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Dendritic processing multiplies the computational power of a single
neuron by enabling the processing of inputs in a spatio-temporally
differentiated manner. Recently, the development of new and
refined optical, electrophysiological and molecular-biological
techniques has led to new insights into dendritic function and
revealed an astonishing plethora of computational mechanisms.
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Abbreviations
AP action potential
CF climbing fiber
CFP cyan fluorescent protein
GABA γ-amino butyric acid
GFP green fluorescent protein
LTD long-term depression
NMDA N-methyl-D-aspartate
PF parallel fiber
YFP yellow fluorescent protein

Introduction
Dendrites were first visualized by Camillo Golgi in 1873. A
few years later, Santiago Ramón y Cajal proposed that 
dendrites are the input-receiving structures of neurons,
and in 1889 William His finally coined the term ‘dendrite’.
Since the 1950s, dendritic function has continued to gain
more attention, and in recent years — partly owing to the
development of new techniques for studying it — dendritic
information processing has been recognized as a wide-
spread and important factor in neuronal computation [1,2].
In fact, the extent of dendritic processing is closely related
to the number of computationally relevant degrees of free-
dom in the brain.

Comparing the information processing capacity of the brain
with that of computing machinery, there is still not even a
crude estimate of the number of ‘elementary computational
units’ that the brain has. A reason for this is that the elemen-
tary computational unit in the nervous system is difficult to
identify. In their original model of neuronal computation,
McCulloch and Pitts [3] defined the basic computational unit
as the simplest nonlinear element which they considered to
be an individual neuron. Today, we now know that (nonlin-
ear) neuronal computation happens at smaller, subcellular
scales, such as in synaptic specializations (both pre- and post-
synaptically), and may even occur in microdomains made up
of a single supra-molecular assembly located in dendrites.

With regard to the function of a dendrite, there are two
conceptual extremes. First, the dendrite can be considered
as a largely passive current collector — as formulated in
the cable theory [4] — with nonlinear (i.e., decision-mak-
ing) processes occurring only at the zone of spike
initiation. Second, the dendrite can be considered as a
highly active (electrically and otherwise) nonlinear compo-
nent that makes many local ‘decisions’. At the soma, these
local decisions may eventually be integrated into a single
decision: to fire or not to fire an action potential (AP).
Alternatively (or in addition), local ‘decisions’ may lead to
local output either in the form of synaptic transmitter
release (e.g. retinal amacrine cells or olfactory granule
cells) or via retrograde messengers. 

Before proceeding, we need to make clear what our defi-
nition of information processing shall be. Although linear
filters are clearly relevant for both the shape of the fre-
quency response and the combination of information, we
would, for the purpose of this review, like to consider only
such processes that depend nonlinearly on at least some of
the inputs. Furthermore, there is the issue of timescale.
For example, on the one hand neurons can act as ‘coinci-
dence detectors’ by responding only to inputs concurring
within a small time window — a function that requires fast
nonlinearities, which clearly constitutes processing. On the
other hand, would we consider the plasticity of existing
synaptic connections, which is clearly nonlinear, to be ‘pro-
cessing’? We feel that this plasticity should be included
because modifying a synaptic connection by a local signal
is akin to ‘output’ to memory, even though there may be
no immediate ‘electrical’ signature. Various forms of pre-
synaptic potentiation and depression are clearly processing,
but occur mostly in axons, which are not our subject here. 

In this review, we begin with a short overview of some of the
methods that are useful for studying dendritic processing,
and then discuss some of the recently identified physiologi-
cal mechanisms involved in processing. Finally, we conclude
with a review of the most promising model systems.

Methods of exploration
Functional morphology
One important aspect of dendritic processing is the interrela-
tion between morphology and function. Here, we take a broad
meaning of morphology that includes the distribution of active
properties, such as voltage-gated channels and neurotransmit-
ter receptors. For instance, the distribution of receptors or
channels over a neuron’s dendritic tree is usually neither
homogenous nor random, but is well-organized and con-
tributes decisively to the functional properties of the dendrite.

