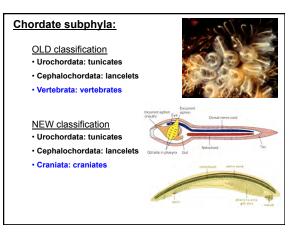
Primitive Fishes



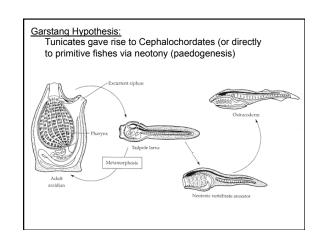
Origin of fishes A. From What? B. When? C. How? D. Where?

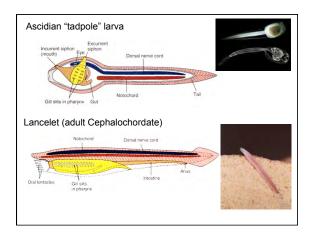
Fish evolved from primitive Chordates

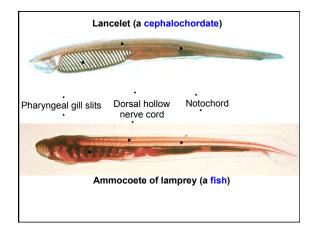
Phylum Chordata characteristics:

- 1. Dorsal, hollow nerve chord
- 2. Notochord
 - flexible dorsal rod for support
 - present at some stage in all chordates (usually in embryonic development)
 - remnant present in adults of many fishes: sharks, rays, sturgeons
- 3. Pharyngeal gill slits - present in embryos of all vertebrates

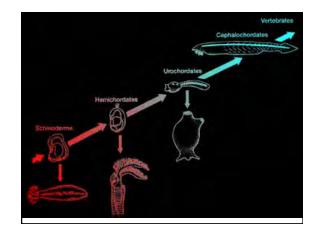
How did fish evolve?

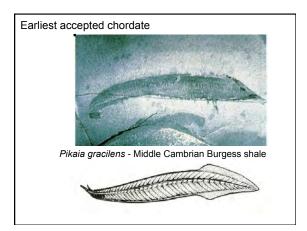

<u>Neoteny</u> = retention of larval features into the adult stage


Stages:


- 1) ancestors (tunicates?) had:
 - a) sessile adult stage
 - b) free swimming larval stage for dispersal

2) larval stage became more active; more vertebrate-like


3) eventually, larvae capable of reproduction evolved (= neoteny)



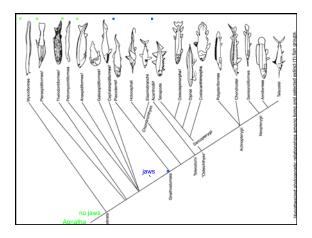
How first fishes may have evolved from primitive chordate ancestors					
[°] first fish					
	lancelet				
proto-vertebrate, development of a crar	nium .				
adult with tunicate larval features	adult tunicate				

When did fish first evolve?

- Chordates date from early to mid Cambrian (544 mya)
- first good craniate fossils late Cambrian/Ordovician (500 mya)
- BUT these first fossil bones were of external armor, characteristic of early jawless fishes (no internal bones)
- so, vertebrates probably originated during the early Cambrian explosion (600 mya)

Where did fish evolve?


Generally believed to be in ocean because:


- · is the habitat of other chordates
- marine deposits contain most early vertebrate fossils

Characteristics of fishes (& other craniates)

Subphylum Craniata

- Characteristics:
 - 1. distinct cranium: skull with brain
 - 2. notochord does not extend forward of brain
 - 3. cartilage or bone present
 - 4. brain well developed
 - 5. chambered heart

Jawless Fishes

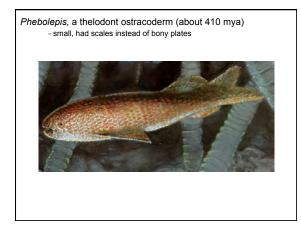
Subphylum Craniata Superclass Agnatha Class Myxini Order Myxiniformes - hagfish Class Petromyzontida Order Petromyzontiformes - lamprey "Group" Ostracoderms - Extinct 1) first jawless fishes were Ostracoderms ("shell skin") • artificial designation - not a monophyletic group • now extinct

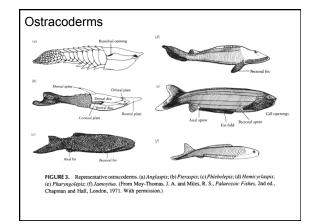
2) two main classes of Ostracoderms:

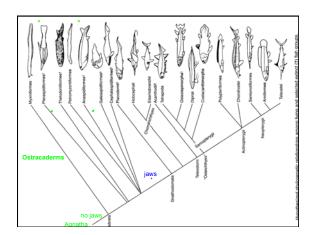
- Class Cephalaspidomorphi = ancestor to lamprey
- Class Pteraspidomorphi = ancestor to hagfish?

