
CMSC 422 Introduction to Machine Learning
Lecture 22 Kernel Methods

Furong Huang / furongh@cs.umd.edu

Slides adapted from Prof Carpuat and Duraiswami

Beyond linear classification

Problem: linear classifiers
Easy to implement and easy to optimize
But limited to linear decision boundaries

What can we do about it?
Last week: Neural networks

Very expressive but harder to optimize (non-convex
objective)

Today: Kernels

Kernel Methods

Goal: keep advantages of linear models,
but make them capture non-linear
patterns in data!

How?
By mapping data to higher dimensions where it
exhibits linear patterns

Classifying non-linearly separable
data with a linear classifier:
examples

Non-linearly
separable data in 1D

Becomes linearly
separable in new 2D
space
defined by the
following mapping:

Classifying non-linearly separable
data with a linear classifier:
examples

Non-linearly
separable data in 2D

Becomes linearly separable in the 3D space
defined by the following transformation:

Defining feature mappings
Map an original feature vector

to an expanded version

Example: quadratic feature mapping represents feature
combinations

Feature Mappings

Pros: can help turn non-linear
classification problem into linear problem

Cons: “feature explosion” creates issues
when training linear classifier in new
feature space

More computationally expensive to train
More training examples needed to avoid overfitting

Kernel Methods

Goal: keep advantages of linear models,
but make them capture non-linear
patterns in data!

How?
By mapping data to higher dimensions where it
exhibits linear patterns
By rewriting linear models so that the mapping
never needs to be explicitly computed

The Kernel Trick

Rewrite learning algorithms so they only depend
on dot products between two examples

Replace dot product
by kernel function
which computes the dot product implicitly

Example of Kernel function

Another example of Kernel Function (from
CIML)

What is the function k(x,z) that
can implicitly compute the dot

product ?

Kernels: Formally defined

Kernels: Mercer’s condition

For all square
integrable functions f

Can any function be used as a kernel function?
No! it must satisfy Mercer’s condition.

Kernels: Constructing combinations of
kernels

Commonly Used Kernel Functions

Fun Fact about RBF kernel

• The feature space of the kernel has an infinite
number of dimensions; for ! = 1, its expansion is:

• Since the value of the RBF kernel decreases with
distance and ranges between zero (in the limit) and
one (when $ = $%), it has a ready interpretation as a
similarity measure.

The Kernel Trick

Rewrite learning algorithms so they only depend
on dot products between two examples

Replace dot product
by kernel function
which computes the dot product implicitly

“Kernelizing” the perceptron

Naïve approach: let’s explicitly train a perceptron
in the new feature space

Can we apply the Kernel trick?
Not yet, we need to rewrite the algorithm

using dot products between examples

“Kernelizing” the perceptron

Perceptron Representer Theorem

“During a run of the perceptron algorithm, the weight
vector w can always be represented as a linear
combination of the expanded training data”

Proof by induction
(in CIML)

“Kernelizing” the perceptron

We can use the perceptron representer theorem to
compute activations as a dot product between examples

“Kernelizing” the perceptron

• Same training algorithm, but
doesn’t explicitly refers to weights w anymore
only depends on dot products between examples

• We can apply the kernel trick! Replace the
inner product of ! "# ⋅ ! "% with some
kernel function

Kernel Methods

Goal: keep advantages of linear models,
but make them capture non-linear
patterns in data!
How?

By mapping data to higher dimensions where it
exhibits linear patterns
By rewriting linear models so that the mapping
never needs to be explicitly computed

Discussion

Other algorithms can be kernelized:
See CIML for K-means
We’ll talk about Support Vector Machines next

Do Kernels address all the downsides of
“feature explosion”?

Helps reduce computation cost during training
But overfitting remains an issue

What you should know

Kernel functions
What they are, why they are useful, how they relate to
feature combination

Kernelized perceptron
You should be able to derive it and implement it

Furong Huang
3251 A.V. Williams, College Park, MD 20740

301.405.8010 / furongh@cs.umd.edu

