Phylogenetic relationships in the Neotropical bruchid genus Acanthoscelides

(Bruchinae, Bruchidae, Coleoptera)

Nadir Alvarez^{1,2}, Jesus Romero Napoles³, Klaus-Werner Anton⁴, Betty Benrey² and Martine

Hossaert-McKey¹.

¹ CEFE-CNRS, 1919 rte de Mende, 34293 Montpellier cedex 5, France.

² LEAE, Institut de Zoologie, Université de Neuchâtel, 11 rue Emile-Argand, CH-2007

Neuchâtel, Switzerland.

³ Instituto de Fitosanidad, Colegio de Postgraduados, Km 36.5 carr. México-Texcoco, 56230

Montecillo, Edo. de México, Mexico.

⁴ Grünewaldstrasse 13, 79312 Emmendingen, Germany.

Short title: Phylogeny of the bruchid genus *Acanthoscelides*.

Author for correspondence:

Nadir Alvarez, LEAE, Université de Neuchâtel, 11, rue Emile-Argand, 2007 Neuchâtel,

Switzerland; Fax: 0041327183001; e-mail: nadir.alvarez@unine.ch

Keywords: adaptive radiation, vicariance, long-distance colonization, host-plant adaptation.

ABSTRACT

1

3 Adaptation to host-plant defenses through key innovations is a driving 4 force of evolution in phytophagous insects. Species of the neotropical 5 bruchid genus Acanthoscelides Schilsky are known to be associated 6 with specific host plants. The speciation processes involved in such 7 specialization pattern that have produced these specific associations 8 may reflect radiations linked to particular kinds of host plants. By 9 studying host-plant associations in closely related bruchid species, we 10 have shown that adaptation to a particular host-plant (e. g., with a 11 certain type of secondary compounds) could generally lead to a 12 radiation of bruchid species at the level of terminal branches. 13 However, in some cases of recent host shifts, there is no congruence 14 between genetic proximity of bruchid species, and taxonomic 15 similarity of host plants. At deeper branches in the phylogeny, 16 vicariance or long-distance colonization events seem to be responsible 17 for genetic divergence between well-marked clades, rather than 18 adaptation to host plants. Our study also suggests that the few species 19 of Acanthoscelides described from the Old World, as well as 20 Neotropical species feeding on Mimosoideae, are misclassified, and 21 are more closely related to the sister genus Bruchidius.

Introduction

,	•	٠		
		,		
4	_		,	

3	Secondary metabolites in plants are known to play an important role
4	in defense against herbivores (e. g. Herms and Mattson 1992; McKey
5	1979). In legumes, the diversity of such compounds seems to be even
6	larger than in other plant families, and new secondary metabolites
7	continue to be discovered (see Hegnauer 1994; Hegnauer and
8	Hegnauer 1996, 2001). Based on the tendency of related species to
9	possess similar metabolites, several studies have addressed the use of
10	secondary metabolites as chemical markers in legume taxonomy (e. g.,
11	Evans et al. 1994; Kite and Lewis 1994; Wink et al. 1995). For
12	phytophagous insects, these compounds represent defenses to
13	overcome. However, once an adaptation permitting this has appeared
14	(e. g., by sequestration or detoxification of the toxic compound), the
15	insect can also exploit chemically similar (and usually closely related)
16	plant species. In two examples concerning legumes, Macrosiphum
17	albifrons Essig 1911 is the only known species of aphid able to
18	develop on the alkaloid-rich varieties of lupin (Wink and Römer
19	1986); and the bruchid Caryedes brasiliensis Thunberg 1816 develops
20	on host plants whose seeds contain high concentrations of arginase
21	and canavanine (Bleiler et al. 1988; Rosenthal 1990; Rosenthal and
22	Janzen 1983). Adaptation to a secondary metabolite (or class of
23	similar metabolites) characteristic of a group of closely related plant
24	species may allow a lineage of phytophagous insects to radiate
25	adaptively onto several host plants of this group (Ehrlich and Raven
26	1964).
27	Bruchid beetles, with about 1700 known species (Borowiec 1987), are
28	one of the most interesting groups of phytophagous beetles. Larvae of
29	bruchids feed only inside seeds during their development, and most
30	species are associated with legumes. Bruchids have countered the

- 1 mechanical protection of hard-seeded angiosperm species and have
- 2 subsequently been able to use hard seed coats as a shield for their
- 3 developing larvae. This adaptation has constrained bruchids to
- 4 specialize particularly on legumes, but has allowed them to undergo
- 5 radiations in other hard-seeded and stone-fruited families (Borowiec
- 6 1987), such as Malvaceae sensu lato (see Bayer et al. 1999) and
- 7 Arecaceae. Acanthoscelides Schilsky 1905 (Bruchinae, Bruchidae,
- 8 Coleoptera) is the largest Neotropical bruchid genus (Johnson 1981).
- 9 Currently, about 300 species have been described, and many still
- 10 likely await discovery, especially in poorly studied parts of South
- America, such as Amazonia and southern South America (Kergoat et
- 12 al. submitted). Most of the species described are oligophagous or
- monophagous. Among the species for which a host plant has been
- reliably identified (Johnson 1983, 1989, 1990), about one hundred
- species develop on Faboideae, 35 species on Mimosoideae, and 6
- species on Caesalpinioideae. A minority of the described species feed
- on non-legumes, such as Malvaceae sensu lato [Malvoideae (30
- species), Grewioideae (8 species), Byttnerioideae (2 species)],
- 19 Onagraceae (1 species), Rhamnaceae (1 species) and Cistaceae (1
- species). Using morphological and ecological criteria, Johnson (1983,
- 21 1990) defined 15 groups of species of Acanthoscelides, all
- 22 neotropical. Finally, about nine Palearctic species apparently restricted
- 23 to seeds of herbaceous species of the faboid tribe Galegeae, such as
- 24 Astragalus spp., were treated as Acanthoscelides by Lukjanovitsch
- and Ter-Minassian (1957), but their status as members of
- 26 Acanthoscelides has been questioned (Borowiec 1987). One of these
- 27 species was placed in *Bruchidius* by Egorov and Ter-Minassian
- 28 (1981), and four were placed in a new genus, *Palaeobruchidius*, by
- 29 Egorov (1990).

1	Acanthoscelides represents a very good model to examine
2	adaptive radiation of phytophagous insects in legumes, and other hard-
3	seeded families. A recent study of Bruchidius Schilsky, the Old-World
4	sister genus of Acanthoscelides, has shown the role played by key
5	innovations in the adaptive radiation of several groups of Bruchidius
6	species on closely related host plants (Kergoat et al. 2004). Another
7	study focusing on European species of Bruchidius has demonstrated
8	several cases of ecological specialization in some beetles that were
9	able to feed only on specific host plant species (Jermy and Szentesi
10	2003). In the present study, we compare host plant associations of
11	different, apparently monophyletic, groups of Acanthoscelides
12	species. Toward this goal, we analyzed relationships in a sample of 26
13	species of Acanthoscelides, including mostly ones specialized on the
14	faboid tribe Phaseoleae, using phylogenetic methods applied to
15	mitochondrial gene sequences. Our goal was to test the role of host-
16	plant identity in the radiation of Acanthoscelides. We also included
17	some other Old World and New World Bruchinae as outgroups, to
18	confirm the monophyly of Acanthoscelides and of groups of species
19	within it, and to explore the status of the Palearctic species that have
20	been treated as Acanthoscelides.
21	
22	
23	MATERIAL AND METHODS
24	
25	Establishing species groups of Acanthoscelides for studying
26	evolution of host-plant association
27	Morphological similarity in male genitalia (considered the
28	morphological criterion the most indicative of evolutionary
29	relationships in bruchids [Borowiec 1987]) is not always a rule within
30	the fifteen species groups of neotropical Acanthoscelides recognized

- 1 by Johnson (1983, 1990). We therefore tried to determine which
- 2 groups presented consistently similar male genitalia and thus were
- 3 most likely to represent monophyletic groups. Based on illustrations
- 4 by Johnson (1983, 1990), we examined for each species five
- 5 qualitative traits of male genitalia that describe the characteristics of
- 6 the virga (the ventral valve at the apex of the median lobe), the median
- 7 lobe, and the lateral lobes:
- 8 (i) shape of the apical surface of the virga (rounded vs. sharp);
- 9 (ii) shape of the lateral edges of the virga (straight vs. concave vs. convex);
- 11 (iii) ratio between height and width of the virga (height smaller 12 than half the base vs. height greater than half the base);
- 13 (iv) shape of sclerified parts in the lateral edge of the median 14 lobe (straight vs. curved);
- 15 (v) proportion of length of lateral lobes fused to each other 16 (less than 1/3 vs. between 1/3 and 2/3 vs. more than 2/3).
- We also included a sixth variable corresponding to the biogeographic
- range of the species (distributed no further south than Panama [N] vs.
- 19 distributed south of Panama [S] vs. distributed both north and south of
- 20 Panama [N+S]). In organisms with limited dispersal, closely related
- 21 species are expected to live in the same biogeographic region.
- We considered only groups containing five or more species (N=10
- 23 groups). Thus, we examined the aequalis, albopygus, blanchardi,
- 24 flavescens, megacornis, mexicanus, obtectus, pertinax, puellus and
- 25 quadridentatus groups (Johnson 1983, 1990). We then constructed a
- 26 multiple correspondence analysis, considering the species group as a
- supplementary variable, using SAS (1999). We then conducted a
- discriminant analysis based on the coordinates of each species in the
- 29 best represented groups for the nine first dimensions using S-Plus
- 30 (2001). In this analysis, we tested if well represented groups were

