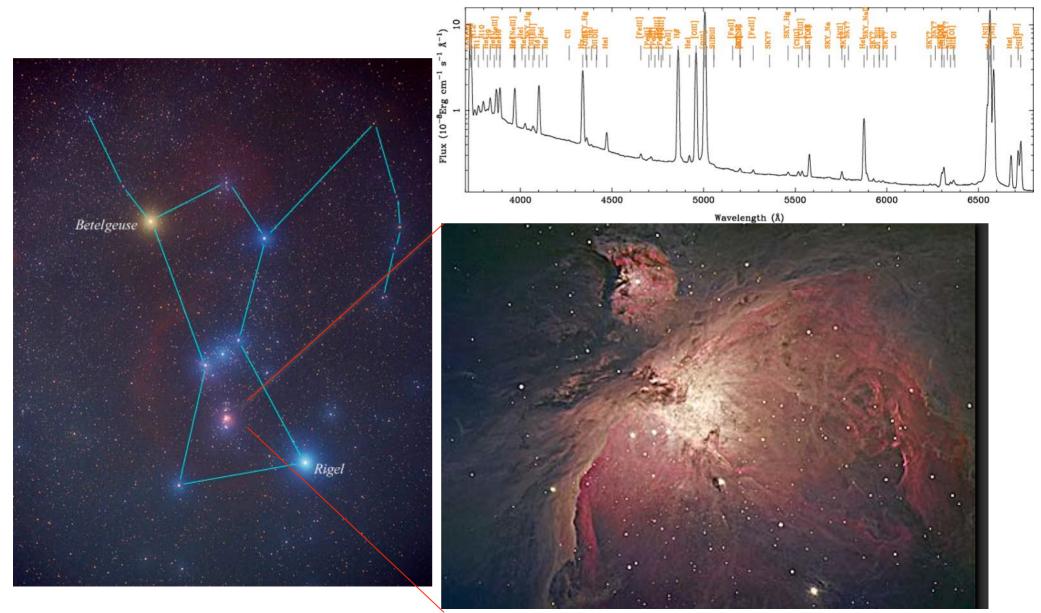
Interstellar reddening and extinction

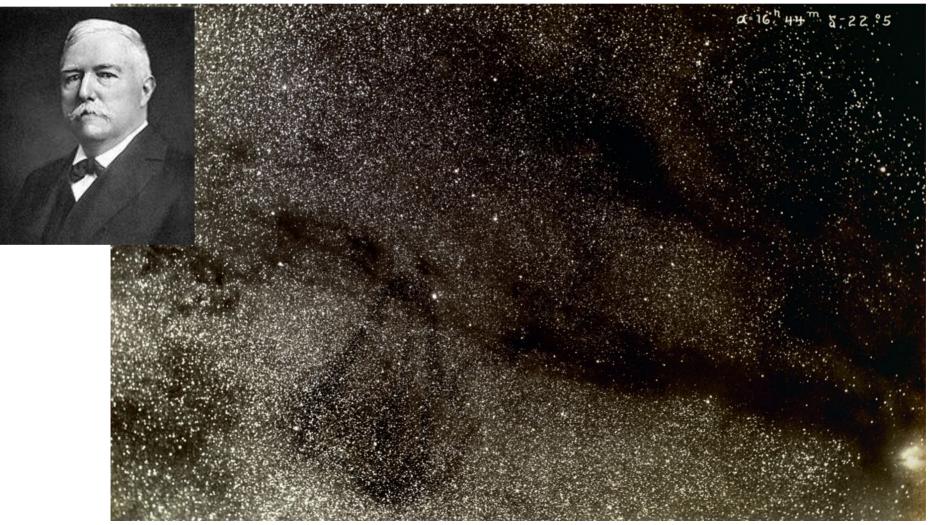
Milky Way above the VLT/ESO

AGA5802, Jorge Meléndez


Discuss at the beginning of the class

- Have you seen the Milky Way from a dark site?
- Draw Milky Way as seen from the "side"
- How do we see clusters at different distances
- Angular size? Brightness? How many stars?
- What do black regions in the Milky Way mean?
- How to verify that a interstellar spectral line is not actually a stellar line?
- What region of the spectrum is more affected by the interstellar medium?

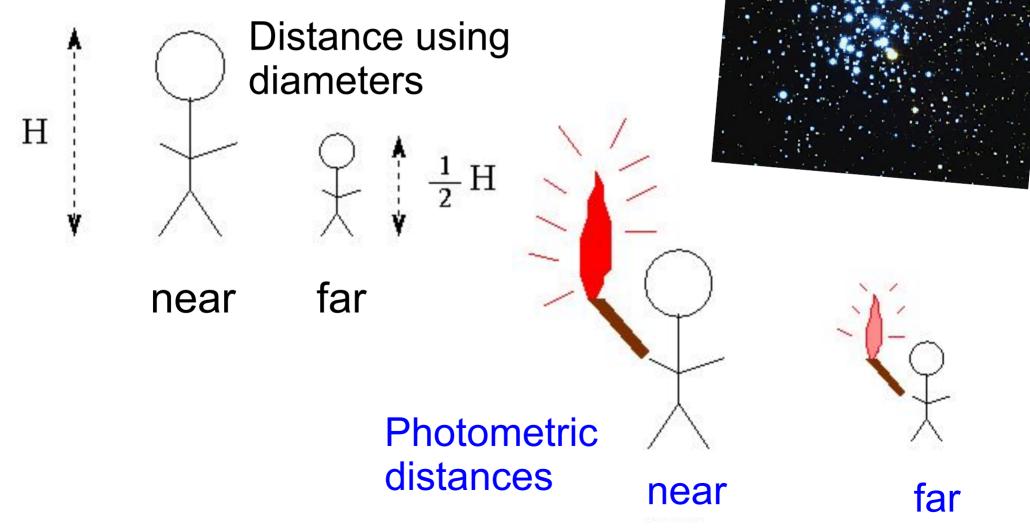
The interstellar medium is composed of dust (dark & blue regions) and gas (red).



