mu, \rho \in L^X$ such that

 $\eta_{\mathcal{U}} \circ \eta_{\mathcal{U}}(\mu, \rho) \not\geq \eta_{\mathcal{U}}(\mu, \rho).$

From the definition of $\eta_{\mathcal{U}}(\mu, \rho)$, there exists $f \in \Omega_X$ with $f(\mu) \leq \rho$ such that

 $\eta_{\mathcal{U}} \circ \eta_{\mathcal{U}}(\mu, \rho) \not\geq \mathcal{U}(f).$

Since $\bigvee \{ \mathcal{U}(g) \mid g \circ g \leq f \} \geq \mathcal{U}(f)$, there exists $g \in \Omega_X$ with $g \circ g(\mu) \leq f(\mu) \leq \rho$ such that

$$\eta_{\mathcal{U}} \circ \eta_{\mathcal{U}}(\mu, \rho) \not\geq \mathcal{U}(g)$$

On the other hand, since $g(\mu) = f(\mu)$ and $g \circ g(\mu) \leq \rho$, we have

$$\eta_{\mathcal{U}}(\mu, g(\mu)) \ge \mathcal{U}(g), \ \eta_{\mathcal{U}}(g(\mu), \rho) \ge \mathcal{U}(g).$$

Hence $\eta_{\mathcal{U}} \circ \eta_{\mathcal{U}}(\mu, \rho) \geq \mathcal{U}(g)$. It is a contradiction.

Let (X,\mathcal{U}) be an (L,\odot) -smooth uniform space. From Lemma 2.6(5) , since $f(\mu) \leq \rho$ iff $f^{-1}(\rho') \leq \mu'$ also $\mathcal{U}(f) = \mathcal{U}(f^{-1})$, we have $\eta_{\mathcal{U}} = \eta_{\mathcal{U}}^s$. Hence $(X, \eta_{\mathcal{U}})$ is a symmetric (L, \odot) -smooth topogenous space.

Lemma 3.5. Let (X, η) be an (L, \odot) -smooth topogenous space. Let

$$\eta^0 = \{(\mu, \rho) \in L^X \times L^X \mid \eta(\mu, \rho) \neq 0\}.$$

For every $(\mu, \rho) \in \eta^0$, we define $f_{\mu,\rho} : L^X \to L^X$ as follows:

$$f_{\mu,\rho}(\lambda) = \begin{cases} \overline{0} & \text{if } \lambda = \overline{0}, \\ \rho & \text{if } \overline{0} \neq \lambda \leq \mu, \\ \overline{1} & \text{otherwise.} \end{cases}$$

Then we have the following statements.

(1) $f_{\mu,\rho} \in \Omega_X$.

(2) If $\lambda \leq \mu, \nu \leq \rho$ and $f_{\mu,\nu} \in \Omega_X$, then $f_{\mu,\nu} \leq f_{\lambda,\rho}$. (3) For each $f_{\mu,\rho}$, there exists $\nu \in L^X$ such that $f_{\nu,\rho} \circ f_{\mu,\nu} = f_{\mu,\rho}$. (4) If (X,η) is a symmetric (L,\odot) -smooth topogenous space and $f_{\mu,\rho} \in \Omega_X$, then $\begin{array}{l} (f_{\mu,\rho})^{-1} = f_{\rho',\mu'}. \\ (5) \ For \ each \ i = 1, ..., n, \ f_{\mu_i,\rho_i} \ with \ (\mu_i,\rho_i) \in \eta^0, \ denote \end{array}$

$$\Gamma = \left\{ J \subseteq \{1, ..., n\} \mid \lambda \le \bigvee_{j \in J} \mu_j \right\}$$

and put $\tau_J = \bigvee_{i \in J} \rho_i$ for any nonempty subset J of $\{1, ..., n\}$. Then

$$\wedge_{i=1}^{n} f_{\mu_{i},\rho_{i}}(\lambda) = \begin{cases} \overline{0} & \text{if } \lambda = \overline{0}, \\ \bigwedge_{J \in \Gamma} \tau_{J} & \text{if } \Gamma \neq \emptyset, \\ \overline{1} & \text{if } \Gamma = \emptyset. \end{cases}$$
212

