Array Recursion Example

DIS has devised an inefficient, but interesting way to reverse the elements in an array. As shown below and on the next page,
method flip reverses a general 1-D array of integers via a recursive method called fli p2 that has the signature
flip2(int[] x, int a, int b).Indicesa and b represent the first and last indices of the input array X, respectively.

You need to complete the implementation of method f | i p2. Do not use extra memory by creating arrays in f 1 i p2!

To recursively reverse the array, you must follow this pattern:

» If the array length is zero or one, stop recursing.

+ Ifthe array length is greater than one, swap the left and right halves of that array between indices a and b (inclusive)
without creating a new array. For example, for a=0 and b=3, flipping { 1, 2, 3, 4} once rearranges the array into
{3, 4, 1, 2} by swapping elements 3 and 4 with 1 and 2. If the array length is odd, swap the elements around the middle
element. Continue by flipping both of those halves recursively.

For example, reversing the array { 2, 3, 1, 4} would have this pattern:
{2,3,1,4} - {1,4,2,3} -{4,1,3,2}

An example of an odd-length array { 1, 2, 3, 4, 5} has this pattern:
{1,2,3,4,5} -{4,5,3,1,2} - {5,4,3,2,1}

[code appears on next page; use the following space to refine your algorithm; Hint: Work out formulas for figuring out the
index for each half of the array between a and b.]

Page 1

public class ReverseArray {

public static void main(String[] args) {
int[] x1 {2,3,1, 4};
int[] x2 ={1,2,3,4,5};
print(flip(x1)); // outputs {4,1,3,2}
print(flip(x2)); // outputs {5,4,3,2,1}

/1 Reverse the elements in x and return that array:
public static int[] flip(int[] X) {
flip2(x, 0, x.length-1);
return x;

}

/! Reverse the elements in x in place, so do not create new arrays:
private static void flip2(int[]x , int a, int b) {

}

public static void print(int[] x) { /* code not shown */ }
} // Cass ReverseArray

Page 2