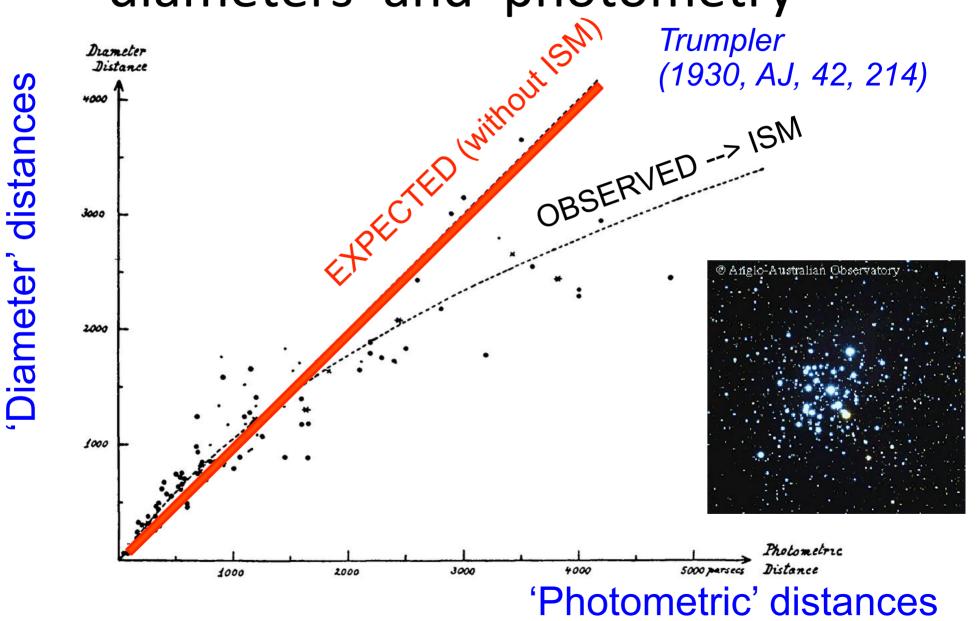
At the end of the XIX century & beginning of the XX century, the existence of the interstellar medium was confirmed Huggins & Miller (1863) observed the spectrum of the Orion nebula and found that is was characteristic of a emitting gas

At the end of the XIX century & beginning of the XX century, the existence of the interstellar medium was confirmed

Edward Emerson Barnard (1857 – 1923) produced in 1895 the first images of dark nebulae and concluded that along with the illuminated gas and dust there was also significant quantities of dust and gas not directly illuminated.


Stationary interstellar lines in the spectra of spectroscopic binaries Tangential motion Hartmann (1904), Heger (1918) no doppler shift J. A. Pearce (1932) Observer on Earth B B B Α Α A B C Km. +200 C A blue-shifted B red-shifted 0 ď +150 0 6. Tangential motion Q no doppler shift -50 -100 -В B B Α Α Α -150 A red-shifted -200 B blue-shifted 00 0 -250 days 55 0 days 5 10 15 20 25 50 45 Primary stellar Secondary stellar Radial Velocity Curves of H Tangential motion В Blen no doppier shift Mt **IS cloud**

A Spectroscopic Binary System


High-mass star A and lower-mass B orbit around a common centre of mass. The observed combined spectrum shows periodic splitting and shifting of spectral lines. The amount of shift is a function of the alignment of the system relative to us and the orbital speed of the stars.

In 1930, Robert Trumpler estimated distances of ~ 100 open clusters (OC) by measuring:

- angular size of the cluster
- central concentration and number of stars
- brightness & spectral class of stars in the OC