Immunocytochemistry with fluorescent probes and con-
focal microscopy can visualize these distributions in great
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detail. These methods are being augmented and extended
by the use of chimeras of receptors and derivatives of
green fluorescent protein (GFP) [5,6]. Such approaches,
unlike antibody-based methods, are easily used on living
tissue; nonetheless, they do not reveal the conditions
under which the individual receptors are activated.

The distribution of ‘functional’ receptors can, however, be
mapped by photolyzing ‘caged’ neurotransmitter (or neuro-
transmitter analogs) while recording the cell’s electrical
response. Further improvement in spatial resolution has
been made possible by the use of two-photon excitation

(‘optical two-photon uncaging’) [7,8] and the development
of double-caged substances, which require two photolysis
steps and hence the absorption of two photons for conver-
sion into the active form (‘chemical two-photon uncaging’)
[9]. Both methods restrict the volume of agonist creation,
thereby greatly reducing background activation. 

Recently, chemical two-photon uncaging has been used to
map glutamate and γ-amino butyric acid (GABA) receptors on
CA1 pyramidal cells [10], revealing regional variations in the
receptor distributions: receptor density increases with increas-
ing distance from the soma. This finding is consistent with

416 Sensory systems

Figure 1

(a) (c)(b)

(d) (e)

Current Opinion in Neurobiology

Dendritic morphologies. (a) Cerebellar Purkinje cell (image used with
permission from [12•• ]). (b) Mitral cell from zebrafish olfactory bulb
(kindly provided by R Friedrich). (c) Direction-selective ON/OFF
ganglion cell from rabbit retina (injected by S He). Color coding
indicates the depth (on the z axis) from the ganglion cell layer (red) to

the outer border of the inner plexiform layer (green). (d) Visualization of
a realistic model of a horizontal system north cell from fly lobular plate
(kindly provided by A Borst). (e) Retinal starburst cell labeled with
enhanced GFP using a gene gun (kindly provided by RH Masland).
Scale bars, 20 µm.



electrophysiological studies [11], and may reflect a mecha-
nism for equalizing synaptic weight (e.g. to compensate for
the attenuation of a synapse by the distance from the soma).
In another study, two-photon uncaging revealed the spatial
extent of glutamate receptor modification followed by locally
induced long-term depression (LTD) [12••].

Modeling
Realistic biophysical computer models are important for
designing and directing experimental work, and for assess-
ing the functional relevance of results; however, studies
that involve both modeling and ‘wet’ science are still rare.
for example, Schiller and co-workers [13] have shown that
modeling can be helpful for understanding dendritic pro-
cessing through studies of local dendritic spikes occurring
in the basal dendrites of cortical pyramidal cells. Their
compartmental model, which was based on experimental
data, indicated that these spikes are largely mediated by
N-methyl-D-aspartate (NMDA) receptors.

Furthermore, simulations can be useful in exploring the func-
tional/computational benefits that may be provided by
experimentally discovered mechanisms. For example, using
modeling studies Song et al. [14] found that ‘spike-timing-
dependent plasticity’ (reviewed in [15]) introduces
competition among synapses, by promoting the synapses that
consistently ‘predict’ the postsynaptic response, while weak-
ening those that are randomly active — thus, fulfilling two
requirements for Hebbian learning [16]. (In the late 1940s
Hebb postulated that, under certain conditions, coincident
activity in connected neurons may strengthen their synaptic
connections.) The efficiency of spike-timing-dependent plas-
ticity depends critically on the coincidence time window over
which synaptic modification occurs; this time window, in turn,
is determined by the local (active) properties of the dendrite.

