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Abstract

Local search procedures are popular methods to solve combinatorial problems and
neighborhood structures are the main part of those algorithms. This paper presents
a new neighborhood for the Quadratic Assignment Problem. The proposed neigh-
borhood is compared with the classical 2-exchange neighborhood.
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1 Introduction

The idea behind local search is very simple. Each iteration starts with an
initial solution ρ, then a number of neighbor solutions are obtained with the
application of a specific operator to ρ. If a neighbor solution ρ′ is better
than ρ,the process is re-started with ρ′ replacing ρ. Versions of the basic
algorithm are implemented with, for example, ρ′ being the best solution in
the neighborhood of ρ or with ρ′ being the first neighbor better than ρ.

In general, the neighborhood structure depends on the problem under con-
sideration and is a determinant factor for the performance of the local search
algorithm regarding both quality of solution and processing time. This pa-
per investigates a new neighborhood structure for the Quadratic Assignment
Problem, QAP [5]. Given two n × n matrices F = (fkl) and D = (dij), the
QAP can be stated as follows:

minρεΠn

∑

i,j

fρ(i)ρ(j)dij(1)

where Πn is the set of all permutations ρ of {1, 2, ..., n}. One of the major
applications of the QAP is in location theory where matrix F is a flow matrix,
i.e. fkl is the flow of materials between facilities k and l, and D is a distance
matrix, i.e., dij represents the distance from location i to location j. The
objective is to find an assignment of all facilities to all locations (a permutation
ρ ε Πn), such that the total cost of the assignment is minimized. In terms
of Graph Theory, the QAP can be thought of as an assignment of vertices
between two complete graphs of order n, G′

D and G′

F corresponding to matrices
D and F, respectively.

Once the QAP is an NP-hard problem [7] and models a number of real
world applications, several heuristics have been proposed for handling near
optimum solutions [6]. Pairwise exchanging operations are basic operations
for most successfull approaches presented to solve the QAP. The neighborhood
built by pairwise exchanging operations is known as the 2-exchange neighbor-
hood. Given a solution ρ, the 2-exchange neighborhood ℵ(ρ) is defined by
the set of permutations which can be obtained by exchanging two elements of
ρ, that is ℵ(ρ) = {ρ′ | ρ′[r] = ρ[s], ρ′[s] = ρ[r], and ρ′[i] = ρ[i], ∀i, i 6= r, s}.
There are n(n − 1)/2 possible combinations of two locations on a permuta-
tion of size n and there is only one way of exchanging the facilities of those
locations. The objective function difference of exchanging the facilities of two
locations can be computed in O(n) [10].

A natural extension of the 2-exchange neighborhood is the k-exchange
neighborhood, where the facilities of k locations are exchanged. A version of



k-exchange neighborhoods is proposed by Ahuja et al. [1]. In their paper, they
develop a very large-scale neighborhood structure for the QAP and, using the
concept of improvement graph, they enumerate multi-exchange neighbors of
a given solution. They compare their proposal with the 2-exchange neighbor-
hood on benchmark QAP instances.

The 3-assignment neighborhood is introduced in the next section. A
computational experiment compares the proposed neighborhood with the 2-
exchange neighborhood by means of two versions of an iterated local search
algorithm.The computational experiment and some conclusions are presented
in section 3.

2 The 3-assignment Neighborhood

This work proposes a neighborhood that utilizes the fact that an edge as-
signment between two complete graphs of order 3 corresponds to a vertex as-
signment on those graphs. The proposed neighborhood, called 3-assignment,
is based upon a naive lower bound for the QAP. Ranking the elements of F

and D in non-increasing and non-decreasing orders, respectively, one obtains
vectors F− and D+, respectively. The scalar product of F− and D+ is a weak
lower bound for a QAP instance. It corresponds to an assignment of edges.
If that assignment corresponds to a vertex assignment, then it is an optimal
solution for the correspondent QAP instance. Though the lowest cost edge
assignment for a QAP instance is very easy to solve, usually that assignment
does not correspond to an assignment of vertices for instances with n > 3. If it
was the case, the QAP would be solved in polynomial time. The 3-assignment
neighborhood of a solution ρ is, then, composed with solutions ρ’ such that,
given three facilities q, r, s, locations ρ’[q], ρ’[r] and ρ’[s] correspond to the
lowest cost assignment of the edges of the 3-clique formed by ρ[q], ρ[r] and ρ[s]
to the edges of the 3-clique formed by q, r, s, and ∀i, i 6= q, r, s, ρ′[i] = ρ[i].

