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ABSTRACT 

The aim of this work is the analysis and discussion of the inhour equation which is derived on theP1 
approximation neutron transport theory (P1-inhour equation). The classic inhour equation (C-inhour equation) is based on 
the neutron diffusion theory which is widely applied in nuclear reactor analysis. The P1-inhour equation is compared with 
the C-inhour equation and the differences are discussed. 
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INTRODUCTION 

When reactivity is expressed in terms of the 
inverse hour or inhour unit, it is defined as the reactivity 
which will make the stable reactor period to 1 hour (c.f., 
Glasstone & Sesonske, 1981). The widely known inhour 
equation (C-unhour) to six delayed groups is given by 
(Duderstadt & Hamilton, 1976): 
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In the above equation, the values of js are 

obtained as the roots of the seventh-order polynomial. 
Here l  is the neutron mean lifetime in the reactor, i  are 

the fraction of all fission neutrons (both prompt and 
delayed) emitted per fission that appear from the ith 
precursor group, and i  is the decay constant of the ith 

precursor, and b
i
is the fraction of the ith precursor fission 

group of delayed neutrons. Previous works on the inhour 
equation have been developed (van Dam, 1996, Aboanber 
& El Mhlawy, 2008). 

The work of van Dam (1996) can be considered 
as an extension of the inhour equation that was applied to 
the core and the reflector with a two-point reactor kinetic 
model. The conventional nth group inhour equation is 
represented in a polynomial form with a degree on n+1 by 
Ratemi & Eshabo (1998), where the coefficients have a 
linear dependence on the inserted reactivity. Aboanber & 
El Mhlawy (2008) derived a mathematical framework to 
characterize a new version of the two-point inhour 
equation to determine its roots for reflected reactors. The 
inhourequation is of practical common use as it can be 
seen in the comprehensive literature (e.g., Hosseini & 
Vosoughi, 2010; Vyawahare & Nataraj, 2013; Dulla et al., 
2014; Dall’Osso, 2015; Sanchez et al., 2017).  

In general, the inhour equation is based on the 
point reactor kinetics equations (Duderstadt & Hamilton, 
1976): 
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The power of the reactor is defined as: 

 

   f fP t w n t                      (4) 

 
where fw  is the energy released per fission event,   is 

the neutron velocity, and f  is the fission cross section. It 

is important to note that  n t  should be interpreted as the 

total number of neutrons in the reactor, which implies that

   i f f iC t w c t  , where  ic t  should be interpreted 

as the number of delayed neutron precursors in the reactor. 
And i i    (Eq. 2) is the total fraction of fission 

neutrons which are delayed. In one way or another, the 
inhour equation is obtained under certain assumptions 
from the point equation of the reactor, which in turn is 
obtained on the diffusion equation: 
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Here   is the neutron flux, a  is the 

macroscopic absorption cross section, v  is the number of 
neutrons per fission. The diffusion coefficient is given by 
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where tr  is the macroscopic transport cross section.  

In this work, the analysis of the inhour equation 
that is derived on the P1 approximation of neutron 
transport theory is presented. 
 
POINT EQUATIONS FROM THE P1 

APPROXIMATION  

The point reactor kinetics equations from the P1 
approximation of transport theory is presented by 
Espinosa-Paredes & Suescún-Díaz (2020). Below are the 
fundamental aspects to deduce the point model. The one-
speed diffusion equation considering that the angular flux 
is linearly anisotropic, given by Duderstadt and Hamilton 
(1976): 
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Now, dividing Eq. (8) by  tr r , leads to: 
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where the coefficient diffusion D is given by Eq. (6). The 

term 1( )tr   has units of time, therefore it can 

correspond to a relaxation time  . Then, this equation can 
be rewritten as: 
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It can be considered that the medium in which the 

neutrons are diffusing is uniform or homogeneous so that

D , a  and   do not depend on position. Now, we apply 

the operator    in Eq. (10): 
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The term J is obtained from Eq. (7): 
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Substituting Eq. (12) into Eq. (11), it leads to: 
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where  
 

 
1

ˆ( , ) (1 ) ( , ) ,
m

f i i

i

S t v t C t  


   r r r    (14) 

 
Eq. (13) represents that the neutron phenomena 

production is not instantaneous, because they are 
described by a hyperbolic equation. 