Proof. (1) From the definition of $f_{\mu,\rho}$, we have $f_{\mu,\rho}(\overline{0}) = \overline{0}$. If $\overline{0} \neq \lambda \leq \mu$, then $f_{\mu,\rho}(\lambda) = \rho$. Since $(\mu,\rho) \in \eta^0$, that is, $\eta(\mu,\rho) \neq 0$, by (T2), $\mu \leq \rho$. Hence $\lambda \leq f_{\mu,\rho}(\lambda)$. If $\lambda \not\leq \mu$, then $\lambda \leq f_{\mu,\rho}(\lambda) = \overline{1}$. It follows that $\lambda \leq f_{\mu,\rho}(\lambda)$. Finally, we easily show that $f_{\mu,\rho}(\bigvee_{i\in\Gamma}\nu_i) = \bigvee_{i\in\Gamma}f_{\mu,\rho}(\nu_i)$ from the following two conditions:

- (a) $\bigvee_{i \in \Gamma} \nu_i \leq \mu$ iff $\nu_i \leq \mu$ for all $i \in \Gamma$,
- (b) $\bigvee_{i \in \Gamma} \nu_i \not\leq \mu$ iff $\nu_i \not\leq \mu$ for some $i \in \Gamma$.

Hence $f_{\mu,\rho} \in \Omega_X$.

(2) From definitions of $f_{\mu,\nu}$ and $f_{\lambda,\rho}$, it is trivial.

(3) From (T6), since $\eta \circ \eta(\mu, \rho) = \bigvee_{\nu \in L^X} (\eta(\mu, \nu) \odot \eta(\nu, \rho)) \ge \eta(\mu, \rho) \neq 0$, there exists $\nu \in L^X$ such that $\eta(\mu, \nu) \neq 0$ and $\eta(\nu, \rho) \neq 0$. Hence $f_{\mu,\nu}, f_{\nu,\rho} \in \Omega_X$. Moreover, it is easily proved $f_{\nu,\rho} \circ f_{\mu,\nu}(\lambda) = f_{\mu,\rho}(\lambda)$ for any $\lambda \in L^X$.

(4) Since (X, η) is a symmetric (L, \odot) -smooth topogenous space and $f_{\mu,\rho} \in \Omega_X$, then $\eta(\mu, \rho) = \eta(\rho', \mu') \neq 0$. It follows that $f_{\rho',\mu'} \in \Omega_X$. We show that $(f_{\mu,\rho})^{-1}(\lambda) = f_{\rho',\mu'}(\lambda)$ for all $\lambda \in L^X$ from the following statements (a), (b) and (c):

(a) If $\lambda = \overline{0}$, then $(f_{\mu,\rho})^{-1}(\overline{0}) = \bigwedge \{\nu \mid f_{\mu,\rho}(\nu') \le \overline{1}\} = \overline{0} = f_{\rho',\mu'}(\overline{0}).$

(b) If $\overline{0} \neq \lambda \leq \rho'$, then, by the definition of $f_{\mu,\rho}$, we have

$$f_{\mu,\rho}(\nu') \leq \lambda' \text{ iff } f_{\mu,\rho}(\nu') \leq \rho \text{ iff } \nu' \leq \mu$$

Hence

$$(f_{\mu,\rho})^{-1}(\lambda) = \bigwedge \{ \nu \in L^X \mid f_{\mu,\rho}(\nu') \le \lambda' \}$$

= $\bigwedge \{ \nu \in L^X \mid \nu \ge \mu' \}$
= μ'
= $f_{\rho',\mu'}(\lambda).$

(c) If $\lambda \not\leq \rho'$ and $f_{\mu,\rho}(\nu') \leq \lambda'$, then , by the definition of $f_{\mu,\rho}$, we only have $f_{\mu,\rho}(\nu') = \overline{0}$. It implies that $\nu = \overline{1}$. Hence $(f_{\mu,\rho})^{-1}(\lambda) = f_{\rho',\mu'}(\lambda) = \overline{1}$.

(5) If $\lambda = \overline{0}$ or $\Gamma = \emptyset$, then it is trivial. We only show that for $\Gamma \neq \emptyset$, $\bigwedge_{i=1}^{n} f_{\mu_{i},\rho_{i}}(\lambda) = \bigwedge_{J \in \Gamma} \tau_{J}$.

