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Aims

To motivate the subject

To provide a broad overview

Non-Gaussianity is often seen as a technical subject,
it is the study of non-linear perturbation theory
Physical intuition can still be provided, at the cost of
losing the details (e.g. neglecting some terms or
numerical factors)

| aim to provide details of some research areas and
techniques, at the cost of focusing the overview at a
few small areas

| will frequently use the whiteboard, so please
choose a suitable seat

Please ask questions, especially students! This is a
school, not a conference.



A tale of the early universe:
inflation and the CMB, plus LSS
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Inflation

Believed to have generated the primordial curvature
perturbation, the seed from which all structures grow

The earliest epoch of the universe which we can
observationally probe

It tends to erase all memory of the initial conditions

Again by design, (almost) all models give rise to an
identical, spatially flat background

Only the perturbations can discriminate between
models



We are interested in statistical
properties of the CMB

off the mark com by Mark Parisi
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« The temperature in specific directions is just down to chance

« But the statistical properties are crucial, this is what we use to
compare theory and observation

* The most convenient way to parametrise the curvature
perturbation is zeta, which we can relate to the perturbations
during inflation and to temperature perturbations on the CMB



Linear perturbations

These are the dominant, Gaussian
perturbations

They have been measured extremely
accurately on CMB scales

Give us information about the primordial
power spectrum

See David and Jerome’s courses



CMB measurements: Power spectrum

We measure the statistical pattern of the tiny temperature
perturbations in the CMB

Main observational tool is the power spectrum (2-point function)

Measure the amplitude of perturbations at a given scale (in
Fourier space)

(Ck, Cky) = Pr(k)(27)707 (k1 + ko), k= lki| = ks

. n—1
P(k)= A (%) = k°P(k). ko~
e
Angle brackets denote an average
Two observable parameters, amplitude and spectral index

If n=1 then scale invariant, i.e. perturbations have the same
amplitude on every scale

Planck observations show 4 ~ 10", n—1~ —0.04

|

physical scale




Planck measured power spectrum
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Figure 37. The 2013 Planck CMB temperature angular power spectrum. The error bars include cosmic variance, whose magnitude
is indicated by the green shaded area around the best fit model. The low-¢ values are plotted at 2, 3, 4,5, 6,7, 8,9.5, 11.5, 13.5, 16,
19, 22.5, 27, 34.5, and 44.5.

Looks complicated, but all this can be fit by a primordial power law spectrum
with just two input parameters

The range of scales probed is 2500/2=103=e’ - corresponds to about 7
efoldings of inflation



Enormous data
compression

Planck observes ~107 pixels in the CMB sky

Reduced to ~103 Cl

Further reduced to A and ns-|

Can only be justified if the perturbations are Gaussian

Then by Wicks theorem, the odd point correlators are zero, the
even ones are reducible to products of two points functions - i.e.
all information is contained in the power spectrum



Simplicity of Gaussianity

1 (x—xq)?
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The mean x0 can be set to zero, because we define perturbations
as deviation from the background

There is no information to be gained by not doing so, for
example the average temperature of the CMB changes
(extremely slowly) with time, due to photon red shifting

This leaves us with only one free parameter, the variance.The
variance may depend on scale

A non-Gaussian distribution may have any number of free
parameters



Why Gaussian!

Gaussian perturbations are found everywhere in nature
Often due to the central limit theorem

The ground state of the simple harmonic oscillator is
Gaussian - quantum origin of perturbations
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Conditions for Gaussianity

The primordial density perturbation will be indistinguishably
close to Gaussian if inflation is

|. single field (only one light field present)
slow roll (for all slow-roll parameters)

canonical kinetic term

H W N

perturbations start in the Bunch Davies vacuum (the usual
ground state)

Breaking any condition makes generating large non-Gaussianity
possible, but it may also remain small



Perturbations remain nearly Gaussian

® (Gaussianity is only preserved under linear transformations
® The square of a Gaussian is a chi-squared distribution

® Gravity is non-linear (thats why GR is so hard), but the tiny
amplitude of perturbations mean that only negligible non-
Gaussianity is generated on the CMB

® The part which always arises is known as the secondary non-
Gaussianity, anything else is primordial non-Gaussianity

® Secondary non-Gaussianities could also teach us about fundamental
physics, e.g. if gravity is not GR



Late time secondary non-Gaussianity

As gravitational collapse becomes more effective, at later
times (lower z) and shorter scales, the secondary non-
Gaussianities grow

1<
p p
This is not symmetric, unlike a Gaussian distribution

This makes the CMB a cleaner and easier probe, subtracting
secondary non-Gaussianities is hard work with LSS

The fact that LSS provides 3D information and more modes
makes this hard task ultimately worthwhile

The best future constraints will be LSS/21cm line

|4



Non-Gaussian information

The bispectrum and trispectrum, connected 3 and 4-point functions

(Chy CaChs) = Be(F, ko, k3)(2m)°6° (k1 + ko + k)