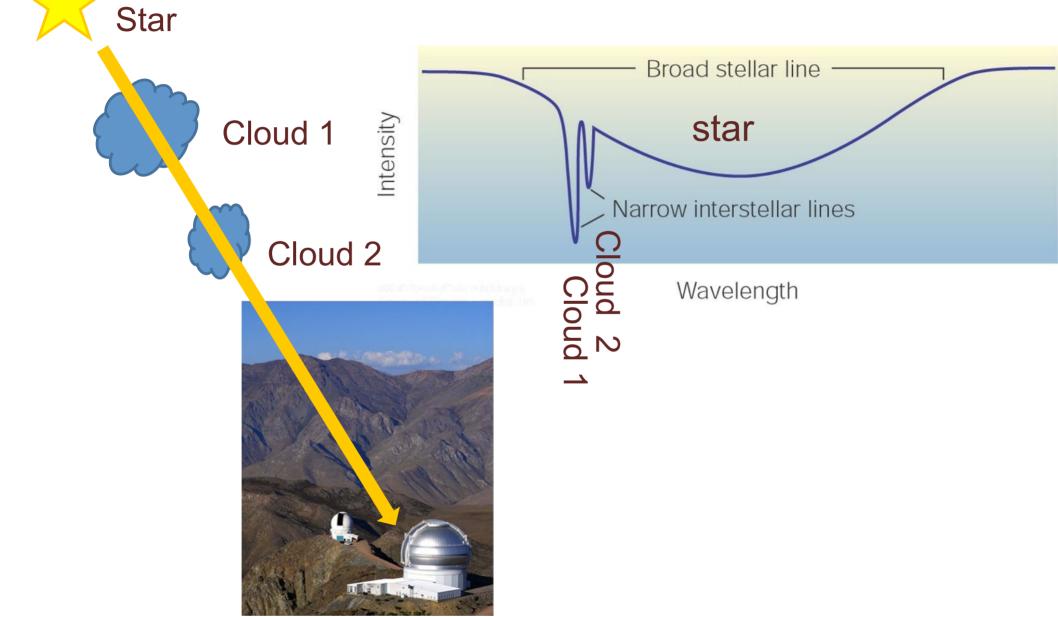
Comparison between distances based on 'diameters' and 'photometry'

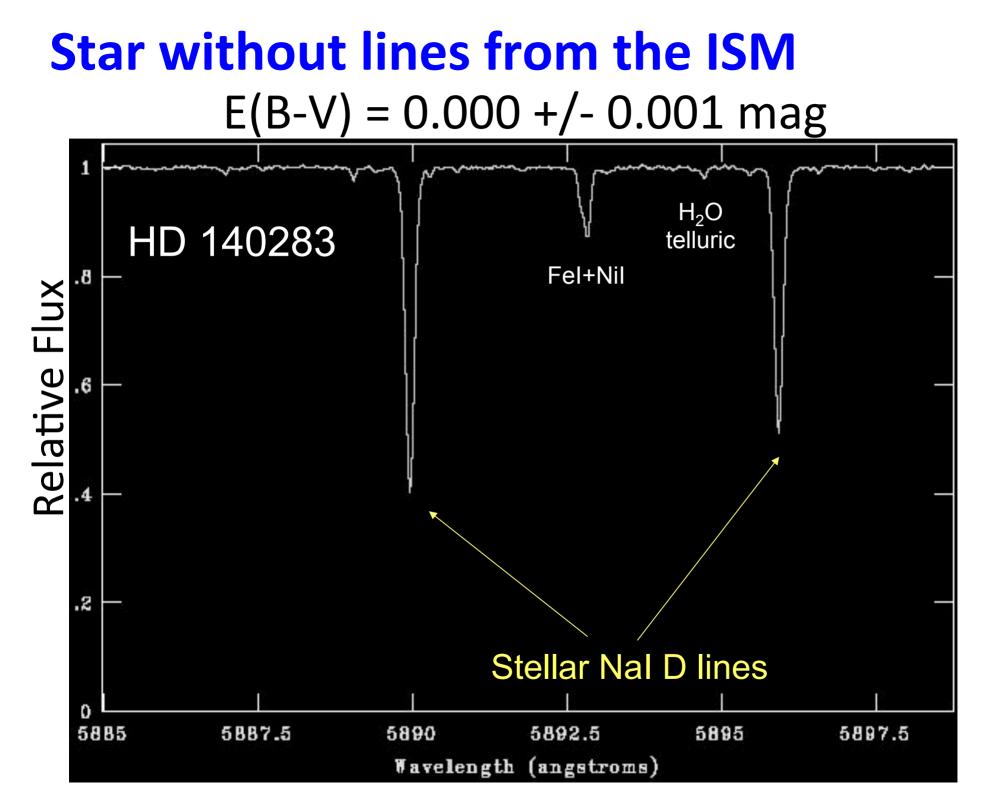
Effects of dust: extinction

Milky Way in the optical

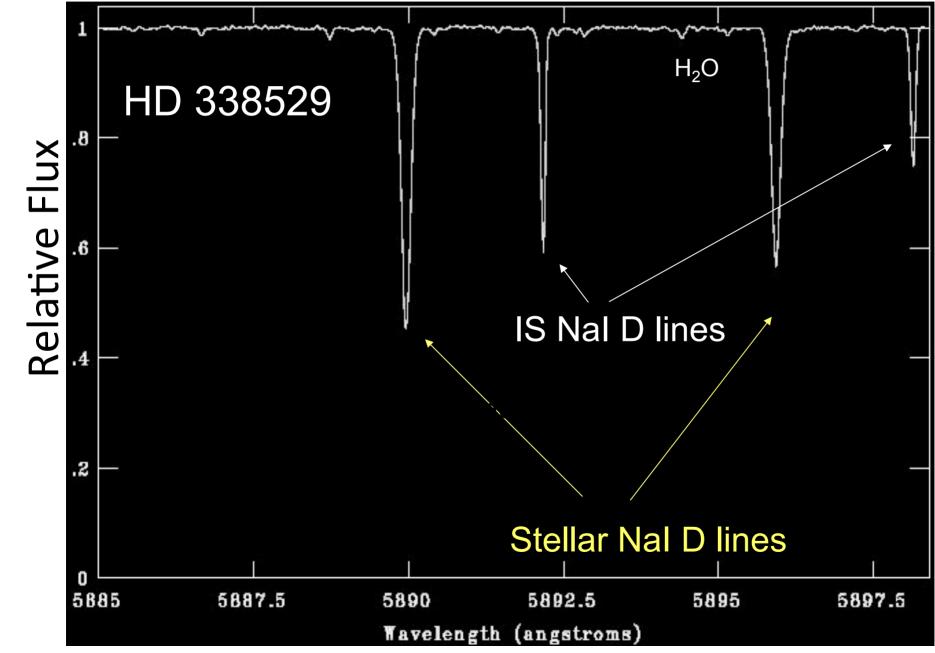
The attenuation of stellar light by interstellar dust is called **extinction**