Applying the definitions of nuclear reactor 
analysis (Glasstone and Sesonske, 1981): diffusion area

2 1( )aL D
  ; the one-group non-leakage probability

2 2 1(1 )NL gP L B
  ; reactivity 1( 1)k k   ; prompt-

neutron lifetime 1( )NL al P    ; Mean neutron 

generation time 1
l k

  , a version of the point reactor 

kinetics equations from the P1 approximation of the 
transport equations is obtained: 
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these two equations can be combined with Eq. (15) to 
obtain: 
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To get the first term on the left side, it is 

considered that the non-leakage probability is one. 
 
P1-INHOUR EQUATION 

We apply the exponential type solution: 
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where  is a parameter to be determined, which has 
inverse time dimensions, 0n  and 0ic are the neutron 

density and the concentration of group-i delayed neutron 
precursors, respectively at 0t  .It is considered that 
before this moment the nuclear reactor was in a steady 
state with a value of 0  , and at 0t   the reactivity 

undergoes a sudden change, which causes the neutron 
density and the concentration of precursors to begin to 
vary over time. 

With the use of the solution given by Eq. (20) in 
the equation of precursors given by Eq. (17), it can be 
shown that: 
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The next step is to apply the proposed solution 

given by Eq. (19) in the P1 equation of neutron density 
given by Eq. (18): 
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Operating and rearranging terms, we obtain the 

P1-inhour equation 
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when 0   we recovered the typical inhour equation (C-
inhour equation). This equation is the reactivity equation 
that will provide the roots of P1 point reactor kinetics 
equations, which relates the parameter   with nuclear 
parameters such as  ,  ,    and relaxation time  . For 

the last term, its value depends on the neutron diffusion 
coefficient. 
 
RESULTS AND DISCUSSIONS 

Eq. (26) represents a polynomial as a function of 
 : 
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To analyse the P1-inhour equation we rewrite Eq. 

(26), as follows: 
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The analysis will be carried out considering six 

groups of neutron precursors, i.e., 6m  . The nuclear 
parameters are: i : 0. 0127, 0. 0317, 0. 155, 0. 311, 1. 4, 

3. 87; and i : 0. 000266, 0. 001491, 0. 001316 , 0. 

002849, 0. 000896, 0. 000182; L = 0.0002s. The 

behaviour of   0g    is depicted in Figures 1 to 4, 

where the intersections with the  -axis can be observed. 
 

 
 

Figure-1. Reactivity with w Î [ - 55500,1500]. 

 

 
 

Figure-2. Reactivity with w Î [ - 4.5,1] . 
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Figure-3. Reactivity with w Î [ - 0.5, 0.1]. 

 

 
 

Figure-4. Reactivity with w Î [ - 0.04, 0.01]. 

 
These Figures show the distribution of the 

characteristic values of Eq. (28) which in turn are the roots 
 of the characteristic polynomial [Eq (27)]. It has eight 
roots which are distributed in the interval of [-55, 000, 1, 
500] as follows: Two roots are to the left of the most 
negative value of  , that is, w 7 < w 6 < - l 6 ; five roots are 

among the negative values of   of the form 

6 1i      ; and the first root is to the right of the 

least negative   value. Then, for any group of mthneutron 
precursors, the behavior is illustrated in Figure-5. 
 

 
 

Figure-5. Behavior of Eq. (28) for m  groups of delayed 
neutron precursors. 

 

Eq. (28), has a unique behavior around each 

i  , where the term 1/ ( )i  of Eq. (26) and the 

equivalent equation (28) may not be defined and changes 
from  for  less than i  to   for  greater than 

1i  , as shown in Figure-5. In this figure, it can be 

observed that for values of 0   there will be a positive 

root and all other roots will be negative for 0  . For 

large  values the summation term in Eq. (28) is 

negligible, and the   values asymptotic approximate a 

curve of the form: 
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which is a parabola, which in the range of [-43, 5] is a 
straight line, as shown in Figure-6, where you can see the 
intersections with the axis- . 
 

