Example

Text Segmentation

Text Segmentation

Goal: Partition a text into a sequence of topically coherent blocks

Applications: Information Retrieval, Summarization, Question Answering

Flow model of discourse

Chafe'76:
"Our data ... suggest that as a speaker moves from focus to focus (or from thought to thought) there are certain points at which they may be a more or less radical change in space, time, character configuration, event structure, or even world ... At points where all these change in a maximal way, an episode boundary is strongly present."

Discourse Exhibits Structure!

- Discourse can be partitioned into segments, which can be connected in a limited number of ways
- Speakers use linguistic devices to make this structure explicit cue phrases, intonation, gesture
- Listeners comprehend discourse by recognizing this structure
- Kintsch, 1974: experiments with recall
- Haviland\&Clark, 1974: reading time for given/new information

Types of Structure

- Linear vs. hierarchical
- Linear: paragraphs in a text
- Hierarchical: chapters, sections, subsetions
\qquad

- Typed vs. untyped
- Typed: introduction, related work, experiments, conclusions

Percent agreement - ratio between observed agreements and possible agreements

Results on Agreement

People can reliably predict segment boundaries!

Grosz\&Hirschbergberg'92	newspaper text	$74-95 \%$
Hearst'93	expository text	80%
Passanneau\&Litman'93	monologues	$82-92 \%$

- Common assumption of unsupervised algorithms
\square Word repetition indicates topical cohesion [Halliday \& Hasan, '76]
\square Variations in lexical distribution signal topic changes

What is the instantaneous speed?
Well, speed is not sign sensitive.

It's like a spacecraft in orbit or an elevator with a cut cable

DotPlot Representation

Key assumption: change in lexical distribution signals topic change (Hearst '94)

- Dotplot Representation: (i, j) - similarity between sentence i and sentence j

Stargazers Text(from Hearst, 1994)

- Intro - the search for life in space
- The moon's chemical composition
- How early proximity of the moon shaped it
- How the moon helped life evolve on earth
- Improbability of the earth-moon system

Example

Outline

- Local similarity-based algorithm
- Global similarity-based algorithm
- HMM-based segmentor

Segmentation Algorithm of Hearst

- Initial segmentation
- Divide a text into equal blocks of k words
- Similarity Computation
- compute similarity between m blocks on the right and the left of the candidate boundary

- Boundary Detection
- place a boundary where similarity score reaches local minimum

Similarity Computation: Representation

Vector-Space Representation

Vocabulary	Apples	Are	For	Good	I	Like	you
Sentence ${ }_{1}$	1	0	0	0	1	1	0
Sentence $_{2}$	1	1	1	1	0	0	1

Similarity Computation: Cosine Measure

Cosine of angle between two vectors in n-dimensional space

$$
\operatorname{sim}\left(b_{1}, b_{2}\right)=\frac{\sum_{t} w_{y, b_{1}} w_{t, b_{2}}}{\sqrt{\sum_{t} w_{t, b_{1}}^{2} \sum_{t=1}^{n} w_{t, b_{2}}^{2}}}
$$

SENTENCE $_{1}$: 1000110
SENTENCE $_{2}$: 1111001

Output of Similarity computation:

Boundary Detection

- Boundaries correspond to local minima in the gap plot

- Number of segments is based on the minima threshold ($s-\sigma / 2$, where s and σ correspond to average and standard deviation of local minima)

Segmentation Evaluation

Comparison with human-annotated segments(Hearst'94):

- 13 articles (1800 and 2500 words)
- 7 judges
- boundary if three judges agree on the same segmentation point

Evaluation Results

Methods	Precision	Recall
Random Baseline 33\%	0.44	0.37
Random Baseline 41\%	0.43	0.42
Original method+thesaurus-based similarity	0.64	0.58
Original method	0.66	0.61
Judges	0.81	0.71

More Results

- High sensitivity to changes in parameter values
- Parameters: Block size, window size and boundary threshold
- Thesaural information does not help
- Thesaurus is used to compute similarity between sentences - synonyms are considered to be identical
- Most of the mistakes are "close misses"

Outline

- Local similarity-based algorithm
- Global similarity-based algorithm
- HMM-based segmentor

Synthetic Text Dotplot

- Broadcast News, synthetic document collections
\square Exhibit sharp segment transitions

Physics Lecture Dotplot

- Spoken Lecture Data
\square Exhibit very subtle topical transitions

Graph Based Representation
Let $G(V, E)$ be a weighted, undirected, fully-connected graph
Graph nodes represent textual units (e.g. sentences)

- Edge weights $w\left(s_{j} s_{j}\right)$ indicate pairwise sentence similarity

Exact, fast decoding using dynamic programming \square Incorporates long-range lexical dependencies
\square jointly maximizes within-cluster similarity and minimizes between-
objective

- New graph-theoretic formalization of the segmentation

Minimum Cut Segmentation

[^0]
Evaluation Metric: P_{k} Measure

P_{k} : Probability that a randomly chosen pair of words k words apart is inconsistently classified (Beeferman '99)

- Set k to half of average segment length
- At each location, determine whether the two ends of the probe are in the same or different location. Increase a counter if the algorithm's segmentation disagree
- Normalize the count between 0 and 1 based on the number of measurements taken

Notes on P_{k} measure

- $P_{k} \in[0,1]$, the lower the better
- Random segmentation: $P_{k} \approx 0.5$
- On synthetic corpus: $P_{k} \in[0.05,0.2]$
- On real segmentation tasks: $P_{k} \in[0.2,0.4]$

Experiments

- Data: MIT Physics and AI Lecture Corpus
\square Verbose and colloquial language
\square Subtle topic transitions
\square Automatic Speech Recognition Error
- Baselines: State-of-the-art unsupervised segmentation systems \square Utiyama \& Isahara (UI) 2001 - language modeling approach \square Choi 2000-local similarity-based approach