3 parameters - function of 3 lengths
k1
(Ciey Chep Cles Ckg)e = T (K1, ko, k3, ka) (27) %3 (ky + ko + kg + ky) -
k3

/ parameters in 3 dimensions
ko 5 parameters in 2 dimensions
function of | wavelength and 2 wave vectors

Power spectrum is a function of just one
k1 wavelength
15



Too much information

® |n practice, the signal-to-noise ratio for the bispectrum is always tiny for
any given triangle

® Instead one usually considers a single shape (B as a function of 3 k’s) and
only allow its amplitude to vary

® |[nfinitely many shapes can be chosen, but fortunately a few shapes are
enough to cover a large class of models

® Blind searches over a whole basis of shapes can be made, but we must be
very cautious if we detect a shape without prior theoretical motivation

® Even for Gaussian perturbations |% of shapes will be detected at the
99% confidence level

® Beware of posterior detections, i.e. anomalies. But also beware of taking
theoretical prejudices too seriously



Bispectral shapes correspond to
physical models

® A big advance in this field from the past decade is the realisation that
large classes of models can all be characterised by a few shapes

® Non-Gaussianity is not just “it could be anything else”

® The degeneracy within a class of models, corresponding to a given shape
can be broken (in principle) by measures of its scale dependence, and the
trispectrum which contains even more information

® Of course all constraints should also be considered together with the
power spectrum and gravitational wave limits

Komatsu et al; Decadel review 2009



The local model

Examples include the local model which arises from super-horizon
evolution of the curvature perturbation

Zeta is conserved in single-field models on large scales, therefore this
model only arises in models with multiple light fields present during
inflation

This shape has its largest signal in the squeezed limit, when one
wavelength is very large

Because a detection of a squeezed limit bispectrum would rule out all
single-field models, the local model has been studied in great depth

ks _
\‘kz k?2 < kl ~ ]Cg
k1

Reviews include: Byrnes & Choi 2010; Wands 2010

|18



The equilateral and orthogonal
models

® |[f the inflaton field has a non-canonical kinetic term, the sound speed of
perturbations becomes less than the speed of light

® FE.g k-inflation (Armendariz-Picon et al 1999) and DBI inflation

® This corresponds to large non-linearity/interaction terms in their
equations of motion

® The dominant effect arises around horizon crossing, and so it acts to
correlate modes of the same size (because modes cross when k=aH)

® The dominant signal therefore arises in the equilateral limit

® There are two relevant shapes, equilateral and orthogonal

k3

k1 ko kl ~ kg ~ ’C3



The flattened/folded model

If the initial vacuum state was not the simplest adiabatic vacuum state,
known as the Bunch Davies vacuum state, then even the initial quantum
field perturbations were not Gaussian

This gives rise to a signal which is maximised in the limit of flattened/
folded triangles

Warning: This and many other models are named after the configuration
which has the largest signal, but all models have a value for all shapes (i.e.
for all possible values of ki). This has caused a lot of confusion

k3
${— k12k22k3/2
1 .
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“Feature’” models

If there is a temporary breakdown in slow-roll during inflation, the modes
which cross the horizon around this time can become strongly non-
Gaussian

The epsilon parameter cannot become large (without stopping inflation),
but derivatives of this parameter can become much larger than unity for
a short period (~ | e-folding)

Only the modes crossing while these parameters are large are disturbed,
so the non-Gaussianity is localised in Fourier space to the relevant scales

These models can take almost any shape, normally oscillate and are hard
to search for. Fortunately they also give rise to patterns in P(k) at the
same scales, so combined P and B searches are possible

21



“Feature” model example

_ , . d
V(ﬁb):%m%f [1+ctanh <¢ d¢3>] ¢+3H¢+% — 0

Notice how the derivative of eta becomes very large, while epsilon remains small
Normally non-Gaussianity is suppressed by the smallness of the slow-roll
parameters, here it can become large

n’ S
15, 0.016;
10}
/‘\ 0.014-
5_
. . Y
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~15¢}
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Chen, Easther & Lim 2006
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There are plenty of other models

Models in which non-Gaussianity is localised in real space

Active source models, such as magnetic fields or cosmic strings/
topological defects. These are not really primordial non-Gaussianity, but
still of interest for studying fundamental physics

Secondary non-Gaussianity could potentially also be used as a probe of
fundamental physics, since if GR is not the correct gravity theory, the
alternative might be more non-linear and generate a larger amplitude

Combinations of all previously mentioned models
Still many more exist, there are plenty of review articles

But three shapes, local, equilateral and orthogonal have dominated, based
on their theoretical motivation (perhaps also their simplicity)

23



Lecture 1 summary
Why study primordial non-linearities?