1	different from each other, by a discriminant analysis and by paired
2	comparisons (Hotelling's T Squared for Differences in Means) using
3	S-Plus (2001).
4	
5	Sampling
6	Sampling of Bruchinae included 26 species of Acanthoscelides, four
7	species of Bruchidius, Merobruchus placidus, and
8	Palaeoacanthoscelides gilvus. As outgroups, we used Zabrotes
9	planifrons Horn (subfamily Amblycerinae). Material available for this
10	study was mostly dried, pin-mounted specimens from the personal
11	collections of J. Romero Napoles, K. W. Anton, and C. D. Johnson,
12	collected from 08 Nov. 1983 to 21 Aug. 2002. In addition to these
13	specimens from collections, specimens of Acanthoscelides obtectus,
14	A. obvelatus, A. argillaceus and Merobruchus placidus were collected
15	in 2002 by N. Alvarez. Table 1 summarizes information on sampled
16	specimens and associated host plants for all species discussed in this
17	paper. Although we analyzed the phylogenetic position of 26 out of
18	the 300 Acanthoscelides species thus far described, those species are
19	well representative of the genus, when considering both the
20	morphological groups and the plant families on which the larvae
21	develop.
22	
23	DNA extraction, amplification and sequencing
24	Total genomic DNA was extracted using the DNeasy TM kit (Qiagen).
25	Qiagen protocol for animal tissues was modified to increase yield, due
26	to the fact that most of our dried specimens, some up to 20 years old,
27	contained low amounts of DNA. In particular, the lysis steps lasted 24
28	hours instead of three; particular attention was given to tissue
29	crushing; final elution lasted 2 hours rather than 1 minute, and was
30	done in 30µL final volume instead of 100µL. PCR amplifications for

- 1 three mitochondrial genes *cytb* (primers CB1 & CB2), *COI* (primers
- 2 C1-J-2183 & TL2-N-3014), and 12S rRNA (primers 12sai & 12sbi) –
- 3 were performed (Simon et al. 1994). Final volume was 10 μL, and
- 4 contained 1 to 5 μL of extracted DNA, 1 μL of 25 mM MgCl2, 0.1 μL
- 5 of 10mM dNTPs, 1 μL of PCR buffer (Eurogentec), 1 unit of Taq
- 6 DNA polymerase (Eurogentec Red GoldstarTM), 0.5 μL of forward
- 7 primer, and 0.5 μL of reverse primer. PCRs were performed separately
- 8 for each primer pair on a PTC-200TM thermocycler using the
- 9 following cycling conditions: initial denaturation at 92 °C (1 min 30
- 10 s); 30 to 40 cycles of 92 °C (30 s), annealing at 55 °C (45 s),
- elongation at 72 °C (1 min 30 s); final elongation at 72 °C (10 min).
- 12 Sequencing reactions were carried out using Applied Biosystems
- 13 BygDyeTM protocol. Products of the sequencing reactions were then
- analyzed on an ABI Prism 310 sequencer.

Phylogenetic analyses

- 17 Chromatograms were manually corrected using Chromas 2.23
- 18 (Technelysium Pty. Ltd., Helensvale, Australia) and further aligned
- using ClustalW 1.83 (Thompson et al. 1994). The phylogenetic signal
- of our data was tested by performing a likelihood mapping analysis,
- using TREE-PUZZLE 5.2 (Strimmer and Von Haeseler 1997).
- 22 Parsimony analysis and maximum likelihood analysis were carried out
- on an Intel Pentium IV 2.4 Ghz processor. Parsimony analysis was
- 24 performed using PAUP* 4.0b10 (Swofford 2003), whereas maximum
- 25 likelihood analysis was achieved using both PAUP* 4.0b10 and
- 26 PHYML 2.4.4 (Guindon and Gascuel 2003). All analyses were
- 27 performed using heuristic search and tree-bisection-reconnection
- 28 (TBR) branch-swapping-algorithm. For parsimony analysis, gaps were
- 29 treated as a fifth character, and all characters were re-weighted on the
- 30 basis of their rescaled consistency index (Farris 1989). Bootstrap

2 analysis, we used a general time reversible (GTR) model with eight 3 evolutionary rate categories. Gamma shape parameter, proportion of 4 invariable sites, base frequencies and probabilities of substitution were 5 estimated through heuristic search. Bootstrap values were calculated 6 both on 100 replicates using PAUP* 4.0b10, and on 1000 replicates 7 using PhyML (much less time-consuming than PAUP). Likelihoods of 8 constrained and non-constrained trees were compared with a Kishino-9 Hasegawa (RELL bootstrap) test, using PAUP* 4.0b10 (Swofford 10 2003). 11 Bayesian inferences were determined using MrBayes version 3.0b4 12 (Huelsenbeck and Ronquist 2001) on an Apple G5 1.8 Ghz. We used 13 Modeltest 3.06 (Posada and Crandall 1998) to assess the best-fit 14 substitution model, through hierarchical likelihood ratio tests. The 15 asymptote of the fluctuating likelihood values of the Bayesian trees 16 (or burnin period) was determined through preliminary runs. We ran 17 four Metropolis-coupled chains in one run of 20000000 generations, 18 and sampled one tree every 10000 once cycles after the burnin period 19 had passed. The sampled trees were used to generate a majority rule 20 tree showing all compatible partitions and the support for the nodes of 21 this tree was given by posterior probability estimates for each clade. 22 Character tracing of host plant genera (or host plants tribes or 23 subfamilies) corresponding to each studied bruchid species was 24 carried out on the majority rule tree obtained through Bayesian 25 methods, using MacClade 4.06 (Maddison and Maddison 2004) with 26 DELTRAN optimization. 27 28 29 30

values were calculated on 1000 replicates. For maximum likelihood

1	
2	RESULTS
3	
4	Multiple correspondence analysis and discriminant analysis of
5	species groups of Acanthoscelides
6	The nine dimensions of the MCA on morphological and
7	biogeographical characters explained respectively 19.89%, 15.34%,
8	13.17%, 11.61%, 10.40%, 8.94%, 8.11%, 7.23% and 5.31% (graphs
9	not shown). The discriminant analysis using the coordinates of each
10	species in the ten groups demonstrated highly significant differences
11	among species groups (Hotelling-Lawley Trace: $p=6*10^{-15}$). Pairwise
12	comparisons demonstrated that 33 of 45 pairs of these 10 groups were
13	significantly discriminated (Table 2). Among these groups, five
14	(aequalis, albopygus, blanchardi, pertinax, puellus) showed
15	significant differences with seven or more other groups (i. e. each of
16	these five groups was different from more than 75% of all other
17	groups). The host-plant associations for species of these five groups
18	are represented in Table 3. Each group appears to be associated with a
19	different taxonomic group of host plants, except groups aequalis and
20	blanchardi, whose species with known host plants (respectively 26
21	species in group aequalis and 6 species in group blanchardi) feed on
22	Malvaceae sensu lato. The other groups are associated with different
23	legume groups, all faboids, except for group albopygus, of which all
24	species with known host plants (4) feed on the mimosoid tribe
25	Mimoseae. In group pertinax, most of the species (9) develop on
26	Desmodieae, the others developing on Phaseoleae (2), Amorpheae (1)
27	and on Aeschynomeneae/Amorpheae/Desmodieae (1). In group
28	puellus, most of the species feed on Phaseoleae (12), and the others
29	feed on Indigofereae (4), on Galegeae/Loteae (1), and on

- 1 Phaseoleae/Millettieae (1). In addition, one species of this group feeds
- 2 on species of the non-legume family Rhamnaceae.