Electrophysiology
The ability to make electrical recordings from dendrites —
initially by using sharp microelectrodes [17] and later by using
giga-seal patch-recordings [18] — has been crucial in the
study of dendritic processing. The distribution of ion chan-
nels on a cell can be mapped by probing small patches of
membrane at various locations using patch electrodes. The
ion channels in these patches of membrane can be studied
either in situ (cell-attached) or after being removed from the
cell (excised patch). The local voltage response of the 
dendrites can be measured by using the whole-cell mode of
the patch-clamp technique (to establish an electrical access to
the cell). Using this latter approach, Häusser and colleagues
have examined synaptic current shunting [19] and coinci-
dence detection [20] by back-propagating APs. Nonetheless,
electrophysiological approaches are restricted to those
processes that are thick enough to be targeted by electrodes,
often excluding large parts of the dendritic tree.

Optophysiology
Unlike electrophysiological methods, optical recording
techniques can resolve activity patterns in dendritic

processes. This allows both the mapping of local events
(e.g. activity ‘hot spots’ such as calcium transients) in great
detail and the correlation of the resulting activity map with
the neuron’s morphological specializations. Furthermore,
two-photon laser-scanning microscopy allows the observa-
tion of single spine events with millisecond time resolution
and high signal-to-noise ratio [21,22].

Recently, Sabatini and Svoboda [23] determined the num-
ber of voltage-activated calcium channels in single spines of
pyramidal cells by using optical fluctuation analysis of AP-
triggered calcium transients. (Optical, not unlike electrical,
fluctuation analysis allows the determinations of the num-
ber of independently acting elements, for example ion
channels, even if the switching of individual elements can
not be resolved). Because the long wavelength of the exci-
tation frequency penetrates deep into neural tissue,
two-photon microcopy can also be used to study dendritic
calcium dynamics [24,25] and spine morphology [26] in vivo. 

Although we have a good variety of calcium sensors at our
disposal, we still lack sensitive indicators for other ions
and, in particular, voltage-sensitive dyes with a good 
signal-to-noise ratio [27,28]. However, major progress has
been made in the development of GFP-based indicators
that can be genetically targeted to specific types of 
neurons or even subcellular sites. Moreover, with interest
in cellular chloride gradients growing, chloride indicators
based on yellow fluorescent protein (YFP) have been
developed. Recently, a mutant form of YFP (amino-acid
mutation H1148Q), which is quenched by halides, has
been shown to report physiological changes in chloride
concentration at cytoplasmic pH [29,30]. 

In analogy to the (genetically encoded) calmodulin-based
calcium sensors, such as ‘Cameleon’ [31,32], a chloride sen-
sor called ‘Clomeleon’ has been introduced [33]. Clomeleon,
like the Cameleons, is a YFP/cyan fluorescent protein (CFP)
fusion protein: the ratio of fluorescence resonance energy
transfer dependent emission of the chloride-sensitive YFP to
that of the chloride-insensitive CFP gives a measure of the
intracellular chloride concentration. Furthermore, the 
discovery of other fluorescent proteins — such as dsRed
from corals [34–36] — promises the development of probes
with separable spectra, which are necessary for concurrent
measurements of different physiological parameters.

Mechanisms
Electrical compartmentalization 
Electrical signals are by far the fastest means of neural
communication. Of all the intracellular ‘messengers’,
voltage spreads most readily throughout the cell, owing to
the fact that electric fields are not well confined along a
neurite. Even so, there are cases in which significant gra-
dients and compartmentalization can be observed and a
biological role can be assigned [37••,38•]. For example,
tangential cells in the fly (see below) show different
degrees of voltage spread across their dendritic tree,
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depending on the site of stimulation [37••]. When 
stimulated with an axonal current injection the resulting
potential spread readily throughout the tree, however,
when current was injected locally in a dendrite, the
potential fell off steeply in a short distance from the
injection site. This ‘compartmentalization’ of the mem-
brane potential allows the dendrites to accomplish local
computations (and possibly even local motion adaptation)
without interfering with the integrative functions of 
the cell.