Even in the “golden era” of cosmology, there is a lot we don't understand

The LCDM “standard model” of cosmology is phenomenologically simple but
not motivated by theory

The inflationary paradigm is still successful after decades, but has hundreds of
models, non are compelling

Success of the many new surveys, both CMB and LSS, must be utilised and
interpreted in terms of realistic models

We need as many observables as possible

Non-linear perturbations may contain much more information

Many models: Encyclopaedia Inflationaris: Martin, Ringeval & Vennin 2013
368 pages, and its only about single field models. Poor referee

24
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The local model of non-Gaussianity

C(x) = Cax) + 3 e (R (x) — ()

This name comes because it is a local function in real space.The annoying
3/5 factor due to original definition in terms of Newtonian potential,
Phi=3 zeta/5 during matter era. The constant term is subtracted such that
the expectation value is zero

In Fourier space, locality is lost due to the convolution

0 = ol + 2wy [ dace(a)alk —a)

Notice that the second order term is very small, we may expect an
excellent convergence. Fortunately this simple model has good
theoretical motivation

We will study this model in depth, including an inflationary scenario giving
rise to large local non-Gaussianity in the next lecture

26



The local model: definitions

C(x) = Cax) + 3 e (R (x) — (B(x))
® fnuis usually defined by
f o B(klv k27 kd)
N P(k1)P(k2) + 2perms

(Ckr) = P(k)(2m)6° (k + k)

(Cky ChsChy) = Be(kq, ka, k:;g)(27r)3(53(k:1 + ko + k3)

® We now show that its consistent with the definition of the local model

® Beware that the two definitions are not equivalent, even for local non-
Gaussianity

27



The local bispectral shape

The bispectral shape is

1
kiks

B°c! = 2P2% fy. { + 2perms}

Notice that this is largest in the squeezed limit, when one of the k’s->0

The Planck constraint (and WMAP9 in brackets) are

fNL=27+£58  (37.2+19.9)

Notice the strong improvement, non-Gaussianity results were eagerly
awaited from the Planck satellite

C(x) = Cax) + £ Avn(CE(x) — (B(x))

Using the power spectrum amplitude, we see that the CMB is at least 99.9%
Gaussian for this model.

28



A practical way to calculate perturbations

® Perturbation theory is complicated, and non-linear perturbation theory even
more so. Fortunately for many models, we can use a much simpler technique
to calculate the curvature perturbation, een at non-linear order

® This is the delta N formalism, based on the separate universe approach. It
allows on to relate perturbed variables and background variables.

® |tis only valid on super horizon scales (when the gradient terms are
negligible), but a great deal of the interesting evolution of zeta does take
place on very large scales

® We will just provide a sketch derivation of this technique, with references
provided for those who want to see a formal derivation.The aim is to
provide a “working knowledge” of one of the most powerful techniques in
non-Gaussianity

29



delta N formalism: |

The flat, unperturbed FRW metric is given by

ds® = —dt® + a(t)*6;;dz'dx’
and neglecting vector and tensor perturbations, the perturbed space-space
part is given by

gi; = a(t)>e* g,

Therefore, the curvature perturbation ( is the difference between the local
expansion rate to the global expansion rate

C(t,x) = 6N = N(t,x) — N(2),

0= () ]~ f o

N should be evaluated from a spatially flat hypersurface shortly after
horizon crossing, to a final uniform energy density (or uniform Hubble)
hypersurface.

where

30



delta N formalism: I

During inflation, the scalar fields provide the only contribution to the
energy density, and within the slow-roll approximation their time deriva-
tives do not provide a second degree of freedom. Therefore

¢ = N(Qba -+ 5925@) - N(Cba)a

where a labels the fields, and we may expand this as a Taylor series to
find the key result

1
C — Na5¢a + §NGb5¢a5¢b -+ .-

where the field perturbations should be evaluated at the initial time (hori-
zon crossing), summation convention is used and

_ ON
O

Notice that the derivatives of N depend only on background quantities,
so provided that the statistical distribution of the field perturbations is
known at horizon crossing, we can do perturbation theory using back-
ground quantities.

Na
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delta N formalism: Results

Assuming canonical kinetic terms, Bunch Davies vacuum and slow
roll, the initial conditions are very simple. The field perturbations are
Gaussian, and

(6¢a(k)d¢ (k') = Sap Px (k) (2m) 6 ° (k + k),

where

P.(k) = gf;zﬂ*(k) - (fﬁ)Q .

Using these results, we may calculate (using the whiteboard) the power
spectrum and amplitude of the local bispectrum

P:(k) = NoN. P, (k).

f _ 5 NaNpNap
NL = NN

This result was first derived by Lyth and Rodriguez 2005, and is very
useful since it allows us to calculate the bispectrum amplitude using only
background quantities (and we know it has the local shape).

