Adjunctions

Ross Tate

October 6, 2014

Definition (Adjunction for a 2-Category C). A tuple $\langle \mathcal{C}, \mathcal{D}, f, g, \eta, \varepsilon, \mathfrak{f}, \mathfrak{g} \rangle$ whose components have the following types:

Definition (Left/Right Adjoint). f above is called the left adjoint, and g above is called the right adjoint. A morphism of a 2-category is a left/right adjoint if it is the left/right adjoint of some adjunction.

Exercise 1. Prove that there is a bijection between adjunctions in Cat and adjunctions via transpositions.

Example. Consider **Prost**. Suppose we had a pair of preordered sets $\langle C, \leq \rangle$ and $\langle D, \leq \rangle$, and we want to make an adjunction out of some relation-preserving functions $f: C \to D$ and $g: D \to C$. Then η exists if and only if $\forall c: C.\ c \leq g(f(c))$, and β exists if and only if $\forall d: D.\ f(g(d)) \leq g$. If η and β exist, then \mathfrak{f} and \mathfrak{g} are trivial since **Prost** is a *locally thin* 2-category. Such a situation is called a monotone Galois connection.