Amplification
Active (voltage-gated) currents can greatly sharpen both
spatial and temporal gradients [39] and can, particularly
when poised near instability, serve to amplify small differ-
ences. Well-studied examples of active currents include
dendritic calcium spikes in Purkinje cells [40] and layer 5
pyramidal neurons [25,41,42]. 

Regenerative events in dendrites do not necessarily
require ‘classical’ voltage-gated channels. For example,
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Coincidence detection and supralinear calcium signals in single
Purkinje cell spines. (a) Purkinje neuron filled with magnesium green
through a patch pipette (bottom), with marks (white lines) representing
the glass pipettes for parallel fiber (PF) and climbing fiber (CF)
activation. The inset shows higher magnification views of two spines in
which the calcium transients were monitored. (b) Traces, somatic
voltage (V) and fluorescence responses (spines 1 and 2). PF
stimulation alone elicits a small calcium response in spine 1 but not in
spine 2 (first column), whereas CF stimulation alone fails to induce a

calcium response in either spine (second column). PF stimulation in
conjunction with a brief CF stimulus (third column) evokes a calcium
transient in both spines, with the response in spine 1 being larger than
the linear sum of PF- and CF-evoked responses (gray curve), indicating
supralinearity. (c) For eliciting a supralinear response, PF and CF
stimulation have to occur within a narrow time window, with PF
stimulation slightly preceding. Right: solid trace — box-smoothed
average over three points; dashed curve — best fit of raw data points to
Gaussian function. Figure modified with permission from [12•• ]. 



NMDA receptors have been shown to contribute largely to
spikes occurring in the basal dendrites of cortical pyramidal
cells [13]. It may be possible that such a mechanism could
dynamically create ‘zones’ of excitability set up by glutamate
that is pre-bound in parts of the cell’s dendritic tree.

Back-propagation
Back-propagating sodium APs — like calcium spikes —
can act as a ‘global’ signal. Back-propagation is strongly
dependent on dendritic morphology [38•] and can be mod-
ulated with high-precision timing by synaptic inputs [20]
and probably on a slower timescale by modulatory inputs. 

Conversely, the weight of synaptic input can be shunted
by coincident spikes [19]. The strength of this modulation
depends on the dendritic morphology and on the kinetics,
location and timing of the synaptic inputs present. For
example, distal input via receptors with slow kinetics may
dominate during AP firing, because they may reach maxi-
mal activation after the shunting effect of the AP has
ceased. NMDA receptor mediated inputs may even be
enhanced due to the release of the magnesium block by
appropriately timed APs.

Chemical compartments and second messengers
Although widely branched dendritic trees can support sev-
eral independent electric compartments, the same
geometry can support many more chemical compartments.
The reason for this is that diffusion — even that of small
molecules or ions — is slow, particularly in the spiny
geometry that is so typical of the dendrites of many types
of neurons in the brain [43].

Over the years, several studies have shown that spines in
different cell types can act as individual compartments for
calcium and other second messengers ([12••,21,22,44];
reviewed in [45]); these compartments are, in addition,
capable of performing biochemical computations [12••,21].
It is also becoming increasingly clear that the spatio-tem-
poral stimulation pattern can determine which type of
physiological mechanism dominates the cell’s response, in
particular, when metabotropic receptors and release from
intracellular stores are involved [12••,46•,47,48,49••].