Effects of dust: reddening


Dust absorbs more blue than red light, causing the so called reddening

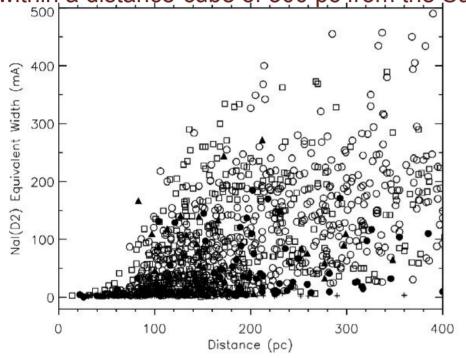

Interstellar reddening

Optical light is strongly scattered and absorbed by interstellar clouds



Neutral gas could be detected in optical spectra

Star with lines from the ISM E(B-V) = 0.008 +/- 0.001 mag



A&A 510, A54 (2010) DOI: 10.1051/0004-6361/200913202


© ESO 2010 B. Y. Welsh¹, R. Lallement², J.-L. Vergely³, and S. Raimond² Astrophysics

New 3D gas density maps of Nal and Call interstellar absorption

within 300 pc^{*,**} Catalog of absorptions towards 1857 early-type stars within 800 pc of the Sun. Using these data we determine the approximate 3-D spatial distribution of neutral and partly ionized IS gas density within a distance-cube of 300 pc from the Sun.

Fig. 7. Plot of the equivalent width (mÅ) of the interstellar NaI D2-line for stars with distances <400 pc. Filled triangles are for sight-lines with galactic latitude $b > +45^{\circ}$, open squares for sight-lines with b = 0 to 45° , open circles for sight-lines with b = 0 to -45° and filled circles for sight-lines with $b < -45^{\circ}$. Crosses are upper limit values. Note the sharp increase in the level of NaI absorption at ~80 pc, which is due to the neutral wall to the Local Cavity.

Astronomy

Fig. 12. Plot of 3D spatial distribution of interstellar NaI absorption within 300 pc of the Sun as viewed in the galactic plane projection. Triangles represent the sight-line positions of stars used to produce the map, with the size of the triangle being proportional to the derived NaI column density. Stars plotted with vertex upwards are located above the galactic plane, vertex down are below the plane. White to dark shading represents low to high values of the NaI volume density (n_{NaI}). The corresponding iso-contours (yellow, green, turquoise and blue) for log $n_{NaI} = -9.5$, -9.1, -8.5 and -7.8 cm⁻³ are also shown. Regions with a matrix of dots represent areas of uncertain neutral gas density measurement.

Interstellar extinction curve

Mon. Not. R. astr. Soc. (1979) 187, Short Communication, 73P-76P Interstellar extinction in the UV

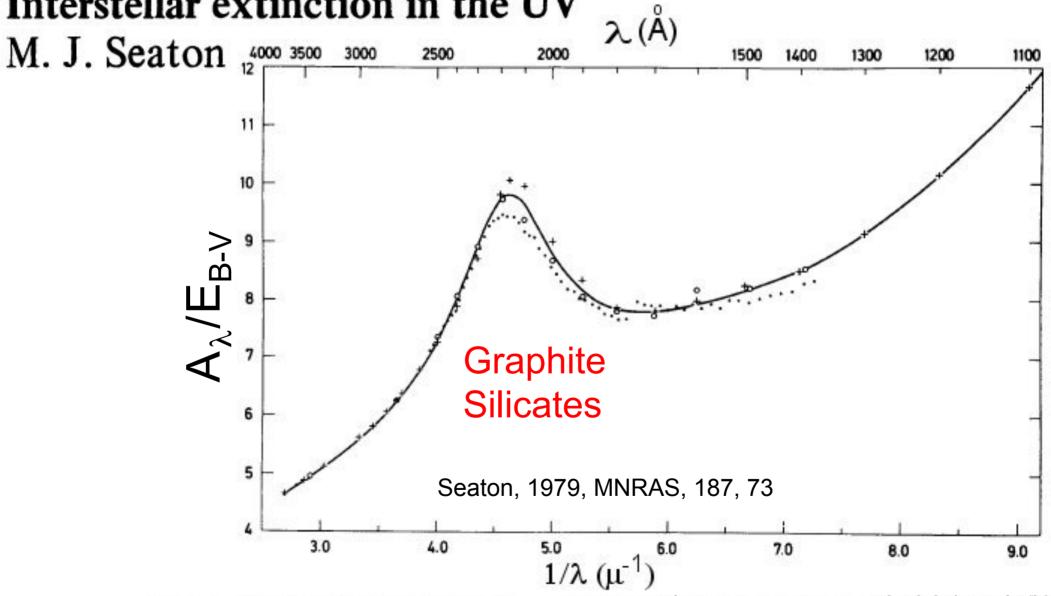
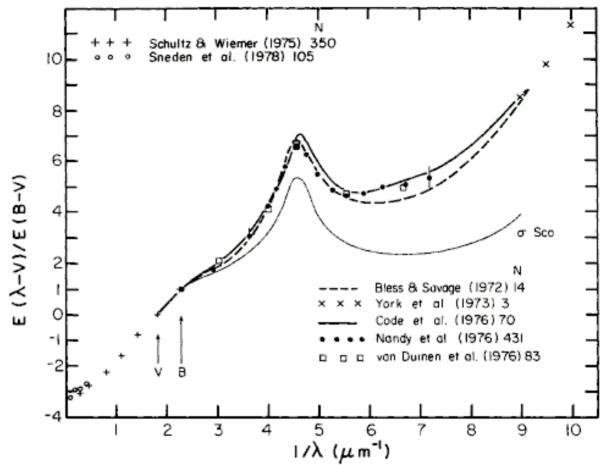



