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Proofs and Expressiveness in 
Alethic Modal Logic

M A A RT E N D E R I J K E A N D
H E I N R I C H WA N S I N G

1 Introduction

Alethic modalities are the necessity, contingency, possibility or impossibility of something
being true. Alethic means “concerned with truth.”

(Lacey 1976: 132)

The above dictionary characterization of alethic modalities states the central notions
of alethic modal logic: necessity, and other notions that are usually thought of as being
definable in terms of necessity and Boolean negation: impossibility, contingency, and
possibility. The syntax of modal propositional logic is inductively defined over a denu-
merable set of sentence letters p0, p1, p2, . . . as follows:

A:: = p|ÿA|(A ⁄ B)|�A

The other Boolean operations (�, ^, Ÿ, … and ∫) are defined as usual. A formula is read
as follows:

‘it is necessary that A’ is expressed as �A
‘it is impossible that A’ is expressed as �ÿA
‘it is contingent that A” is expressed as ÿ�A
‘it is possible that A’ is expressed as ÿ�ÿA

Usually, ‘it is possible that A’ is abbreviated ‡A, and if ‡ is primitive, �A is abbreviated
ÿ‡ÿA. Although one would expect that �A implies A, the weakest system of normal
modal propositional logic does not have �A … A as a theorem. This is understandable
from the point of view of the most prominent formal semantics for modal logic. The
basic semantic intuition behind alethic modal logic is that �A is true at a state (‘possi-
ble world’) s if and only if (iff) A is true at every state accessible from s. What exactly is
meant by accessibility of t from s is deliberatively left open, to make room for various
readings, like ‘t is compatible with the physical laws of s,’ ‘t is a conceptually possible
alternative of s,’ ‘t lies in the future of s,’ or ‘t is an output-state of a terminating per-



formance of some generic action in s.’ Clearly, if �A is true at s iff A is true always in
the future of s, the unprovability of �A … A is intuitively correct.

Modal reasoning has been discussed by Aristotle already, and the idea of necessary
truth as truth in all possible worlds is due to Leibniz, while its modern mathematical
rendition goes back to Kripke. Over the past century modal logic has been used exten-
sively to conceptualize and reason about a wide variety of modal and modal-like
notions, some of which were mentioned above. To stay within the number of pages
allotted to us, we have had to impose very drastic restrictions. First of all, our treatment
is mainly logical or even mathematical. Second, we have decided to focus on two topics
that, we think, are of relevance to anyone wanting to use modal logic for modeling and
analyzing informal notions: expressive power (what can we say with the logic?) and rea-
soning methods (what are the implications of what we are saying?). In both cases we will
focus on propositional modal logic; however, many interesting philosophical and math-
ematical phenomena and problems arise in modal predicate logic, and we will briefly
touch on some of them.

More concretely, we will survey the model theory of normal modal propositional
logic and present basic notions and results of completeness and correspondence theory.
Moreover, we indicate various ways of enhancing the expressive power of the language
of alethic modal logic. We present an overview of two important types of proof systems
for normal modal logics, namely labeled tableau systems and display calculi. The last
part of the chapter is concerned with several problems arising in modal predicate logic.
We conclude this chapter with pointers to important survey articles and volumes on
modal logic.

2 Model Theory

‘Revolutionary’ is an overused word, but no other word adequately describes the impact
relational semantics (i.e. the concepts of frames, models, satisfaction, and validity that
we are about to introduce) has had on the study of modal logic. Somewhere around
1960 modal logic was reborn as a new field, through the work of authors such as
Hintikka, Kanger, and Kripke. Below we recall the basic concepts that came with these
changes, and we discuss one of the key issues to which the new era gave rise: expres-
sive power.

Basics

A relational structure is simply a tuple (W,R1,R2, . . .) consisting of a domain W and rela-
tions R1, R2, . . . on this domain. A frame for the propositional modal logic introduced
in Section 1 is a relational structure F = (W,R) equipped with a single binary relation.
A frame (W,R) is turned into a model M = (W,R,V ) by equipping it with a valuation V,
that is a function mapping proposition letters in the language to subsets of the domain
W; note that models can be viewed as relational structures in a natural way, namely as
structures of the form (W, R, V( p0), V( p1), . . .), consisting of a domain, a single binary
relation R, and the unary relations given by V.
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In spite of their mathematical kinship, frames and models are used very differently.
Frames are essentially mathematical pictures of ontologies or structural properties that
are more or less invariant across situations, while the unary relations provided by val-
uations decorate frames with contingent information.

DEFINITION 1 Let w be a state in a model M = (W,R,V ). We inductively define the notion
of a formula A being true in M at w (notation: M,w |= A) as follows:

M,w |= p iff w Œ V( p)
M,w |= ÿA iff not M,w |= A
M,w |= A ⁄ B iff M,w |= A or M,w |= B
M,w |= �A iff for all v Œ W with wRv we have M,v |= A

It follows from this definition that M,w |= ‡A iff for some v Œ W with wRv we have M,v
|= A. Note also that the notion of truth is local: formulas are evaluated at some particular
state w. Moreover, � and ‡ both work locally: only states R-accessible from the current
one can be explored by our operators.

A formula A is globally or universally true in a model M (notation: M |= A) if it is true
at all states in M.

Finally, these notions can also be lifted to sets of formulas S: M,w |= S if M,w |= A for
every A Œ S; and M |= S if M |= A for every A Œ S.