To control for segmentation granularity, the target number of segments for the baselines and our system is fixed

Results: Manually Transcribed Data

Human Agreement: $\mathrm{P}_{\mathrm{k}} \in[0.22 ; 0.42]$

- "e, eray Impact of Long-range Dependencies
- Experiment. remove edges between nodes separated by
a specified cutoff

Results: ASR Data $(\mathrm{WER}=20 \%)$

ROC Plot: Physics Lecture Data

Typed Segmentation

Outline

- Local similarity-based algorithm
- Global similarity-based algorithm
- HMM-based segmentor
- Task: determining the positions at which topics change in a stream of text or speech and identify the type of each segment.
- Example: divide newsstream into stories about sports, politics, entertainment, etc. Story boundaries are not provided. List of possible topics is provided.
- Straightforward solution: use a segmentor to find story boundaries and then assign to each story a topic label.
- Segmentation mistakes may interfere with the classification step.
- Combining the two steps can increase the accuracy

Types of Constraints

- "Local": negotiations is more likely to predict the topic politics rather than entertaiment
- "Contextual": politics is more likely to start the broadcast than to follow sports

Hidden Markov Models for Segmentation

- We have a text with sentences $s_{1}, s_{2}, \ldots, s_{n}$
(s_{i} is the $i t h$ sentence in the text)
$-s_{i}=\left\{w_{i, 1}, w_{i, 2}, \ldots, w_{i, m}\right\}$
- We have a topic sequence $T=t_{1}, t_{2}, \ldots, t_{n}$
- We'll use an HMM to define

$$
P\left(t_{1}, t_{2}, \ldots, t_{n}, s_{1}, s_{2}, \ldots, s_{n}\right)
$$

for any text and tag sequence of the same length

- The most likely tag sequence for a text is

$$
T^{\star}=\operatorname{argmax}_{T} P(T, S)
$$

- Topic breaks occur if $t_{i} \neq t_{i+1}$

Hidden Markov Models for Segmentation

- Choose a topic from an initial distribution of topics
- Generate a sentence from a distribution of words associated with a topic
- Choose another topic, possibly the same topic from a distribution of allowed transitions

Hidden Markov Models for Segmentation

```
P(T,S)=P(END|\mp@subsup{t}{1}{},\mp@subsup{t}{2}{},\ldots,\mp@subsup{t}{n}{},\mp@subsup{s}{1}{},\mp@subsup{s}{2}{},\ldots,\mp@subsup{s}{n}{})\times
\prod \}n=1[P(\mp@subsup{t}{j}{}|\mp@subsup{s}{1}{},\ldots,\mp@subsup{s}{j-1}{},\mp@subsup{t}{1}{},\ldots,\mp@subsup{t}{j-1}{})\timesP(\mp@subsup{s}{j}{}|\mp@subsup{s}{1}{},\ldots,\mp@subsup{s}{j-1}{},\mp@subsup{t}{1}{},\ldots,\mp@subsup{t}{j-1}{},\mp@subsup{t}{j}{})
=P(END|t\mp@subsup{t}{n}{})\times\mp@subsup{\prod}{j=1}{n}[P(\mp@subsup{t}{j}{}|\mp@subsup{t}{j-1}{})\timesP(\mp@subsup{s}{j}{}|\mp@subsup{t}{j}{})]
```

Assumptions:

- Each topic t_{i} depends only on previous topic t_{i-1}
- Each sentence s_{i} only depends on topic t_{i} that generates it

Training the Models

- Fully supervised:
- A newstream where stories are segmented and annotated with their type
- Partially supervised:
- A newstream where stories are segmented but without type annotation
* During the preprocessing, cluster the stories based on cosine similarity or other distributional similarity metric
- Repeat the process

Parameter Estimation and Decoding

- Emission probabilities are modeled using a smoothed unigram model
(stop words are removed during preprocessing)

$$
P(s \mid t)=\prod_{i}\left(w_{i} \mid t\right)
$$

- Transition probabilities are based on ML estimates

$$
P(\text { sports } \mid \text { politics })=\frac{\operatorname{count}(\text { sports, politics })}{\operatorname{count}(\text { politics })}
$$

- Using Viterbi algorithm, recover a tag sequence for a given sequence of sentences

Results

- Evaluation data: 2.2 million words (6,000 stories) from CNN and ABC

The data is transcribed automatically

- Evaluation measures:
- $P_{\text {Miss }}$ - probability of missed boundary (within window of 50 words)
- $P_{\text {FalseAlarm }}$ - probability of false segmentation (within window of 50 words)
$-C_{\text {Seg }}=P_{\text {Seg }} * P_{\text {Miss }}+\left(1-P_{\text {Seg }}\right) * P_{\text {FalseAlarm }}$, where $P_{\text {Seg }}$ is the a priori probability of a segment boundary being within the window length ($P_{\text {Seg }}=0.3$)
- Results:

Show	$P_{\text {Miss }}$	$P_{\text {FalseAlarm }}$	$P_{\text {Seg }}$
ABC	0.3453	0.088	0.158
CNN	0.3094	0.1022	0.164

[^0]: For given k , we seek the k -way cut that minimizes the
 normalized cut value:
 $\min _{A_{1}, \ldots A_{k}} \frac{\operatorname{cut}\left(A_{1}, V-A_{1}\right)}{\operatorname{vol}\left(A_{1}\right)}+\ldots+\frac{\operatorname{cut}\left(A_{k}, V-A_{k}\right)}{\operatorname{vol}\left(A_{k}\right)}$
 With this objective, we jointly
 \square minimize the Cut Value \sim similarity between segments
 \square maximize the Volume \sim similarity within segments