4 Phylogenetic reconstruction

- 5 Since most of the specimens were collected several (up to 20) years
- 6 before the study, and had been preserved dried in insect collections,
- 7 DNA was in most cases considerably degraded. Therefore, we could
- 8 not obtain usable sequences for COI and Cytb. However, we obtained
- 9 very good results with primers 12sai and 12sbi, and we could
- therefore sequence 384 nucleotides for the 12s rRNA gene, in all the
- studied species (see accession numbers in Table 1). Although the total
- 12 number of analyzed nucleotides was lower than expected (since we
- obtained no results with *cytb* and *COI*), the phylogenetic signal of our
- sequence matrix was good, since 86% (29,2% + 28.1% + 28.7%) of
- 15 the data set support resolved topologies in the likelihood mapping
- analysis (see Figure 1).
- We reconstructed the consensus maximum parsimony phylogenetic
- tree with 1000 bootstraps after 5 hours of simulation (Figure 2a).
- 19 Maximum-likelihood phylogenetic trees and bootstrap support values
- were obtained after 1126 hours of simulation using PAUP* (100
- 21 replicates) and after only 4 hours of simulation using PHYML (1000
- 22 replicates). Parameters estimated in the maximum likelihood analysis
- using PAUP* were as follows: Gamma = 0.404344, proportion of
- invariable sites = 0.163879. Bases frequencies were estimated as
- 25 follows: A = 0.38002, C = 0.07098, G = 0.13872, T = 0.41028.
- Substitution probabilities were estimated as follows: A-C = 0.12602,
- 27 A-G = 5.55604, A-T = 1.74627, C-G = $1.73*10^{-10}$, C-T = 2.76787.
- 28 The same parameters were used in the PHYML analysis, producing
- 29 the phylogenetic tree presented in Figure 2b. In this figure, bootstrap
- 30 values obtained with both PAUP* and PHYML are represented on

- 1 each node (when at least one of the two values was greater than 20%).
- 2 The optimal phylogenetic tree obtained with PAUP* is not shown.
- 3 We computed Bayesian inferences using the following prior
- 4 probabilities parameters determined by Modeltest: GTR model of
- 5 substitution, Gamma = 0.45, proportion of invariable sites = 0.1409.
- Bases frequencies were estimated as follows: A = 0.4349, C = 0.0497,
- G = 0.1151, T = 0.4002. Substitution probabilities were estimated as
- 8 follows: A-C = 0.1347, A-G = 3.5899, A-T = 1.0650, C-G = 0.2239,
- 9 C-T = 2.8091. The burnin period was estimated to 100000 cycles. One
- thousand and nine hundreds ninety trees were sampled and the
- majority rule tree with posterior probability estimates was
- 12 reconstructed after 11 hours of simulation in total. The tree obtained
- by Bayesian inferences with corresponding posterior probabilities is
- represented in Figure 3.
- 15 Reconstructions obtained through maximum parsimony and maximum
- likelihood analysis were different (18 of 33 nodes in common using
- 17 PHYML and 19 of 33 nodes in common using PAUP*). This
- discrepancy was particularly expressed at the level of intermediate
- 19 nodes. Reconstructions obtained through Bayesian inferences led to a
- 20 slightly higher similarity with other reconstructions, with 20 of 33
- 21 nodes in common both with maximum parsimony and maximum
- 22 likelihood (using PHYML) reconstructions. The level of similarity
- 23 reached 29 of 33 nodes in common when comparing Bayesian
- 24 inferences reconstruction with the optimal maximum likelihood tree
- obtained using PAUP*.
- 26 Due to the higher similarity of the Bayesian inferences reconstruction
- 27 with any other kinds of reconstructions, we tend to favor the
- 28 phylogenetic tree obtained through Bayesian inferences rather than
- another.

- 1 The 32 Bruchinae species analyzed in this study are represented in
- 2 two different clades: a first clade containing 22 of the 26
- 3 Acanthoscelides species studied, and a second containing all
- 4 Palearctic species plus four Neotropical species, Acanthoscelides
- 5 macrophthalamus, A. oblongoguttatus, A. mexicanus and
- 6 Merobruchus placidus, all of them feeding on Mimosoideae. Globally,
- 7 Acanthoscelides seems thus to be a "good" genus, with only the
- 8 species feeding on Mimosoideae (i. e., A. macrophthalamus, A.
- 9 *mexicanus* and *A. oblongoguttatus*) and the Old-World species *A*.
- 10 plagiatus being misplaced, actually belonging to the Bruchidius clade
- 11 (see Figure 4). Indeed, constraining the *Acanthoscelides* species
- 12 feeding on Mimosoideae to cluster together with the other
- 13 Acanthoscelides species (instead of branching in the Bruchidius clade)
- leads to a tree whose likelihood is significantly lower (Kishino-
- Hasegawa test, P = 0.0269). In the "true" *Acanthoscelides* (i. e., the 22
- species branching together in a single clade), a strong tendency to
- 17 radiation on similar host-plants is shown, particularly for species
- 18 feeding on the two Phaseoleae, *Phaseolus* and *Rhynchosia*, on the
- 19 Desmodieae Desmodium, and those on Malvaceae sensu lato (except
- 20 A. sanblas [megacornis group], which develops on grewioid species
- and is unrelated to the other Malvaceae feeders) (see Figure 4).
- However, in some cases, there is evidence of recent host shifts, for
- example in the case of A. puellus (developing on Calopogonium sp.), a
- species closely related to *Desmodium* feeders.
- 25 Robustness (in terms of monophyly) of the morphological groups
- defined by Johnson (1983, 1990) was variable. Whereas species from
- 27 groups obtectus (A. obtectus, A. obvelatus and A. argillaceus) and
- 28 aequalis (A. anoditus, A. guazumae and A. malvastrumicis) clustered
- 29 strictly together, groups flavescens (A. flavescens and A. isla),
- 30 pertinax (A. biustulus, A. cuernavaca, A. desmodicola, A. desmoditus,

1	A. mazatlan, A. stylifer, and A. zonensis) and puellus (A. clandestinus,
2	A. palmasola, A. puellus, A. sanfordi and A. taboga) were not
3	monophyletic. Concerning groups megacornis, mexicanus, mundulus
4	and oblongoguttatus, we were unable to test monophyly since we
5	analyzed only one species per group.
6	
7	
8	DISCUSSION
9	
10	Use of molecular techniques on pin-mounted dry specimens
11	Because of the poor preservation of DNA of the studied specimens,
12	we were able to amplify and sequence a sufficiently long portion of
13	only one of the genes tested, about 400 bp of the mitochondrial 12s
14	rRNA. To our knowledge, most molecular phylogenetic studies of
15	insects have been done on fresh material or material conserved in
16	alcohol (or acetone, or other fluids). This study suggests that when no
17	fresh material is available, working with air-dried specimens may
18	yield to good results, depending on the nature of the sequenced gene.
19	The quality of the specimens we analyzed appears to be higher than
20	expected by previous studies (e.g. Quicke et al. 1999), in which air-
21	dried insects were considered as extremely poor sources of
22	amplifiable DNA, oppositely to specimens preserved through other
23	methods such as critical point drying or Hexamethylenedisilazane
24	drying. The primer pair 12Sai & 12Sbi appears capable of annealing
25	onto DNA present in very low concentrations, compared to the CytB
26	and COI universal primers, with which we could not obtain clean
27	sequences long enough to be informative. However, due to the fact
28	that we were not able to sequence genes other than 12s rRNA,
29	bootstrap values of some internal nodes were relatively low, and
30	results obtained by the different methods of reconstruction yielded to

2 between results obtained by Bayesian inferences and maximum likelihood (using PAUP*) argues for a good quality of our data. 3 4 5 Host-plant association 6 In each of the five groups (aequalis, albopygus, blanchardi, pertinax, 7 and *puellus*) well defined on the basis of morphology of the male 8 genitalia, there was a very strong tendency for species of the same 9 group to be associated with closely related host plants. This tendency 10 was especially marked for species of the groups whose species 11 develop on Malvaceae (i. e., groups aequalis and blanchardi) and 12 Mimosoideae (i. e., group *albopygus*). The tendency was less strongly 13 marked for species of groups *puellus* and *pertinax*, which in addition 14 were demonstrated by the phylogenetic analysis to be paraphyletic. 15 On the basis of the phylogenetic tree obtained from 12s rRNA 16 sequences, the role of host plants in driving fine-scale patterns of 17 radiation is generally confirmed. Four clades attest to radiation after 18 adaptation to particular kinds of host plant. These are three 19 Acanthoscelides species on Phaseolus, four species on Rhynchosia, 20 four species on *Desmodium* and three species on Malvaceae. This 21 result suggests that when a lineage of bruchids becomes adapted to a 22 certain kind of host-plant, it may undergo evolutionary radiation onto 23 other closely related plants. Adaptation to the particular secondary 24 metabolites of a group of plants is a likely candidate for such a key 25 innovation. However, such an adaptation can lead to host shifts, when 26 genetically distant plants share similar secondary compounds. This could be the case in our study in which species feeding on Faboideae 27 28 and species specialized on Malvaceae are phylogenetically close. The 29 chemistry of seeds of Faboideae has been broadly studied for decades 30 (Harborne et al. 1971; Bisby et al. 1994; Hegnauer 1994; Hegnauer