Figure 1. The UV extinction $X(x) = A_{\lambda}/E_{B-V}$ against $x = 1/\lambda$ with λ in microns. + OAO-2 data of C76 (Code *et al.* 1976); \cdot TD-1 data of N75 (Nandy *et al.* 1975); \circ TD-1 data of N76 (Nandy *et al.* 1976). The full line curve is from the fits of Table 2.

Interstellar extinction curve

Savage & Mathis 1979, ARA&A 17, 73

Figure 1 Average normalized interstellar extinction is plotted versus $1/\lambda$ in μ m⁻¹. $E(\lambda-V)$ refers to the extinction in magnitudes between a wavelength λ and the photoelectric V band. The references for the various curves are provided along with an indication of how many stars were used to derive each average curve. One abnormal ultraviolet curve for σ Sco from Bless & Savage (1972) is also shown. The average curves plotted can be converted to total normalized extinction, $A_{\lambda}/E(B-V)$, by adding R = 3.1 to the quantity plotted. Note that the normalization to E(B-V) = 1 implies a corresponding hydrogen column density of N(HI + H₂) = 5.8×10^{21} atoms cm⁻² (see Section 2). The error bars on two of the TD-1 points (Nandy et al. 1976) give an indication of the maximum observed variation in the average extinction curves derived for different galactic regions.

Interstellar extinction A_X $A_X \equiv m_X - m_{X0} \Rightarrow m_{X0} = m_X - A_X$

- $>A_x$: extinction
- ➤m_x: observed magnitude

➤m_{x0}: intrinsic magnitude (observed in absence of interstellar absorption)

 $A_{v} = V - V_{0} \implies V_{0} = V - A_{v}$

Example

 $A_X \equiv m_X - m_{X0} \Rightarrow m_{X0} \equiv m_X - A_X$

 $>V_0 = V - A_V = 10,1$ (intrinsic magnitude, i.e., the magnitude that would be observed in absence of interstellar dust)

Color excess
$$E(X-Y)$$

 $E(X-Y) \equiv (m_X - m_Y) - (m_{X0} - m_{Y0})$
 $\geq E(X-Y)$: color excess
 $\geq m_X - m_Y$: observed color
 $\geq m_{X0} - m_{X0}$: intrinsic color
 $E(B-V) = (B-V) - (B_0 - V_0)$
 $\Rightarrow (B-V)_0 = (B-V) - E(B-V)$

Color excess
$$E(X-Y)$$

 $E(X-Y) \equiv (m_X - m_Y) - (m_{X0} - m_{Y0})$
 $E(X-Y) \equiv (m_X - m_{X0}) - (m_Y - m_{Y0})$
 $E(X-Y) \equiv A_X - A_Y$
Example: $E(B-V) = A_B - A_V$

Example

- $A_{R} = 1,05 \text{ mag}, A_{V} = 0,90 \text{ mag}$
- V = 10,1 & B = 10,9. Find $(B-V)_0$

 $(B-V)_{0} = (B-V) - E(B-V) = 0,80 - 0,15$

- E(B-V) = 1,05 0,90 = 0,15

 $(B-V)_0 = 0,65$

- B-V = 10,9 10,1 = 0,80

	λ(μm)	$\lambda^{-1}(\mu m^{-1})$	$E(\lambda-V)/E(B-V)$	$A_{\lambda}/E(B-V)$	Savage & Mathis 1979, ARA&A 17, 73
L K J I R V	00 3.4 2.2 1.25 0.90 0.70 0.55	0 0.29 0.45 0.80 1.11 1.43 1.82	-3.10 -2.94 -2.72 -2.23 -1.60 -0.78 0	0.00 0.16 0.38 0.87 1.50 2.32 3.10	Careful: this is for R, I in the Johnson (J) system. Now most
B	0.44 0.40 0.344 0.274 0.250 0.240 0.230	2.27 2.50 2.91 3.65 4.00 4.17 4.35	1.00 1.30 1.80 3.10 4.19 4.90 5.77	4.10 4.40 4.90 6.20 7.29 8.00 8.87	people use R, I in the Cousin (C) system.