The idea of combining optimization models and heuristic methods was in-
troduced in the context of Tabu Search [4] with the name of Referent-Domain

Optimization. The goal of referent-domain optimization is to introduce ”one

or more optimization techniques to strategically restructure the problem or

neighborhood, accompanied by auxiliary heuristic or algorithmic process to

map the solutions back to the original problem space.” In this context, the
idea behind the 3-assignment neighborhood is fixing a restricted number of
variables and solving a relaxation of the correspondent subproblem. Clearly,
the proposed neighborhood can be extended to k-assignment neighborhoods.



3 Computational Experiments and Conclusion

The QAP instances utilized in this work belong to two classes. The first class
is composed with the Taixxa instances [9]which are randomly generated from
a uniform distribution. The second class was proposed by Drezner et al. [3]
(http://business.fullerton.edu/zdrezner). Those instances are symmetric, easy
to solve by exact methods, and difficult for local search heuristics.

In order to evaluate the potential of the proposed neighborhood regarding
quality of solution, iterated local search algorithms were implemented with
basis on the 2-exchange, Ils-2e, and on the 3-assign, Ils-3a, neighborhoods.
Iterated local search is a stochastic method in which a sequence of local search
procedures is applied to solutions iteratively. Rather than sampling the search
space as multi-start heuristics do, it repeatedly applies local search on the local
optimum resultant from the previous iteration after making a perturbation on
that solution. Versions of an iterated local search algorithm for the QAP
utilizing the 2-exchange neighborhood were presented by Stützle [8].

The general framework of the iterated local search algorithm utilized in
this work is presented in Algorithm 1. The algorithm makes use of a memory
implemented as a list initialized with m local optima resultant from random
starting points, named history. The best solution of history is chosen as the
starting point of the algorithm. While a given number of iterations is not
reached, the algorithm repeats the following steps. The solution is disturbed
by changing the facilities of k locations. The correspondent local search is
applied to the disturbed solution. Finally, an acceptance criterion defines
which solution will be the starting point of the next iteration. The procedure
acceptance_criterion() has three input parameters: the original solution, ρ,
the disturbed solution, ρ’, and history. If ρ’ has a better objective function
value than ρ, then the former solution is accepted as the starting point of the
next generation and history is updated with the new solution. Otherwise, a
new solution of history is randomly chosen to be the next starting solution.

A preliminary experiment tested the following values for k: 10%n, 20%n,
30%n and 40%n. The best results were obtained with k = 10%n for instances
Taixxa and with k = 30%n for instances Drexx. One hundred independent
runs of each algorithm were executed for each instance on a Pentium IV, 1.8
Ghz, under Ubuntu Linux. Table 1 shows the results of the computational
experiment. The columns show the name of the instance, the best known
solution, the minimum, the average, the standard deviation and the processing
time in seconds of each version of the iterated local search algorithm.

Concerning Taixxa instances, except for Tai40a, Ils-3a found better mini-



Algorithm 1 Iterated Local Search

begin

Initialize(history)

ρ = best_solution(history)

repeat

ρ = disturb(ρ)
ρ’ = local_search(ρ)
ρ = acceptance_criterion(ρ,ρ’,history)

until stop criterion is satisfied

end

Instance BKS Ils-3a Ils-2e

Min Av SD T(s) Min Av SD T(s)