relatively incongruent trees. Nevertheless, the good congruence

- and Hegnauer 1996, 2001; Wink and Mohamed 2003), and species of
- 2 most legume tribes seem to exhibit secondary compounds such as
- 3 lectins or alpha-amylase inhibitors, that inhibit or reduce the digestive
- 4 capability of seminivorous insects (Marshall and Lauda 1975;
- 5 Chrispeels and Raikhel 1991; Giri and Kachole 1998; Melo et al.
- 6 1999; Wink and Mohamed 2003). Oppositely, very little is known on
- 7 the chemistry of seeds of other hard-seeded families, such as
- 8 Malvaceae. Nevertheless, digestive inhibitors, such as gossypol
- 9 (Meisner et al. 1978) have also been identified in several
- 10 Mesoamerican Malvoideae. For instance, high amounts of gossypol
- were detected in seeds from species of *Anoda* and *Hibiscus* (Sotelo *et*
- 12 al. 2005). Circumventing digestive inhibitors in legumes may
- represent for a given bruchid lineage a pre-adaptation to overcome
- the action of other secondary compounds such as gossypol, and make
- possible a further radiation on Malvaceae. A fifth clade, the group
- 16 with A. macrophthalamus, A. oblongoguttatus and Merobruchus
- 17 placidus the three species feeding on Mimosoideae also
- demonstrate an association between phylogenetic proximity and host-
- 19 plant categories. This particular case will be discussed later in this
- 20 study.
- 21 Particular attention must be given to the proximity between the clade
- of species feeding on *Phaseolus* and the clade of species feeding on
- 23 Desmodium. Although Phaseoleae and Desmodieae were long
- 24 considered not particularly closely related, recent phylogenies indicate
- 25 that the two tribes can be grouped in a monophyletic clade (Wink and
- 26 Mohamed 2003). Our results suggest that this phylogenetic
- 27 relatedness is probably accompanied by some chemical similarity
- 28 constraining host-plant association in the Acanthoscelides on
- 29 *Phaseolus* and *Desmodium*. This is a good example of how the
- 30 evolutionary history of phytophagous insects can give insights on the

evolution of host plants. However, at least two cases of host shifts at 1 2 terminal branches attests a more complex dynamics of speciation, 3 since key innovations in herbivores may allow a lineage to colonize 4 newly and chemically-different host plants. 5 6 Nature and origin of the genus Acanthoscelides 7 Our data reveal that *Acanthoscelides* is monophyletic, if the species on 8 Mimosoideae and the Palearctic species questionably attached to the 9 genus (e.g., A. plagiatus in this study) are removed. Our study shows 10 that A. plagiatus should be placed in Bruchidius as previously argued 11 by Borowiec (1987). We consider it highly likely that this result could 12 be generalized to the other Palearctic species described or treated as 13 Acanthoscelides by Lukjanovitsch and Ter-Minassian (1957). 14 The Acanthoscelides species specialized on Mimosoideae, along with 15 the other Neotropical bruchid studied here (Merobruchus placidus) are 16 clearly more closely related to the old world genus Bruchidius 17 Schilsky (the sister genus of Acanthoscelides), than to the main 18 Acanthoscelides clade. 19 The two main clades of Bruchinae studied here are therefore the 20 Bruchidius clade (including the species discussed above that are 21 incorrectly assigned to Acanthoscelides) and Acanthoscelides (with 22 these species excluded), respectively. Since most of the species of the 23 Bruchidius clade are from the Old World, and all the species of the 24 Acanthoscelides clade are from the New World, this dichotomy could 25 be explained by a Gondwanan vicariance origin 90 Mya, or more 26 recently by the disconnection of the early Beringian Bridges between 27 the Eastern Paleartic and the Western Nearctic (35 Mya) (Scotese 28 2004). However, the position of the small New World clade,

Merobruchus placidus, along with A. mexicanus, all branching inside

represented by A. oblongoguttatus, A. macrophthalamus and

29

1	the Bruchidius clade, could be explained either by vicariance events or
2	by a more recent colonization to the New World by one or more
3	members of the Old World Bruchidius clade.
4	
5	Gondwanan vicariance hypothesis for the origin of the New World
6	species branching inside Bruchidius
7	Because several New World species branch in the Bruchidius clade,
8	we cannot eliminate the hypothesis of a Gondwanan vicariance to
9	explain this pattern. We could easily imagine that lineages of all
10	species studied have a New World origin, and that a process of
11	speciation anterior to the separation of Gondwana occurred between
12	what represents now the main Acanthoscelides clade, and the clade
13	with the other species of Bruchinae examined here. Subsequent to this
14	divergence and the Gondwanan separation, ancestors of this latter
15	clade could have engendered both Old World Bruchidius and species
16	of the small New World clade incorrectly assigned to Acanthoscelides.
17	
18	Colonization hypothesis for the origin of the New World species
19	branching inside Bruchidius
20	We could also imagine that A. macrophthalamus, A. oblongoguttatus,
21	A. mexicanus, and Merobruchus placidus are descendants of one or
22	more members of Paleotropical Bruchidius ancestors that colonized
23	the New World. This colonization could have been effected by
24	migrants issued from the Bruchidius clade posterior to the
25	Gondwanian or Beringian separation, possibly developing on
26	Mimosoideae, as is consistent with the fact that A. oblongoguttatus, A.
27	mexicanus, A. macrophthalamus and Merobruchus placidus are the
28	only New World species in our study that feed on Mimosoideae.
29	Colonization of the New World unambiguously posterior to the
30	breakup of Gondwana has been suggested, on the basis of molecular

2	Symphonia globulifera (Clusiaceae), which may have reached
3	America through marine dispersal of trunks or roots (Dick et al.
4	2003), and for caviomorph rodents via "stepping stone" islands, and
5	rafts carried by tropical rivers into the ocean (Huchon and Douzery
6	2001). For a more general review about oceanic dispersal, see de
7	Queiroz (2005).
8	In the case of bruchids, several plausible hypotheses can be
9	formulated. First, since most hurricanes that reach the Atlantic coast
10	of America arise off the coast of Africa, bruchids could have been
11	able to cross the ocean. Insects do occasionally disperse long
12	distances, moved by storms. American Monarch butterflies (Danaus
13	plexippus), for example, have been able to reach and establish
14	colonies on the coast of western Europe, as well as on Pacific islands,
15	probably through cyclonic winds or hurricanes (Zalucki and Clarke
16	2004). Besides, insects are known to be able to cover hundreds, or
17	even thousands, of kilometers when they are carried away in
18	ascending air currents (Compton 2001). However, taking into account
19	the seminivorous biology of bruchids, transcontinental colonization by
20	arrival on floating seeds, or seeds carried in rafts, could also be
21	plausible. Seeds of several African species of legume trees have been
22	found on the Atlantic and Caribbean coasts of America, among them
23	species of Cassia or Caesalpinia (Gunn et al. 1976).
24	
25	
26	Conclusion
27	
28	Despite the morphological and ecological diversity among species of
29	the genus Acanthoscelides (long considered paraphyletic by several
30	authors, e. g. Borowiec (1987), the majority of the species described

evidence, for a rainforest tree with amphi-Atlantic distribution,

1 as Acanthoscelides constitute a monophyletic group. Exceptions to 2 this are Palearctic species, and Neotropical species developing on 3 Mimosoideae. Whereas deep nodes are the result of either geological 4 vicariance or long-distance colonization, the role of host plant seems 5 globally determinant in driving radiation in the terminal branches, 6 although several host-shift processes have also been addressed. As 7 suggested by Kergoat et al. (2004), chemical compounds could be the 8 principal host-plant traits driving these radiations. Testing this 9 hypothesis, already demonstrated in several other phytophagous 10 groups of beetles (Becerra 2003; Termonia et al. 2002), will represent 11 the next step of this study. 12 13 14 ACKNOWLEDGEMENTS 15 16 The authors thank C. D. Johnson, A. Delgado-Salinas, T. Jermy, F. 17 Kjellberg, G. Kunstler, D. McKey, A. Grill, X. Morin, C. Born and 18 one anonymous reviewer, for their very helpful comments. They also 19 thank J. Contreras, C. Macias, H. Drummond, R. Torres, E. Avila, V. 20 Souza, L. Eguiarte and A. Valera for providing logistical help in 21 Mexico. The first author wish to thank particularly G. Kergoat, for 22 helping him to improve his knowledge on phylogenetics. This work 23 was financially supported by the Swiss National Science Foundation 24 (project N°3100.064821.01) and the Centre d'Ecologie Fonctionnelle 25 et Evolutive. 26 27 28 29 30

I	
2	ZUSAMMENFASSUNG
3	Phylogenie der neotropischen Gattung Acanthoscelides (Bruchinae,
4	Bruchidae, Coleoptera)
5	
6	Die Adaption an die Abwehrmechanismen ihrer Futterpflanzen ist
7	eine der treibenden evolutionären Kräfte in phytophagen Insekten.
8	Auch die Bruchiden im neotropischen Genus Acanthoscelides
9	Schilsky weisen äußerst spezifische Assoziationen mit ihren
10	Futterpflanzen auf. Diese Spezialisierung legt nahe, dass die darin
11	involvierten Artbildungsprozesse evolutionäre Radiationen
12	wiederspiegeln, die aufgrund der Bindung an bestimmte
13	Futterpflanzen entstanden sind. In der vorliegenden Studie zeigen wir
14	anhand der Assoziation nahe verwandter Bruchidae und ihrer
15	Futterpflanzen, dass die Adaption an eine bestimmte Futterpflanze
16	(z.B. jene, die einen gewissen Typ von sekundären Pflanzenstoffen
17	ausscheiden) zur Radiation der Bruchiden an den terminalen Ästen der
18	Phylogenie geführt haben könnte. Bei Fällen von rezentem
19	Futterpflanzenwechsel fanden wir jedoch keine Übereinkunft
20	zwischen dem Grad der genetischen Verwandschaft und der
21	taxonomischen Ähnlichkeit der Futterpflanzen. An den tieferen Ästen
22	der Phylogenie scheinen daher eher Vikarianz oder über größere
23	geografische Distanzen hinweg erfolgende Kolonisationsvorgänge für
24	die genetische Divergenz zwischen den Ästen des Stammbaumes
25	verantwortlich zu sein, als die Bindung an bestimmte Futterpflanzen.
26	Unsere Arbeit suggeriert, das die wenigen aus der Alten Welt
27	beschriebenen Arten der Gattung Acanthoscelides, wie auch die
28	neotropischen Schwesterarten an Mimosoideae, falsch klassifiziert
29	wurden, und tatsächlich der Schwesterart Bruchidius näher stehen.

