CSC2414 - Metric Embeddings
Lecture 10: ARVO(+/log n) approximation of
Sparsest Cut

Notes taken by Igor Naverniouk

Summary: We describe a8 (y/logn) approximation algorithm for the
Sparsest Cut problem, due to Arora, Rao and Umesh Vazirani [ARV04].
The algorithm uses Semidefinite programming and its analysis relates to
notions of distortion, or more accuratelyerage distortion of a negative

type metric intof;.

Overview

1. We construct a Semidefinite Program (SDP) for the Sparsest Cut problem. Its
solution can be viewed as @) metric in the usual wayd(i, j) = ||v; — v;||?).

2. We show that if a solution embeds intpwith average distortion D, then the
integrality gap of the SDP is at mo#, and we can find a cut which is22D-
approximation to the optimal solution. In order to prove that such an embedding
exists, we prove the Main Structure Theorem (MST):

3. The Main Structure Theorem (MST) says that given a metric sfaceB™ (0, 1)
with |X| = n and 5 > [lz; — «;]|> > B > 0, will find a pair of subsets
S,T C X, suchthatS|,|T| = ©2(n) and

1
d(S, T)=A=90Q .
=8 -2(75)
Trivially the MST implies that! — ¢; with average distortio® (/logn): Map
everyz € X tod(z, S). Thus the embedding is in fact into the liRe

4. To prove MST we describe an algorithm to find the desired Setad ™. It is
a probabilistic algorithm that makes use of Hiternationmethod. Specifically,
the algorithm consists of two phases:

e Phase 1: randomly pick a hyperplane, and sepa¥ate two sets of points
that are relatively far@®(1/logn)) from the hyperplane, and are on differ-
ent side of it.
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e Phase 2: Repeatedly remove pairs of points that are in different halves, but
(1
are too close to each other (closer th@%ﬁ).

At the end, we will get two sets that have the desired separation, by construction.
The hard part will be to prove that both haRér) points.

5. Much of the discussion will revolve around that difficult part. A very high-level
sketch is as follows: if we assume thHa = o(n) or |T'| = o(n), then we will
get an impossible geometric configuration. Namely, we will get &sethich
is a “core”, and the contradiction will come from an application of a theorem of
Lee [Lee05].

2 Semidefinite Programming for the Sparsest Cut prob-
lem

The Sparsest Cut of a graph also called thedge expansioaf G is defined as
[E(S,S)]
5]

whereE (A4, B) is the number of edges crossing the ¢ut, B}. The following algo-
rithm is due to Arora, Rao and U.Vazirani [ARV04].

Define 5 i)
= min 7“6Ed b
"= { ;i 5) }

wheredg is the cut metric corresponded H C V, and F is the set of edges df.
From last time, recall that

SC(G) < nn(G) < 2SC(G)

SC(G):min{ :SeV,|S§g}7

because .
[E(S, S)
n(G) = ——=-.
|S1[S]

In the previous class, we relaxed the conditionidieing a cut metric to a more
general condition ofl being an/; metric with no loss. Then we relaxed it to a strictly
more general condition of being any metric and built a Linear Program using all
n? triangle inequalities. Then by Bourgain’s theorem we four@(&g n)-distortion

embedding td;, which gave us & (log n) approximation algorithm for Sparsest Cut.
Now, we can write)(G) as

min Yijep(@i — x;)?
z;e{—1,1} Zi,j(xi 71’]‘)2 .

This is still NP-hard to solve, but look instead at

n(G) =

n*(G) = min Z”EE th _ xjH2.
wi€Rr 37, @ — a?
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This is a relaxation of the;’s from integers in the seft—1, 1} to n-dimensional vec-
tors. As as a result, we get a Semidefinite Progr&id P):

min ZijeE lz; — J;j”Qa

Contrast this set-up with the one before, where we relaxed cut metrics to general
metrics and got a Linear Program. Now we relax cut metrié3tdistances and get a
Semidefinite Program. Note thé&tdistances do not necessarily define a metric. (Take,
for example, 3 points on a line.)