 
 

Figure-6. Zoom of the behavior of the Eq. (28) 
 

Figure-7 shows the parabola in a greater range, 
where the intersection with the axis-  are identified. 

To obtain the values of i  for different values of 

the reactivity  , Eq. (28) is equaled to zero and is 

considered as a function of the form 
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Figure-7. Description of the behavior of figure 1 with 
Eq. (28) 

 
The behavior of this equation is presented in 

Figures 8 and 9. In these figures, the reactivity 
represents the ordinate to the origin. However, it can be 
observed in Figure-8 that it is directly intersected the axis-

 f  at a value of r , i.e., if r < 0  intersected the axis-

 f   in the negative part and the axis- in the positive 

part once and the rest in the negative part. 
 

 
 

Figure-8. Eq. (30) behavior for 0.001   . 

 
It can be observed in Figure-9 that all the   

values are negative for positive   values, and the 

intersection with the axis-  f  is in the positive part. 

 

 
 

Figure-9. Eq. (30) behavior for 0.001  . 

 
Table-1 presents the values of w

i
 for different 

reactivity values, where it can be observed that all the 
values are real. 

The least negative root represents the most stable 
period of the reactor (Figure-10): 
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Figure-10. Period behavior of a nuclear system. 
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Table-1. Values of w
i
 for different reactivity values. 

 

r  - 0.003 - 0.002 - 0.001 0.000 0.001 0.002 0.003 

w 0  - 0.0111 - 0.0102 - 0.0075 0.000 0.0170 0.0508 0.1102 

w 1 - 0.0216 - 0.0194 - 0.0169 - 0.0151 - 0.0142 - 0.0138 - 0.0135 

w 2  - 0.1121 - 0.1042 - 0.0942 - 0.0821 - 0.0692 - 0.0582 - 0.0506 

w 3 - 0.2315 - 0.2257 - 0.2196 - 0.2132 - 0.2070 - 0.2010 - 0.1955 

w 4  - 1.2468 - 1.2271 - 1.2024 - 1.1704 - 1.1286 - 1.0734 - 1.0015 

w 5 - 3.6336 - 3.5491 - 3.4138 - 3.2138 - 2.9605 - 2.6854 - 2.4199 

w 6  - 5.1108 - 4.7731 - 4.4958 - 4.2967 - 4.1702 - 4.0930 - 4.0443 

w 7  - 54 498 - 54 499 - 54 499 - 54 500 - 54 500 - 54 501 - 54 501 

 
There are also notable differences in the graphs of 

the reactivity equations corresponding to each theory, 
Figures 11 and 12 show a comparison between them with 

the values r = 0.00and t = 2 ´ 10 - 5. In Figure-12, it can 

be observed that for large values of w  the graph of the C-

inhour equation tends asymptotically in a range close to 
zero to a line, and the P1-inhour equation tends to a 
parabola. Figure-12 shows the zooming of this behaviour 
in a range around zero. 
 
CONCLUSIONS 

This work, based on the considerations that were 
made in the classical theory, deduces the roots of the P1-

inhour equation, which are the values that relate the 
nuclear characteristics of the system with the analytical 
solution of the system equation formed by Eqs. (17) and 
(18). 
 

 
 

Figure-11. Behavior comparison of the asymptotes of the 
inhour equation corresponding to each theory in the 

range - 55500,  1500( ) . 

 

 
 

Figure-12. Behavior comparison of the asymptotes of the 
inhour equation corresponding to each theory in the 
range (-4.5, 0. 9) . The axes intersect at (0. 9, 0). 

 
TheP1-inhourequation allows us to observe the 

effects generated by the relaxation time in the neutron 
processes that take place inside a nuclear reactor. 

A comparison is made between both theories. The 
solution presented in this work is called theP1-inhour, 
while the solution of the classical point neutron kinetic 
equations C-inhour. The main differences between each 
theory are shown for large values of w , where the graph 
of C-inhour equation tends asymptotically in a range close 
to zero to a line, and the P1-inhour equation tends to a 
parabola.  
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