2

References

- 4 Bayer, C.; Fay, M. F.; De Bruijn, A. Y.; Savolainen, V.; Morton, C.
- 5 M.; Kubitzki, K.; Alverson, W. S.; Chase, M. W., 1999: Support for
- an expanded family concept of Malvaceae within a recircumscribed
- 7 order Malvales: a combined analysis of plastid *atpB* and *rbcL* DNA
- 8 sequences. Bot. J. Linn. Soc. **129**, 267–303.
- 9 Becerra, J. X., 2003: Synchronous coadaptation in an ancient case of
- 10 herbivory. Proc. Natl. Acad. Sci. USA **100**, 12804-12807.
- Bisby, F. A.; Buckingham, J.; Harborne, J. B., 1994: Phytochemical
- 12 Dictionary of the Leguminosae. London, United Kingdom:
- 13 Chapman & Hall.
- 14 Bleiler, J. A.; Rosenthal, G. A.; Janzen, D. H., 1988: Biochemical
- ecology of canavanine-eating seed predators. Ecology **69**, 427-433.
- Borowiec, L., 1987: The genera of seed-beetles (Coleoptera,
- 17 Bruchidae). Pol. Pismo Entomol. **57**, 3-207.
- 18 Chrispeels, M. J.; Raikhel, N. V., 1991: Lectins, lectin genes and their
- role in plant defense. Plant Cell 3, 1-9.
- 20 Compton, S. G., 2002: Sailing with the wind: dispersal by small flying
- insects. In: Bullock, J. M., Kenward, R. E. and Hails, R. (eds.),
- 22 Dispersal Ecology: The 42nd Symposium of the British Ecological
- Society held at 3the University of Reading, UK on 2-5 April 2001,
- 24 Blackwell Science, Oxford, UK, pp. 113-133.
- 25 Dick, C. W.; Abdul-Salim, K; Bermingham, E., 2003: Molecular
- 26 systematic analysis reveals cryptic Tertiary diversification of a
- widespread tropical rain forest tree. Am. Nat. **162**, 691-703.
- 28 Egorov, A. B., 1990: Review of bruchid beetles (Coleoptera,
- 29 Bruchidae) assigned to the genus *Acanthoscelides* Schilsky.
- 30 Entomol. Rev. **69**, 67-78.

- 1 Egorov, A. B.; Ter-Minassian, M. E., 1981: New species of beetles
- 2 (Coleoptera, Bruchidae) from Primorskiy Kray and Yakutiya. Trudy
- 3 Zoologicheskogo, Instituta Akademiya Nauk SSSR, Leningrad 92
- 4 20-23.
- 5 Evans, C. S.; Shah, A. J.; Adlard, M. W.; Rico Arce, M. L., 1994:
- 6 Evolutionary trends within the genus *Acacia* based on the
- 7 accumulation of non-protein amino acids in seeds. In: Sprent, J. I.
- 8 and McKey, D. (eds.), Advances in Legume Systematics. Part 5:
- 9 The Nitrogen Factor, The Royal Botanic Gardens, Kew, UK, pp. 83-
- 10 89.
- 11 Farris, J. S., 1989: The retention index and the rescaled consistency
- index. Cladistics **5**, 417-419.
- 13 Giri, A. P.; Kachole, M. S., 1998: Amylase inhibitors of pigeonpea
- 14 (*Cajanus cajan* L.) seeds. Phytochemistry **47**, 197-202.
- Guindon, S.; Gascuel, O., 2003: A simple, fast, and accurate algorithm
- to estimate large phylogenies by maximum likelihood. Syst. Biol.
- **52**, 696-704.
- 18 Gunn, C. R.; Dennis, J. V.; Paradine, P. J., 1976: World Guide to
- 19 Tropical Drift Seeds and Fruits. New York, USA: Quadrangle/The
- New York Times Book Corporation.
- 21 Harborne, J. B.; Boulter, D.; Turner, B. L., 1971: Chemotaxonomy of
- the Leguminosae. London, United Kingdom: Academic Press.
- Hegnauer, R., 1994: Chemotaxonomie der Pflanzen, Band XIa:
- Leguminosae. Basel, Switzerland: Birkhäuser.
- 25 Hegnauer, R.; Hegnauer, M., 1996: Chemotaxonomie der Pflanzen,
- 26 Band XIb-1. Leguminosae: Caesalpinioideae und Mimosoideae.
- 27 Basel, Switzerland: Birkhäuser.
- Hegnauer, R.; Hegnauer, M., 2001: Chemotaxonomie der Pflanzen,
- 29 Band XIb-2. Leguminosae: Papilionoideae. Basel, Switzerland:
- 30 Birkhäuser.

- 1 Herms, D. A.; Mattson, W. J., 1992: The dilemma of plants: to grow
- or defend. Quart. Rev. Biol. **67**, 283-335.
- 3 Huchon, D.; Douzery, E. J. P., 2001: From the Old World to the New
- 4 World: A molecular chronicle of the phylogeny and biogeography of
- 5 hystricognath Rodents. Molecular Phylogenetics and Evolution 20,
- 6 238-251.
- 7 Huelsenbeck, J. P.; Ronquist, F., 2001: MrBayes: Bayesian inference
- 8 of phylogeny. Bioinformatics **17**, 754-755.
- 9 Jermy, T.; Szentesi, A., 2003: Evolutionary aspects of host plant
- specialisation a study on bruchids (Coleoptera: Bruchidae). Oikos
- 11 **101**, 196-204.
- Johnson, C. D., 1981: Relations of *Acanthoscelides* with their plant
- hosts. In: Labeyrie, V. (ed.), The Ecology of Bruchids Attacking
- Legumes (pulses). Proceedings of the International Symposium
- Tours France. April 1980. Series Entomologica Hague Vol 19. Dr W
- Junk Publishers, Hague, Netherlands, pp. 73-81.
- Johnson, C. D., 1983: Ecosystematics of *Acanthoscelides* (Coleoptera:
- Bruchidae) of southern Mexico and Central America. Misc. Pub.
- 19 Entomol. Soc. Am. **56**, 1-370.
- 20 Johnson, C. D., 1989: Adaptative radiation of Acanthoscelides in
- seeds: Examples of legume-bruchid interactions. In: Stirton, C. H.
- and Jarucchi, J. L. (eds.), Advances in Legume Biology. St-Louis,
- 23 MI, USA: Monographs in Systematic Botany from the Missouri
- 24 Botanical Garden 29, pp. 747-779.
- Johnson, C. D., 1990: Systematics of the seed beetle genus
- 26 Acanthoscelides (Bruchidae) of northern South America. Trans. Am.
- 27 Entomol. Soc. **116**, 297-618.
- 28 Kergoat, G. J.; Delobel, A.; Silvain, J.-F., 2004: Phylogeny and host-
- specificity of European seed beetles (Coleoptera, Bruchidae), new

- 1 insights from molecular and ecological data. Mol. Phyl. Evol. 32,
- 2 855-865.
- 3 Kergoat, G. J.; Alvarez, N.; Hossaert-McKey, M.; Faure, N.; Silvain,
- 4 J.-F., 2005: Evidence for a parallel evolution in the two largest seed-
- 5 beetle genera (Coleoptera: Bruchidae). Mol. Ecol. in press.
- 6 Kite, G. C; Lewis, G. P., 1994, Chemotaxonomy of seed non-protein
- amino acids in Caesalpinieae. In: Sprent, J. I. and McKey, D. (eds.),
- 8 Advances in Legume Systematics. Part 5: The Nitrogen Factor.
- 9 Kew, UK: The Royal Botanic Gardens, pp. 101-107.
- 10 Lukjanovitsch, F. K.; Ter-Minassian, M. E., 1957: Zhuki-ziernovki
- 11 (*Bruchidae*). In: Fauna SSSR, 24, 1, 209 pp.
- 12 Marshall, J. J.; Lauda, C. M., 1975: Purification and properties of
- phaseolamin, an inhibitor of alpha-amylase, from the kidney bean,
- 14 *Phaseolus vulgaris*. J. Biol. Chem. **250**, 8030-8037.
- 15 McKey, D., 1979: The distribution of secondary compounds within
- plants. In Rosenthal, G. A. and Janzen, D. H. (eds.), Herbivores:
- 17 Their Interactions with Secondary Plants Metabolites. New-York,
- 18 USA: Academic Press, pp. 55-133.
- 19 Meisner, J.; Ishaaya, I.; Ascher, K. R. S.; Zur, M., 1978. Gossypol
- 20 inhibits protease and amylase activity of *Spodoptera littoralis*
- 21 larvae. Ann. Entomol. Soc. Am. **71**, 5–8.
- Melo, F. R.; Sales, M.P.; Silva, L. S.; Franco, O. L.; Bloch Jr., C.;
- Ary, M. B., 1999: Alpha-amylase inhibitors from cowpea seeds.
- 24 Prot. Pep. Lett. **6**, 387-392.
- de Queiroz, A., 2005: The resurrection of oceanic dispersal in
- 26 historical biogeography. Trends Ecol. Evol. **20**, 68-73.
- 27 Quicke, D. L. J.; Belshaw, R.; Lopez-Vaamonde, C., 1999:
- 28 Preservation of hymenopteran specimens for subsequent molecular
- and morphological study. Zool. Scr. 28, 261-267.