32



Single-field inflation

In the case of single-field inflation, the derivatives of N are given by

H 1 1 1

N ~ =~ (’)(e_§>,
¢ 2 Mpi /e
1 1 1

N" o~ oo (-2~ O(1)

where the slow-roll parameters are defined by

Mg (V' > V"
€ 9 (V ) n PIV

This suggests that

5 N” 5

Nz g2

fnL

but since fnr, is slow-roll suppressed for this model, we should have also
included the equally small non-Gaussianity of the field perturbations at
horizon exit.
The final result, known as the Maldacena consistency relation, states
that
5 B(k1, k2, ks3) 5

= — 1 = — (1 —ns).
I 2 o0 Bl Pl 120 )

See Creminelli and Zaldarriaga 2004 for a general proof, valid even for
any single field model (even with non-canonical kinetic terms, breaking
slow roll and a non Bunch-Davies vacuum state). The exciting result is
that a detection of the bispectrum in the squeezed limit (similar to local
non-Gaussianity) would rule out all single field models. A detection of
any different shape of non-Gaussianity would not do this.

33



Single-source inflation

If we instead assume that a single-field generated the primordial cur-
vature perturbation, which was not the inflaton field, then large local
non-Gaussianity is possible. Many models in the literature fit into this
case, for example

e the curvaton scenario (to be studied in depth)

e modulated (p)reheating (the duration of reheating varies with posi-
tion)

e inhomogeneous end of inflation (the duration of inflation varies with
position)

What they all have in common is that the duration of periods with
differing equations of state varies with position. This is required in order
that N becomes perturbed, since it only depends on the amount of ex-
pansion, i.e. H. In modulated reheating, the equation of state is 0 while
the inflaton oscillates in a quadratic potential, but jumps to 1/3 after the
inflaton has decayed into radiation. This means that the varying the time
of reheating will change the expansion history, and hence N and (.

34



The curvaton scenario

So far, non-Gaussianity will have appeared quite abstract, with only the
broadest reference made to inflationary models

We will study a concrete scenario in some depth, and learn lessons which
also apply to other scenarios

The curvaton scenario is a simple physical model, in which there are two
light fields present during inflation. Both fields are perturbed at Hubble exit,
with field perturbations of order H

One field drives inflation, the inflaton. A second field, the curvaton, generates
the primordial curvature perturbation. This liberates the inflaton, because its
perturbation spectrum no longer needs to match observations

By definition, because the inflaton field drives inflation, at first it has the
dominant energy density

If the curvaton decays later than the inflaton, its “importance” grows in time

35



Curvaton background evolution:

Log of scale factor versus log of energy density

Inflaton

($)

Inflaton

(Y) |

Curvaton

(o)

'end’ '‘dom' ‘'dec'

Here we assume that the inflaton decays instantaneously into radiation, and that the curvaton has a
quadratic potential. The general picture remains the same if you drop these assumptions.

After the curvaton decays, we have only radiation, which has perturbations imprinted onto it from
the curvaton (and inflaton)

36



Curvaton evolution

1 5

V = Zmio”
2m0

g

For simplicity, we initially assume a quadratic potential for the curvaton,
most papers in the literature do so

§+3H6+ Vs =0,
b0 + 3Hbo + V 5o00 = 0.

Just for a quadratic potential, the two evolution equations are the same.
This implies that the ratio of the two solutions is constant in time. The

second equation also neglects back reaction from gravity, accurate as long
as its energy is subdominant

37



Curvaton perturbations

dp, V(o+do)—V(o) do A
Po V(o) o o

This is a constant, see the previous slide

The truncation at second order follows because we assumed a quadratic
potential

The above formula follows the local model, and if the above was the final
result result for zeta we would have fni~|

We should consider that the curvaton is not the only component of the
universe

C — QO’CO’ 2o = Pa/ﬂtot
fan o< ¢ /¢1? o 1/,

38



Corrections

The basic result is correct, the less efficient the transfer from the
curvaton perturbation to total curvature perturbation, the larger the
non-Gaussianity becomes. This holds quite generally

This calculation made many approximations and assumptions. If we keep
the assumptions, but drop the approximations, the full result is

; 5 5.5 3.
NI — s =ad e =
4Tdec 3 6 - o 4107 + 3100 decay
f 1 1
If fae is large, NT. O€ F—=0F ==
T'dec Qa

The Planck constraint, fni<10, tells us rgec>0.1.A priori, 10-> was possible.

If the curvaton dominates before it decays fni=-5/4

39



Checking assumptions

So far, we have neglected the inflaton field perturbations, phi=inflaton

But remember that all light scalar fields are equally perturbed during
inflation, at horizon crossing

H
0p = do = o
¢~ (1—Q6)Cs + Qo (Co +¢5)
o d0

, Go X

Co e o

If the curvaton is subdominant at decay, which is what we require for
large non-Gaussianity, it also needs to have a very small initial vev in
order that its perturbations are large compared to the inflatons

40



Mixed inflaton-curvaton scenario

The power spectra due to the two fields is

1 (H.\° » 1 (H\’
P ~Y — PO'NQO- )
? e<27r> ’ 03(2#)

and the total power spectrum is

_ D

Pr=Py+ P, =(1+\NPFs, A 2

The bispectrum is unchanged from the pure curvaton limit (A = 0),

L 2
B =B, = —F;
¢ Q.

but fnr is reduced because the power spectrum is enhanced by the Gaus-
sian inflaton field perturbations
B B, 1 1

N~ P = T, T A

How can we distinguish €2, and A if fnr, is detected?

