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ABSTRACT
Developing energy efficient strategies for the extraction,
transmission, and dissemination of information is a core
theme in wireless sensor network research. In this paper
we present a novel system for decentralized data compres-
sion and predistribution. The system simultaneously com-
putes random projections of the sensor data and dissemi-
nates them throughout the network using a simple gossiping
algorithm. These summary statistics are stored in an effi-
cient manner and can be extracted from a small subset of
nodes anywhere in the network. From these measurements
one can reconstruct an accurate approximation of the data
at all nodes in the network, provided the original data is
compressible in a certain sense which need not be known
to the nodes ahead of time. The system provides a prac-
tical and universal approach to decentralized compression
and content distribution in wireless sensor networks. Two
example applications, network health monitoring and field
estimation, demonstrate the utility of our method.

Categories and Subject Descriptors
E.4 [Coding and Information Theory]: Data compaction
and compression; I.5.4 [Pattern Recognition]: Signal Pro-
cessing

General Terms
Algorithms, Theory

Keywords
Random projections, decentralized compression, predistri-
bution in sensor networks
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1. INTRODUCTION
Sensor networking is an emerging technology that

promises an unprecedented ability to monitor and manipu-
late the physical world via a spatially distributed network of
small, inexpensive wireless sensor nodes that have the abil-
ity to self-organize into a well-connected network. While the
practically unlimited range of sensor network applications is
quite evident, our current understanding of their design and
management is far from complete. The decentralized na-
ture of data collection necessitates sharing information via
wireless communications, a costly operation due to limited
energy resources. Consequently, a major challenge in sensor
networking is the development of energy efficient methods
for processing and communicating information.

Previous approaches to energy-efficient extraction and
storage have been driven by the notion that measurements
at nearby sensors are correlated, predict one another well,
or otherwise contain roughly the same information. Sam-
pling techniques reduce the number of transmissions by only
collecting measurements from a subset of nodes. Informa-
tion theoretic methods typically make assumptions about
the correlation structure governing measurements at nearby
nodes and use this structure to encode each measurement in
fewer bits.

This paper introduces a novel approach to distributed
compression and predistribution in wireless sensor networks
(WSNs), based in part on very recent results in compres-
sion theory, distributed computing, and network coding.
Our approach is based on the notion that the sensor data
viewed across the network will be compressible under some
linear transformation. Suppose we have a network of n
nodes indexed 1, 2, . . . , where each node makes a single mea-
surement, xi. Then the data in the entire network can
be represented as a vector x ∈ R

n, obtained by stacking
each node’s measurement. Transform coding techniques are
used in many successful compression schemes such as JPEG,
MPEG, and MP3. The idea of transform coding is to find a
basis1, {ψi}n

i=1, for R
n which admits a sparse representation

of x; i.e., we want to find a basis so that for k ≪ n,

x ≈
k∑

i=1

(xT
ψi)ψi +

n∑

i=k+1

0ψi.

Then most of the energy or information in the signal, x,

1
Recall that a basis for R

n is a collection of vectors, ψi ∈ R
n, i =

1, . . . , n, such that any x ∈ R
n can be represented as x =

∑
n

i=1 θiψi,

where θi = x
Tψi are called the coefficients of x in the basis {ψi}.



is captured in just a few (k ≪ n) of the coefficients. A
major challenge is that one generally does not know ahead
of time which coefficients, xTψi, are significant. Moreover,
in exploratory data analysis, the system designer may not
even know what basis the data is compressible in.

To relate this setup to a specific WSN application, sup-
pose that most nodes are functioning suitably well, but some
small number detect that their sensors have become cor-
rupted and need to be re-calibrated or replaced. The cor-
rupted sensors set a flag xi = 1, and the other functioning
sensors set xi = 0. Assuming that only k ≪ n nodes have
malfunctioned, the signal, x, is sparse or compressible in the
usual “coordinate” basis for R

n where ψi is a vector of all ze-
ros except ψi,j = 1. It is impossible to know which nodes will
need repairs ahead of time. One solution would be to have
damaged nodes transmit a special purpose message to the
fusion center using a specialized routing protocol, however
there is a large amount of overhead involved in maintaining
routes in unreliable networking conditions. In addition, it
may be desirable for the repairman, scientist, or soldier ser-
vicing the network to be notified of malfunctioning nodes at
an arbitrary location within the network rather than having
to return to a fusion center.

More generally, it may be that x is compressible in another
basis where computing each coefficient, xTψi =

∑n
j=1 xjψi,j ,

involves the values from all nodes. This situation arises in
field estimation, where an “image” of sensor readings could
be compressed (e.g., using JPEG 2000) if the data were cen-
trally located. An interesting question is then: Can we
obtain the significant coefficients in some transform with-
out extracting the complete data from all sensors if we don’t
know which coefficients are significant ahead of time? The
answer is yes and this paper explains how.

Our approach to efficiently extracting information in a
WSN employs state-of-the art compression techniques based
on random projections of the data to efficiently summarize
the information in x. Exciting recent advances in compres-
sive sensing demonstrate that a compressible signal can be
well approximated using projections onto random vectors,
alleviating the need for prior knowledge of which coefficients
are the significant ones in the compressible basis [6, 12, 15].
We propose a scheme where the same set of random vectors
are used to encode multiple vectors of sensor data. We de-
rive bounds on the reconstruction error as a function of the
compressibility (roughly speaking, the number of significant
coefficients), the number of random projections collected,
and the number of data vectors compressed.