- 1 Rosenthal, G. A., 1990: Biochemical adaptations by the bruchid
- beetle, Caryedes brasiliensis. In: Fujii, K., Gatehouse, A. M. R.,
- Johnson, C. D., Mitchell, R. and Yoshida, T (eds.), Bruchids and
- 4 Legumes: Economics, Ecology and Coevolution. Proceedings of the
- 5 Second International Symposium on Bruchids and Legumes (ISBL-
- 6 2) held at Okayama (Japan), September 6-9, 1989. Dordrecht, The
- Netherlands: Kluwer Academic Publishers, pp. 161-169.
- 8 Rosenthal, G. A.; Janzen, D. H., 1983: Arginase and L-canavanine
- 9 metabolism by the bruchid beetle, *Caryedes brasiliensis*. Entomol.
- 10 Exp. Appl. **34**, 336-337.
- 11 SAS, 1999: Release 8.02. Cary, NY, USA: SAS Institute.
- 12 Scotese, C. R., 2004: Paleomap Project. Available via
- 13 http://www.scotese.com.
- 14 Simon, C.; Frati, F.; Beckenbach, A.; Crespi, B.; Liu, H.; Flook, P.,
- 15 1994: Evolution, weighting, and phylogenetic utility of
- mitochondrial gene sequences and a compilation of conserved
- polymerase chain reaction primers. Ann. Entomol. Soc. Am. 87,
- 18 651-701.
- 19 Sotelo, A.; Villavicencio, H.; Montalvo, I.; Gonzalez-Garza, M. T.,
- 20 2005: Gossypol content on leaves and seeds from some wild
- 21 Malvaceae species. Afr. J. Trad. Comp. Alt. Med. 2, 4-12.
- S-plus, 2001: Release 6.0. Seattle, WA, USA: Insightful Corporation.
- 23 Strimmer, K.; Von Haeseler, A., 1997: Likelihood-mapping: a simple
- 24 method to visualize phylogenetic content of a sequence alignment.
- 25 Proc. Natl. Acad. Sci. USA **94**, 6815-6819.
- 26 Swofford, D. L., 2002: PAUP*. Phylogenetic Analysis Using
- 27 Parsimony (*and Other Methods). Version 4. Sunderland, MA,
- 28 USA: Sinauer Associates.
- 29 Termonia, A.; Pasteels, J. M.; Windsor, D. M.; Milinkovitch, M. C.,
- 30 2002: Dual chemical sequestration: a key mechanism in transitions

- among ecological specialization. Proc. Roy. Soc. London B **269**, 1-
- 2 6.
- 3 Thompson, J. D.; Higgins, D. G.; Gibson, T. J., 1994: CLUSTAL W:
- 4 improving the sensitivity of progressive multiple sequence
- 5 alignment through sequence weighting, position-specific gap
- 6 penalties and weight matrix choice. Nucl. Acids Res. 22, 4673-4680.
- 7 Udayagari, S.; Wadhi, S. R., 1989: Catalog of Bruchidae. Mem. Am.
- 8 Entomol. Inst. **45**, 1-301.
- 9 Wink, M.; Mohamed, G. I. A., 2003: Evolution of chemical defense
- traits in the Leguminosae: mapping of distribution patterns of
- secondary metabolites on a molecular phylogeny inferred from
- nucleotide sequences of the *rbc*L gene. Bioch. Syst. Ecol. **31**, 897–
- 13 917.
- 14 Wink, M.; Meissner, C.; Witte, L., 1995: Patterns of quinolizidine
- alkaloids in 56 species of the genus *Lupinus*. Phytochemistry **38**,
- 16 139–153.
- Wink, M.; Römer P., 1986: Acquired toxicity the advantages of
- specializing on alkaloid-rich lupins to *Macrosiphum albifrons*
- 19 (Aphidae). Naturwissenschaften **73**, 210–212.
- 20 Zalucki, M. P.; Clarke, A. R., 2004: Monarchs across the Pacific: the
- Columbus hypothesis revisited. Biol. J. Linn. Soc. **82**, 111-121.

Table 1.

Genus	Species	Author and year	Site of sampling	Samp. date	Collector	Host plant	Morph. group	accession
Zabrotes	planifrons	Horn 1885	Mex. Huautla	16/IV/2000	Figueroa de la R. I	ND	-	AY945992
Acanthoscelides	anoditus	Johnson 1983	Mex. Irapuato	16/X/2000	ND	Anoda cristata ^(*)	Aequalis	AY945996
Acanthoscelides	argillaceus	Sharp 1985	Mex. Playa Azul	01/II/2001	Aebi A	Phaseolus lunatus	Obtectus	AY945967
Acanthoscelides	biustulus	Fall 1910	Mex. Amealco	11/X/2002	Romero N. J	<i>Desmodium</i> sp. ^(*)	Pertinax	AY945968
Acanthoscelides	clandestinus	Motschoulsky 1874	Mex. C. Carmen	17/II/1996	Ramírez DR	Vigna adenantha	Puellus	AY945969
Acanthoscelides	cuernavaca	Johnson 1983	Mex. Huautla	4/II/2000	Romero N. J	Desmodium sp. ^(*)	Pertinax	AY945970
Acanthoscelides	desmodicola	Johnson 1983	Mex. Huautla	5/11/2000	Figueroa de la R. I	Desmodium sp. (*)	Pertinax	AY945971
Acanthoscelides	desmoditus	Johnson 1983	Ven. Barquisimeto	17/VII/1984	Johnson CD	Desmodium tortuosum	Pertinax	AY945972
Acanthoscelides	flavescens	Fahraeus 1839	Mex. El Maruqes	22/11/1998	Luna Cozar J	Rhynchosia minima (*)	Flavescens	AY945997
Acanthoscelides	guazumae	Johnson & Kingsolver 1971	Mex. Huautla	3/XI/1996	Romero N. J	Guazuma tomentosa	Aequalis	AY945974
Acanthoscelides	isla	Johnson 1983	Ecu. Guayaquil	3/VII/1984	Johnson CD	Rhynchosia minima	Flavescens	AY945975
Acanthoscelides	macrophthalamus	Schaeffer 1907	Vie. Saïgon	ND	Delobel H	Leucanea leucocephala	Mexicanus	AY945976
Acanthoscelides	malvastrumicis	Johnson 1983	Mex. El Cielo	28/VII/1998	Niño S & Hernández J	Malvastrum americanum (*)	Aequalis	AY945977
Acanthoscelides	mazatlan	Johnson 1983	Mex. Huautla	16/IV/2000	Romero N. J	Desmodium sp. (*)	Pertinax	AY945978
Acanthoscelides	mexicanus	Sharp 1885	Mex. Coxcatlan	15/XII/2002	Alvarez N & Ciao V	Mimosa sp.	Mexicanus	AY945979
Acanthoscelides	mundulus	Sharp 1885	Mex. Jalcomulco	18/II/1996	Romero N. J	Nissolia fruticosa	Mundulus	AY945980
Acanthoscelides	oblongoguttatus	Fahraeus 1839	Mex. Cotaxtla	28/VII/2000	Morse GE & Romero N. J	Acacia cornigera	Oblongoguttatus	AY945981
Acanthoscelides	obtectus	Say 1831	Mex. Tepoztlan	15/1/2002	Alvarez N & Aebi A	Phaseolus vulgaris	Obtectus	AY945998
Acanthoscelides	obvelatus	Bridwell 1942	Mex. Tepoztlan	15/1/2002	Alvarez N & Aebi A	Phaseolus vulgaris	Obtectus	AY945983
Acanthoscelides	palmasola	Johnson 1983	Mex. Tenabo	1/I/1979	Johnson CD	Rhynchosia longeracemosa	Puellus	AY945984
Acanthoscelides	plagiatus	Reiche & Saulcy 1857	Tur. Van Gölü	29/VI/1993	ND	Astragalus sp.	-	AY945999
Acanthoscelides	puellus	Sharp 1885	Nic. El Progreso	15/IV/1998	Maes JM	Calopogonium mucumoides	Puellus	AY946000
Acanthoscelides	sanblas	Johnson 1983	Mex. Cordoba	1/111/1996	Romero N. J	Triumfetta lappula	Megacornis	AY945986
Acanthoscelides	sanfordi	Johnson 1983	Mex. Huautla	4/XI/2000	Romero N. J	Rhynchosia sp.	Puellus	AY945987
Acanthoscelides	stylifer	Sharp 1885	Mex. Ixmiquilpan	21/VIII/2002	Romero N. J	Desmodium sp. (*)	Pertinax	AY945988
Acanthoscelides	taboga	Johnson 1983	Pan. Chepo	2/IV/1980	Johnson CD	Calopogonium caeruleum	Puellus	AY945989
Acanthoscelides	zonensis	Johnson1983	Col. Palmira	8/XI/1983	Johnson CD	Teramnus uncinatus	Pertinax	AY945990
Bruchidius	foveolatus	Gyllenhal 1833	Alg. Amouchas	02/VI/1986	Warchalowski A	Cytisus sp. (*)	-	AY946001
Bruchidius	quinqueguttatus	Olivier 1795	Tur. Anamurium	01/V/2001	Anton KW	<i>Vicia</i> sp. ^(⋆)	-	AY945961
Bruchidius	raddianae	Anton & Delobel 2003	Yem. Lahj	1/IX/2001	Sallam A	Acacia tortilis	-	AY625297
Bruchidius	tuberculatus	Hochhut 1847	Aze. Talysh	01/V/1993	Alexeevka V	Unknown Faboideae (*)	-	AY946002
Palaeoacanthoscelides	gilvus	Gyllenhal 1839	Tad. Oktynbrskaya	18/V/1991	Dangara S	Unknown Faboideae	-	AY946004
Merobruchus	placidus	Horn 1873	Mex. Coxcatlan	20/XII/2002	Alvarez N & Ciao V	Acacia sp.	-	AY945965