Next, we combine both ideas and createsnP* by adding alln? triangle in-
equalities:

Vi, gk |z — 2l + oy — ael® > o — 2

This causes the solutions to be restrictedtmetrics. From now on we refer g (G)
to the solution to the above SDP in the presence of triangle inequalities.

3 Geometry of/3 metrics

What is the geometry of thi§ DP+? When does a set of points Ri* define an’3
metric?

Consider 3 points on a line with, distances:, b andc = a + b. Then their¢3
distances are?, b> anda? + b> + 2ab, respectively. Assuming that> 0 andb > 0,
this 3-point set violates thé& triangle inequality and is thus not a metric.

To see which point sets do defiig metrics, take an arbitrary triangle. Then, by
the law of cosines,

? =a® +b* — 2abcosn,

and we have? < a? 4 b* whencosy > 0,i.e.0 < v < %. This has to hold for all
triples of points in the seX if (X, ¢2) is to be a metric space.

Danzer and Ginbaum [DG62] showed that the maximum number of poiniR’in
without obtuse angles between then2sand is realised by a hypercube.

4  Application to Sparsest Cut

What can we say about the integrality gap? If for @hymetricd, d SN {1, then the
integrality gap is
n(G)

n*(G)
From Bourgain’s theorem we know that can be taken to be equal @(logn). Can
we do better using the fact that the metri¢38

I1G = <D.

Definition 4.1. Letd — d’' s.t.Vi,j : d'(i,7) < d(4,j) (a non-expanding embedding).
Then theaverage distortion is

> A 5)



Claim 4.2. If every/2 metric embeds inté, with average distortiorD, then

<D.
If we use a polynomial number of dimensions in the embedding/intihen we can
efficiently find a cut with cost at moBtn*(G).
Proof. GivenG, solve theSD P* and get a metrid € /3 s.t.
> di,§) =n"(G).
ijeE
Letd € ¢ bes.t.
o Vi,j:d'(i,j) < d(i,j),
o Z” d'(i,j) > % Z” d(i, 7).
Then

Zdéf ZijeEd,(iaj) < ZzggEd(lvj)
Zi,j d’(i,j) B Z” d(iaj)
If d’ has a polynomial numben,, of dimensions, then we can split it inten cuts on

which it is supported. An algorithm that checks these cuts will get a cut of value at
leastZ, which is at leasDn*(G). O

= Di*(G).

We haven points on the unit sphere in dimensions withy", . ||z; — ;3 = n”.
We want two linear-size sefsand7 s.t.

dg(S,T) = min_lo; —a;|* = A,

We will show that we can havA = Q((logn)~/2).

Theorem 4.3. Main Structure Theoreniet X be a set of. points on the unit sphere
with a metricd, such that

1 . 1
ﬁzd(ld) = EZH%‘ —zj|*>~v>0.
] ]

Then there exists a partition df into S and7T’, such that
o |S| = Q(n), |T| = Q(n);
e d(S,T) = Q((logn)~1/2).

Proof. To come later. . O
First, a few remarks.

e Itis enough to assume that the diameteXoK 1.



e The condition )
2,7
is essential. Otherwise, we could put everything into one point.

e The condition on the diameter df being less than 1 is essential in the proof.
(why?)

e Without the triangle inequality, we can only get a bound\of= (logn)~!.

e The hypercube, normalized to fit into the unit sphere, makes the Main Structure
Theorem tight, so we cannot hope to get a better separation. For example take
two Hamming balls around two opposite corners of the hypercube. Isoperimetric
inequality says that they will give the best separation we can get.

Assuming that the theorem is true, we will get a good average distortion. To get
an approximation algorithm for the Sparsest Cut problem, we start with a geeral
metric (not one that lives on the unit sphere).

Claim 4.4. The Main Structure Theorem implies(¥\/logn) approximation algo-
rithm for Sparsest Cut.

Proof. We know thatl; > d(i, j) = 1.