Computing each projection amounts to a simple aggrega-
tion. Although there are many ways this computation can
be performed, gossip or consensus algorithms are a sim-
ple and robust scalable means of evaluating one projection
with the added bonus that every node has an approximation
to the projection coefficient when the algorithm terminates.
Based on our performance bounds and recent convergence
results for gossip algorithms we determine the trade-off be-
tween communication complexity and reconstruction error.
Using an idealized communication scheme to compute k pro-
jection coefficients requires O(nk) transmissions. This is
order-wise the same communication complexity required by
a clairvoyant pull-based scheme knowing exactly which k co-
efficients are significant, tasked with extracting an approxi-
mation of equivalent accuracy to a single location in the net-
work. Using a more practical geographic gossip algorithm to

compute k projection coefficients requires O
(
kn3/2/

√
log n

)

transmissions. We also describe an efficient storage scheme
whereby a user can obtain the k random projection coef-
ficients by querying any (convenient) subset of O(k log n)
nodes anywhere in the network.

1.1 Related Work
Distributed Source Coding. The first proposed ap-

proaches to reducing the amount of communication (and
thus energy [21]) required to extract information from a
wireless sensor network were founded on the principle that
in a dense sensor network the data gathered at nodes will
be highly correlated [13, 22, 26]. These schemes take an
information-theoretic approach to reducing the number of
bits needed to encode all of the network data. However
they make assumptions on the underlying correlation struc-
ture of the sensor data which are difficult to verify or involve
parameters which may be difficult to estimate in practice.

Decentralized Error Codes. In [11], Dimakis et al. de-
scribe a system which is similar in spirit to ours. We note
that [11] inspired quite a bit of the work presented here.
Their setup involves a small number, k, of the nodes in the
network which have data that needs to be predistributed to
other nodes in a network. There are a few major differences
between their system and ours. First, the assumption is
made in [11] that the k data nodes are known ahead of time
and that the data at these nodes is already in a compressed
form. The error codes they propose ensure that a user can
query any k nodes in the network and recover the data with
high probability. In terms of communication complexity,
their scheme requires O(kn1/2 log(n)) single-hop transmis-
sions. However a significant difference is that they assume
k = O(n). Thus, the effective communication complexity of

their scheme is O
(
n3/2 log n

)
.

Assuming the signal is compressible in some basis (as for-

malized below), by using k ≥ n1/(2α) projections the total
error for our scheme tends to zero as n → ∞. In the worst
case α = 1, and we can take k = O

(
n1/2 log n

)
. At this

extreme, the communication complexity of our system is
O

(
n2

√
log n

)
, a factor of

√
n/ log n larger than that of [11].

However, our system is more flexible for a number of reasons.
First, we do not require that only a few sensors have mean-
ingful data and even if this is the case, we do not need to
know which sensors have meaningful data ahead of time in
order to reap the benefits. Moreover, the scheme proposed
in this paper accomplishes data compression and denoising
in addition to efficient distribution and storage.

Compressed Sensing. Finally, we note that the idea of
obtaining efficient signal representations via random projec-
tions has very recently received a great deal of attention in
the signal processing community, beginning with the ground
breaking papers [6,8,12]. Initial work in the area focused on
noise-free random projections. More recent developments
have considered noisy random projections [7,15,16]. In this
paper we extend these results to the case where multiple
noisy signals are compressed using the same random projec-
tion vectors. To our knowledge, this paper is the first to de-
scribe a practical implementation of random projections for
compression and distribution in a multi-hop wireless sensor
network. In particular, in our previous work [15,16] we sug-
gested the possibility of using random projections in wireless
sensing, but in concert with non-collaborative analog com-
munication schemes for transmitting the data to a prede-



fined destination; a completely different scenario compared
to the multi-hop system under consideration here. Theo-
retical issues related to joint sparsity of signals at a single
sensor and across the network are investigated in [2].

2. COMPRESSION & PREDISTRIBUTION
IN WIRELESS SENSOR NETWORKS

To motivate the proposed system, suppose our goal is to
reconstruct the sensor data x at a specific point in the net-
work. In a “pull-based” approach all nodes funnel their data
to the location of the querying user. If nodes are arranged
in a planar grid then the network radius is on the order of√
n hops. To gather all of the data at a single point in the

network, each node’s data value must be transmitted over
a distance roughly as long as the network radius. Thus,
the total communication complexity is O(n

√
n) = O(n3/2)

single-hop transmissions using an idealized scheme with no
overhead for routing.

In many WSN applications it may not be necessary to
collect the raw data from each node to obtain all of the rele-
vant information. Data collected at nearby nodes in a dense
sensor network is expected to be highly correlated [22] and
we can take advantage of this compressibility to reduce the
amount of communication. As an extreme example, consider
the network health application described in the introduction
where only k ≪ n sensors have “meaningful” measurements
(the flag that they need repair) and that the remaining n−k
sensors measure zero. In this case the vector x itself is sparse
(i.e., no compressing transform is required). Only a few non-
zero terms are needed to accurately reconstruct x, and the
communication complexity is reduced from O(n3/2) single-
hop transmissions (collect data from all nodes) to O(k

√
n)

single-hop transmissions (collect only the relevant informa-
tion). Clearly, when k ≪ n, this scheme is much more
energy-efficient than collecting all the sensor data.

More generally, the actual network data x might not be
sparse, but it may still be compressible in a certain trans-
form basis. We formalize this notion as follows.