One often finds the word ‘world’ (or ‘possible world’) being used for the entities in W;
this use derives from our intended alethic reading of the modal language. The machin-
ery of frames, models, and truth which we have defined is essentially an attempt to
capture – by mathematical means – the view (often attributed to Leibniz) that necessity
means truth in all possible worlds, and that possibility means truth in some possible world.

The truth definition stipulates that ‡ and � check for truth not at all possible worlds
(that is, at all elements of W) but only at R-accessible possible worlds. This may seem
a weakness of the truth definition – but in fact, it is its greatest source of strength.
Varying R is a mechanism which gives us a firm mathematical grip on the pre-
theoretical notion of access between possible worlds. For example, by stipulating that
R = W ¥ W we can allow all worlds access to each other; this corresponds to the
Leibnizian idea in its purest form. Going to the other extreme, we might stipulate that
no world has access to any other. Between these extremes there is a wide range of
options to explore. Should interworld access be reflexive? Should it be transitive? What
impact do these choices have on the notions of necessity and possibility? For example,
if we demand symmetry, does this justify certain principles, or rule others out?

Another philosophical issue concerns the ontological status of the states in possible
worlds models. Do possible worlds exist? If they exist, are they concrete or abstract enti-
ties? Lewis (1986) has been widely criticized for his concretist possible worlds realism;
a well-known defender of the existence of abstract possible worlds is Plantinga (1974).
Possible worlds anti-realists like Chihara (1998) try to explain away metaphysical com-
mitments of quantification over possible worlds in the metalanguage of modal logic. It
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seems fair to say that normally modal logicians do not feel hampered in their work by
these ontological disputes.

Recall that models are composite entities consisting of a frame (our ontology) and
contingent information (the valuation). We often want to ignore the effects of the val-
uation and get a grip on the more fundamental level of frames. The concept of validity
lets us do this.

DEFINITION 2 A formula A is valid at a state w in a frame F (notation: F,w |= A) if A is
true at w in every model (F,V) based on F; A is valid in a frame F (notation: F |= A) if it
is valid at every state in F.

For instance, �(A … B) … (�A … �B) is valid on all frames. In contrast, ‡‡p … ‡p is not
valid on all frames, while it is valid on all transitive frames.

What does logical consequence mean for modal languages? Just like we have local and
global notions of truth and validity, we have two consequence relations for modal for-
mulas. A piece of terminology: if S is a class of models, then a model from S is simply a
model M in S; if S is a class of frames, then a model from S is a model based on a frame
in S.

DEFINITION 3 Let S be a class of models or a class of frames. Let S and A be a set of
modal formula and a single formula. We say that A is a (local) semantic consequence of
S over S (notation: S |=S A) if for all models M from S, and all states w in M, if M,w |=
S, then M,w |= A.

As an example, suppose that we are working with Tran, the class of frames (W,R) in
which R is a transitive relation. Then {‡‡p} |=Tran ‡p, but ‡p is not a local consequence
of {‡‡p} over the class of all frames.

DEFINITION 4 Let A, S and S be as in Definition 3. Then A is a global semantic consequence
of S over S (notation: S |=g

S A) if for all structures (i.e. models or frames) S in S, if S |= S
then S |= A.

The local and global notions are different, yet there is a systematic connection between
them. One can show that, for S a set of formulas and F a class of frames, S |=g

F A is equiv-
alent to {�nB | B Œ S, n Œ w} |=F A.
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Table 28.1 Some axioms

Name Formula

D �p … ‡p
T �p … p
B p … �‡p
4 �p … ��p
5 ‡A … �‡A



Completeness

During the first years after the arrival of possible worlds semantics, the topic of
axiomatic completeness formed the bridge linking the new era with the previous syntac-
tic era. The core notion here is that of a normal modal logic, which is simply a set of for-
mulas satisfying certain syntactic conditions. The system K (after Kripke) is the minimal
(or ‘weakest’) system for reasoning about frames; stronger systems are obtained by
adding extra axioms.

A normal modal logic L is a set of formulas that contains all tautologies, �(p … q) …
(�p … �q), and ‡p ∫ ÿ�ÿp, and that is closed under the following three rules

1 Modus ponens: given A and A … B, prove B.
2 Uniform substitution: given A, prove C, where C is obtained from A by uniformly

replacing proposition letters in A by arbitrary formulas.
3 Generalization: given A, prove �A.

We write �L A to denote that A Œ L. If G » {A} is a set of formulas, then A is L-deducible
from G if either �L A or there are formulas B1, . . . , Bn Œ G such that �L (B1 Ÿ . . . Ÿ Bn)
… A. We call the smallest normal modal logic K, and a formula A is K-provable if �K A.
K is the minimal modal logic in the following sense: its axioms are all valid on all frames,
and all three rules of inference preserve validity, hence all K-provable formulas are
valid.

For many purposes K is too weak. For instance, if we are interested in transitive
frames, we would like a proof system which reflects this. For example, we know that
‡‡p … ‡p (or equivalently �p … ��p) is valid on Tran, the class of all transitive frames,
so we want a proof system that generates this formula. K does not do this, for ‡‡p … ‡p
is not valid on all frames.

We can extend K to cope with many such semantic restrictions by adding extra
axioms. Given a set of formulas G, we can add them as extra axioms to K, thus forming
the axiom system KG. Table 28.1 contains some familiar axioms with their traditional
names.

There is a precise sense in which K and its extensions KG capture frame classes. A
normal modal logic L is sound with respect to a class of frames F if for all formulas A,
�L A implies F |= A for any F Œ F. L is strongly complete with respect to F if for any set
of formula G » {A}, if G |=F A then G �F A. L is (weakly) complete with respect to F if for
any formula A, if F |= A, then �L A. Table 28.2 lists a number of well-known modal logics
together with classes of frames for which they are sound and strongly complete.