Tai20a 703482 0 1.35 5.00 0.20 0.30 1.42 6.20 0.04

Tai30a 1818146 0.02 1.62 4.78 1.03 0.91 1.91 4.19 0.14

Tai40a 3139370 1.05 1.90 3.37 3.66 0.88 2.27 4.23 0.46

Tai50a 4941410 1.53 2.18 3.17 9.64 1.80 2.70 2.59 1.01

Tai60a 7205962 1.53 2.29 2.51 21.92 2.14 2.77 2.35 2.04

Tai80a 13546960 1.18 1.86 1.77 74.49 1.79 2.34 1.74 5.63

Tai100a 21123042 1.14 1.68 1.49 217.82 1.85 2.17 1.23 12.83

Dre42 764 48.17 63.95 54.10 3.99 50.26 68.93 56.00 0.47

Dre56 1086 63.17 80.71 46.75 12.98 76.61 87.31 44.96 1.24

Dre72 1452 73.00 86.73 44.06 41.41 83.06 95.09 38.51 3.20

Dre90 1838 86.62 96.63 36.09 101.17 95.43 105.75 37.27 7.15

Table 1
Results of the computational experiment

mum results than the Ils-2e. The minimum results obtained with Ils-3a are,
in average, 49.92% better than the minimum results obtained with Ils-2e. All
the average solutions found by Ils-3a are better than the ones found by the
Ils-2e with improvements ranging from 5.2 to 29.17%. In average, the Ils-3a

presents improvements of 20% over the average values found by the Ils-2e.
Similar results are observed for Drexx instances. The results presented for
Ils-3a are, in average, 15.51% and 8.76% regarding the best and the average
solutions, respectively.

The statistical test of Mann-Whitney (U-test) is utilized to verify the sig-
nificance of the experimental results. That test, also called Mann-Whitney-
Wilcoxon test or Wilcoxon rank-sum test is a non-parametric test used to



verify the null hypothesis that two samples come from the same population
[2]. The results of the U-test with a level of significance of 0.01, rejected the
null hypothesis for all instances.

Processing times of the algorithmic version that implemented the proposed
neighborhood are higher than the other algorithm. Nevertheless, no special
data structures were utilized on those implementations. Specific data struc-
tures designed for the proposed neighborhood may lead to lower runtimes.
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Abstract

Usual inverse combinatorial optimization problems consist in modifying as little as
possible the instance parameters to make a given solution optimal. In this paper
we consider several extensions taking into account constraints on the weight system
and inverse problems against a specific algorithm. We consider TSP under this
point of view and devise both complexity and approximation results.
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1 Introduction

Inverse combinatorial optimization problems have been extensively studied
for weighted problems during the last decade [1,5]. Given an instance of a
weighted combinatorial optimization problem P and a fixed feasible solution,
the corresponding inverse problem, denoted by IP , consists in modifying as
little as possible (with respect to a fixed norm) the weight system in such a way
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the given solution becomes an optimal solution of P in the new instance. We
only consider the L1-norm. In [1,5], some results on the relative complexity
of a combinatorial optimization problem and its inverse version are devised.
In particular, by using linear programming it is shown that for a general class
of polynomial problems, the related inverse problem is also polynomial. It is
given in [9] an example of a polynomial problem admitting a NP -hard inverse
version. On the other hand, it is straightforward to verify that if the optimality
test which is to decide if a given solution is optimal, is co-NP -complete, then
the corresponding inverse problem is NP -hard. Indeed, the optimality test is
equivalent to decide whether the related inverse instance is of optimal value
0. In [3], we consider some modifications of IP , denoted by IPW,A, where
W denotes some properties that the weight have to satisfy and A denotes a
given algorithm (either an optimal or an approximation algorithm). Given
an instance of P and a fixed feasible solution x0, IPW,A is to find a minimal
modification of the weight system such that (i) the new system satisfies W and
(ii) the fixed solution x0 will be returned by A in the new instance. In [3], we
have proposed an application model and also complexity and approximation
results for such issues in the case of the maximum stable set problem. Here we
consider the case of the minimum Traveling Salesman Problem, denoted by
TSP . Our aim is essentially theoretical although some models may involve it.

We investigate the problems ITSPW,A where W ∈ {R, ∆, {1, 2}} and
A ∈ {∅, CN, 2opt}. W = R, ∆, {1, 2} respectively corresponds to the un-
constrained case, the metric case and the case where weights are either 1 or
2. In this last case, changes on the instance correspond either to replace 1 by
2 or 2 by 1; so, any solution can be seen as the set of edges to be changed,
the objective value being the number of these edges. A = ∅ corresponds to
inverse TSP against every optimal algorithm. 2opt is the usual local search
algorithm finding a hamiltonian cycle without 2-improvement (obtained by
replacing two edges), and CN is a greedy algorithm repeatedly selecting the
closest non visited neighbor. We denote by w the original weight system (w(e)
is the weight of an edge e ∈ E) and by w′ the new weight system.