Definition 1 (Best m-term Approximation). Let
x ∈ R

n and let Ψ = {ψi}n
i=1 be an orthonormal basis for

R
n. Denote by θi = ψT

i x the coefficients of x in this new
basis. Reordering the coefficients in decreasing magnitude so
that

|θ(1)| ≥ |θ(2)| ≥ · · · ≥ |θ(n)|,

the best m-term approximation of x in Ψ is given by x(m) =∑m
i=1 θ(i)ψ(i). We say that x is compressible in Ψ when the

mean squared approximation error behaves like

‖x − x(m)‖2

n
= O(m−2α),

for some α ≥ 1. The parameter, α quantifies the compress-
ibility of x in Ψ.

Suppose the network clairvoyantly knows that x is com-
pressible in a basis Ψ and knows which m coefficients,
θ(1), . . . , θ(m), give the best m-term approximation to x in
Ψ. Each coefficient is computed as an inner product of the
form ψT

(i)x =
∑n

j=1 ψ(i),j xj . Suppose, in addition, that
nodes have already constructed routes which form a span-
ning tree through the network, rooted at the querying user.
To deliver one coefficient to a user, the nodes first locally

compute the product ψ(i),j xj and then aggregate these val-
ues up the tree. Each node must transmit a single value
to its parent, thus there are n single-hop transmissions per
coefficient, or mn total single-hop transmissions to collect
the m best coefficients.

Remark 1. Computing a general inner product of the
form

yT x =
n∑

j=1

yjxj =
n∑

j=1

rj , (1)

where the components xj correspond to values at different
nodes in the network requires at least n transmissions. To
see this, observe that there are n terms in (1), each located at
a different node. The most efficient way to compute (1) in a
network is as a nested sum r1+(r2 + (· · · + (rn−1 + rn)) . . . ),
where each pair of terms is aggregated at the receiving node
after a transmission, in which case there must be n single-
hop transmissions. Thus, the optimal communication com-
plexity for computing k transform coefficients is kn single-
hop transmissions. Spanning trees, as described above, are
one efficient means of routing for such a computation. Hamil-
ton cycles (a cycle through the network passing through each
node once) are another routing construction which admit op-
timal performance.

Generally speaking, it is highly unlikely that the user will
know ahead of time which m of the coefficients give the
best m-term approximation (i.e., the ordering θ(1), . . . , will
not be known), and the compressing basis, Ψ, may not be
known either. In order to avoid this problem we compute
projections of the data onto appropriately designed random
vectors and then show that the random projection coeffi-
cients suffice to accurately reconstruct the original signal as
long as it is compressible in some basis known to the user
performing the reconstruction. In this sense our scheme is
universal since the basis used for reconstruction does not
have to be specified ahead of time.

If sensor data is noise-free and is compressible in some
basis with parameter α then the reconstruction error be-
haves like O

(
(k/ log n)−2α

)
. This is within a logarithmic

factor of the error rate for the best k-term approximation.
In fact, in the extreme case that the data is noise-free and
x has no more than k non-zero coefficients in a compressing
basis (i.e., x is sparse in the transform domain), then one
can obtain an exact reconstruction of x by calculating only
O(k logn) summary values, without knowing which nodes
hold the meaningful data ahead of time [8].

If sensors instead make noisy observations of a compress-
ible vector x, then the expected reconstruction error behaves

like O
(
(k/ log n)

−2α

2α+1
)
, within a logarithmic factor of the

minimax estimation rate one could achieve with all of the
data collected at a central location. If x is truly sparse with
no more than m non-zero transform coefficients, then the
reconstruction error behaves like O

(
( k

m log n
)−1

)
. These re-

sults assume that the user knows the appropriate compress-
ing basis to use for reconstruction (although the network
itself does not need this information in the compression and
distribution process)2.

2
Straightforward extensions of our approach are possible to handle

situations in which the user can search over a library of bases to select
the one which gives the best reconstruction, but we will not pursue
this here.



3. SIGNAL RECONSTRUCTION FROM
RANDOM PROJECTIONS

The previous sections examined a scenario where each sen-
sor had a scalar measurement and these measurements were
stacked in a vector x. More generally, suppose each sensor
has a block of L values so that the network data can be rep-
resented as L vectors, x∗

1, . . . ,x
∗
L, with each x∗

i ∈ R
n. We

focus on the situation where the individual vectors are each
compressible in some basis, but two or more vectors may
not be jointly compressible. For example, the different mea-
surements at a node may be of different data types which
are uncorrelated, the measurements may have been taken at
different times spaced large enough to be effectively indepen-
dent, or the local data may have already been compressed
down to L values.

In what follows, we assume that the sensors do not have
direct access to the signals of interest, x∗

1, . . . ,x
∗
L. Rather,

they make noisy measurements of the form (in vector nota-
tion), zi = x∗

i +ηi, where the components ηi,j are i.i.d. zero-
mean Gaussian random variables with variance σ2. We as-
sume that the ηi,j are Gaussian to simplify the discussion.
Our results can easily be extended for other distributions on
the components of ηi,j . In particular, the same results hold
if the components of ηi are bounded random variables. This
is relevant in the context of wireless sensor networks since
real sensors only take measurements in a bounded range.
Note that we are assuming that noise terms ηi,j and ηi,j′

entering at differing sensors j 6= j′ are independent. We jus-
tify this assumption by observing that noise will generally
enter the system at each individual node, e.g., in the form
of thermal sensor noise. Our setup is not unreasonable. Our
results also have straightforward extensions to the noise-free
setting, and can be derived in a similar fashion using exist-
ing results on compressed sensing [6, 8, 12], but since the
noise-free case is unrealistic in most sensing applications we
will not delve into the theory for this situation.