One of the most powerful methods for proving (strong) completeness results is based
on canonical models. Given a normal logic L, one proves its strong completeness with
respect to a class of frames F by showing that every L-consistent set of formulas can
be satisfied in a model based on a frame in F. The canonical model method builds this
model out of maximal L-consistent sets of formulas and uses L’s axioms to show that
the underlying frame is in F. More precisely, a set G is maximal L-consistent if it is 
L-consistent (i.e. G �/L ^) and any set of formulas properly containing G is not L-
consistent. By Lindenbaum’s Lemma, any L-consistent set can be extended to a
maximal consistent one. The set of maximal consistent sets forms the domain of a
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canonical model; the accessibility relation R in the canonical model is defined by wRv
if for all formulas A, A Œ v implies ‡A Œ w. Finally, the valuation V of the canonical
model is defined by V( p) = {w|p Œ w}.

Throughout the 1960s canonical models were the key tools used to analyze modal
logics. They seem to have first been used by Makinson (1966) and Cresswell (1967),
and in Lemmon and Scott (1977) (originally written in the mid-1960s) they appear
fully-fledged in the form that has become standard. For a long time it was thought that
every normal modal logic was complete with respect to some class of frames, and that
the canonical model method could be used to prove this. The matter was resolved in
1974, when Fine (1974) and Thomason (1974) published examples of incomplete
normal modal logics. We refer the reader to Chagrov and Zakharyaschev (1997) for a
modern perspective and state-of-the-art account of the canonical model method.

Measuring expressive power

After the discovery of the incompleteness result, and because of an increase in interest
from other disciplines to use modal logic as a description language for describing, for
example process graphs or syntactic structures, attention shifted in part to expressive
power. If we are using modal logic as a description language for talking about relational
structures, which properties can we express? Which properties escape our description
language? How can we overcome such limitations?

Before we can start answering such questions, we need to make a few things clear.
First of all, recall that there are two levels at which we can use modal languages as
description languages: the level of models and the level of frames, hence, the questions
above can also be posed at two levels. Second, to be able to specify properties of models
or frames that a modal language may or not may be able to express, we need some kind
of ‘background language.’ For modal languages as languages for describing models we
use a language of first-order logic which has unary predicate symbols P0, P1, P2, . . .
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Table 28.2 Some logics and their associated accessibility
conditions

Logic Conditions on accessibility

K none
KD seriality ("x$y x Ry)
KT reflexivity
KB symmetry
KDB seriality, symmetry
KTB reflexivity, symmetry
K4 transitivity
K5 Euclidicity ("x"y"z

((xRy Ÿ xRz) … yRz)
KD4 seriality, transitivity
S4 (= KT4) reflexivity, transitivity
S5 (= KTB4 = KT5) universal



corresponding to the proposition letters in our modal language, as well as a single
binary predicate symbol R.

How are this background language and the modal language defined at the begin-
ning of this chapter related? Both can be used to talk about models of the kind used in
Definition 1. For the modal language we already know this, while the only things we
need to interpret the first-order language are a binary relation to interpret R (but the
models of Definition 1 have that) and unary predicates to interpret P0, P1, P2, . . . (and,
again, our models provide those, through the valuation). The modal truth definition
provides the bridge between the two languages. To see this, let x be a first-order vari-
able. The standard translation STx taking modal formulas to first-order formulas is defined
as follows:

STx(P) = Px,
STx(ÿf) = ÿSTx(f),
STx(f ⁄ y) = STx(f) ⁄ STx(y),
STx(�f) = "y (xRy … STy (f)),

where y is a fresh variable (that is, a variable that has not been used so far in the trans-
lation). Note that the standard translation is nothing but a transcription of the modal
truth definition in first-order logic.

As an example, STx(‡�p … p) is $y (xRy Ÿ "z (yRz … Pz)) … P(x).

PROPOSITION 1 On models, modal formulas are equivalent to their standard
translations. More precisely, let A be a modal formula. Then:

1. For all models M and states w of M: M,w |= A iff M |= STx(A)[w].
2. For all models M, M |= A iff M |= "x STx(A).

(For a first-order formula A(x), the expression M |= A(x)[w] means that A(x) is true in
M under the assignment of w to the free variable x in A(x).)

Proposition 1 may be interpreted as saying that, on models, the modal language is
nothing but a fragment of the first-order language that we have specified above. But
which fragment? The key notion required to answer this question is that of a bisimula-
tion, introduced by van Benthem (1976, 1983) in the course of his work on definabil-
ity and expressive power of modal logics.

Let M = (W,R,V ) and M¢ = (W¢,R¢,V¢) be two models. A nonempty binary relation 
Z Õ W ¥ W¢ is called a bisimulation between M and M¢ if the following conditions are
satisfied:

1. If wZw¢ then w and w¢ satisfy the same proposition letters.
2. If wZw¢ and wRv, then there exists v¢ (in M¢) such that vZv¢ and w¢R¢v¢ (the forth

condition).
3. The converse of 2: if wZw¢ and w¢R¢v¢, then there exists v (in M) such that vZv¢ and

wRv (the back condition).

Two states w and w¢ that are linked by a bisimulation are called bisimilar.
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PROPOSITION 2 Modal formulas cannot distinguish between bisimilar states. That is, for
all models M and the M¢ and all states w of M and w¢ of M¢, if there is a bisimulation
Z relating w to w¢, then M,w |= A iff M¢,w¢ |= A, for all modal formulas A.