Suppose $\wedge_{i=1}^{n} f_{\mu_{i},\rho_{i}}(\lambda) \not\leq \bigwedge_{J \in \Gamma} \tau_{J}$. Since $\Gamma \neq \emptyset$, there exist $J \in \Gamma$ with $\lambda \leq \bigvee_{j \in J} \mu_{j}$ such that

$$\bigwedge_{i=1}^{n} f_{\mu_i,\rho_i}(\lambda) \not\leq \tau_J.$$

Put for $i \in \{1, ..., n\}$,

$$\lambda_i = \begin{cases} \lambda \odot \mu_i & \text{if } i \in J, \\ \overline{0} & \text{otherwise} \end{cases}$$

Since $\lambda = \bigvee_{i \in J} \lambda_i$ and $\lambda_i \leq \mu_i$ for all $i \in J$, we obtain

$$\bigwedge_{i=1}^{n} f_{\mu_{i},\rho_{i}}(\lambda) \leq \bigvee_{i=1}^{n} f_{\mu_{i},\rho_{i}}(\lambda_{i}) \leq \bigvee_{i\in J} \rho_{i} = \tau_{J}.$$

It is a contradiction. Hence $\wedge_{i=1}^{n} f_{\mu_i,\rho_i}(\lambda) \leq \bigwedge_{J \in \Gamma} \tau_J$.

Suppose $\bigwedge_{i=1}^{n} f_{\mu_{i},\rho_{i}}(\lambda) \not\geq \bigwedge_{J \in \Gamma} \tau_{J}$. There exist $\lambda_{i} \in L^{X}$ with $\lambda = \bigvee_{i=1}^{n} \lambda_{i}$ such that

$$\left(\bigvee_{i=1}^{n} f_{\mu_{i},\rho_{i}}(\lambda_{i})\right) \not\geq \bigwedge_{J \in \Gamma} \tau_{J}$$
213

Put $\nu = \bigvee_{i=1}^{n} f_{\mu_{i},\rho_{i}}(\lambda_{i})$ and $K = \{k \in \{1,...,n\} \mid \rho_{k} \leq \nu\}$. We obtain $\tau_{K} \leq \nu$. If $i \notin K$, then $\rho_{i} \neq \nu$. Hence $f_{\mu_{i},\rho_{i}}(\lambda_{i}) = \overline{0}$, which implies $\lambda_{i} = \overline{0}$.

If $k \in K$, then $\lambda_k \leq \mu_k$ because $f_{\mu_k,\rho_k}(\lambda_k) \neq \overline{1}$. It implies that

$$\lambda = \bigvee_{i=1} \lambda_i = \bigvee_{k \in K} \lambda_k \le \bigvee_{k \in K} \mu_k.$$

Then there exists $K \in \Gamma$ such that

$$\bigvee_{i=1} f_{\mu_i,\rho_i}(\lambda_i) = \nu \ge \tau_K \ge \bigwedge_{K \in \Gamma} \tau_K.$$

It is a contradiction. Hence $\bigwedge_{i=1}^{n} f_{\mu_i,\rho_i}(\lambda) \ge \bigwedge_{J \in \Gamma} \tau_J$.

Example 3.6. For each $i = 1, 2, f_{\mu_i, \rho_i}$ with $(\mu_i, \rho_i) \in \eta^0$, we have

$$f_{\mu_1,\rho_1} \odot f_{\mu_2,\rho_2}(\lambda) = \begin{cases} \overline{0} & \text{if } \lambda = \overline{0}, \\\\ \rho_1 \odot \rho_2 & \text{if } \overline{0} \neq \lambda \leq \mu_1 \wedge \mu_2, \\\\ \rho_1 & \text{if } \lambda \leq \mu_1, \ \lambda \not\leq \mu_2, \\\\ \rho_2 & \text{if } \lambda \leq \mu_2, \ \lambda \not\leq \mu_1 \\\\ \rho_1 \lor \rho_2 & \text{if } \lambda \leq \mu_1 \lor \mu_2, \ \lambda \not\leq \mu_1, \ \lambda \not\leq \mu_2, \\\\ \overline{1} & \text{otherwise.} \end{cases}$$