4]



Scale-dependence of fnL

72 . — 0 ]'Og |.f1]\f [J
Ine =g log k

Analogously to the power spectrum, faL is expected to have some scale
dependence. This reflects evolution during inflation, e.g. it ends, so it
cannot be exactly de Sitter
It can distinguish between different non-Gaussian scenarios, not just
between Gaussian and non-Gaussian models
The amplitude of fnL can be tuned in most non-Gaussian models, so a
precise measurement of fnL wont do this
In contrast the scale dependence often can not be tuned independently of:
I. fNL
2. spectral index of the power spectrum
We should seek consistency relations between observables, test or rule
our whole classes of models

42



Curvaton scale-dependence of fnL

1 (P 2 2o —my) ~ Oln'P,
fNLOCQG (PC> X k Ne — 1 = Iln k

® |n the curvaton limit, where we neglect the inflaton field perturbations

A — 0, Ny — O

® |[f the inflaton perturbations are important, and the curvaton
perturbations are scale invariant

ne — 1 — 0, Ny — —2(ns — 1)

® However more generally, in the single source limit, scale independence
only follows when there is a quadratic potential

. N \M V/// — &
fNL fNL 3H2 PC
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Planck and scale dependence

500 1000 1500 2000 2500

Lmax

WMAP had consistently found a preference for positive fnL. Planck is
consistent with this, because the low | modes do prefer a positive value
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Introducing the trispectrum

C Is a function of multiple Gaussian fields

Bispectrum and trlspectrum

Be(ky, ko ks) = -wa[Pg(h Pe(ka) + Pe (ko) Pe(ks) + Pe(kg)Pe(ky)]
Te(ki ko, ks, ka) = 7np |[Pe(kiz)Pe(ks)Pe(ka) + (11 perms)]

54 ) |
+2—Jm [Pg{kg)ﬂg(kgjpc(h) (3 perms)|

There are 3 k independent parameters ki; = |k +k;|

¢ _}\ A\NpN4P 25 NapcNANENC| | NpapNACNEN

U eNeE ||V T B (NP | |V T T (NpND)e

If only 1 field generates the primordial curvature perturbation,
2 independent parameters remain

(N’)Q gNL = 54 (N/).‘B 'NL = (Nf)al _ﬁfNL

fnp =




A general test of single-
source models

For all models in which only one field generates the primordial curvature
perturbation (not the inflaton)

. <6fNL>2
TNL = 5

In models where multiple fields contribute there is instead the Suyama-Yamaguchi
inequality

2 2

From Planck, taun <2800 (95% confidence)
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The second trispectrum
parameter, gnL

6p, V(oc+do)—V(s) _do 5o\ ?
% = V(o) ‘20+( )

o

® For a quadratic potential, we may truncate at second order,
which implies gni=0. Quadratic potentials are simple to
calculate with, but not preferred by fundamental theories.
So gnL has been unfairly neglected.

® |sn|>>fn? is possible with non-quadratic potentials

® Unfortunately gni is very hard to constrain, because its
shape is maximised in fewer configurations than taun.. The

current bound is |gnL|<10°, Planck has not yet produced a
constraint
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Curvaton summary

6 fNL
O

2
Single-source scenario if TNL = ( ) , i.e. the curvaton

perturbations dominate

Then detection of a large gn or scale dependence of fae would tell us
the potential is non-quadratic

Both the inflaton and curvaton field perturbations must contribute if

2
TNL = (GQNL)

Again a large gne would signal a non-quadratic potential for the
curvaton. The scale dependence of fnL will not be zero, and provides
further information

An explicit example of how much we can learn (in principle) from
non-Gaussianity
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Tensor-to-scalar ratio (r)

Curvaton post Planck

0.24

0.16

0.08

0.00

| |
| B Planck+-WP-+BAQ: ACDM 4+ r
B Planck+WP+BAO: ACDM + r + w
Planck+WP+BAO: ACDM + r + > m,

N =50

= 60

0.94

0.96
Primordial tilt (ns)

0.98

49

1.00

Red lines are for negligible curvaton mass, blue lines have m_sigma=m_ phi/2. Green lines are the inflating
curvaton regime, where it drives a second period of inflation.

Curvaton scenario has a lower bound on rgec from the Planck satellite via fni. But only a detection of fani<-5/4
would rule it out. However, the simplest curvaton scenario, where both it and the inflaton field have quadratic

fields may soon be ruled out. Changing the inflaton potential changes the quadratic curvaton predictions.