What does Proposition 2 mean for our discussion on expressive power? By the proposi-
tion, if some property X is true of a state w and false of some w¢ that is bisimilar to it,
then X cannot be expressed by means of a modal formula. Let us make this more con-
crete: consider the models M and M¢ shown in figure 28.1. There exists a bisimulation
between the models; it is given by the following relation Z: Z = {(1,a), (2,b), (2,c), (3,d ),
(4,e), (5,e)}. Condition 1 of the definition of a bisimulation is obviously satisfied: Z-
related states make the same propositional letters true. Moreover, the back and forth
conditions are satisfied too: any move in M can be matched by a similar move in M¢,
and conversely.

There are some obvious differences between, for instance, the state 3 in M and the
state d in M¢, despite the fact that they are bisimilar. For instance, the property $y$z
(xRy Ÿ xRz Ÿ y π z Ÿ P(y) Ÿ P(z)) is true of 3 in M but not of d in M¢. Hence, by
Proposition 2, this property is not expressible by a modal formula.

But we can get more out of bisimulations. By a famous result due to van Benthem,
the inability to distinguish between bisimilar states is characteristic of the modal 
fragment:

THEOREM 1 (VAN BENTHEM CHARACTERIZATION THEOREM) Let A(x) be a first-order formula
(over a vocabulary consisting of R, P0, P1, P2, . . .). Then A(x) is equivalent to the
standard translation of a modal formula iff it cannot distinguish between bisimilar
states.

The above result was first proved by van Benthem (1976) in his PhD thesis; (see also
van Benthem 1983). Analogous bisimulation-based characterizations have since been
given for a wide variety of modal and modal-like languages; consult Blackburn et al.
(2001) for an overview.

We now turn to a brief discussion of the expressive power of the modal language as
a language for talking about frames. We start by explaining why frame definability is
intrinsically second-order, and give examples of frame classes that are modally defin-
able but not first-order definable. Recall that validity is defined as quantifying over all
states of the domain of a frame and over all possible valuations. But a valuation assigns
a subset of a frame to each proposition letter, and this means that when we quantify
across all valuations, we are implicitly quantifying across all subsets of the frame. We
can make this more precise in the following manner: we saw that at the level of models,
the modal language can be translated in a truth-preserving way into a first-order lan-
guage – but we can view the predicate symbols P0, P1, P2, . . . that correspond to the
proposition letters p0, p1, p2, . . . as monadic second-order variables that we can quan-
tify over. If we do this, we are in effect viewing the standard translation as a way of
translating into a second-order language with a binary relation symbol, and monadic
predicate variables P0, P1, P2, . . . This leads to the following result:

PROPOSITION 3 Let A be a modal formula. Then the following holds for any frame F and
any state w of F:
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1. F,w |= A iff F |= "P1 . . . "Pn STx(A)[w]
2. F |= A iff F |= "P1 . . . "Pn STx(A)

As a concrete example, it can be shown that a formula as simple as the McKinsey
formula ‡�p … �‡p is essentially a second-order formula when interpreted on frames:
there is an uncountable frame F on which the McKinsey formula is valid, while it is
invalid on each of Fs countable elementary subframes, thus showing that the McKinsey
formula violates the downward Löwenheim–Skolem Theorem, one of the essential
model-theoretic properties of first-order logic.

There are many modal formulas that define first-order conditions on frames. Tables
28.1 and 28.2 provide examples. Given that we have just seen that frame definability
is a second-order notion, this is a surprising result. It turns out that in many cases the
(often difficult to decipher) second-order condition produced by second-order transla-
tion is equivalent to a much simpler first-order condition. There exists an algorithm,
called the Sahlqvist–van Benthem algorithm, that computes a corresponding first-order
condition for a large class of modal formulas; this is the celebrated Sahlqvist Cor-
respondence Theorem.

To be able to define the class of formulas for which the Sahlqvist–van Benthem algo-
rithm works, we need the following shorthand: a boxed atom is a formula of the form
� . . . �p; in the case where the number of boxes preceding p is 0, the boxed atom �
. . . �p is just the proposition letter p. Next, a negative formula is one in which all occur-
rences of proposition letters are in the scope of an odd number of negation signs.
Furthermore, a Sahlqvist antecedent is a formula built up from �, ^, boxed atoms, and
negative formulas, using Ÿ, ⁄ and ‡. A Sahlqvist implication is an implication A … B in
which B is positive and A is a Sahlqvist antecedent. Finally, then, a Sahlqvist formula is
a formula that is built up from Sahlqvist implications by freely applying boxes and con-
junctions, and by applying disjunctions only between formulas that do not share any
proposition letters.

Examples of Sahlqvist formulas include �(p … ‡p), and the axioms D, T, B, 4, and 5
from table 28.1. Typically forbidden combinations in Sahlqvist antecedents are ‘boxes
over disjunctions,’ and ‘boxes over diamonds,’ as illustrated by the McKinsey formula.

THEOREM 2 (Sahqlvist Correspondence Theorem) Let A be a Sahlqvist formula. Then,
on frames, A is equivalent to a first-order condition CA(x) that is effectively computable
from A.
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The key idea underlying the proof of the above result is the following: strip off the initial
block of monadic second-order universal quantifiers in "P1 . . . "Pn STx(A), thus reduc-
ing it to a first-order formula. The obvious way of getting rid of universal quantifiers 
is to perform universal instantiation, but the key point underlying the proof of the
Sahqlvist Correspondence Theorem is that, in the case of Sahlqvist formulas, instanti-
ations can be chosen in such a way that the resulting first-order formula is equivalent
to (and not just implied by) the original second-order formula.