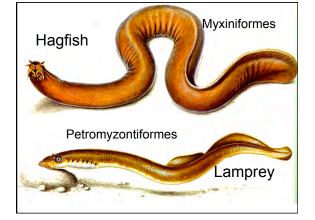
Ostracoderms ("shell skin")

1) Characteristics


- a) first fossils have well developed external bone, no internal bone: Cambrian (500 mya)
- b) dominant for 100 my (gone by 380 mya)
- c) first fossils: marine; later marine and freshwater


2) Features

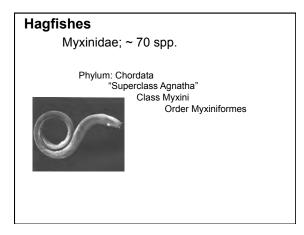

- a) no jaw, muscular feeding pump (filter feeders)b) body armor true bone
- budy armor true bone
 c) some had paired fin-like appendages, but not true fins with bony support
- bony supportd) heterocercal tail


LIVING AGNATHANS:						
I. Agnathans (Superclass Agnatha) (jawless fishes)						
Hagfishes						
Class Myxini (refers to copious amounts of "slime"); Order Myxiniformes						
B						
Lampreys						
Class Petromyzontida Order Petromyzontiformes - "stone mouth"						

Living Jawless Fishes (Agnathans) Hagfish - Myxiniformes

First fossils of lampreys and hagfish appeared *after* most modern fishes and even tetrapods

Lamprey - Petromyzontiformes

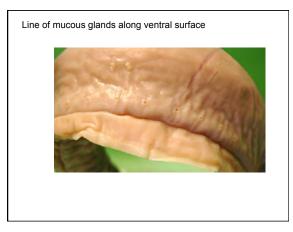


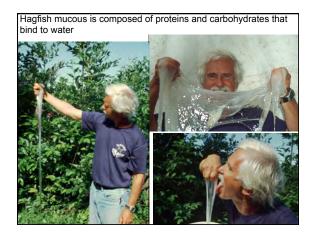
Characteristics of both hagfish and lampreys

a) jawless

- b) single gonad
- c) skeleton cartilaginous or fibrous (no vertebrae)
- d) no paired fins
- e) no body armor
- f) single median nostril
- g) series of round gill openings, no true gill arches


Character	Ostracoderms	hagfishes	lampreys
mouth	sucking, no teeth	teeth on tongue	teeth on oral disk & tongue
vertebrae	yes	no	no
armor	yes (true bone)	no scales	no scales
paired fins	not true fins	no	no
eyes	yes	rudimentary	yes
mucous	?	copious	no
reproduction	?	direct	larvae

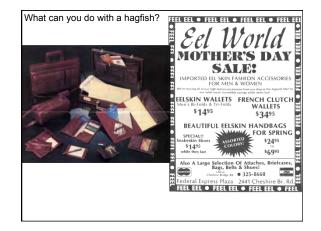


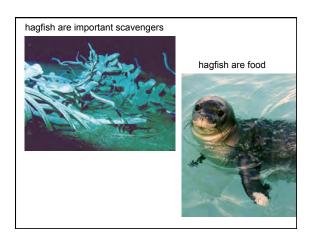

Hagfishes – interesting features

- SLIME! -- a 50 cm hagfish can fill 8 liter bucket in minutes
- scavengers
- · ties in knots to feed and rid self of mucus
- degenerate eyes
- · teeth only on tongue
- barbels
- cutaneous & gill respiration

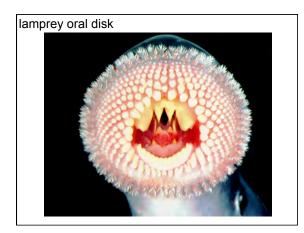
What is the slime for?

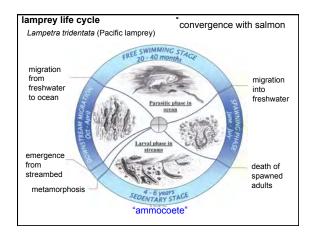
- suffocate prey fishes?
- protection from digestive enzymes?
- discourage other scavengers?
- secure burrow walls?
- defense from predators?