Work in progress with Marina Cortes and Andrew Liddle (to appear on the arxiv very soon)



General lessons learnt via the curvaton scenario

Not only for the curvaton scenario, for two field models of inflation, where one field
dominates during inflation (the inflaton) one can often write zeta in the form:

(e (L=m)Cp + (G + )
/

Gaussian inflaton field subdominant non-Gaussian field
Cqb ~ \/—6—*7 Cx X ;7 V(X) xX X~ = CX X (Cx ) = constant

Curvaton scenario: r¢y > (g, 7 =~ Q|decay, SNL < = = 1, v = (

r N

6fNL>2
5

(6fNL>2
5

Vv

1 (P 2 P: (6f 2
Mixed scenario: |fnp| o< = (P_>C<) x k2(nx—ns) o = Pi ( 5NL)
9

Dominant quadratic curvaton: fnp = —2, INL = 5

r measures the efficiency of the transfer from the initially subdominant field, which is
isocurvature during inflation

The less efficient the transfer, the more non-Gaussian the perturbations, and taunc is
relatively more important

However the Gaussian inflaton perturbations are more likely to dominate in this

limit
50



® Previous slide made several assumptions:
® 2 fields, one of which is Gaussian
® Quadratic potential (implies negligible gni)

® Conversion takes place after the end of inflation
(important, things work differently if during slow
roll, and often get slow-roll value of f\)

® Apart from the third assumption, prediction of
(local) [fnL|> 1 is quite generic.

® Can we observe fy =1, if so, when???
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Non-canonical models

Models with a non-canonical kinetic term give rise to non-
Gaussianity, related to the reduced sound speed of perturbations

L= P(X,¢) X = g"" 0,90, ¢

Canonical case: [ = —X/2 —_— V(¢)
Sound speed: 02 o Ex
8 PX + QXPXX

Can generate two bispectral shapes, both maximised in the
equilateral limit, and both satisfy fni~1/cs?
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Equilateral and orthogonal non-Gaussianity

- - 1 2 1
Bequﬂ _ 6A2 equil o 2 . - 5
NL k%kg + 2perms CE + klkgkg + operms
1 8 1
Bortho _ A2 ortho J 9 o
6A° fN1, 3 B + 2perms (e Fiaks)? + k2R + S5perms

I”

The orthogonal model was designhed to be “orthogonal” to the equilateral model.
This means they won't be confused with each other by observations

How correlated different shapes are is defined by [Fergusson & Shellard 2008]

1
S(ki1, ko, ks) = — (kikaks)” B(ky, ko, k3)
INL
/ 1
F(S, ') = / S, ka k) S (ks b, i) 1————— Vi
Vi

F(S,5")
VE(S, SYF (S, S)

c(S,8") =
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Non-Gaussianity constraints

Constraints on the “headline” parameters are given, (WMAP9 in brackets)

local _ 97458  (37.24£19.9),
Wl — 42475 (51 +136),
Qithe — 95439 (—245 4 100).

A factor of 2-4 improvement with Planck
All central values are close to zero

For models with non-canonical kinetic terms, leading to a sound speed
different from the speed of light: Planck => ¢s>0.02

One big implication is that single-field DBI inflation is (probably) ruled out,
by the constraint on equilateral non-Gaussianity

An extremely popular string motivated model of inflation
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Comparing the constraints

local _ 97458  (37.2+19.9),
il — 42475 (51 +136),
Qrthe — 95439 (—245 4 100).

1
local 2
B = g A2 foan {— ( ! + 2perms> — : + ( 12 + 5perms> }
TR (kikoks)? | \ k22
BOrthe — g A? fartho 1 _3 + 2perms | — : +3 ! + Sperms
b k3 k3 (k1koks)? k1 k2 k3

All bispectral shapes are normalised to give the same amplitude for an
equilateral triangle. This is “unfair” to models which have the largest signal-
to-noise ratio in this configuration (e.g. equilateral and orthogonal), while
the local model is minimised for an equilateral triangle.

Therefore, the difference in the error bars is arguably just an artefact of the
chosen normalisation.
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Large non-Gaussianity from
slow-roll inflation

* Yes
* Impossible with single field, so multi-field

0X . Perturbation
A -4

Background trajectory

Byrnes, Choi and Hall '08

Adiabatic perturbations
parallel to background trajectory

Isocurvature perturbations perpendicular
to background trajectory

The perturbations are correlated and zeta
evolves if the trajectory curves

Theta measures angle between
background trajectory and axes



Need to track the large scale evolution of zeta up to second order
Tractable for a sum or product separable potential

Vernizzi and Wands '06; Choi, Hall and van de Bruck '07,
see also Rigopoulos, Shellard & van Tent '05

Focus on two-field product separable potential, sum potential are analogous

Wi, x) =U(p)V(x)

fne depends on 5 slow-roll parameters and initial and final theta - complicated

5
INL = Z f:(sin? 6*, sin” 0°)s.r.;

1=1

>
sin’ @ = - X — X
P+ ¢
ME (W, \°
eszP(WX> , €= €p T €y

If f; ~ O(1) assumed, then fn is slow-roll suppressed



Region with large non-Gaussianity

sin® ¢

(sin2 6* + sin® 96) °

O e )
INL = 6 (277xx o nxx)

Often 277;)( — U;X ™ Ty
Then |fNL| Z ] provided that:
sin? f° 1

>
Sin2 9* |77XX |

Requires a trajectory with one field very subdominant, but that grows during
inflation (and remains subdominant). Trajectory must curve.