Remark 3.7. Let (X, η) be an (L, \odot) -smooth-fuzzy topogenous space. Define a function $\mathcal{U}_{\eta} : \Omega_X \to L$ by

$$\mathcal{U}_{\eta}(f) = \bigvee \left\{ \bigwedge_{i=1}^{n} \eta(\mu_{i}, \rho_{i}) \mid \wedge_{i=1}^{n} f_{\mu_{i}, \rho_{i}} \leq f \right\}.$$

where the \bigvee is taken over every finite family $\{f_{\mu_i,\rho_i} \mid i = 1,...,n\}$. Then \mathcal{U}_{η} is an (L, \odot) -smooth quasi-uniformity on X. If (X, η) is a symmetric (L, \odot) -smooth topogenous space, \mathcal{U}_{η} is an (L, \odot) -smooth uniformity on X.

Definition 3.8. The (L, \odot) -smooth quasi-uniform space (X, \mathcal{U}) is said to be compatible with (L, \odot) -smooth topogenous space (X, η) if $\eta_{\mathcal{U}} = \eta$.

The class $\Pi(\eta)$ denotes the family of all (L, \odot) -smooth quasi-uniformities which are compatible with a given (L, \odot) -smooth topogenous structure η .

Theorem 3.9. Let (X,η) be an (L,\odot) -smooth topogenous space and the (L,\odot) -smooth topogenous structure $\eta_{\mathcal{U}_{\eta}}$ induced by \mathcal{U}_{η} . Then we have:

- (1) $\eta_{\mathcal{U}_{\eta}} = \eta$, that is, $\mathcal{U}_{\eta} \in \Pi(\eta)$.
- (2) \mathcal{U}_{η} is the coarsest member of $\Pi(\eta)$.

Proof. (1) First, we will show that $\eta_{\mathcal{U}_{\eta}} \geq \eta$. If $\eta(\mu, \rho) = 0$, then it is trivial. If $\eta(\mu, \rho) \neq 0$, then by Lemma 3.5(1), there exists $f_{\mu,\rho} \in \Omega_X$ such that $\mathcal{U}_{\eta}(f_{\mu,\rho}) \geq \eta(\mu, \rho)$ from Remark 3.7. It follows that $f_{\mu,\rho}(\mu) = \rho$, from Theorem 3.4, $\eta_{\mathcal{U}_{\eta}}(\mu, \rho) \geq \mathcal{U}_{\eta}(f_{\mu,\rho})$. Hence $\eta_{\mathcal{U}_{\eta}} \geq \eta$.

Suppose that $\eta_{\mathcal{U}_n} \leq \eta$. Then there exist $\mu, \rho \in L^X$ such that

(3.1)
$$\eta_{\mathcal{U}_{\eta}}(\mu,\rho) \not\leq \eta(\mu,\rho).$$

From the definition of $\eta_{\mathcal{U}_{\eta}}(\mu, \rho)$, there exists $f \in \Omega_X$ with $f(\mu) \leq \rho$ such that $\mathcal{U}_{\eta}(f) \leq \eta(\mu, \rho)$.

From the definition of \mathcal{U}_{η} , there exists a finite family $\{f_{\mu_i,\rho_i} \mid \bigwedge_{i=1}^m f_{\mu_i,\rho_i} \leq f\}$ such that

(3.2)
$$\bigwedge_{i=1}^{m} \eta(\mu_i, \rho_i) \leq \eta(\mu, \rho)$$

On the other hand, put $\Gamma = \{J \subseteq \{1, ..., m\} \mid \mu \leq \bigvee_{j \in J} \mu_j\}$. If $\Gamma = \emptyset$, then $\bigwedge_{i=1}^m f_{\mu_i,\rho_i}(\mu) = \overline{1} \leq \rho$. Thus, $\rho = \overline{1}$, and $\eta(\mu, \rho) \geq \eta(\overline{1}, \overline{1}) = 1$. It is a contradiction for the equation (3.1). If $\rho = \overline{0}$, by $\eta_{f_\eta}(\mu, \rho) \neq 0$ and (T2), $\mu = \overline{0}$. Hence $\eta(\overline{0}, \overline{0}) = 1$. It is a contradiction for the equation (3.1). If $\Gamma \neq \emptyset$ and $\rho \neq \overline{0}$, by Lemma 3.5(5), then there exists $\Gamma = \{J \subseteq \{1, ..., m\} \mid \mu \leq \bigvee_{j \in J} \mu_j\}$ such that

$$\bigwedge_{i=1}^{m} f_{\mu_i,\rho_i}(\mu) = \bigwedge_{J \in \Gamma} \tau_J \le \rho.$$