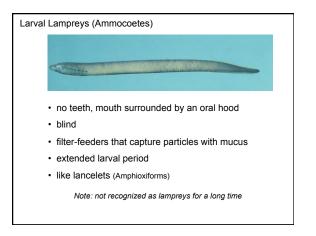


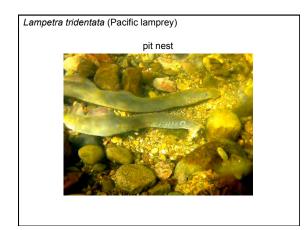


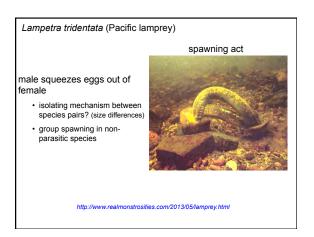

- representative species with a great name: Myxine glutinosa (Atlantic hagfish)
 - Myxini = slime
 - glutinosa = glutinous or gluey

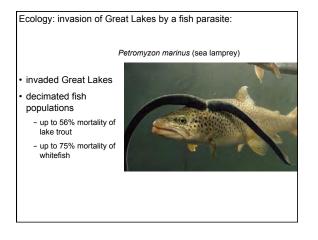


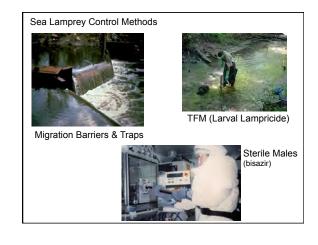


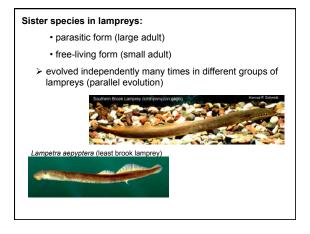

Hagfishes vs. Lampreys									
Similarities:									
Character	Hagfishes	Lampreys							
notochord	YES	YES	Differences						
lingual teeth	YES	YES	Character functional eyes	Hagfishes NO	Lampreys YES				
single nostril	YES	YES	dorsal fins # semicircular	NO 1	YES 2				
jaws	NO	NO	canals						
vertebrae	NO	NO	parasitic	NO	YES				
paired fins	NO	NO							
eel-like body	YES	YES							

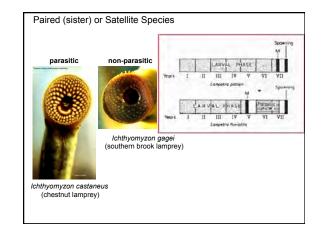


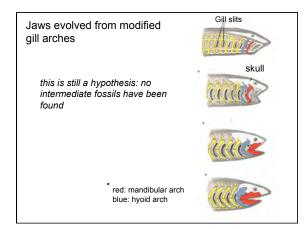


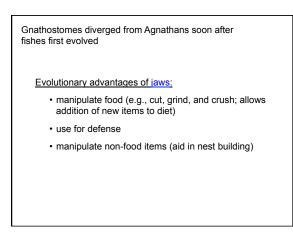


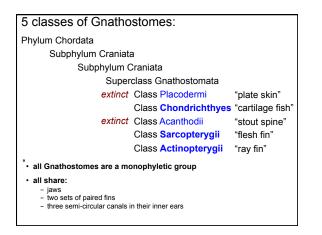


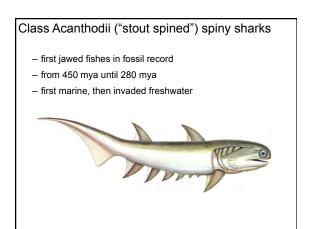


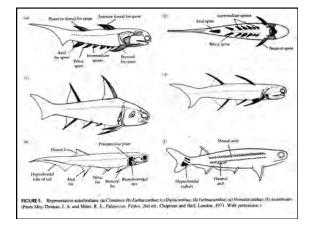


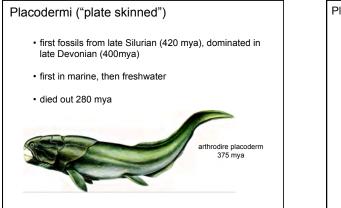

Next big advancement....JAWS




"Perhaps the greatest of all advances in vertebrate history was the development of jaws and the consequent revolution in the mode of life of early fishes"

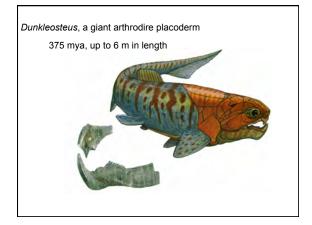

- Romer 1962

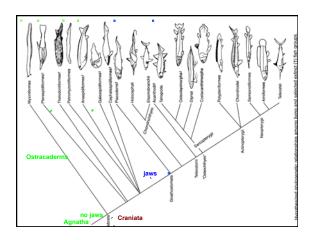




Acanthodi features

- stout median and paired spines (rows down ventral surface)
- · cartilaginous skeleton
- · large head and large eyes
- · small and minnow-like
- ganoid scales
- · true teeth on jaws
- strong swimmers: up in water column (pelagic); not benthic like ostracoderms and most placoderms
- unclear if more closely related to modern bony fishes or sharks (but closer to them than placoderms are)





Placoderm features

- jaws but no ability to extrude them
- no teeth replacement, and teeth structure different from derived fishes (just bony plates)
- bony armor (plate-like)
- true paired fins, but no anal fin
- some very large (10 m)