Not only Ca2+, but also other ions may be functionally
compartmentalized in neurons. For example, intracellular
chloride gradients offer a way to modulate GABA and
glycine receptor-mediated inhibition differentially in 
distinct compartments of a neuron [33]. Using the
‘Clomeleon’ indicator discussed above, Kuner and
Augustine [33] have visualized chloride gradients in cul-
tured hippocampal neurons. Focal GABA application led
to accumulation of chloride that spread to other parts of the
cell — possibly constituting a mechanism for use-depen-
dent suppression of GABA-mediated input. Furthermore,
neurons may be able to adjust the local chloride concen-
tration such that activation of GABA receptors induces
inhibition in one compartment but excitation in another

one — for instance, by differential expression of chloride-
extruding and chloride-accumulating transporters (e.g. 
the K+/Cl–-cotransporter KCC2 and the Na+/K+/Cl–-co-
transporter NKCC, respectively). Immunohistochemical
evidence indicates that this could be the case in the retinal
bipolar cells that depolarize at light-onset (ON cells). ON
bipolar cells receive at their dendrites GABAergic input
from horizontal cells which depolarize at light-offset (OFF
cells). If this horizontal cell input were inhibitory, the bi-
polar cells would receive surround inhibition at light-off
and not, as one would expect, at light-on. A high chloride
concentration in the bipolar cell’s dendrites may provide
an excitatory GABAergic input and thus, the correct 
conversion of the input signals from horizontal cells [50].

Coincidence detection
Recognizing temporal relationships is a crucial computa-
tional operation and prerequisite for plasticity and
learning. Dendritic coincidence detection is implemented
at different temporal and spatial scales, involving various
mechanisms, and can affect single dendritic spines or
branches [12••,21,24] or can modulate the response of the
whole cell [20]. Even a particularly shaped dendritic tree
can facilitate coincidence detection — as has been demon-
strated in simulations of bipolar neurons in the auditory
brainstem [51].

The detection of signal concurrency within a very small
time window suffers from the temporal filtering and atten-
uation that occurs as synaptic signals travel to the soma.
Although active channels in dendrites can partially 
overcome this signal degradation, local dendritic coinci-
dence detection may be essential for precise timing in the 
submillisecond range [52,53]. 

Model systems
In recent years, most experimental studies on dendritic
processing have concentrated on hippocampal and cortical
pyramidal cells or Purkinje cells, resulting in a wealth of
detailed knowledge (see above). Beyond doubt, the hip-
pocampus and cortex will continue to provide fascinating
insight in dendritic computation. Here, however, we would
like to discuss a selection of other model systems in which
a crucial role for dendritic computation has been either
proposed or convincingly demonstrated.

In the visual system of the fly, a small population of large
interneurons in the lobular plate — the tangential cells —
spatially integrates the output of a great number of colum-
nar neurons, which each observe a small patch of the visual
field. Tangential cells are selective to direction; that is,
they are excited by motion in a preferred direction and
inhibited by motion in the opposite direction [54,55].
Furthermore, the velocity of the motion is represented by
the amplitude of the (graded) output potential of the cell. 

When measuring the spatio-temporal calcium changes in
the neuron’s dendritic tree in vivo, Single and Borst [56]
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found that the local calcium signals indicate the motion,
the velocity, and also some spatial properties of the stimu-
lus (a moving grating). Dendritic low-pass filtering,
however, eliminates the signals introduced by the grating
properties, resulting in a purely direction-selective signal
[56]. (One type of tangential cell possesses active den-
dritic sodium conductances, and Haag and Borst [57] have
shown that oscillations evoked by the stimulus frequency
are amplified in this cell.)

Calcium transients are restricted in a retinotopic fashion to
the stimulated branches of the dendritic tree [54]. The
local confinement of the calcium transient (and presum-
ably the underlying membrane depolarization) has been
shown to result mainly from the geometry of the dendritic
tree and its membrane properties [37••]. Comparison of
the calcium dynamics of two classes of tangential neurons,
which are known to receive similar retinotopic input,
revealed class-specific differences in calcium response,
suggesting that these neuron classes have differences in
dendritic processing [58] even though their electrical
responses are very similar. Furthermore, calcium 
accumulation in tangential cells may also play a role in a
postsynaptic form of motion adaptation [59]. 

The vertebrate retina is a well-established model system
in which dendritic processing may have a prominent role.
With the advent of two-photon microscopy, optical record-
ings from intact, light-sensitive retina have become
feasible [60], and provide the basis for studying light-
driven local dendritic events. 