Table 2.

	albopygus	blanchardi	flavescens	megacornis	mexicanus	obtectus	pertinax	puellus	quadridentatus
aequalis	***	***	*	NS	*	*	***	***	NS
albopygus		**	**	***	NS	*	***	***	**
blanchardi			NS	***	**	*	***	***	***
flavescens				**	NS	NS	***	***	**
megacornis					NS	*	***	*	NS
mexicanus						NS	***	*	*
obtectus							NS	NS	*
pertinax								**	***
puellus									NS

			_
′I'o	ы	\mathbf{a}	2
1 1	n	1	_7

Table 3.		
Group	Species	Associated host-plants
Aequalis (aeq.)	aequalis (aeq.)	Abutilon (Mal.), Pseudabutilon (Mal.), Wissadula (Mal.)
	altocaura (aeq.)	?
	anoditus (aeq.)	Anoda (Mal.)
	apicalis (aeq.)	Malachra (Mal.)
	aragua (aeq.)	Wissadula (Mal.)
	bechyneorum (aeq.)	?
	bogot (aeq.)a	?
	bolivar (aeq.)	?
	brevipes (aeq.)	<i>Malvastrum</i> (Mal.), <i>Sida</i> (Mal.)
	colombiano (aeq.)	?
	COTO (aeq.)	<i>Malvastrum</i> (Mal.), <i>Sida</i> (Mal.)
	<i>elkinsae</i> (aeq.)	Hibiscus (Mal.)
	falcon (aeq.)	Abutilon (Mal.)
	guaibacoa (aeq.)	Abutilon (Mal.)
	guazumae (aeq.)	Guazuma (Mal.)
	guerrero (aeq.)	Herissantia (Mal.), Malvastrum (Mal.) Abutilon (Mal.),
	<i>guiana</i> (aeq.)	Hibiscus (Mal.)
	herissantitus (aeq.)	Herissantia (Mal.), Malvastrum (Mal.)
	Johni (aeq.)	Herissantia (Mal.)
	Machiques (aeq.)	Pavonia (Mal.)
	malvastrumicis (aeq.)	Malvastrum (Mal.)
	malvitus (aeq.)	Abutilon (Mal.), Malva (Mal.) Hibiscus (Mal.)
	maturin (aeq.)	Abutilon (Mal.)
	merida (aeq.) monagas (aeq.)	Hibiscus (Mal.)
	pyramididos (aeq.)	Sida (Mal.)
	Santarosa (aeq.)	Herissantia (Mal.)
	sleeperi (aeq.)	Abutilon (Mal.)
	subaequalis (aeq.)	Abutilon (Mal.)
	tepic (aeq.)	Abutilon (Mal.)
	univittatus (aeq.)	Guazuma (Mal.)
albopygus	albopygus (alb.)	?
(alb.)	buenaventura (alb.)	legume tree (Fab. Mim.)
	caripe (alb.)	?
	cesari (alb.)	legume tree (Fab. Mim.)
	elevatus (alb.)	?
	elvalle (alb.)	?
	lituratus (alb.)	?
	petalopygus (alb.)	Acacia (Fab. Mim.)
	sousai (alb.)	Acacia (Fab. Mim.)
	sublituratus (alb.)	?
	Tinalandia (alb.)	?
blanchardi (bla.)	blanchardi (bla.)	Kosteletzkya (Mal.)
(2.2.)	fryxelli (bla.)	Kosteletzkya (Mal.), Malachra (Mal.)
	hibiscicola (bla.)	Hibiscus (Mal.)
	<i>orlandi</i> (bla.)	Kosteletzkya (Mal.),
	pavoniestes (bla.)	Malachra (Mal.) Pavonia (Mal.)
	Santander (bla.)	?
		?
	<i>vexatus</i> (bla.) <i>wicki</i> (bla.)	?
	wichi (bid.)	•

Table 3 (continued).

Group	Species	Associated host-plants
Pertinax (per.)	argutus (per.)	Teramnus (Fab. Phas.)
	<i>biustulus</i> (per.)	Desmodium (Fab. Des.)
	cuernavaca (per.)	Desmodium (Fab. Des.)
	desmodicola (per.)	Desmodium (Fab. Des.)
	desmoditus (per.)	Desmodium (Fab. Des.)
	howdenorum (per.)	Desmodium (Fab. Des.)
	Lichenicola (per.)	?
	<i>mazatlan</i> (per.)	Desmodium (Fab. Des.)
	Oaxaca (per.)	?
	pedicularius (per.)	Petalostemum (Fab. Amor.)
	pertinax (per.)	Aeschynomene (Fab. Aesch.) Desmodium (Fab. Des.), Dalea (Fab. Amor.), Stylosanthes (Fab. Aesch.) Desmodium (Fab. Des.)
	Puelliopsis (per.)	Desmodium (Fab. Des.)
	schubertae (per.)	Desmodium (Fab. Des.)
	stylifer (per.)	Teramnus (Fab. Phas.)
puollus	zonensis (per.)	, ,
puellus (pue.)	amabilis (pue.)	Rhynchosia (Fab. Phas.)
	aureolus (pue.)	Acmispon (Fab. Lot.), Astragalus (Fab. Gal.), Glycyrrhiza (Fab. Gal.), Hosackia (Fab. Lot.), Ottleya (Fab. Lot.), Oxytropis (Fab. Gal.), Syrmatium (Fab. Lot.)
	barneby (pue.)	?
	barrocolorado (pue.)	?
	<i>caroni</i> (pue.)	Indigofera (Fab. Ind)
	chiapas (pue.)	?
	clandestinus (pue.)	Phaseolus (Fab. Phas.)
	colombia (pue.)	?
	dominicana (pue.)	Calopogonium (Fab. Phas.)
	donckieropsis (pue.)	?
	Fernandezi (pue.)	?
	<i>griseolus</i> (pue.)	Calopogonium (Fab. Phas.)
	guarico (pue.)	Rhynchosia (Fab. Phas.)
	indigoforestes (pue.) jardin (pue.)	Indigofera (Fab. Ind)
	Kingsolveri (pue.)	Indigofera (Fab. Ind)
	leisneri (pue.)	?
	luteus (pue.)	?
	Palmasola (pue.)	Rhynchosia (Fab. Phas.)
	prosopoides (pue.)	Ziziphus (Rha.)
	prosopordes (pue.) puellus (pue.)	Calopogonium (Fab. Phas.)
	rhynchosiestes (pue.)	Rhynchosia (Fab. Phas.)
		Indigofera (Fab. Ind)
	ruficoxis (pue.)	Galactia (Fab. Phas.),
	rufovittatus (pue.) sanfordi (pue.)	Tephrosia (Fab. Mill.) Pachyrhizus (Fab. Phas.), Rhynchosia (Fab. Phas.)
	schaefferi (pue.)	?
	suaveolus (pue.)	Vigna (Fab. Phas.)
	surrufus (pue.)	Rhynchosia (Fab. Phas.)
	taboga (pue.)	Calopogonium (Fab. Phas.), Pachyrhizus (Fab. Phas.)