Case 1: There exists a radiug ball of size>
embedding with respect té, i.e. takef : X —
metric; call itd’. Then

SodG.9) = Y d () = 1LY dGi, L) = 7> d(i, L).

ig€L [ 7
jeEL

n? — Zd(i’j) < Zd(z,k) +d(k, j),

%. Callit L. Take a Fechet
L, f(z) = d(z,L). We get a

wherek is the center of.. So
1
2«9 d(i k) <2 d(i,L) + =
n_n;(z,)_n; (z,)+4,

andsoy_d(i, L) > %. Therefore,

2

e n
> .

> d(w)_16

Case 2:There is no ball of radiu% containing at leas§ elements. Notice, that it
is always true that for every point |B(l,2)| > n/2 (else the average af is bigger
than 1). We now claim that the average distsance among poiti2§/ir2) is constant.
Indeed, for every point, at leasy2 — n/4 points are of distance at least4 ensuring
an average of at least/16 in B(I,2). Scaling down this set by/2 we get a set of
points in the unit ball with average distance at l€a$2. We can now apply the M.S.T



to the set of pointB3(l,2) and get set$ and7". (The proof that the Main Structure
Theorem holds even when the points are inside the unit ball, and not just on the unit
sphere, is given as a question on one of the homework assignments.) Next, we construct
a Friechet embedding with respect$o This gives us a distance function

d'(i, j) = |d(i, ) — d(j, 5)|-

By the properties of Fachet embeddingd, < d and

D A6z D dg)

i€S,jeT

> 19|

T|d(S,T)
- (o)
- ;d(i,j)Q ( k;ﬂ) .

So the distortion i = O(y/logn).
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5 The Algorithm for proving MST

We have a unit ball with a set of poin® on its surface. The average distances between
the points ofX are large, and there are no obtuse angles. We knowithat S™~1,
and that

1
EZH% —J?jH2 >3 >0.
(2]

The algorithm consists of two phases.

¢ Phase 1 Pick a uniformly random direction (a vector §i*—') and define the
sets

Su ™ fai s (wiu) > —,

Ty = {z; : (zij,u) < —

R, i (o w)] < ==} = X\SU\TL,

NGD

whereo is a constant to be picked later.

e Phase 2 As long as there exist pairs of pointsc S,y € Ty, S.t. [|[z—y||?> < A,
remove them. The order of removal is unimportant.



Figure 1: Separating a sphere by a hyperplane with a margin. Pairs of points that are
too close to the margin are removed in Phase 2 of the algorithm.



Figure 2: Two pointsg andy, on the surface of a sphere, separated by an angle of

Finally, call what is remained i§, andT, the required setS andT'.

By construction, the separation betweeand7 (assuming they are non-empty) is
at leastA in the /3 norm. The only claim left to prove is th&tandT have size that is
at least linear im.

First, look at the two half-balls

(i, u) > 0},
<

S, {zi[{xs,u
T, {zi|{x;, u) <0},

and define two events:
Elz{u:|§u\27—;/\|fu\2%},

Egz{u;mu\g%}.

We want to show that def Pr[E; N E,] is a positive constant.

Note that ifz,y € R? are on a circle and are separated by an anglg tifen the
probability of separating them by a line passing through the center of the cir§|e is
(see Figure 5). The same obvious fact holds:idimensions, by symmetry.

Hence,

Prl(e,u(y,u) <0 =
o — yl? = 201 — {2 5)) = 2(1 — cos ).
Note:

0
V02— > 0.878.
1—-cosf —

So if E is the event that; separates from y, then

Pr[E,] _ 0878
le—yl* = 4




To extend the claim to a set of points inside the unit ball instead of the unit sphere,
we can simply move the points away from the origin (see homework).
Letl, , be the indicator function af’ in the probability space af. Then

E[Y Woyl=> PrlE,]

4
> Z |z — y||2m
z,y

> ’ynz.

So

2
1—
Pr() Koy < <13 <1-
x,y

N2
o2

Therefore, with probability?

2

~ o~ n
Sull Tl = -,
SO o n
|Su|a|Tu‘ 2 7

becausés,| < n and|T,| < n.
This gives us a bound on the probability Bf. Now, we need to approximate the
probability of £5.

