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Beyond linear classification

Problem: linear classifiers
Easy to implement and easy to optimize
But limited to linear decision boundaries

What can we do about it?
Last week: Neural networks

Very expressive but harder to optimize (non-convex 
objective)

Today: Kernels



Kernel Methods

Goal: keep advantages of linear models, 
but make them capture non-linear 
patterns in data!

How?
By mapping data to higher dimensions where it 
exhibits linear patterns



Classifying non-linearly separable 
data with a linear classifier: 
examples

Non-linearly 
separable data in 1D

Becomes linearly 
separable in new 2D 
space
defined by the 
following mapping:



Classifying non-linearly separable 
data with a linear classifier: 
examples

Non-linearly 
separable data in 2D

Becomes linearly separable in the 3D space 
defined by the following transformation:



Defining feature mappings
Map an original feature vector

to an expanded version

Example: quadratic feature mapping represents feature 
combinations



Feature Mappings

Pros: can help turn non-linear 
classification problem into linear problem

Cons: “feature explosion” creates issues 
when training linear classifier in new 
feature space

More computationally expensive to train
More training examples needed to avoid overfitting



Kernel Methods

Goal: keep advantages of linear models, 
but make them capture non-linear 
patterns in data!

How?
By mapping data to higher dimensions where it 
exhibits linear patterns
By rewriting linear models so that the mapping 
never needs to be explicitly computed



The Kernel Trick

Rewrite learning algorithms so they only depend 
on dot products between two examples

Replace dot product                     
by kernel function
which computes the dot product implicitly



Example of Kernel function



Another example of Kernel Function (from 
CIML)

What is the function k(x,z) that 
can implicitly compute the dot 

product                             ?



Kernels: Formally defined



Kernels: Mercer’s condition

For all square 
integrable functions f

Can any function be used as a kernel function?
No! it must satisfy Mercer’s condition.



Kernels: Constructing combinations of 
kernels



Commonly Used Kernel Functions



Fun Fact about RBF kernel

• The feature space of the kernel has an infinite 
number of dimensions; for ! = 1, its expansion is:

• Since the value of the RBF kernel decreases with 
distance and ranges between zero (in the limit) and 
one (when $ = $%), it has a ready interpretation as a 
similarity measure. 



The Kernel Trick

Rewrite learning algorithms so they only depend 
on dot products between two examples

Replace dot product                     
by kernel function
which computes the dot product implicitly



“Kernelizing” the perceptron

Naïve approach: let’s explicitly train a perceptron 
in the new feature space

Can we apply the Kernel trick?
Not yet, we need to rewrite the algorithm 

using dot products between examples



“Kernelizing” the perceptron

Perceptron Representer Theorem

“During a run of the perceptron algorithm, the weight 
vector w can always be represented as a linear 
combination of the expanded training data”

Proof by induction
(in CIML)



“Kernelizing” the perceptron

We can use the perceptron representer theorem to 
compute activations as a dot product between examples



“Kernelizing” the perceptron

• Same training algorithm, but
doesn’t explicitly refers to weights w anymore
only depends on dot products between examples

• We can apply the kernel trick! Replace the 
inner product of ! "# ⋅ ! "% with some 
kernel function



Kernel Methods

Goal: keep advantages of linear models, 
but make them capture non-linear 
patterns in data!
How?

By mapping data to higher dimensions where it 
exhibits linear patterns
By rewriting linear models so that the mapping 
never needs to be explicitly computed



Discussion

Other algorithms can be kernelized:
See CIML for K-means
We’ll talk about Support Vector Machines next

Do Kernels address all the downsides of  
“feature explosion”?

Helps reduce computation cost during training
But overfitting remains an issue



What you should know

Kernel functions
What they are, why they are useful, how they relate to 
feature combination

Kernelized perceptron
You should be able to derive it and implement it
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