To illustrate the point, consider the Sahlqvist formula (p Ÿ ‡ÿp) … ‡p. Its second-order
translation is

"P (Px Ÿ $y (Rxy Ÿ ÿPy) … $z (Rxz Ÿ Pz)).

Pulling out the existential quantifier produces

"P"y (Px Ÿ Rxy Ÿ ÿPy … $z (Rxz Ÿ Pz)),

and moving the negative part ÿPy to the consequent we get

"P"y (Px Ÿ Rxy … Py ⁄ $z (Rxz Ÿ Pz)). (1)

The minimal instantiation to make Px true is one that assigns P to an object u iff u =
x. After instantiation we obtain

"y (Rxy … y = x ⁄ $z (Rxz Ÿ z = x)),

and it can be shown that this is actually equivalent to (1). The latter can of course be
simplified to "y (Rxy Ÿ x π y … Rxx).

The Sahlqvist Correspondence Theorem comes together with a Sahlqvist Com-
pleteness Theorem: not only does every Sahlqvist formula correspond to a first-order
property of frames, but when we use one as an axiom in a normal modal logic, that
logic is guaranteed to be complete with respect to the class of frames defined by the first-
order property! Moreover, the completeness result can be proved using the canonical
model method; see Blackburn et al. (2001) for details.

To conclude our discussion of Sahlqvist formulas, we want to mention a result due
to Kracht (1993, 1999), who has isolated the first-order formulas that are the corre-
spondents of Sahlqvist formulas in, as an application of his so-called calculus of inter-
nal describability. Unfortunately, the details are too technical to be included here; see
also Blackburn et al. (2001).

While Kracht’s result gives us insight into the first-order frame properties definable
by means of Sahlqvist formulas, it does not provide us with a complete description of
the modally definable properties. For this, we have to turn to the Goldblatt–Thomason
Theorem. The result characterizes the expressive power of modal languages on frames
in terms of four fundamental frame constructions: disjoint unions, generated subframes,
bounded morphic images, and ultrafilter extensions. Here, the disjoint union F of two
frames F1 and F2 simply has the disjoint union of the domains of F1 and F2 as its
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domain, while its relation is the disjoint union of the relations for F1 and F2. Moreover,
F1 = (W1, R1) is a generated subframe of F2 = (W2, R2) if W1 is a subset of W2 that is
closed under the addition of R2-related states, while R1 is simply the restriction of R2 to
W1. A bounded morphism is nothing but a functional version of our earlier notion of
bisimulation, adapted to the case of frames. And, finally, the ultrafilter extension of a
frame is a kind of completion of the original frame; they are built by using the ultrafil-
ters over a given frame as the states of a new frame, and defining an appropriate rela-
tion between them; see Blackburn et al. (2001) for formal and informal explanations.

THEOREM 3 (GOLDBLATT–THOMASON THEOREM) Let K be a class of frames that is defined
by a first-order sentence. That is, let K be such that for some first-order sentence A, we
have that, for all frames F, F Œ K iff F satisfies A. Then K is definable by means a modal
formula iff it is closed under bounded morphic images, generated subframes, disjoint
unions while it reflects ultrafilter extensions in the sense F Œ K whenever the ultrafilter
extension F is in K.

The Goldblatt–Thomason Theorem was actually proved by Goldblatt. His original 
result was stronger than the one we have given, applying to any frame class that is
closed under elementary equivalence; this result was published in a joint paper with 
S. K. Thomason (1974).

3 Proof Theory

Although modern alethic modal logic started as a syntactic enterprise, its proof theory
was somewhat neglected after the advent of possible worlds semantics. An exception is
the development of semantic tableau calculi for modal logic. Tableau proof systems
amount to rules for the construction of countermodels and take into account the rela-
tional patterns of possible worlds models. We will first consider semantic tableaux and
then ‘display logic’, a generalization of Gentzen’s sequent calculus based on the idea of
residuation and Galois connection.

Tableau calculi

Tableau calculi incorporating the accessibility relation of possible worlds models were
first introduced by Kripke (1963) and were later ‘linearized’ by various authors, notably
Fitting (1983, 1993) and Mints (1992). The basic declarative unit of these calculi is
not just a formula A, but rather a formula plus label (s, A). In general, the label s is a
nonempty finite sequence of positive integers. A simplification is possible for S5. Since
S5 is characterized by the class of all frames with a universal accessibility relation R,
R can be neglected, and the label s may just be a single positive integer. A comprehen-
sive survey on tableau methods for modal and tense logics is Goré (1999). The use of
labels allows one to formulate tableau calculi for certain extensions of the minimal
normal modal logic K by imposing constraints on accessibility and on occurrences and
the shape of labels on tableau branches.
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A Gentzen sequent is an expression D Æ G, where D and G are finite sets of formu-
las, and D Æ G is to be understood as the claim that Ÿ D … ⁄ G is provable. In (exten-
sions of) classical logic, the latter formula is valid iff the set {A | A Œ D} » {ÿB | B Œ
G} fails to be satisfiable. Rules for manipulating the sequent D Æ G can therefore also
be stated as rules for manipulating the finite set {A | A Œ D} » {ÿB | B Œ G}. Although
tableau calculi are often presented using the set notation, we here prefer a sequent nota-
tion. We will use bold letters X, Y, Z (possibly with primes or subscripts) to denote arbi-
trary finite sets of labeled formulas. A sequent is an expression of the form X Æ Y, where
X is called the antecedent and Y is called the succedent of this sequent. We use s, s1, s2,
. . . to denote sequents and the ‘turnstile’ � to denote derivability between single
sequents and finite sets of sequents.