Lemma 5.1. If v is a unit vector inR™ andw is a random unit vector (by the Haar
measure) then

o Pr[|(u,v)| < “&=] < 3z.

m

ﬂ

o Prll{u,v)| > ] < exp(—a2/4).

Proof. This follows from the Gaussian-like behavior of projections. O

Note that this implies tha&r[z € R,] < 3¢ and

3on y
Pr||Ryl > —| < .
' D = 7/4] T4

Soifo = 147, we get

- n
Pr(Ea) = Pr(IRu| > ] < 7.

Now we have shown thas,,| and|T;,| are linear inn, and thatR,, is small. Since
S, C S, andT, C T,, we getthatS| and|T’| must beQ)(n).

What remains is to analyze Phase 2 of the algorithm. We need to show that the
number of points removed fro$, andT, is small.



What can we say ifz and y were removed byu? Let’s call M (u) the set of pairs
removed when the separating hyperplane.idlso let! = /A, that is theEuclidean
needed separation. For, y) € M (u) we have that

o Jo—yl <1 VA

20

vm'

The first condition follow from that the pair was too close to be left untouched, while
the second follow from the fact that the two points were on different side of the “fat”
cut. Here is a major observation. We expget— y, u)| to be abouﬂ%, in general.

But here, we have

o [(x—yu)|=

lz — gyl 20
vm 1

So we say that —y has a “stretch” o% with respect tas, which precisely means that

this is the factor by which its projection is larger (asymptotically) from the expected

length.
Let K, (z,y) be the event that the paji, y} is removed by:. Then

PrK.(2.y)] = exp (~Q((20/1)?))

(2 =y, u)| >

If we required the “modest” separation ot O (ﬁ) then that would be easy

Pr[Ky(z,y)] = exp(—Q(logn)) = o(1/n)
But with I = ©((logn)~'/*), we get
Pr[K, (z,y)] = e~ 2(VIe™) — (1),

What does this tell us? that the expected number of pairs that are locally (per the
above conditions) candidate for deletions is large. This means that we have no choice
but to understand the stochastic behavidi\df,| which is, recall, a matching. In a way
we learn that a global approach is inventible.

We would like to show that

q = Pr[[M,[ = yn/8]

is small, more precisely that = o(1). If this is the case we are happy as then with
constant probability phase one is successful, and to say that on top of that the size of
the matching is small enough to leave linear size sets, doesn't “cost” more,thad
so with constant probability we get two sets. From now on we assume for contradiction
that

qg=Q(1).

Now think of the following graph orX. For a pairz, y € X we have an edge labelled
with a subset ofS™~! defined by{u : (z,y) € M,}. Notice that sinceV/, is a
matching, the sets corresponding to edges out of a verte® disjoint. We define the
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degree oft € X as the measure of the union of the sets corresponding to the edges out
of it, which is, by the above observation, the same as the sum of the measures of the
edges out of it. Clearly, sinag= (1) we get the the average degree of the graph is
some constant > 0.

We next apply a simple greedy procedure that turns a graph with average degree
v to a graph withminimumdegreev /2. This is done by removing every vertex with
degree strictly less than/2. By doing so the remaining total degree is strictly bigger
than|X|v — 2|X|(v/2) = 0, and therefore we must remain with a nonempty graph
with the guaranteed minimum degree.

Let Y be the surviving set of vertices. We claim thatis a a(c,v/2,1) core as
is defined in the tutorial notes. We simply note that the degree efY is exactly
Pr[3y € Y(z,y) € M,] to establish that.

The point now is thal” is a very constrained object. In fact, it is so constrained
that it has no choice but to beery large This is well formulated in Lee’s Big Core
Theorem. We gefY| > exp(Q(W)) = exp(Q(logn)) and whenevet =
c¢(logn)~/* with ¢ small enough, the hidden constant in fhas as large as we want,
hance we can get with an appropriatéat|Y| > n. Contradiction.
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