Table 2 An average interstellar extinction curve

• $E(V-R)^{J} = 0.78 E(B-V) E(V-R)^{C} = 0.60 E(B-V)$

• $E(V-I)^{J} = 1.60 E(B-V) E(V-I)^{C} = 1.25 E(B-V)$

- • $E(V-K)^{J} = 2.72 E(B-V)$
- • $E(J-K)^{J} = 0.22 E(B-V)$
- •E(b-y) = 0.73 E(B-V)
- • $E(m_1) = -0.33E(b-y) = -0.24 E(B-V)$
- • $E(c_1) = 0.17 E(b-y) = 0.12 E(B-V)$

Rough A_v and E(B-V)

$$R = \frac{A_V}{E(B - V)} \approx 3,1$$

- d < 80-100 pc (0.1 kpc) \Rightarrow E(B-V) \sim 0
- E(B-V) ≈ 0.53 d (kpc)
- $A_V \approx 1.6$ d (kpc) magnitudes

Bond (1980, ApJS 44,517):

- *b* within 30° Galactic North Pole: E(B-V) = 0.00
- b within 30° Galactic South Pole: E(B-V) = 0.03
- $|b| < 60^{\circ}$ from the plane:

 $E(B-V) = 0.03\csc(b) \times [1 - \exp(-0.008 d(pc)\sin|b|)]$

EXTINCT

Hakkila et al. 1997, AJ 114, 2043 A_v: *EXTINCT.FOR I,b,d(kpc) ftp.mankato.msus.edu/pub/astro*

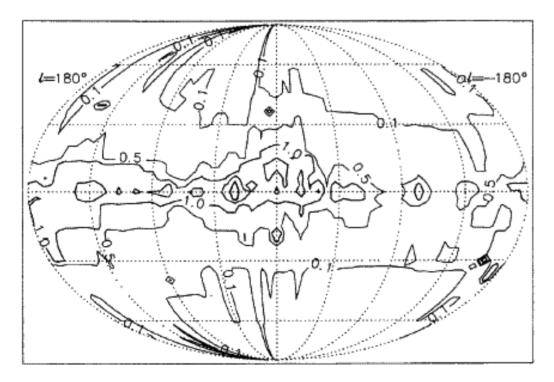


FIG. 11. Total visual extinction A_v (mag) in Galactic coordinates to a distance of 1 kpc as obtained from combining the results of all studies. When available, extinction from individual clouds identified in the high-latitude study is used. Otherwise, the results represent an average of available subroutines weighted equally. Contours in this plot are 0.1, 0.5, 1.0, 2.0, and 3.0 mag.

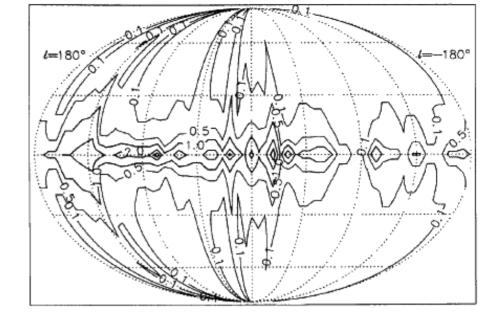


FIG. 2. Total visual extinction A_v (magnitudes) in Galactic coordinates to a distance of 1 kpc as obtained from the FitzGerald (1968) study. Plot contours are 0.1, 0.5, 1.0, 2.0, and 3.0 mag.

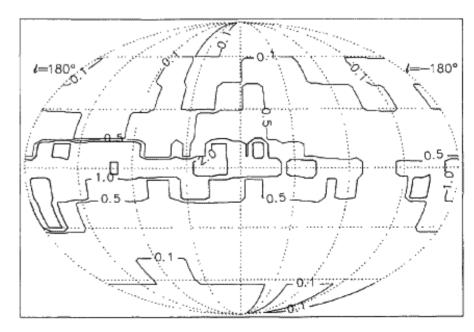
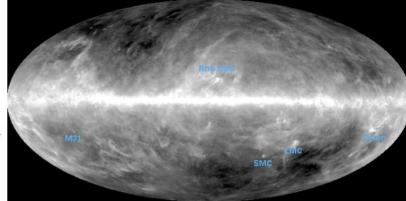


FIG. 7. Total visual extinction A_v (magnitudes) in Galactic coordinates to a distance of 1 kpc as obtained from the Arenou *et al.* (1992) study. Plot contours are 0.1, 0.5, 1.0, 2.0, and 3.0 mag.