-2 x 2 -2 pe
sin” 0% < 17, sin” 0% < [Ny |,

All slow-roll parameters remain small through inflation, the large fNL is not
associated with a breakdown in slow roll
Only possible for some potentials

Can interpret this as at least a 1% tuning of the initial conditions
Byrnes, Choi and Hall '08



Quadratic * exponential potential

Byrnes, Choi & Hall '08

M/:ﬁ‘ A><2/\fpf\,n_zz‘ _/\_Xz
2 2 M

Interested in the regime where the exponential is order unity so the phi field drives
and ends inflation

2 X 2M
= 2 ]\[2 €p = =

. €
sinf? ~ X « 1
€

the chi field is subdominant throughout inflation but grows, the conditions for large
non-Gaussianity can be satisfied, provided that:

A~ 1077, x; < M5

The curvaton scenario also requires a small initial vev, in order to generate large
perturbations. This is quite generic.

The calculation performed so far is only valid during inflation, while isocurvature
perturbations exist, zeta can continue to evolve
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The difficult topic of reheating

e |ts a somewhat neglected topic, but reheating happened

® |n single field models, zeta is conserved (on super horizon scales), so not so
iImportant

® But even in single field, affects the value of “N” we should use (number of e-
foldings), biggest uncertainty for predictions of “chaotic inflation”

o N IV et & dural o » . 3 : o YA D Al i s e Y- P e \ <23 s e 5 R TS P P W bl ot ; T R e =Ty L f - e ol

b atead CCoti gt e digha e L R R TN S I IS SN N P ey R picaal iy ot e R L 2 Ly ) ¥e R LTI I N T 5 Bin P SR (e o R Sleh e My St L o e am A n )

g LM 5 e s ] o e TE 1 s o A YAV PPN (i A

At 17T ot e U IN A 1 (=8des A1 | =ll= Lo ey S ek Kals W= e S A Y~ (G S W SE g M) 3 L SSNR e § Rt | . ST e, = e hg "
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Two fields oscillating

1
W =Wy [§m2x2 + A? (1 — COS (?cp))]

.

._\ ..

Credit to Ewan Tarrant for figure
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fy evolution

Equal decay rates
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Different decay rates
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Notice that the final value of fnL doesnt change if the

decay rates of the two fields are equal

In all cases, fnL is nearly zero until reheating
A calculation performed until the end of inflation would

give completely wrong answers



Some “take home” messages

In multiple field inflation, it is “difficult” rather than “easy” to generate
observable non-Gaussianity

We dont have a fundamental theory to tell us the parameter values and
initial conditions, but for many choices fnL is slow-roll suppressed.
Inflation is not very predictive

The curvaton scenario and modulated reheating, etc, do predict fni~1 or
larger (potentially even 10°). fn.~10 is popular today...

In general, neither Planck nor any other foreseeable experiment can rule
out multiple field inflation, or even push it into a finely tuned regime

Accurate calculations are hard, even numerically it is quite difficult and
hard to scan large parameter spaces.

Observables may continue to evolve during reheating. The inflaton should
couple to something in order to decay
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Planck results: Vanilla rules

0.10 0.15 0.20 0.25

Tensor-to-Scalar Ratio (rp.002)

0.05

0.00

0.94 0.96 0.98 1.00
Primordial Tilt (ny)

® Except for anomalies at under the 3 sigma level, do they point to
anything primordial?

® For example, the power spectrum amplitude is not quite isotropic
and there are some hints of “wiggles” in the power spectrum

® |s this a surprise!
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Only two measured inflationary parameters

® The spectral index, all other parameters consistent with zero (tensors, isocurvature
modes, non-Gaussianity, running of spectral index, cosmic string contribution,...)

®  We know the amplitude of perturbations since COBE, but for all models this is an
overall scaling of the potential, which is not predicted

® Planck does find preference for a concave potential
® Hence a negative mass squared at horizon crossing, but must have a positive mass
squared at the minimum, if the potential gives a “graceful exit” from inflation -

alternatively could have multiple fields so direction of slow roll changes

e Non-trivial evolution of the potential during inflation, monomial potentials (chaotic
inflation) are disfavored - need an extra model parameter

® However, notice that it was only in combination with the non-detection of
gravitational waves that one finds evidence for a concave potential

® Shows that measuring a parameter to be close to zero is still a measurement, and
may have important implications
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Even things which may
never be discovered are
important
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“After the discovery of ‘antimatter’ and ‘dark matter’, we have just
confirmed the existence of ‘doesn’t matter’, which does not have
any influence on the Universe whatsoever.”
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Is there anything which
Planck did not do?