Hence $\rho \geq \bigwedge_{J \in \Gamma} (\forall_{j \in J} \rho_j)$. Moreover, we have $\mu \leq \bigwedge_{J \in \Gamma} (\forall_{j \in J} \mu_j)$. Since

$$\eta(\vee_{j\in J}\mu_j,\vee_{j\in J}\rho_j)\geq \bigwedge_{i=1}^m\eta(\mu_i,\rho_i),$$

we have

$$\eta(\mu,\rho) \ge \eta(\bigwedge_{J\in\Gamma} (\forall_{j\in J}\mu_j), \bigwedge_{J\in\Gamma} (\forall_{j\in J}\rho_j)) \ge \bigwedge_{i=1}^m \eta(\mu_i,\rho_i)$$

It is a contradiction for the equation (3.2). Therefore $\eta \geq \eta_{\mathcal{U}_{\eta}}$.

(2) By (1), we have that \mathcal{U}_{η} is compatible with η . Let \mathcal{U} be an arbitrary member of $\Pi(\eta)$. We will show that $\mathcal{U}_{\eta}(f) \leq \mathcal{U}(f)$ for all $f \in \Omega_X$.

Suppose that there exists $f \in \Omega_X$ such that

 $\mathcal{U}_{\eta}(f) \not\leq \mathcal{U}(f).$

There exists a finite family $\{f_{\mu_i,\rho_i} \mid \bigwedge_{i=1}^m f_{\mu_i,\rho_i} \leq f\}$ such that

$$\bigwedge_{i=1}^{m} \eta(\mu_i, \rho_i) \not\leq \mathcal{U}(f).$$

Since $\mathcal{U} \in \Pi(\eta)$, that is, $\eta(\mu_i, \rho_i) = \eta_{\mathcal{U}}(\mu_i, \rho_i)$ for i = 1, ..., m, there exists $g_i \in \Omega_X$ with $g_i(\mu_i) \leq \rho_i$ such that

(3.3)
$$\bigwedge_{i=1}^{m} \mathcal{U}(g_i) \not\leq \mathcal{U}(f)$$

On the other hand, put $g = \bigwedge_{i=1}^{m} g_i$. Since $g_i(\mu_i) \leq \rho_i$, by the definition of f_{μ_i,ρ_i} , we have $g_i \leq f_{\mu_i,\rho_i}$. It follows that

$$g = \bigwedge_{i=1}^{m} g_i \le \bigwedge_{i=1}^{m} f_{\mu_i,\rho_i} \le f.$$

Hence $\mathcal{U}(f) \geq \mathcal{U}(g) \geq \bigwedge_{i=1}^{m} \mathcal{U}(g_i)$. It is a contradiction for the equation (3.3). \Box

Example 3.10. Define a function $\eta: L^X \times L^X \to L$, where L = [0, 1] and $\odot = \land$ as follows:

$$\eta(\lambda,\mu) = \begin{cases} 1 & \text{if } \lambda = \overline{0} \text{ or } \mu = \overline{1}, \\ \frac{2}{3} & \text{if } \overline{0} \neq \lambda \le \chi_{\{x\}}, \ \overline{1} \neq \mu \ge \chi_{\{x\}}, \\ 0 & \text{otherwise} \end{cases}$$

where χ_A is a characteristic function of A. Then (X, η) is L-fuzzy topogenous space. From Remark 3.7, we can obtain a quasi-uniformity $\mathcal{U}_{\eta} : \Omega_X \to L$ on X as follows:

$$\mathcal{U}_{\eta}(f) = \begin{cases} 1 & \text{if } f = f_{\overline{1},\overline{1}}, \\ \frac{2}{3} & \text{if } f_{\chi_{\{x\}},\chi_{\{x\}}} \leq f \neq f_{\overline{1},\overline{1}}, \\ 0 & \text{otherwise.} \end{cases}$$

If $\overline{0} \neq \lambda \leq \chi_{\{x\}}$ and $\overline{1} \neq \mu \geq \chi_{\{x\}}$, then, by Lemma 3.5(2), $f_{\chi_{\{x\}},\chi_{\{x\}}} \leq f_{\lambda,\mu}$. Hence $\eta_{\mathcal{U}_{\eta}}(\lambda,\mu) = \frac{2}{3}$. By a similar method, we have $\eta_{\mathcal{U}_{\eta}} = \eta$.