2 Complexity and approximation results

Against any optimal algorithm (A = ∅), one can show that ITSPR, ITSP∆

and ITSP{1,2} are NP -hard by using a polynomial time reduction to the
problem of deciding if, given a graph and a hamiltonian cycle, there exists
a second hamiltonian cycle [8]. On the other hand, for W ∈ {R, ∆} and
A ∈ {2opt, CN}, we have:



Proposition 2.1 ITSPR,CN , ITSPR,2opt, ITSP∆,CN and ITSP∆,2opt can
be solved in polynomial time.

Proof (sketch)
The problem is to find w′ minimizing the quantity ‖w − w′‖1 under some
constraints. For the case of algorithm CN , constraints are of the form:
w′(ei,i+1) 6 w′(ei,j), ∀i ∈ {1, · · · , n − 2},∀j > i + 1. For algorithm 2opt,
the 2-optimality in the new instance can be expressed by linear constraints:
w′(ei,i+1) + w′(ej,j+1) 6 w′(ei,j) + w′(ei+1,j+1), ∀i < i + 1 < j < j + 1. Finally,
triangle inequalities can also easily be represented by linear constraints. To
linearize the objective, we replace it by

∑
e∈E ze, where ze, e ∈ E are new

variables and we add for every edge e the constraints w(e) − w′(e) 6 ze and
w′(e) − w(e) 6 ze. We get a linear program with a polynomial number of
constraints.

Let us now focus on ITSP{1,2},2opt. TSP{1,2} is a particular case of metric
TSP that has been widely studied and 2opt is a popular algorithm for this
version of TSP , known to guarantee the approximation ratio of 3/2.

Theorem 2.1

(i) ITSP{1,2},2opt is APX-hard, even if the graph induced by edges of weight
1 has the maximum vertex degree 4 in the original instance. Moreover, if
P 6= NP then it cannot be approximated within 1,36.

(ii) ITSP{1,2},2opt can be approximated within the ratio (2− 1
δ
)ρV C, where δ is

the maximum number of 2-opt swaps to which an edge may belong, and
ρV C is any known approximation ratio for vertex covering. By using [6],
we have ρV C = 2 − Θ( 1√

logn−1
). So ITSP{1,2},2opt is APX-complete.

Proof (sketch)
1. We devise a reduction preserving approximation from the vertex cover
problem, V C. Let G = (V, E) be an instance of V C where V = {x1, · · · , xn}.
We construct from G an instance (H = (V ′, E ′), w,HC∗) of ITSP{1,2},2opt as
follows: V ′ = {x1, · · · , xn}∪{y1, · · · , yn}, E ′ = {xixj| ∀i 6= j}∪{xiyj| ∀i, j}∪
{yiyj| ∀j 6= i} and w(e) is either 1 if e = xixj ∈ E or e = yixi+1∀i or 2
otherwise. Let HC0 = {x1y1x2y2x3y3 · · ·xnynx1} be the fixed solution.
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Figure 1. Construction of (H = (V ′, E′), w, HC0) from G = (V,E)

We show that we can restrict ourself to the case where the modification of
the weights affects only the edges xiyi, i = 1, . . . n and that changing the weight
of the edges {xiyi, i ∈ I0 ⊂ {1 · · · , n}} makes HC0 2-optimal if and only if the
set {xi, i ∈ I0} is a vertex covering of G. Note finally that this reduction is an
L-reduction and recall that V C restricted to the graphs of maximum vertex
degree 3 is APX-complete [8]. In H, the degree of the graph induced by the
edges of weight 1 is equal to 4 if and only if the degree of G is 3.

2. Conversely, let (G = (V, E), w, HC0) be an instance of ITSP{1,2},2opt,
where G is a complete graph of order n, ∀e ∈ E, w(e) ∈ {1, 2} and HC0 is the
fixed Hamiltonian cycle. HC0 admits three types of 2-opt swaps as follows:

Figure 2. 2-opt swaps reducing the length of HC0

Let swij be the 2-opt swap containing xixi+1 and xjxj+1 and SWk be the
set of swaps of type k ∈ {1, 2, 3} in Figure 2. Let βc (βc) be the best value
obtained by changing only the weights on (outside) the cycle, respectively.