Tableau calculi are given by (finite) sets of derivation rules of the form s � s1, . . . , sn.
A tableau for a given sequent s is a tree of sequents rooted in s, such that every node of
the tree is an instantiation of one of the derivation rules of the tableau calculus under
consideration. A tableau for s is closed if every leaf of any branch of the tableau has the
form (s, B) Æ (s, B). We assume a binary relation of ‘accessibility’ between labels. This
relation may satisfy certain conditions, and a number of such conditions is defined in
table 28.3.

The logic K and various extensions of it that can be dealt with by means of labeled
tableaux, require certain properties of accessibility between labels. Table 28.4 lists such
systems together with the required properties of accessibility between labels. A label t
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Table 28.3 Conditions on accessibility

Name of condition Definition

general for every n, sn is accessible from s
symmetry for every n, s is accessible from sn
reflexivity s is accessible from s
transitivity if s is a proper initial segment of t, 

then t is accessible from s
universal any label is accessible from any label

Table 28.4 Some logics and their associated label
accessibility conditions

Logic Conditions on accessibility

K, KD general
KT general, reflexivity
KB, KDB general, symmetry
KTB general, reflexivity, symmetry
K4, KD4 general, transitivity
S4 (= KT4) general, reflexivity, transitivity
S5 (= KTB4) universal



occurring on a tableau branch is said to be a simple, unrestricted extension of a label s
iff (1) t is the result of extending s on the right with a single positive integer and (2) t
is not an initial segment of any label occurring on the branch. The label t is available
on a branch if it occurs on that branch. Right and left introduction rules for � can now
be stated in such a way that variations among the systems listed in table 28.4 can be
accounted for by side conditions on the left rule (cf. Fitting 1993: 402). These rules are
stated in table 28.5 together with the tableau rules for disjunction and negation.

For every logic L from table 28.4, let TL be its tableau calculus. Here is an example
(1) of a closed tableau for f Æ (1, ÿ�A ⁄ ��A) in T K4 and an example (2) of a closed
tableau for f Æ (1, ÿA ⁄ �ÿ�ÿA) in T KB.

(1) f Æ (1, ÿ�A ⁄ ��A) (2) f Æ (1, ÿA ⁄ �ÿ�ÿA)
f Æ (1, ÿ�A), (1, ��A) f Æ (1, ÿA), (1, �ÿ�ÿA)
(1, �A) Æ (1, ��A) (1, A) Æ (1, �ÿ�ÿA)
(1, �A) Æ (·1, 2Ò, �A) (1, A) Æ (·1, 2Ò, ÿ�ÿA)
(1, �A) Æ (·1, 2, 3Ò, A) (1, A), (·1, 2Ò, �ÿA) Æ f
(·1,2, 3,Ò, A) Æ (·1, 2, 3Ò, A) (1, A), (1, ÿA) Æ f

(1, A) Æ (1, A)

THEOREM 4 A modal formula A is a theorem of a logic L from table 28.4 iff there is a
closed tableau for f Æ (1, A) in TL.

Display calculi

The display calculus (Belnap 1992) is a generalization of Gentzen’s sequent calculus.
We will present display logic only to the extent needed to treat normal modal logics. A
more comprehensive presentation of display logic and its application to modal and non-
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Table 28.5 Tableau rules

Name Rule

L⁄ X, (s, A ⁄ B) Æ Y � X, (s, A) Æ Y X, (s, B) Æ Y
R⁄ X Æ (s, A ⁄ B), Y � X Æ (s, A), (s, B), Y

Lÿ X, (s, ÿA) Æ Y � X Æ (s, A), Y
Rÿ X Æ (s, ÿA), Y � X, (s, A) Æ Y

L� X, (s, �A) Æ Y � X, (t, A) Æ Y
for any t accessible from s provided
(i) for K, KB, and K4, t must be available on the branch;

(ii) for KD, KT, KDB, KTB, KD4, S4, and S5,
t must either be available on the branch
or be a simple, unrestricted extension of s

R� X Æ (s, �A), Y � X Æ (t, A), Y
provided t is a simple, unrestricted extension of s



classical logics can be found in Belnap (1982, 1990), Goré (1998), Kracht (1996),
Restall (1998) and Wansing (1998). The modal display calculus is based on the obser-
vation that the operators � (‘sometimes in the past,’ i.e. the possibility operator with
respect to the inverse R˘ of the accessibility relation R) and � form a residuated pair.
The following definition is taken from Dunn (1990: 32):

DEFINITION 5 Let A = (A, £) and B = (B, £¢) be partially ordered sets with functions f:
A Æ B and g: B Æ A. The pair ( f,g) is called

• residuated iff ( fa £¢ b iff a £ gb);
• a Galois connection iff (b £¢ fa iff a £ gb);
• a dual Galois connection iff ( fa £¢ b iff gb £ a);
• a dual residuated pair iff (b £¢ fa iff gb £ a).

Obviously, (�,�) forms a residuated pair with respect to the (local) semantic conse-
quence relation |= with respect to classes of Kripke frames. These ideas of residuation
and Galois connection can be generalized, but for our purposes we have all we need to
formulate introduction sequent rules for the modal operators. The polyvalent comma
as a structure connective in Gentzen’s sequent calculus is replaced by a number of
structure connectives: I (nullary), * (unary), • (unary), � (binary). Every formula A is a
structure, and we will use X, Y, and Z as variables for structures. The structures are
defined by:

X ::= A | I |*X | •X | X � Y.