In the predistribution phase, nodes compute and distribute
random projections of their data using this routing struc-
ture. Specifically, let {φ1, . . . ,φk} be a collection of k length-
n random vectors. The components φi,j , j = 1, . . . , n, of
each φi are i.i.d. random variables, independent of the {ηi},
which take the values ±1/

√
n with equal probability. Thus

E[φi,j ] = 0 and E[φ2
i,j ] = 1/n. The network computes noisy

random projections of the form

yi,j = φ
T
j zi = φ

T
j x∗

i +wi,j ,

for i = 1, . . . , L, and j = 1, . . . , k, where {wi,j} are i.i.d. zero-
mean Gaussian random variables with variance E[w2

i,j ] = σ2,
statistically independent of {φj} [15].

For the time being, assume that there is either spanning
tree or Hamilton cycle routing available to the network. We
will relax all assumptions on available routes in the next sec-
tion. Computing one projection requires n single-hop trans-
missions using the pre-established routes. For the cost of an
additional n transmissions the newly computed projection
value can be distributed to all of the nodes in the network,
either by broadcasting it back down the spanning tree or by
passing it around the cycle. This procedure is repeated k×L
times to compute and distribute {yi,j}, so the total commu-
nication complexity is 2kLn single-hop transmissions.

When the process just described is completed, each node
has access to the entire collection {yi,j} of random pro-
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Figure 1: An example of n nodes arranged in a
Hamilton cycle. The boxed value next to each node
indicates which set of projection values yi = {yi,j}L

j=1

stored at that node. Then a user can obtain a com-
plete set of projection values from any group of k
consecutive nodes in the cycle.

jection values. If nodes are only equipped with a limited
amount of storage then each node only need store a subset
yi = {yi,1, . . . , yi,L} of the values, for some i. Such a subset
is of the same size as the original data at each node. Sup-
pose the nodes are arranged in a Hamilton cycle as depicted
in Figure 1. If node j stores the subset j mod k then the
user can query any group of k nodes which are adjacent in
the cycle to obtain the complete set of summary values, as
illustrated in Fig. 1. We will revisit the issue of determin-
ing which nodes should store which subset of the values so
that all subsets can be easily accessed from any location in
a more practical setting later.

Now, suppose that the random projection values have
been computed, distributed, and acquired by a user. We
would like to choose reconstruction vectors x̂1, . . . , x̂L, which
have small expected squared error. Note that for a recon-
struction x̂i,

E

[
1

k

k∑

j=1

(
yi,j − φT

j x̂i

)2
]

=
‖x∗

i − x̂i‖2

n
+ σ2,

since the φi,j are i.i.d., with variance E[φ2
i,j ] = 1

n
. How-

ever, if we try to directly minimize the empirical squared

error, 1
k

∑k
j=1

(
yi,j − φT

j x̂i

)2
, we run the risk of overfitting.

To avoid this we use the complexity-regularization method
introduced in [3].

In the complexity-regularization approach to non-
parametric function estimation we focus on finding the best
reconstruction from a certain class X ⊆ R

n of candidate re-
constructions. Assume that the original data vectors have
bounded energy, ‖x∗

i ‖2 ≤ nB2. In addition, assume that
x∗

i is compressible with respect to the basis Ψ. Any can-
didate vector x ∈ X can be expanded in terms of Ψ by
writing x =

∑n
i=1 θiψi where the coefficients θi = ψT

i x.
Let Ψ = [ψ1 . . . ψn] denote a matrix whose columns are
ψi. Then we have x = Ψθ, where θ = [θ1 θ2 . . . θn]T is a
columnized version of the coefficients. Let Θ denote the set
of all coefficient vectors satisfying ‖Ψθ‖2 ≤ nB2 and whose
components are uniformly quantized in magnitude to n lev-
els. We take our set of candidate reconstruction functions
to be X = {x ∈ R

n : x = Ψθ, θ ∈ Θ}. Moreover, for each



x = Ψθ ∈ X , define the quantity

c(x) ≡ c(θ) = 2 log(n)‖θ‖0, (2)

where ‖θ‖0 denotes ℓ0 norm which is equal to the number
of non-zero entries in θ. The value c(x) can be thought
of as a cost or penalty associated with choosing x as a
reconstruction. With more non-zero coefficients, we have
more degrees of freedom and are always able to improve
the empirical squared error by using a more complex re-
construction. However, since we are assuming that x∗

i is
compressible in Ψ we should only need a few coefficients
to obtain an accurate approximation to x∗

i . We will use
the penalty terms c(x) to encourage sparse reconstructions,
hence the name “complexity-regularization”. Specifically,
given the measurements {yi,j} and the random projection
vectors {φj} the user chooses reconstructions by solving the
optimization

θ̂
(k)
i = arg min

θ∈Θ

{
k∑

j=1

(
yi,j − φT

j Ψθ
)2

+ λ ‖θ‖0

}
, (3)

where λ ≡ 2 log(2) log(n)/ǫ > 0, and the reconstructed sig-

nal is given by x̂
(k)
i = Ψθ̂

(k)
i . The optimization above can

be tackled with a variety of optimization methods, including
those described in our previous work [15,16]. Also, one can
convexify the optimization by replacing the ℓ0 norm with
the ℓ1 norm, and simple projected gradient descent meth-
ods may be applied. A precise derivation of this reconstruc-
tion is given in the appendix where we also describe how to

choose ǫ. In order to compute x̂
(k)
i the user needs the real-

izations of the random vectors φj . We describe a practical
scheme for encoding and decoding this information in the
following section.

We have the following bound on the reconstruction error
given in terms of the number of random projections calcu-
lated and the compressibility of x∗

i .