References

- G. Artico and R. Moresco, Fuzzy proximities and totally bounded fuzzy uniformities, J. Math. Anal. Appl. 99 (1984) 320–337.
- [2] G. Artico and R. Moresco, Fuzzy proximities compatible with Lowen fuzzy uniformities, Fuzzy Sets and Systems 21 (1987) 85–98.
- [3] C. L. Chang, Fuzzy topological spaces, J. Math. Anal. Appl. 24 (1968) 182–190.
- [4] U. Höhle and A. P. Šostak, Axiomatic foundation of fixed -basis fuzzy topology, Chapter 3, in Mathematics of fuzzy sets, Logic, Topology and Measure Theory, Handbook of fuzzy set series, Kluwer Academic Publisher, Dordrecht 1999.
- [5] B. Hutton, Uniformities on fuzzy topological spaces, J. Math. Anal. Appl. 58 (1997) 559–571.
- [6] A. K. Katsaras, On fuzzy proximity spaces, J. Math. Anal.Appl. 75 (1980) 571–583.
- [7] A. K. Katsaras, Fuzzy proximity spaces, J. Math. Anal. Appl. 68 (1979) 100-110.
- [8] A. K. Katsaras, Fuzzy syntopogenous structures compatible with Lowen fuzzy uniformities and Artico-Moresco fuzzy proximities, Fuzzy Sets and Systems 36 (1990) 375–393.
- [9] A. K. Katsaras, Operations on fuzzy syntopogenous structures, Fuzzy sets and Systems 43 (1991) 199-217.
- [10] A. K. Katsaras and C. G. Petalas, A unified theory of fuzzy topologies, fuzzy proximities and fuzzy uniformities, Rev. Roumaine. Math. Pures Appl. 28 (1983) 845–856.
- [11] A. K. Katsaras and C. G. Petalas, On fuzzy syntopogenous structures, J. Math. Anal. Appl. 99 (1984) 219–236.
- [12] Y. C. Kim and J. W. Park, (L, \odot) -filters and (L, \odot) -fuzzy topologies, Int. J. Contemp. Math. Sci. 4 (2009) 865–872.
- [13] R. Lowen, Fuzzy topological spaces and fuzzy compactness, J. Math. Anal. Appl. 56 (1976) 621–633.
- [14] R. Lowen, Fuzzy uniform spaces, J. Math. Anal. Appl. 82 (1981) 370–385.
- [15] A. A. Ramadan, Smooth topological spaces, Fuzzy Sets and Systems 48 (1992) 371–375.
- [16] A. A. Ramadan, Smooth pretopogenous structures, Fuzzy Sets and Systems 86 (1997) 381–389.
- [17] A. A. Ramadan, M. El-dardery and M. A. Abdel-Sattar, L-fuzzy syntopogeneous structures, Int. J. Math. Comput. 4 (2009) 81–91.
- [18] A. A. Ramadan, M. A. Abdel-Sattar, M. El-dardery and Y. C. Kim, L-fuzzy topogenous spaces and L-fuzzy quasi-uniform spaces, J. Fuzzy Math. 11 (2003) 125–138.
- [19] S. K. Samanta, Fuzzy proximities and fuzzy uniformities, Fuzzy Sets and Systems 70 (1995) 97–105.
- [20] A. P. Šostak, On a fuzzy topological structure, Suppl. Rend. Circ. Mat Palermo Ser. II, 11 (1985) 89–103.
- [21] A. P. Šostak, Fuzzy syntopogenous structures, Quaest. Math. 20 (1997) 431-461.

[22] Y. Yue and Fu- Guishi, On $(L,M){\rm -fuzzy}$ quasi-uniform spaces, Fuzzy Sets and Systems 158 (2007) 1472–1485.

<u>M. A. ABDEL-SATTAR</u> (mabdelsattar2002@yahooo.com) – Department of Mathematics, Faculty of Science, Beni-Suef University, Beni-Suef, EGYPT. Current address : King Khaled University, Faculty of Education of Girls of ABHA, K. S. A