A display sequent is an expression X Æ Y; X is called the antecedent and Y the succedent
of X Æ Y. The intended meaning of the structure connectives can be made explicit by
a translation t (X Æ Y) := t1 (X) … t2(Y) of sequents into formulas, where ti(A) = A (i =
1,2), and:

t1(I) = � t2(I) = ^
t1(*X) = ÿ t2(X) t2(*X) = ÿ t1(X)
t1(•X) = �t1(X) t2(•X) = � t2(X)
t1(X � Y) = t1(X) Ÿ t1(Y) t2(X � Y) = t2(X) ⁄ t2(Y).

Under the t-translation, the following basic structural rules are valid in every normal
modal logic:

(1) X � Y Æ Z�� X Æ Z � *Y�� Y Æ *X � Z
(2) X Æ Y � Z�� X � *Z Æ Y�� *Y � X Æ Z
(3) X Æ Y�� *Y Æ *X�� X Æ **Y
(4) X Æ • Y�� • X Æ Y.

Here, X1 Æ Y1�� X2 Æ Y2 is an abbreviation of X1 Æ Y1 � X2 Æ Y2 and X2 Æ Y2 � X1

Æ Y1. If two sequents are interderivable by means of (1)–(4), they are said to be struc-
turally or display equivalent. The name ‘display logic’ is due to the fact that any sub-
structure of a given display sequent s may be displayed as the entire antecedent or

PROOFS AND EXPRESSIVENESS IN ALETHIC MODAL LOGIC

435



succedent of a structurally equivalent sequent s¢. In order to state this fact precisely, we
define the notion of antecedent and succedent part of a sequent. An occurrence of a
substructure in a given structure is called positive (negative), if it is in the scope of an
even (odd) number of *’s. An antecedent (succedent) part of a sequent X Æ Y is a 
positive occurrence of a substructure of X or a negative occurrence of a substructure
of Y (a negative occurrence of a substructure of X or a positive occurrence of a 
substructure of Y).

THEOREM 5 (DISPLAY THEOREM, BELNAP 1992) For every display sequent s and every
antecedent (succedent) part X of s there exists a display sequent s¢ structurally
equivalent to s such that X is the entire antecedent (succedent) of s¢.

The structure connectives *, I and � give rise to introduction rules for the Boolean con-
nectives, and • permits formulating introduction rules for �. These introduction rules
are presented in table 28.6. Table 28.7 collects further structural rules that together
with the introduction rules ensure the classical and normal modal behavior of the
logical operations. A richer inventory of structural rules (and another choice of struc-
ture connectives) is called for in display calculi for substructural logics, see Goré (1998).
In addition to structural rules and introduction rules, every display calculus contains
two distinguished logical (structural) rules, namely identity for atoms and cut:

(identity) � p Æ p
(cut) X Æ A, A Æ Y � X Æ Y
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Table 28.6 Introduction rules for the logical operations

Name Rule

(Æ ÿ) X Æ *A � X Æ ÿA
(ÿ Æ) *A Æ X � ÿA Æ X
(Æ ⁄) X Æ A ∞ B � X Æ A ⁄ B
(⁄ Æ) A Æ X B Æ Y � A ⁄ B Æ X ∞ Y
(Æ �) •X Æ A � X Æ �A
(� Æ) A Æ X � �A Æ •X

Table 28.7 Additional structural rules

Name Rule

(I) X Æ Z �� I ∞ X Æ Z, X Æ Z �� X Æ I ∞ Z
(A) X1 ∞ (X2 ∞ X3) Æ Z �� (X1 ∞ X2) ∞ X3 Æ Z
(P) X1 ∞ X2 Æ Z � X2 ∞ X1 Æ Z
(C) X ∞ X Æ Z � X Æ Z
(M) X Æ Z � X ∞ Y Æ Z
(MN) I Æ X � •I Æ X



It can be shown by induction on formulas A that � A Æ A. The display calculus DK
consists of (id), (cut), the basic and additional structural rules and the introduction
rules for ÿ, ⁄, and �. As an example, figure 28.2 depicts a cut-free derivation of � (ÿA
⁄ B) Æ ÿ�A ⁄ �B, where (bs) indicates the repeated application of some basic struc-
tural rules.

Using induction on the complexity of X, it can be shown that in every extension of
DK by structural rules, � X Æ t1 (X) and � t2 (X) Æ X. This observation is used in the
proof of the characterization theorem.

THEOREM 6 In DK, � X Æ Y iff t1 (X) … t2 (Y) is provable in K.

A display sequent system is said to be a proper display calculus, if it satisfies certain con-
ditions C1–C8 first stated by Belnap (1992). A logic is said to be properly displayable, if
it can be presented as a proper display calculus. Every proper display calculus enjoys
cut-elimination (Belnap 1992) and even strong cut-elimination (Wansing 1998). In
this case, strong cut-elimination means that there is a set of reduction steps for turning
a given sequent proof into a cut-free proof of the same sequent such that – modulo
certain mild restrictions – every sufficiently long sequence of applications of these reduc-
tion steps to a proof P will return a cut-free proof P¢ of the same sequent. The class 
of all properly displayable extensions of the smallest normal temporal logic has been
characterized by Kracht (1996).