If one only changes the edges of the fixed cycle, then every edge of length
2 in swaps of SW1 ∪ SW2 belongs to any feasible solution and without loss
of generality, we can assume that the instance contains only the third type of
swaps. Let HC0(2) be the set of edges of weight 2 in HC0. We construct an
instance H = (V ′, E ′) of the minimum vertex cover problem, V C as follows:
V ′ = HC0(2) and ∀u, v ∈ V ′, uv ∈ E ′ iff ∃sw ∈ SW3 s.t. u ∈ sw and v ∈ sw.
To make HC0 2-optimal, we need to select for each 2-opt swap swij one edge



between xixi+1 and xjxj+1, which is equivalent to find a vertex cover in H.
So, we can use any approximation result on the problem V C for ITSP{1,2},2opt

to construct a solution of value ρV Cβc. Let us now assume that we change
only the edge weights outside the cycle; then it is sufficient to consider only
swaps in SW2 since for the other swaps the edges to change are obtained by
necessary conditions. Note that in this case the transformation to V C still
works. We construct an instance H = (V ′E ′) of V C as follows: a vertex of
H corresponds to an edge outside the cycle of weight 1 and two vertices of H
are connected if and only if their corresponding edges in G belong to a same
2-opt swap. Since the maximum vertex degree of H is equal to 2, a minimum
vertex cover of H of size βc can be computed in polynomial time. So we get
a solution of value λ 6 min{ρV Cβc, βc}.

Let β = β1 + β2 be an optimal solution of ITSP{1,2},2opt, where β1 and
β2 are the numbers of changes occurred outside the cycle (changes from 1
to 2) and on the cycle (from 2 to 1), respectively. Since an edge outside
the cycle intervenes in at most two 2-opt swaps, there is a solution of value
2β1 + β2 containing only changes on the cycle. Consequently, βc 6 2β1 + β2.
On the other hand, let δ be the maximum number of 2-opt swaps in which
an edge of the cycle can intervene. By replacing a modification on the cycle
by δ modifications outside the cycle we can obtain a solution of value at most
β1 + δβ2 containing only edges outside the cycle, so βc 6 β1 + δβ2. We deduce
λ 6 min{ρV C(2β1 + β2), β1 + δβ2}. By using β = β1 + β2 and ρV C > 1, we
obtain the ratio of (2 − 1

δ
)ρV C .

3 Discussion on some related problems

Whenever one considers TSP in a given metric space E , we can consider a very
natural inverse problem: given n requests (cities) in E , a fixed order for these
requests and a specific algorithm A solving metric TSP , it is to reposition the
n requests (vertices) in E , so that A chooses them respecting the given order.
The aim is to minimize the total length of movings.

Consider for instance the line with the metric defined by absolute values.
A simple optimal TSP algorithm is to select requests going from left to right
and come back. The related inverse problem is equivalent to the an inverse
sorting problem, also called isotone optimization, shown to be polynomially
solved in [7] even with integral constraints (W=N). It can be shown to be
equivalent to the following problem: given a permutation π = [π1, · · · , πn]
on n consecutive numbers, modify as little as possible the values in π (with
respect to L1 norm) such that the new sequence is not decreasing (i.e. the



related permutation graph is a stable set (1-colorable graph)). Any optimal
algorithm for TSP on the line selects some vertices going from left to right
and the others during coming back. Considering now any such algorithm,
the related inverse problem on the line is closely related to modifying as few
as possible the numbers of the given sequence such that it can be divided
into an increasing subsequence I and a decreasing subsequence D such that
maxx∈I x 6 minx∈D x (i.e. the transformed permutation induces a threshold
graph [4] that is a particular case of (1, 1)-colorable graph where a graph is
said to be (p, k)-colorable if it can be divided into p cliques and k stable sets).

In a further work [2], we consider the so called inverse (p, k)-colorability
problem in permutation and interval graphs with nice applications. It aims to
modify as few as possible the instance such that the resulting graph is (p, k)-
colorable. We show that for any pair of constants (p, k), the inverse (p, k)-
colorability problem in permutation graphs can be solved with complexity
O(n2(p+k)) by dynamic programming. It holds in particular for the above
mentioned inverse TSP problems on the line.
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We define a k-limited packing in a graph, which generalizes a packing in a graph,
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1 Introduction

Consider the following scenarios:

Network Security: A set of sensors are to be deployed to covertly monitor
a facility. Too many sensors close to any given location in the facility can be
detected. Where should the sensors be placed so that the total number of
sensors deployed is maximized?