Schlegel et al. maps

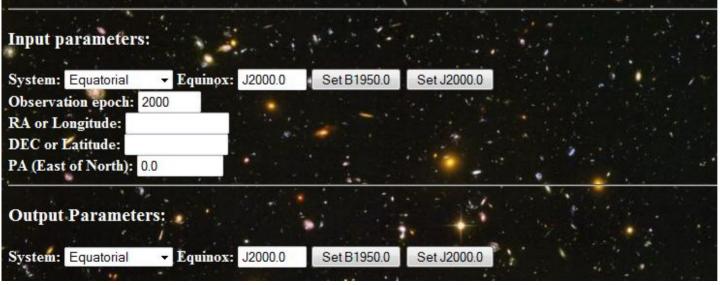
THE ASTROPHYSICAL JOURNAL, 500: 525–553, 1998 June 20 MAPS OF DUST INFRARED EMISSION FOR USE IN ESTIMATION OF REDDENING COSMIC MICROWAVE BACKGROUND RADIATION FOREGROUNDS

DAVID J. SCHLEGEL

University of Durham, Department of Physics, South Road, Durham DH1 3LE, UK; D.J.Schlegel@durham.ac.uk

AND DOUGLAS P. FINKBEINER AND MARC DAVIS

http://astro.berkeley.edu/~marc/dust/


Melendez et al. 2006, ApJ, 642, 1082 We adopted the following correction for the S98 maps:

http://ned.ipac.caltech.edu/forms/calculator.html

ASA/IPAC EXTRAGALACTIC DATABASE $E_{B-V}^{S98c} = 0.9E_{B-V}^{S98} - 0.01$

Coordinate Transformation & Galactic Extinction Calculator

Help | Comment | NED Home

Schlegel et al. maps

THE ASTROPHYSICAL JOURNAL, 500: 525–553, 1998 June 20 MAPS OF DUST INFRARED EMISSION FOR USE IN ESTIMATION OF REDDENING ANI COSMIC MICROWAVE BACKGROUND RADIATION FOREGROUNDS

DAVID J. SCHLEGEL

University of Durham, Department of Physics, South Road, Durham DH1 3LE, UK; D.J.Schlegel@durham.ac.uk

AND

DOUGLAS P. FINKBEINER AND MARC DAVIS

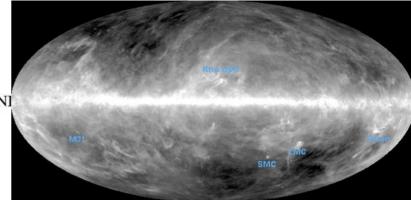


TABLE 6 Relative Extinction for Selected Bandpasses

	Filter	$\lambda_{\rm eff}$ (Å)	A/A(V)	A/E(B-V)	Filter	$\hat{\lambda}_{eff}$ Å	A/A(V)	A/E(B-V)
	Landolt U	3372	1.664	5.434	Strömgren u	3502	1.602	5.231
	Landolt B	4404	1.321	4.315	Strömgren b	4676	1.240	4.049
	Landolt V	5428	1.015	3.315	Stromgren v	4127	1.394	4.552
R, I are	Landolt R	6509	0.819	2.673	Strömgren β	4861	1.182	3.858
· ·	Landolt I	8090	0.594	1.940	Strömgren y	5479	1.004	3.277
both in	CTIO U	3683	1.521	4.968	Sloan <i>u</i> '	3546	1.579	5.155
4 la a	CTIO B	4393	1.324	4.325	Sloan g'	4925	1.161	3.793
the 🚺	CTIO V	5519	0.992	3.240	Sloan r'	6335	0.843	2.751
Cousin	CTIO R	6602	0.807	2.634	Sloan i'	7799	0.639	2.086
	CTIO I	8046	0.601	1.962	Sloan z'	9294	0.453	1.479
system	UKIRT J	12660	0.276	0.902	WFPC2 F300W	3047	1.791	5.849
•	UKIRT <i>H</i>	16732	0.176	0.576	WFPC2 F450W	4711	1.229	4.015
	UKIRT <i>K</i>	22152	0.112	0.367	WFPC2 F555W	5498	0.996	3.252
	UKIRT L'	38079	0.047	0.153	WFPC2 F606W	6042	0.885	2.889
	Gunn g	5244	1.065	3.476	WFPC2 F702W	7068	0.746	2.435
	Gunn r	6707	0.793	2.590	WFPC2 F814W	8066	0.597	1.948
	Gunn i	7985	0.610	1.991	DSS-II g	4814	1.197	3.907
	Gunn z	9055	0.472	1.540	DSS-II r	6571	0.811	2.649
	Spinrad R _s	6993	0.755	2.467	DSS-II <i>i</i>	8183	0.580	1.893
	APM <i>b</i> _J	4690	1.236	4.035				

NOTE.—Magnitudes of extinction evaluated in different passbands using the $R_V = 3.1$ extinction laws of Cardelli et al. 1989 and O'Donnell 1994. The final column normalizes the extinction to photoelectric measurements of E(B-V).

Schlegel maps with correction

http://irsa.ipac.caltech.edu/applications/DUST/

IRSA DATA SETS SEARCH TOOLS HELP

Galactic Dust Reddening and Extinction

	Single Location	Upload Table O
Coordinate/Obje	ect: HD 122563	
Image Size:	5.0	(2.0 to 10.0 deg)