Here we will just consider display calculi for extensions of K by the familiar and
important axiom schemata D, T, 4, B and 5 that correspond to the seriality, reflexivity,
transitivity, symmetry, and Euclidicity, respectively, of the accessibility relation R. It
turns out that these axiom schemata can be captured by the purely structural rules
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Figure 28.2 A derivation in DK



stated in table 28.8. Let q Õ {D, T, 4, B, 5} , = {a¢ | a Œ q}. Let Kq be the result of
adding the axiom schemata from q to K, and let DKq¢ be the result of adding the struc-
tural rules from q¢ to DK.

THEOREM 7 In DKq, � X Æ Y iff t1 (X) … t2 (Y) is provable in Kq¢.

4 Modal Predicate Logic

While propositional modal logic has become a highly developed discipline with a broad
spectrum of choices as regards expressive power and reasoning methods, in some cases
the added modeling power of modal predicate logic is called for. Below we briefly discuss
some of the philosophical and mathematical issues involved with this choice.

In modal predicate logic there are various junctions where metaphysics, philosophy
of language and formal logic meet. Let F = (W, R) be a frame. If to every state s Œ W a
domain D = d(w) is associated, there are at least the following, well-known options:

1. ("s ŒW), d(s) π f; (varying domains);
2. ("s, t ŒW), d(s) π f and if sRt, then d(s) Õ d(t) (increasing domains);
3. ("s, t ŒW), d(s) π f and d(s) = d(t) (constant domains).

Is every individual present in every state? What are the effects a state transition can
have on a domain? It seems natural to assume that if sRt, individuals not already
present in s may appear in t or individuals present in s may disappear in t. With a fixed
set of individual constants, the assumptions of varying and increasing domains permit
non-designating ground (that is, variable-free) terms. In addition to the semantical
problem of interpreting non-designating ground terms and formulas containing such
terms, the metaphysical question arises, whether an individual may or not possess 
properties in a state where the individual does not exist. The assumption of constant
domains corresponds to the validity of the Barcan formula "x�A … �"xA and the
assumption of increasing domains corresponds to the validity of the converse Barcan
formula �"xA … "x�A. We refer to the recent Fitting and Mendelsohn (1998) for an
overview of discussions of these and related matters.

q
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Table 28.8 Axiom schemata and corresponding structural
rules

Schema Structural rule

D * • *I Æ Y � I Æ Y
T X Æ •Y � X Æ Y
4 X Æ •Y � X Æ • • Y
B * • *(X ∞ * • *Y) Æ Z � Y ∞ * • *X Æ Z
5 * • *X Æ Y � • * • * X Æ Y



There is a whole web of mathematical questions related to the Barcan formula and
its variations. As to proof-theoretical aspects, the standard ordinary sequent calculus
for K uses Gentzen sequents D Æ G and comprises just one introduction rule for �,
namely

D Æ A � {�B | B Œ D} Æ �A

If this calculus is enlarged by the familiar introduction rules for the universal quanti-
fier, the Barcan formula and its converse are derivable. This fact supports the idea that
modal logic requires a generalized notion of sequent.

It has often been observed that � is a universal quantifier over possible worlds in the
metalanguage of modal logic. In display logic, a universal quantifier prefix "x can be
treated like the necessity operator, by associating with "x a structure operation •x and
a binary relation Rx such that in succedent position •xA is interpreted as "xA and in
antecedent position as $x˘, the ‘possibility’ operator with respect to the converse rela-
tion Rx˘ of Rx. The Barcan formula and its converse then correspond to additional struc-
tural rules, for details see Wansing (1998):

X Æ •x • Y � X Æ ••x Y; X Æ ••xY � X Æ •x •Y.

Tableaux calculi for modal predicate logics with and without the Barcan formula can
be found in Mayer and Cerrito (2000).

Just like the identity of individuals gives rise to many philosophical questions in
modal predicate logic, it also gives rise to many deep mathematical questions. As a
result, various alternative semantic frameworks were developed for modal predicate
logic during the 1990s, including the Kripke bundles of Shehtman and Skvortsov
(1990) and the category-theoretic semantics proposed by Ghilardi (1991).

The notion of (axiomatic) completeness is another source of interesting mathemat-
ical questions in modal predicate logic. It turns out that the minimal predicate logical
extension of many well-behaved and complete propositional modal logics need not be
complete. The main (negative) result in this area is that among the extensions of S4,
propositional modal logics L whose minimal predicate logical extension is complete
must have either L � S5 or L Õ S4.3. This excludes completeness results for predicate
logical extensions for logics such as S4.1 and S4.3Grz. Positive completeness results are
known only for some boundary cases: the predicate logical extensions of S4, S4.2, S4.3,
and S5 and its extensions; see Cresswell (2001) for a recent overview.

Still further mathematical questions come up in the search for algorithmically 
well-behaved fragments of modal predicate logics; very powerful results were recently
obtained by Hodkinson, Wolter, and Zakharyaschev (2000).
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Further Reading

We conclude this chapter with some pointers to the literature on modal logic. First, details on the
history of modern modal logic are available, for instance, in Blackburn et al. (2001); Bull and
Segerberg (1984); Goldblatt (2000); Zakharyashev et al. (2000). Second, there are several survey
papers in recent and not so recent handbooks that can serve as valuable starting points for
further studies; these include Bull and Segerberg (1984). Third, there is a broad range of modern
textbooks on modal logic, ranging from the philosophically oriented: Girle (2000); Hughes and
Cresswell (1996) to the more mathematically inclined: Blackburn et al. (2001); Popkorn (1992).
Finally, the Advances in Modal Logic initiative, with its accompanying workshops, volumes, and
web site at www.aiml.net is a rich source of information.
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