NIMBY: A city requires a large number of obnoxious facilities (such as
garbage dumps), but no neighborhood should be close to too many such facil-
ities, nor should the facilities themselves be too close together. Where should
the facilities be located?

Market Saturation: A fast food franchise is moving into a new city. Market
analysis shows that each outlet draws customers from both its immediate city
block and from nearby city blocks. However it is also known that a given city
block cannot support too many outlets nearby. Where should be outlets be
placed?

A graph model of these scenarios might maximize the size of a vertex subset
subject to the constraint that no vertex in the graph is near too many of the
selected vertices. The well-known packing number of a graph is the maximum
size of a set of vertices B such that for any vertex v the closed neighborhood
of v, N [v], satisfies |N [v] ∩ B| ≤ 1. In this paper we consider relaxing the
constraint to |N [v] ∩ B| ≤ k, for some fixed integer k.

Our notation is standard. Specifically, given a graph G then V (G) is the
set of vertices of G, γ(G) is the domination number of G, ρ(G) the packing
number, δ(G) is the minimum degree of a vertex in G, ∆(G) is the maximum
degree of a vertex in G, and for a vertex v ∈ V (G), N [v] is the closed neigh-
borhood of v, which is the set of vertices adjacent to v along with v itself. The
girth of a graph is the length of the shortest cycle in the graph, which is said
to be infinite if the graph is a forest. The symbol Pt denotes the path with t

vertices, and if a vertex v in a tree is adjacent to a stem of degree 2, we will
say v has a P2 attached.

Definition 1.1 Let G be a graph, and let k ∈ N. A set of vertices B ⊆ V (G)
is called a k-limited packing in G provided that for all v ∈ V (G), we have
|N [v] ∩ B| ≤ k.

In [1], the author introduces a notation unifying the description of many
graph theoretic parameters. Specifically, in the context of a given graph G,
a set B ⊆ V (G) is called a [ρ≤k, σ≤k−1]-set provided any vertex v in G has
|N [v] ∩ B| ≤ k, which is what we are calling a k-limited packing. Similarly a



2-limited packing in a graph would be called a [ρ≤2, σ≤1]-set.

A k-limited packing B in a graph G is called maximal if there does not
exist a k-limited packing B′ in G such that B ( B′. A k-limited packing B

in a graph G is called maximum if there does not exist a k-limited packing B′

in G such that |B| < |B′|.

We are interested in the maximum size of a k-limited packing in an arbi-
trary graph.

Definition 1.2 Let G be a graph, and let k ∈ N. The k-limited packing
number of G, denoted Lk(G), is defined by

Lk(G) = max{|B|| B is a k-limited packing in G }.

If a subset of vertices B is a packing then the distance between any pair of
distinct vertices in B is at least 3, in which case |N [v]∩B| ≤ 1 for any vertex
v in the graph, so B is also a 1-limited packing. But a 1-limited packing B

has |N [v] ∩ B| ≤ 1 for any vertex v, and so the distance between any pair of
distinct vertices in B is at least 3. Thus 1-limited packings and packings are
the same, and so L1(G) = ρ(G).

Since a k-limited packing is also a (k + 1)-limited packing we immediately
obtain the following inequalities:

ρ(G) = L1(G) ≤ L2(G) ≤ . . . ≤ L∆(G)+1(G) = |V (G)|.

We collect some easily verified facts about the k-limited packing numbers
of some familiar graphs in the following lemma.

Lemma 1.3 Let m, k, n ∈ N with m ≥ 3. Let Pm be the path on m vertices,

let Cm be the cycle on m vertices, and let Km be the clique on m vertices.

Then:

• L1(Pm) = dm
3
e,

• L2(Pm) =

{

2m
3

if m ≡ 0 mod 3,

b2m
3
c + 1 otherwise

• L1(Cm) = bm
3
c

• L2(Cm) = b2m
3
c

• Lk(Km) = min{k,m}

• Lk(Km,n) =

{

1 if k = 1,

min{k − 1, m} + min{k − 1, n} if k > 1.