Theorem 1. Assume that each x∗
i is compressible in the

basis Ψi with parameter αi. Let x̂
(k)
1 , . . . , x̂

(k)
L be chosen ac-

cording to (3). Then there exists a constant C1 > 0 such
that

max
i=1,...,L

E

[
‖x∗

i − x̂
(k)
i ‖2

n

]
≤ C1 max

i=1,...,L

(
k

log(n)

) −2αi

(2αi+1)

.

Just as n−1 is the “usual” error rate for parametric es-
timation, −2α/(2α + 1) is the “usual” exponent governing
the rate of convergence in nonparametric function estima-
tion. Thus, we are within a logarithmic factor of the usual
nonparametric rate. If the signals x∗

i are sparse in some ba-
sis (i.e., θ(j) = 0 for m < j ≤ n) then we obtain stronger
results.

Corollary 1. Suppose that no x∗
i has more than m non-

zero entries in some basis expansion. Let x̂
(k)
1 , . . . , x̂

(k)
L be

chosen according to (3). Then there exists a constant C2 > 0
such that for all i = 1, . . . , L

E

[
‖x∗

i − x̂
(k)
i ‖2

n

]
≤ C2

(
k

m log(n)

)−1

.

Proofs of both results appear in the appendix.

4. PRACTICAL DECENTRALIZED
IMPLEMENTATION

4.1 Gossip Algorithms for Computation and
Information Dissemination

In the previous section we assumed that there was a span-
ning tree or Hamilton cycle routing structure available in the
network for computing and disseminating information. Al-
though there are polynomial time decentralized algorithms
for forming spanning trees and Hamilton cycles, maintain-
ing either of these structures in unreliable or time-varying
networks is a challenging task.

Completely decentralized algorithms for “consensus” or
“agreement” computation in networked systems have re-
cently received a great deal of attention [4, 9, 17, 19, 24, 25].
This body of work includes Gossip algorithms and other
variants. Algorithms of this nature are attractive for a num-
ber of reasons. Simple communication protocols are used to
exchange information so there is no need to store or main-
tain complicated routing information. For the same reason,
these algorithms scale well. They are resilient to changing
network topology and unreliable transmission links. Also,
since all nodes asymptotically compute the consensus value
there is an added layer of robustness. The network cannot
be compromised just by eliminating a fusion center. Though
there is no overhead for complex routing schemes, the trade-
off is that gossip algorithms may require more computational
iterations than an approach using more complex routing.

A straightforward algorithm for gossip computation of the
“average consensus” (average of the initial values at each
node) is described in [4]. Let ul(t) denote the gossip value at
node l after t iterations. At each iteration of this algorithm
a node l1 is activated uniformly at random. The active node
chooses one of its neighbors l2 uniformly at random. These
two nodes exchange values and update ul1(t+ 1) = ul2(t+
1) = (ul1(t) + ul2(t))/2. One can show that as t → ∞, the
values ul(t) → 1

n

∑n
j=1 uj(0) for all nodes l. That is, all

nodes arrive at a consensus value which is the average of
the initial values throughout the network.

Using the gossip algorithm just described (or any other
average consensus algorithm), we can simultaneously com-
pute and distribute random projections, φT

j zi. Observe

that, using the variable l to index nodes, we have φT
j zi =∑n

l=1 φj,l zi,l. Suppose that node l has access to φj,l and the
measurement value zi,l. Then by initializing a consensus al-
gorithm with ul(0) = nφj,lzi,l we have that ul(t) → φT

j zi

for all l as t → ∞. Thus, all nodes in the network com-
pute the value of the jth projection for data vector zi. By
repeating this procedure for every projection vector φj and
data vector zi, each node obtains all kL projection values.

The iterates ul(t) only converge to the consensus value
asymptotically as t → ∞. Let ū denote a vector with all
entries equal to 1

n

∑n
l=1 ul(0). In a practical system one will

stop the algorithm after a finite number τ of cycles and incur
an error ‖u(τ ) − ū‖ = ε. To keep this error from impairing
the performance of our system we would like ε2 ≈ σ2. This
is equivalent to saying we would like the error to remain
constant as we increase the network size; i.e., we would like
ε = O(1).

To get a hold of the communication complexity associated
with this algorithm we need to know how many iterations
are required so that ε = O(1). The rate of convergence of
the gossip algorithm described above is related to the un-



derlying network connectivity. Random geometric graphs
have been widely adopted as a model for deployment and
connectivity in wireless sensor networks [14, 20]. For this
setup, Boyd et al. show in [4, 5] that the number of itera-
tions which guarantees ε = O(1) is τ = Θ(n2). To compute
all kL random projection values requires Θ(kLn2) single-hop
communications since two nodes exchange values at each it-
eration. For this simple gossiping algorithm information is
only exchanged between neighboring nodes, but the rate of
convergence is slower than desired. In [10], Dimakis et al. de-
scribe and analyze geographic gossip, a variation on the al-
gorithm described above where nodes additionally exchange
gossip values with distant nodes in the network via greedy
geographic routing. The only added requirement is that
nodes know their geographic location. They prove that with
high probability, geographic gossip requires O

(
n3/2/

√
log n

)

single-hop transmissions to compute one random projection
with ε = O(1), yielding an overall communication complex-

ity of O
(
kLn3/2/

√
log n

)
. Thus, geographic gossip provides

a practical means of computing projection coefficients at
roughly a factor of n1/2 additional communication complex-
ity over a scheme based on specialized routes.

We have only described gossip and consensus algorithms
in a very idealized setting. A variety of other algorithms for
computing the average consensus have been proposed which
account for changing topologies, unreliable links, and other
network uncertainties [19,23,28].