Non-Gaussianity could be anything, so infinitely many
things left to do!

But of the “mainstream” targets, gni is the only
obvious missing target

In fact, taun, was the only trispectral shape to be
constrained so far, huge range left to do (but difficult)

tauny is large in the squeezed and collapsed limits,
gnL only in the squeezed limit

WMAP and LSS constraints are weak, |gn |<few™ | 0
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Future prospects

More shapes to be searched for with Planck, lots to do especially with
the trispectrum

For shapes already constrained, the local model has the best prospects
(scale dependent bias)

The galaxy bispectrum is quite poorly explored
Don’t expect significant observational improvements before Euclid

Higgs field is likely to be a second light degree of freedom during inflation
(unless itself the inflaton, requires huge non-minimal coupling to gravity)

Anomalies such as power spectrum modulation may be non-Gaussian
signatures (wait for polarization)

Large scale magnetic fields definitely exist and are non-Gaussian
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Non-Gaussianity FAQs

Personal opinions follow

Do the Planck non-Gaussianity constraints imply that there
is negligible non-Gaussianity?

Not really. For the local model of non-Gaussianity, they do imply the
sky is over 99.9% Gaussian, which is a remarkable result. For other
templates, the constraint could be much weaker. But the constraint
| x| < 10 are still two to three orders of magnitude larger than the
single-field consistency relation for the squeezed limit, fn1, ~ ns — 1.
Clearly a large window is left for models which deviate from this
consistency relation, but have a level of non-Gaussianity which is
not yet be detectable.
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Do the Planck non-(Gaussianity constraints imply that al-
ternatives to single field inflation are strongly disfavoured?

No. Single field inflation remains consistent with the observations,
which does suggest they should be preferred from a Bayesian/Occams
razor perspective. This was also true before we had Planck results.
However its important to bear two points in mind: 1) A model which
is parametrised with the fewest parameters might not be the sim-
plest or most natural from a model building perspective, (we know
little about physics at the inflationary energy scale) and 2) there
are many multiple field models which predict non-Gaussianity with
| fne| < 1, and hence are far from ruled out.

Is there a natural target for future non-Gaussianity exper-
iments?

Yes. Several models which convert an isocurvature perturbation
present during inflation into the primordial adiabatic perturbation
after inflation have a large parameter range in which fn1, ~ 1. For
example, the simplest version of the curvaton scenario, quadratic
potential plus dominant at the decay time (which it will be the case
if it decays sufficiently late) makes a definite prediction, fn1, = —5/4.
Similarly, a particularly simple realisation of modulated reheating
predicts fn1. = 5/2. Hence having an experiment which is capable
of discriminating between fnr, = 1 and fnr. = 0 would have great
value in disfavouring popular non-Gaussian models.
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What are the prospects for future non-(Gaussianity mea-
surements?

The final Planck data release, which will contain double the observa-
tion time compared to the first release as well as Planck polarisation
data, is expected to only lead to a relativitely modest improvement
to the fnr constraints, about 20%, compared to a factor of two
for several other cosmological paremeters including the spectral in-
dex. The next significant improvement in the constraint for fioc?!
is expected in about a decade from the Euclid survey, which is fore-
casted to reach and error bar of around 2. Beyond this, there is
no clear timeline to future experiments which will have even tighter
constraints, although several experiments have been proposed, for

example Core, Pixie, etc.

Which forms of non-(Gaussianity can we best constrain with
future experiments?

Currently, the only concrete expectation for a significant improve-
ment in non-Gaussianity constraints comes from the Euclid satel-
lite. The forecasts have mainly been made for the scale dependent
halo bias, which is sensitive to the squeezed limit of the bispectrum
and hence primarily to local non-Gaussianity. The prospects for the
other shapes is weaker, but limited work has been done on the galaxy
bispectrum and using this as an estimator could potentially improve
sensitivity to all shapes of the bispectrum. This work is very chal-
lenging since the secondary signal from non-linear collapse is much
larger than the primordial signal (implying observations will have to
deal with many potentially large systematic effects), and even with

(Gaussian initial conditions, structure formation is a hard topic.
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Conclusions

Even today, non-Gaussianity arguably remains the best window onto the early
universe. It has the potential to provide far more information than the power
spectrum

Constraining a parameter to be close to zero is an important measurement.
Non-Gaussianity is very well constrained, the local model must produce less
than 0.1% non-Gaussianity

Even tight non-Gaussianity constraints wont rule out multi-field inflation.
Reheating and the Higgs discovery may even prefer it. A way to theoretically
discriminate between the plethora of surviving models is required

A few bispectral shapes cover the predictions of many classes of models
When can we discriminate between f =1 and 0? Important target

Progress is needed on top-down theories, reheating, initial conditions for
multi field models
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