Nadir Alvarez, Jesus Romero Napoles, Klaus-Werner Anton, Betty Benrey and Martine Hossaert-McKey Phylogeny of the bruchid genus *Acanthoscelides*

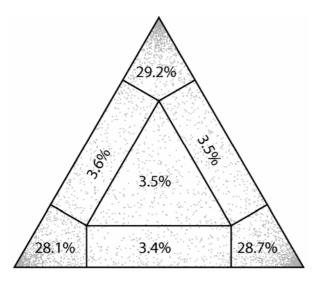


Figure 1

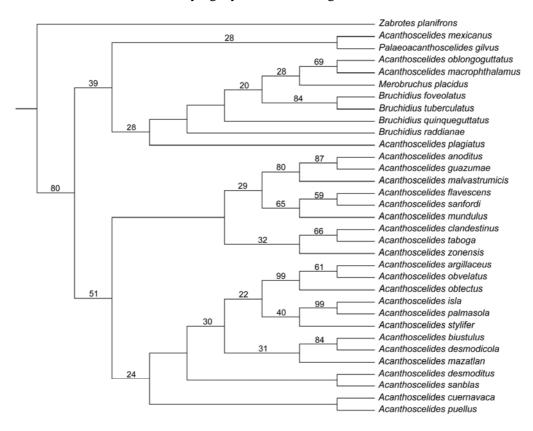


Figure 2 (a)

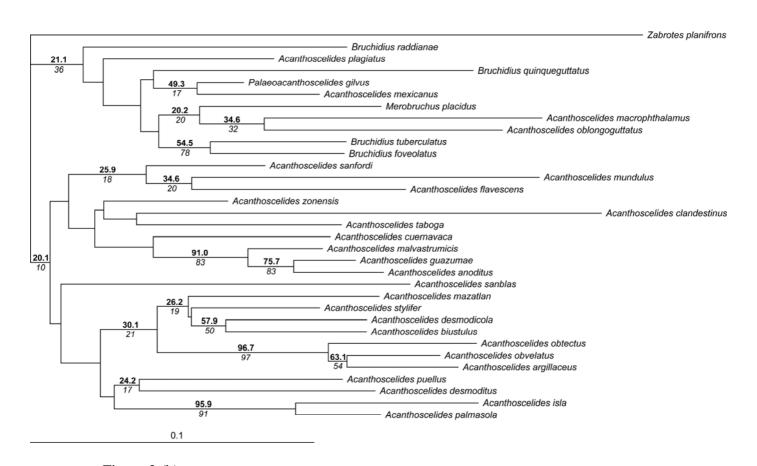


Figure 2 (b)

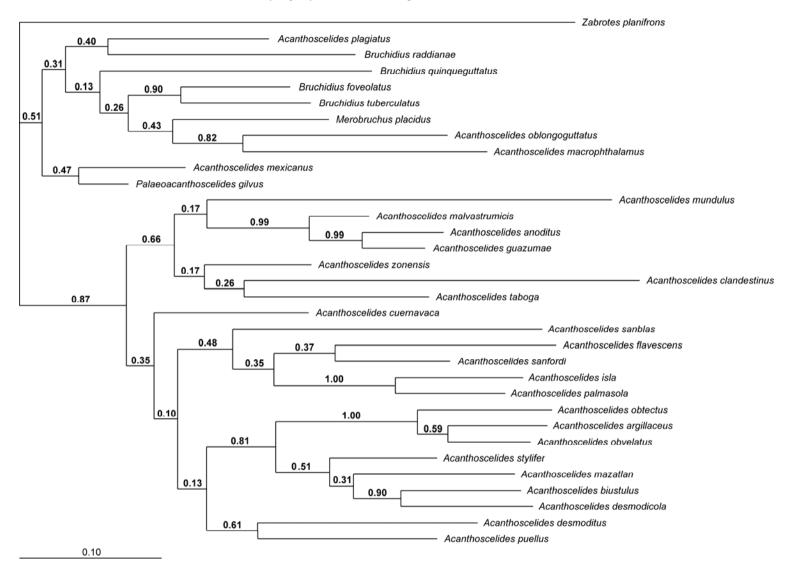


Figure 3

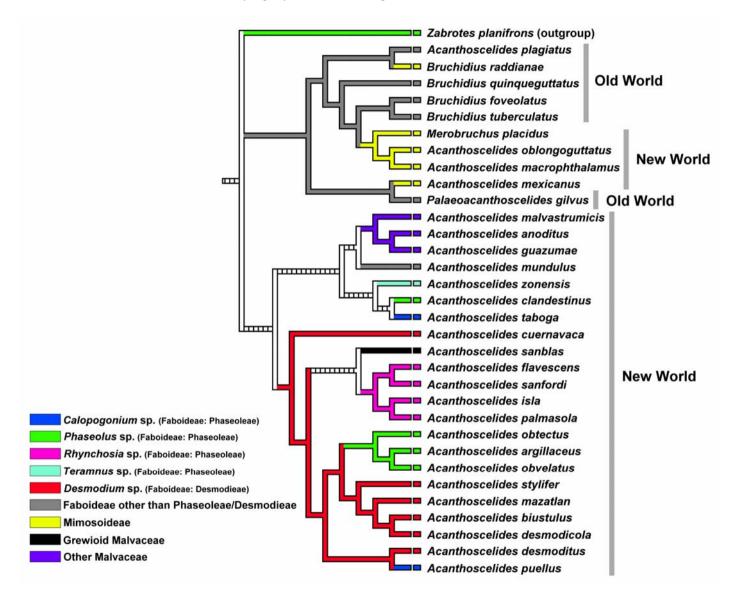


Figure 4

Legends

Table 1. List of sampled species, with information about the author, the site of sampling, the sampling date, the name of the collector, the host plant, the morphological group (in Neotropical *Acanthoscelides*, as defined by Johnson [1983, 1990], and the accession number corresponding to the *12s rRNA* sequence deposited in Genbank. Sampling countries were abbreviated as follows: Alg.=Algeria, Aze.=Azerbaijan, Col.=Colombia, Ecu.=Ecuador, Nic.=Nicaragua, Pan.=Panama, Tad.=Tadjikistan, Tur.=Turkey, Ven.=Venezuela, Vie.=Vietnam, Yem.=Yemen. An (*) indicates that collected species were obtained from unknown host plants, and that we assigned the host-plant most commonly associated with the species (from Johnson [1983, 1990] and Udayagari and Wadhi [1989]).

Table 2. Differences revealed by discriminant analysis between the species groups defined on morphological grounds. Pairs of groups were compared using Hotelling's T Squared statistics based on axis values of the multivariate correspondence analysis. ***: $p < 10^{-3}$; **: $p < 10^{-2}$; *: p < 0.05; NS: non significant. Groups in bold show significant differences from at least seven of the nine other groups.

Table 3. Host-plant associations for the species groups *aequalis* (*aeq.*), *albopygus* (*alb.*), *blanchardi* (*bla.*), *puellus* (*pue.*), and *pertinax* (*per.*). Names of host-plant groups were abbreviated as follows: Faboideae (Fab.), Aeschynomeneae (Aesch.), Amorpheae (Amor.), Desmodieae (Des.), Galegeae (Gal.), Indigofereae (Ind.), Loteae (Lot.), Millettieae (Mil.), Phaseoleae (Phas.), Mimosoideae (Mim.), Malvaceae *sensu lato* (Mal.), Rhamnaceae (Rha.).

Figure 1. Likelihood mapping analysis of the data set, represented as a triangle. Values at the corners indicate the percentages of well-resolved phylogenies for all possible quartets, and values at the central and lateral regions are percentages of unresolved phylogenies. The cumulatively percentage (86%) from the corner values indicates the presence of a good overall phylogenetic signal.

Figure 2. (a) Maximum parsimony consensus phylogenetic tree obtained after 1000 bootstraps from the re-weighted parsimony analysis (most parsimonious tree = 577 steps; rescaled consistency index = 0.2869). Numbers adjacent to nodes give bootstrap support values greater than 20% calculated for 1,000 replicates. (b) Optimal maximum likelihood phylogenetic tree obtained using PHYML (log[likelihood] = -3082.061831). Bootstrap support was determined using both PHYML (1000 replicates) and PAUP* (100 replicates), and is shown by numbers adjacent to nodes (PHYML values in bold; PAUP* values in italic). Bootstraps are shown only when for a given node, a value greater than 20% was determined either by PHYML or by PAUP*.

Figure 3. Phylogenetic tree obtained from the Bayesian inferences analysis. At each node, the number indicates the Bayesian posterior probabilities.

Figure 4. Consensus phylogenetic tree obtained from the Bayesian inferences analysis. On the cladogram is represented (with different branch colors) the host-plant genus – or tribe or subfamily – on which a considered bruchid species develops. On the right side of the tree is figured the biogeographic origin of the species (New World *vs.* Old World).

Author's addresses:

Nadir Alvarez^{1,2}, Jesus Romero Napoles³, Klaus-Werner Anton⁴, Betty Benrey² and Martine Hossaert-McKey¹.

¹ CEFE-CNRS, 1919 rte de Mende, 34293 Montpellier cedex 5, France.

² LEAE, Institut de Zoologie, Université de Neuchâtel, 11 rue Emile-Argand, CH-2007 Neuchâtel, Suisse.

³ Instituto de Fitosanidad, Colegio de Postgraduados, Km 36.5 carr. México-Texcoco, 56230 Montecillo, Edo. de México, Mexico.

Author for correspondence:

Nadir Alvarez, CEFE-CNRS, 1919 rte de Mende, 34293 Montpellier cedex 5, France;

Fax: 0033467412138; e-mail: nadir.alvarez@unine.ch

⁴ Grünewaldstrasse 13, 79312 Emmendingen, Germany.