4.2 Generating Random Projection Vectorsφj

In order to calculate reconstructions x̂
(k)
i according to (3)

the user needs to know the realizations of the random vec-
tors {φj} used to compute the projection values in addition
to the projection values {yi,j} themselves. This informa-
tion can be efficiently generated using the seed of a pseudo-
random number generator and the addresses of the nodes
in order to draw the values {φi,j}. Assume that each node
has been assigned a unique address i = 1, . . . , n. Denote
by R(s, i) : R × N → R a pseudo-random number generat-
ing function which takes as arguments a seed, s, and the
index of a pseudo-random number in sequence. We assume
that all nodes implement the same pseudo-random number
generator, which is also available to the user.

Each random projection vector φj is associated with a dif-
ferent seed sj , and we set φj,i = R(sj , i). Then, in order to
have vectors {φj} which are statistically independent, the
seeds sj just need to be chosen so that there is no over-
lap between the sequences {R(sj , i)}n

i=1 and {R(sj′ , i)}n
i=1.

Enforcing this condition is specific to the pseudo-random
number generator implementation. In the computation and
predistribution phase, each node simply needs the seed val-
ues {sj} and its own address to generate the values φj,i

required to compute the random projections. Similarly, the
user can easily reconstruct the vectors {φj} given the seed
values and the number of nodes in the network.

4.3 Distributed Storage of Random Projection
Values

When the predistribution phase (gossip computation) is
completed, every node has access to all kL random pro-
jection values. If the nodes have sufficient storage they can
store each of the values and supply them directly to a query-
ing user. More likely, however, nodes will have a limited
amount of storage and it may not be possible for each node

to store all kL random projection values. In this case we
would like to employ a storage scheme so that a user can ac-
quire the entire collection of projection values by querying
as few nodes as possible.

A simple way to deal with this issue is for each node to
store one set of projection values yj = {yi,j}L

i=1 which is
the same size as its original set of data. Suppose each node
chooses one of the yj at random (independently and uni-
formly). This approach corresponds to the “uncoded ran-
dom storage” scheme described in [1] where they show that a
user need only to query on the order of no fewer than k log k
nodes in order to obtain the entire collection of projection
values with high probability.

One can do better than this by using random linear coding
techniques from the network coding literature. Rather than
having nodes choose one of the yj to store at random, we
will have each node store a linear combination of the projec-
tion values. First, note that in any practical implementation
the nodes must store quantized representations of each yi,j

rather than actual real-valued numbers. For concreteness,
assume that our implementation uses 8-bit fixed point struc-
tures to represent each yi,j (the exact same idea works for 16
or 32-bit fixed or floating point as well). Denoting by F256

the finite field of bytes, yi,j ∈ F256. Rather than storing
the entire collection or one of the yj , each node i = 1, . . . , n

stores values γi,l =
∑k

j=1 αi,jyl,j , for l = 1, . . . , L, where
αi,j are i.i.d. random variables drawn uniformly from F256

and all arithmetic is with respect to F256. Similar to the
approach described in the previous section for generating
random vectors φj , the weights αi,j can easily be generated
using a unique seed and the index i of the node. In this
setup, each node stores the L values γi = {γi,l}L

l=1 and the
seed which was used to generate the weights αi,j . The nodes
also return these values when queried. Then, it can be shown
that with high probability (at least 1−1/k) the user can per-
fectly recover the entire collection {yi,j} after querying O(k)
nodes. See, e.g., Proposition 5.2 in [1]. Recovering the yi,j

from k sets of values {γil
}L

l=1 and the seeds used to generate
the αi,j effectively amounts to inverting a matrix. Thus, for
a small additional overhead (storing and transmitting one
more seed per node) we have a practical system where, with
high probability, the user can reconstruct an accurate ap-
proximation of the entire network data. Of course, if there
are available storage resources then nodes can calculate and
store more sets of combinations γi,l,1, γi,l,2, . . . by using two
or more statistically independent sets {αi,j,1}, {αi,j,2}, . . . .
This will further reduce the number of nodes a user must
query to obtain the entire collection of projection values.

5. EXAMPLE APPLICATIONS
To illustrate the theory and method developed above, we

consider two potential applications, network diagnostics and
field reconstruction. In both experiments we solve the con-
vexified version of (3), with the ℓ0 norm replaced by the ℓ1
norm. The resulting objective function can be expressed as
a quadratic program with linear inequality constraints, for
which the gradient projection strategy is known to be quite
effective (see Chapter 16.6 in [18]) and we use it here for our
purposes.

5.1 Network Diagnostics
Experience with real life sensor networks suggests that

one should be prepared for unreliable behavior from sen-
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Figure 2: Error in network health monitoring as a
function of the number of Gossip algorithm trans-
missions per node.

sor nodes [27]. This section illustrates how our compres-
sion/presdistribution system can be used to solve the prob-
lem of identifying a set of nodes which have failed. We as-
sume that only a small number, m≪ n, of nodes have failed,
and that the rest are functioning properly. Nodes compute
and store random projections of a signal x∗ where x∗

i = 0 if
node i it is functioning, and x∗

i = 1 if it has failed. Such a
signal can easily be constructed locally and since this data
does not involve measurements of the environment there is
no additive noise.

We have simulated this situation on networks of n = 4096
nodes placed uniformly on a square grid (so that each node
has at most four neighbors), where m = 41 nodes at random
locations have failed. Our theory suggests that O(m log n)
random projections should suffice to recover the locations of
the failed nodes, and in our simulation we set k = 682 ≈
2m log n. Random projection coefficients are computed us-
ing a gossip algorithm where we vary the average number of
transmissions per node to assess the effect of this parameter
on performance. Figure 2 displays the ℓ0 error (the num-
ber of nodes mis-identified as either needing or not needing
repair) plotted against the average number of transmissions
per node. Each data point corresponds to the average over
10 different network realizations.