Data T	ag:_ADS/IRSA.Dust#2016/040	5/143812_17720			
HD 122563	210.63269 +9.68610 equ J2000				
	E(B-V) Reddening (mag)				
		S & F (2011)	SFD (1998)		
	Reference Pixel(red '+')	0.0213	0.0248		
	Max	0.0242	0.0281		
	Min	0.0201	0.0233		
THE NUMBER OF STREET,	Mean	0.0218 +/- 0.0012	0.0254 +/- 0.0014		
11d	Extin	ction by Bandpass			
-14h8m - 14h 9d	E(B-V) _{S & F} = 0.86 x E(B-V) _{SFD} S & F = Schlafly & Finkbeiner 2011 (ApJ 737, 103) SFD = Schlegel et al. 1998 (ApJ 500, 525)				
Contraction of the second s	SFD = Schlegel et al. 1998 (ApJ 500, 525) Assuming a visual extinction to reddening				

$$\begin{split} E(B-V)_{SFD} &= 0.025 \ (mag) \\ Av_{SFD} &= 0.077 \ (mag) \\ (Assuming an extinction to reddening ratio Av / E(B-V) = 3.1) \end{split}$$

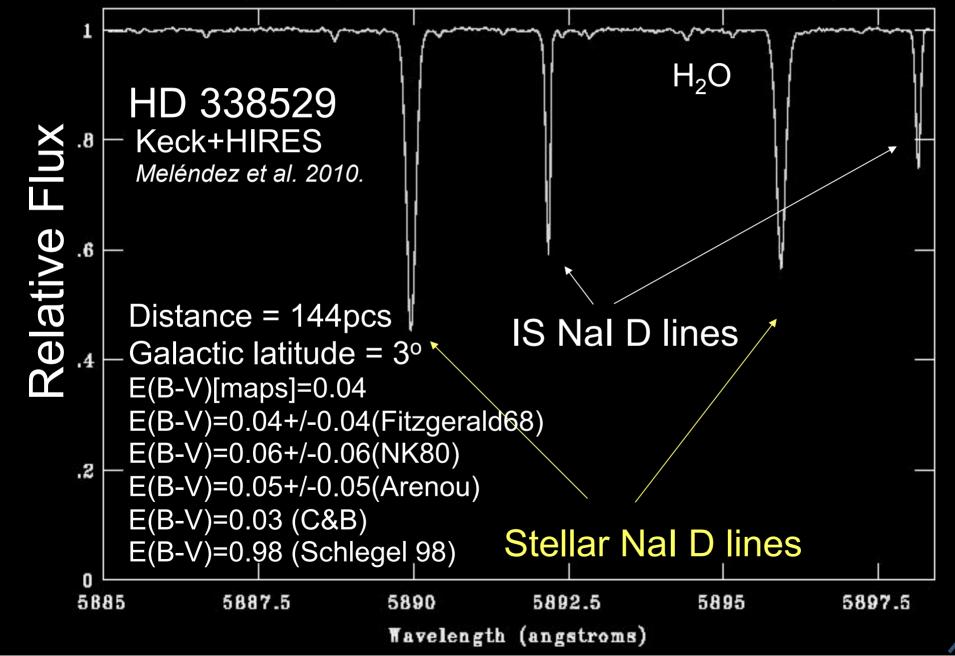
Extinction in Different Bandpasses Download

Filter	LamEff ^a (um)	A/E(B-V) ^b	A ^c (mag)	A/E(B-V) ^b	A ^c (mag)
		S and F (2011)		SFD (1998)	
CTIO U	0.3734	4.107	0.102	4.968	0.123
CTIO B	0.4309	3.641	0.090	4.325	0.107
CTIO V	0.5517	2.682	0.066	3.240	0.080

ratio Av / E(B-V) = 3.1, then:

 $Av_{S\&F} = 0.0661 \text{ (mag)}$ $Av_{SFD} = 0.0768 \text{ (mag)}$

Example


Observed data: V = 9,831; B-V = 0,750; V-R = 0,464

Adopting E(B-V) = 0,10, which are the magnitudes (V) and colors (B-V, V-R) corrected by interstellar extinction? Use table of Schlegel (slide 26).

Adopting $A_V / E(B-V) = 3,315 \rightarrow A_V = 0,331$ $V_0 = V - A_V = 9,500$ $(B-V)_0 = (B-V) - E(B-V) = 0,650$ $A_V / E(B-V) = 3,315, A_R / E(B-V) = 2,673 \rightarrow A_V - A_R = 0,642 E(B-V).$ $E(V-R) = A_V - A_R \rightarrow E(V-R) = 0,642E(B-V) = 0,064$ Note: we suggested previously that $E(V-R) \sim 0,6 E(B-V)$, which is close to the value from Schlegel table (V-R) = (V-R) - E(V-R) = 0,400

 $(V-R)_0 = (V-R) - E(V-R) = 0,400$

E(B-V) can also be obtained using NaD lines E(B-V) = 0.008 + / - 0.001 mag

31

How to estimate E(B-V)?

For nearby objects (d < 80 pc): E(B-V) = 0.00, independent of galactic latitude

Away from the Galactic plane (latitudes b < -20⁰ & b > +20⁰) you can use the Schegel et al. (1998) maps: http://ned.ipac.caltech.edu/forms/calculator.html

At low Galactic latitudes (-20⁰ < b < +20⁰) you could use:

 $E(B-V)_{star} = [1 - \exp(-|d\sin b|/h)] \cdot E(B-V)_{S98}$

- $E(B-V)S_{98}$ is the full extinction from the Schlegel et al. (1998), which could be corrected (or not).
- d is the distance
- *b* is the galactic latitude
- h is the scale-height of the thin dust disk (125 pc)

Árnadóttir, A. S.; Feltzing, S.; Lundström, I. 2010, A&A, 521, A40