2 Bounds on k-limited packings

In this section we bound the k-limited packing number of a graph G. First
we observe some connections to domination numbers of G.

For a positive integer k ≤ δ(G) + 1, a subset D of V (G) is called a k-
tuple dominating set in G if |N [v] ∩ D| ≥ k for every vertex v ∈ V (G). The
minimum cardinality of a k-tuple dominating set in G is denoted by γ×k(G).
The familiar domination number is thus γ(G) = γ×1(G).

Lemma 2.1 Let G be a graph with maximum degree ∆ and minimum degree

δ, and let {B, R} be a partition of V (G). Then:

(i) If k ≤ δ− 1 and B is a (δ− k)-limited packing in G, then R is a (k + 1)-
tuple dominating set in G.

(ii) If k ≤ ∆ − 1 and R is a (k + 1)-tuple dominating set in G, then B is a

(∆ − k)-limited packing in G.

When the graph is regular even more can be said.

Lemma 2.2 If G is an r-regular graph, and k ≤ r − 1, then

Lr−k(G) + γ×(k+1)(G) = |V (G)|.

The following bound also involves the domination number, and arises nat-
urally when considering linear programs associated with k-limited packings.

Lemma 2.3 If G is a graph, then Lk(G) ≤ kγ(G). Furthermore, equality

holds if and only if for any maximum k-limited packing B in G and any min-

imum dominating set D in G both the following hold:

(i) For any b ∈ B we have |N [b] ∩ D| = 1.

(ii) For any d ∈ D we have |N [d] ∩ B| = k.

One can bound the size of a k-limited packing solely in terms of the number
of vertices in G.

Lemma 2.4 If G is a connected graph with |V (G)| ≥ 3, then L2(G) ≤
4
5
|V (G)|.

The upper bound |B| = 4
5
|V (G)| is achieved only if both inequalities in

the proof hold with equality.

If we impose constraints on the minimum degree δ(G) of G, then similar
reasoning gives the following.



Lemma 2.5 If G is a connected graph, and δ(G) ≥ k, then Lk(G) ≤ k
k+1

|V (G)|.

This bound can always be achieved; let H be any connected graph, and to
each vertex v in H attach a new Kk by making v adjacent to each vertex in
the Kk.

When the graph is regular stronger bounds are possible. The following is
representative.

Lemma 2.6 Let G be a cubic graph. Then 1
4
|V (G)| ≤ L2(G) ≤ 1

2
|V (G)|.

3 Uniformly 2-limited graphs

A greedy algorithm will quickly find a maximal k-limited packing in a graph,
but that set will not usually be a maximum k-limited packing. In this sec-
tion we consider graphs G where every maximal 2-limited packing in G is a
maximum 2-limited packing. We only state the main results (without proof).

Definition 3.1 A graph G is said to be uniformly 2-limited if every maximal
2-limited packing in G has the same cardinality.

For example P3 is uniformly 2-limited, but P4 and P5 are not. The following
gives a sufficient condition for a graph G to be uniformly 2-limited.

Lemma 3.2 Let G be a graph, and let {s1, s2, . . . , sm} be the set of stems in

G. Suppose {N [si]|1 ≤ i ≤ m} is a partition of V (G), and if a stem si is

adjacent to exactly one leaf, then all non-leaf neighbors of si have degree 2.

Then G is uniformly 2-limited.

The main result of this section (after a sequence of lemmas) is that the
conditions of Lemma 3.2 are also necessary when a uniformly 2-limited graph
G contains leaves and has girth at least 11.

Theorem 3.3 Let G be a connected, uniformly 2-limited graph of girth at

least 11. Suppose {s1, s2, . . . , sm} is the set of stems in G, and m ≥ 1. Then

the set {N [si]|1 ≤ i ≤ m} is a partition of V (G), and if a stem si is adjacent

to exactly one leaf, then all non-leaf neighbors of si have degree 2.

The conditions of Theorem 3.3 are in fact necessary and sufficient condi-
tions for a graph of girth at least 11 (and hence any tree) that contains a stem
to be uniformly 2-limited.

In addition it is possible to show the following.

Lemma 3.4 If G has girth at least 14 and has minimum degree at least 2,

then G is not uniformly 2-limited.