5.2 Reconstructing a Piece-wise Smooth Field
Field estimation is another envisioned application of wire-

less sensor networks. Consider a network sensing a field
composed of two regions of distinct behavior. An example
of such a field is depicted in Fig. 3. In this application,
we assume that the sensors make noisy observations of this
field and the goal is to distribute information throughout
the network so that a user can query an arbitrary subset
of convenient nodes and reconstruct an accurate estimate
of the field. We simulate this situation by adding a small
amount of Gaussian noise to the field shown in Fig. 3(a),
resulting in our sensor measurements. A typical realization
of the sensor measurements is depicted in Fig. 3(b). There
are n = 128 × 128 sensors in this simulation. A typical re-
construction in the wavelet basis using k = 1000 random
projections is shown in Fig. 3(c). Fig. 4 depicts the mean
squared reconstruction error as a function of the number
of random projections collected using 1200 gossip transmis-

500 1000 1500 2000

0.02

0.025

0.03

0.035

0.04

0.045

0.05

0.055

0.06

0.065

Number of Projections

M
ea

n 
S

qu
ar

ed
 E

rr
or

Figure 4: Mean squared reconstruction error versus
k, the number of random projections collected for
estimating a 128 × 128 piece-wise smooth field.

sions per node. Each data point corresponds to the average
over 10 data realizations.

6. DISCUSSION AND EXTENSIONS
We have described a practical decentralized approach to

simultaneously distilling the data collected by all sensors
into a small number of summary values and distributing the
summary values throughout the network. The end result
is a distributed compression and storage system for sen-
sor networks whereby a user can walk up to any point in
the network and obtain sufficient information to reconstruct
an accurate approximation of the entire network data after
querying a small number of nodes. Each summary value –
the projection of the network data onto a random vector
– can be computed efficiently in a completely decentralized
fashion using gossip algorithms.

If the original data is compressible in some basis such that
the error of the best m-term approximation in that basis
behaves like O

(
m−2α

)
for some α ≥ 1, then the squared

error of a reconstruction using k summary values behaves
like O

(
(k/ log n)−2α/(2α+1)

)
. If the data is sparse so that

only m sensors have significant data values then the squared
error of a reconstruction using k summary values behaves
like O

(
( k

m log n
)−1

)
.

An interesting extension of our system involves progres-
sive refinement of the approximation. Suppose the user be-
gins with a reconstruction using k summary values. If the
accuracy of this reconstruction is not satisfactory the user
could send a query out into the network requesting that ad-
ditional summary values be computed so as to improve the
system performance.

APPENDIX
The results derived in this section are extensions of theory
developed by Haupt and Nowak in [15] where the case of
L = 1 is studied. Rather than reworking the proofs in detail
we reference [15] where appropriate and emphasize the steps
which need to be taken to extend those results to the ones
presented in this paper.

Our goal is to obtain accurate reconstructions x̂i of the
functions x∗

i using the random projection values {yi,j} for
i = 1, . . . , L and j = 1, . . . , k, as defined in Section 3. Define
the expected mean squared error, or risk, of a candidate
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Figure 3: Reconstruction of a 128×128 piecewise smooth field. (a) Noise-free field. (b) Noisy sensor readings.
(c) Typical reconstruction based on 1000 random projections (1/16 of the original data size).

reconstruction x for the original signal x∗
i to be

Ri(x) = E

[
1

k

k∑

j=1

(
yi,j − φT

j x
)2

]
.

Note that Ri(x) ≡ ‖x∗
i −x‖2/n+σ2 since {φi,j} and {wi,j}

are independent and E[φ2
i,j ] = 1/n. Without knowing x∗

i

there is no way to compute Ri(x). However, given the vec-
tors {φj} and random projection values {yi,j} we can com-
pute the empirical risk associated with a candidate recon-

struction, R̂i(x) = 1
k

∑k
j=1

(
yi,j − φT

j x
)2

.
The proofs of Theorem 1 and Corollary 1 from Section 3

rely on the following error bound which holds for all data
vectors x∗

i regardless of whether they are compressible or
sparse.

Theorem 2. Let X be a countable set of candidate recon-
struction functions such that ‖x‖2 ≤ nB2 for every x ∈ X .
Assign to each x ∈ X a penalty c(x) such that

∑

x∈X

2−c(x) ≤ 1, (4)

and choose x̂
(k)
1 , . . . , x̂

(k)
L by solving

x̂
(k)
i = arg min

x∈X

{
R̂i(x) +

c(x) log(2)

kǫ

}
, (5)

where ǫ > 0 is specified below. Then there exists a constant
C > 0 such that

max
i∈{1,...,L}

E

[
‖x∗

i − x̂
(k)
i ‖2

n

]
≤

C max
i∈{1,...,L}

min
x∈X

{
‖x∗

i − x‖2

n
+
c(x) log(2) + log(L) + 4

kǫ

}
.