For example, amacrine cells — which mostly lack a 
discernible axon [61] — represent, in a way, a ‘prototype’
of a neuron that processes signals with its dendrites. They
come in 20–30 morphological flavors (reviewed in [62]),
indicating a rich functional diversity. Amacrine cells are
retinal interneurons that relay signals among bipolar cells,
other amacrine cells and ganglion cells. Their dendrites
both receive synaptic input and make output synapses: in
some amacrine types inputs and outputs are co-localized
(e.g. A17) [63], whereas in others they are at least partially
separated (e.g. starburst amacrine cells) [64]. In retinal
ganglion cells, back-propagation and dendritic spike 
initiation has been observed [65].

However, the most prominent example for retinal den-
dritic processing is probably the mechanism on which
direction selectivity in some ganglion cell is based [66].
Only recently, Taylor et al. [67•] provided evidence that the
computation of direction selectivity — the interaction
between excitatory and inhibitory inputs — is situated
postsynaptically in the DS (direction-selective) ganglion
cell dendrite (but see [68•]). 

In the olfactory bulb, the first levels of signal processing
are performed through reciprocal dendro-dendritic
synaptic interactions between dendrites of mitral and

granule cells (reviewed in [69]). The release of glutamate
from mitral cell dendrites onto axonless granule cells
evokes feedback inhibition of the excited mitral cell, as
well as lateral inhibition of neighboring, mitral cells. The
inhibition by granule cells is controlled by both the
extent of AP propagation and concurrent changes in 
calcium concentration in the lateral mitral cell dendrites
[70]. GABA release from granule cells can be induced
locally by coincident glutamate release from mitral cells
and granule cell depolarization through an NMDA 
receptor-mediated mechanism. 

Using caged calcium compounds, Chen et al. [71] have 
provided evidence that calcium influx through NMDA
receptors alone can directly trigger the feedback inhibition
onto mitral cells. A stronger stimulation of granule cells
eliciting an AP would be expected to cause GABA release
from all synaptic sites. A recent study by Isaacson [72] sup-
ports further the idea that the sites of GABA release and
calcium influx are co-localized in granule cells (suggesting
highly localized interactions); however, this study also
found that calcium influx is mediated mainly by voltage-
gated calcium channels rather than NMDA receptors.
Dendritic processing may thus enable granule cells to
operate in different ‘modes’: a local mode (subthreshold,
only recurrent inhibition) and a more extended mode
(APs, recurrent and lateral inhibition).

Conclusions
Although we are still far from a general understanding of
dendritic processing, we have gained some insight into
its importance for neuronal computation. The great
diversity of dendritic morphology — already appreciated
more than 100 years ago — (probably) corresponds to an
equally large variety of dendritic mechanisms and 
functions. Dendrites have turned out to be complex,
multifaceted computing devices, which can operate in a
highly nonlinear fashion. Dendritic processing can be
locally confined or operate over large branches or 
subtrees, depending on the spatio-temporal pattern of
the input that is received. Remarkably, Cajal may have
sensed that dendrites are much more than simple input
receiving structures. More than 100 years ago he wrote
[73]: “…Besides, it appeared to me that certain facts
were definitely contrary to the supposed exclusively 
cellulipetal conduction of the dendrites and cellulifugal
of the axons…In such cases it was necessary to admit 
contact between dendrites of diverse origins and hence
conduction indifferently cellulipetal or cellulifugal.” 

Today, newly developed (or refined) techniques allow us
to ‘look’ into single dendrites, to genetically alter their
components, or to map their functional synaptic inputs.
This results in detailed, but often descriptive information
on dendritic processing mechanisms. For the future, it will
be essential to associate these mechanisms with the 
functional role of the neuron, the network (or local circuit)
that the neuron belongs to, and, if possible, with behavior. 
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