Proof: Define the “excess risk” between a candidate re-
construction x and the actual data x∗

i to be ri(x) = Ri(x)−
Ri(x

∗). To prove Theorem 2 and justify the reconstruction
procedure (5) we utilize a slight modification of a bound on
the excess risk for individual vectors x∗

i derived in [15]. Then
we will uniformly bound the excess risks over all x∗

1, . . . ,x
∗
L

to obtain the desired result.
Similar to above, define the “excess empirical risk” to be

r̂i(x) = R̂i(x) − R̂i(x
∗
i ). Using the techniques developed in

Section III of [15] (c.f., equation (23)) one can show that for
a particular vector x∗

i and a particular x ∈ X , for all δx > 0,
with probability at most δx,

ri(x) − r̂i(x) ≥ log(1/δx)

kǫ
+
ǫ (8B2 + 4σ2) ri(x)

2(1 − ζ)
,

where ǫ and ζ must be chosen such that 0 < ǫh ≤ ζ < 1 and
h = 64

√
2B2 + 64Bσ. For each x ∈ X we have a penalty

c(x) satisfying (4). Let δ > 0 and set δx = 2−c(x)δL−1.
Applying the union of events bound over all x ∈ X we have
that for a particular i ∈ {1, . . . , L} and for all δ > 0 the
event that

ri(x) − r̂i(x) ≥ c(x) log(2) + log(L) + log(1/δ)

kǫ

+
ǫ(8B2 + 4σ2)ri(x)

2(1 − ζ)
(6)

for any x ∈ X occurs with probability at most δL−1. Set
ζ = ǫh = ǫ(64

√
2B2 + 64Bσ) and choose

ǫ <
1

(64
√

2 + 4)B2 + 64σB + 2σ2
,

which guarantees that ζ < 1. Define a = ǫ(8B2+4σ2)
2(1−ζ)

. Ob-

serve that for a random variable X, if P (X ≥ t) ≤ p then
P (X < t) > 1 − p. Rearranging the terms in (6), we now
have that for a particular i ∈ {1, . . . , L}, for all δ > 0 and
for any x ∈ X , with probability at least 1 − δL−1,

(1 − a)ri(x) ≤ R̂i(x) − R̂i(x
∗
i )

+
c(x) log(2) + log(L) + log(1/δ)

kǫ
.

To minimize the upper bound we take

x̂
(k)
i = arg min

x∈X

{
R̂i(x) +

c(x) log(2)

kǫ

}
.

Replacing the empirical risk in the above expression with
the risk, define

x̃
(k)
i = arg min

x∈X

{
Ri(x) +

c(x) log(2)

kǫ

}
.

Then, from the definition of x̂
(k)
i , we have for a particular

i ∈ {1, . . . , L} and for all δ > 0, with probability at most



δL−1

(1 − a)ri(x̂
(k)
i ) ≥ r̂i(x̃

(k)
i ) +

c(x̃
(k)
i ) log(2) + log(L/δ)

kǫ
. (7)

It is possible to obtain a similar bound on r̂i(x̃
(k)
i ) −

ri(x̃
(k)
i ) so that for all δ > 0, with probability at most δL−1

r̂i(x̃
(k)
i ) − ri(x̃

(k)
i ) ≥ ari(x̃

(k)
i ) +

log(L) + log(1/δ)

kǫ
. (8)

See equation (33) in [15].
In order to have (7) and (8) hold simultaneously we apply

the union bound. Then, for a particular i ∈ {1, . . . , L}, the
event that

ri(x̂
(k)
i ) ≥

(
1 + a

1 − a

)
ri(x̃

(k)
i ) +

c(x̃
(k)
i ) log(2) + 2 log(L/δ)

kǫ(1 − a)

occurs with probability at most 2δL−1. Set δ = e−kǫt(1−a)/2,
with t ∈ (0,∞). Applying the union of events bound once
more over all i = 1, . . . , L we have that

P

(
max

i∈{1,...,L}

{
ri(x̂

(k)
i ) −

(
1 + a

1 − a

)
ri(x̃

(k)
i ) (9)

− c(x̃
(k)
i ) log(2) + 2 log(L)

kǫ(1 − a)

}
≥ t

)
≤ 2e

−kǫt(1−a)
2 .

Note that for any real-valued random variable X, E[X] ≤∫ ∞

0
P (X ≥ t)dt. Integrating (9) yields

E

[
max

i∈{1,...,L}

{
ri(x̂

(k)
i ) −

(
1 + a

1 − a

)
ri(x̃

(k)
i )

− c(x̃
(k)
i ) log(2) + 2 log(L)

kǫ(1 − a)

}]
≤ 4

kǫ(1 − a)
.

For scalars αi ≥ 0 and βi ≥ 0, the relation maxi(αi − βi) ≥
maxi αi − maxi βi holds. Then, taking the max outside the
expectation, we can write

max
i∈{1,...,L}

E

[
ri(x̂

(k)
i )

]
≤ max

i∈{1,...,L}

{(
1 + a

1 − a

)
ri(x̃

(k)
i )

+
c(x̃

(k)
i ) log(2) + 2 log(L) + 4

kǫ(1 − a)

}
.

It is easily verified (see (13) and (26) in [15]) that ri(x) =
‖x∗

i − x‖2/n and a > 0. Then after a few manipulations we
finally obtain

max
i∈{1,...,L}

E

[
‖x∗

i − x̂
(k)
i ‖2

n

]

≤
(

1+a
1−a

)
max

i∈{1,...,L}

{
ri(x̃

(k)
i ) +

c(x̃
(k)
i

) log(2)+2 log(L)+4

kǫ

}

≤ C max
i∈{1,...,L}

min
x∈X

{
‖x∗

i
−x‖2

n
+ c(x) log(2)+2 log(L)+4

kǫ

}
,

with C = (1 + a)/(1 − a).
The proofs of Theorem 1 and Corollary 1 now follow iden-

tically to the proofs of Theorem 2 and Corollary 1 in [15],
using the result just derived in place of the oracle inequality
derived in [15].
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