4 Trees T with L2(T ) = 2γ(T )

By Lemma 2.3, all graphs G satisfy L2(G) ≤ 2γ(G). In this section (details
omitted) a constructive characterization of those trees that attain this bound
is given. Note that the graphs considered in the last section are relevant here.

Lemma 4.1 If T is a tree and T is uniformly 2-limited, then L2(T ) = 2γ(T ).

There are trees, other than the uniformly 2-limited ones, that belong to
the collection. The characterization is given by the set C defined next.

Definition 4.2 Let C be the set of graphs consisting of P2 together with any
tree that can be obtained from P2 by any finite sequence of the following
operations.

(i) Add a new leaf to any stem s already in the graph.

(ii) Add a new P3 to the graph, making a leaf of the new P3 adjacent to any
vertex x already in the graph..

(iii) Add a new P3 to the graph, making the central vertex of the P3 adjacent
to any vertex x already in the graph that is not in some maximum 2-
limited packing in the graph.

(iv) Add a new P5 to the graph, making the central vertex of the P5 adjacent
to any vertex x already in the graph that is not in some maximum 2-
limited packing in the graph.
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1 Introduction

A k-edge coloring of a graph G is an assignment of one of k colors to each
edge of G such that there are no two edges with the same color incident to
a common vertex. In the discussion below, a “coloring” of a graph always
means an edge coloring, while a “k-coloring” is a coloring that uses only k

colors. A k-coloring partitions the set of edges of G into k color classes. The
chromatic index , χ′(G), of G is the minimum k such that G has a k-coloring.
By definition, χ′(G) ≥ ∆(G), where ∆(G) is the maximum degree of G.

In 1964, Vizing [7] showed that for any simple graph G, χ′(G) ≤ ∆(G) +
1. It was the origin of the Classification Problem, that consists of deciding
whether a given graph G has χ′(G) = ∆(G) or χ′(G) = ∆(G) + 1. In the first
case, we say that G is Class 1, otherwise, we say that G is Class 2. Despite
the powerful restriction imposed by Vizing, it is very hard to compute the
chromatic index in general. In fact, it is NP-complete to decide if a graph is
Class 1 whereas Class 2 recognition is co-NP-complete [4]. In 1991, Cai and
Ellis [1] proved that this holds also when the problem is restricted for some
classes of graphs.

A split graph is a graph whose vertex set admits a partition into a stable set
and a clique. The chromatic indexes for some subsets of split graphs, such as
split graphs with odd maximum degree [2] and split-indifference graphs [5], are
known. However, for the general class, the problem remains unsolved. This
paper presents new results about the classification problem for split graphs as
a contribution in the direction of solving the entire problem for this class.

2 Definitions and Necessary Background

In this paper, G denotes a simple, finite, undirected and connected graph;
V (G) and E(G) are the vertex and edge sets of G. Write n = |V (G)| and
m = |E(G)|. The maximum degree of G is ∆(G) and, when there is no
ambiguity, we use the simplified notation ∆. A ∆(G)-vertex is a vertex of a
graph G with degree ∆(G). A universal vertex is a vertex with degree n − 1.
Let v be a vertex of G. The set of vertices adjacent to v in G is denoted by
N(v), and N [v] = {v}∪N(v). A clique is a set of pairwise adjacent vertices of a
graph. A maximal clique is a clique that is not properly contained in any other
clique. A stable set is a set of pairwise no adjacent vertices. A subgraph of G

is a graph H with V (H) ⊆ V (G) and E(H) ⊆ E(G). For X ⊆ V (G), denote
by G[X] the subgraph induced by X, that is, V (G[X]) = X and E(G[X])
consists of those edges of E(G) having both ends in X. Let D ⊆ E(G). The



subgraph induced by D is the subgraph H with E(H) = D and V (H) is the
set of vertices v having at least one edge of D incident to v. We denoted by
Kn a complete graph with n vertices.

The following lemmas are used in our discussion about the coloring of split
graphs.

Lemma 2.1 [3] The complete graph Kn is Class 1 if, and only if, n is even.

Lemma 2.2 [3] Every bipartite graph is Class 1.

A graph G is overfull when m > ∆(G)
⌊

n
2

⌋

and n is odd. In [6], Planthold
shows that a graph G with n odd and containing a universal vertex is Class 1
if, and only if, G is not overfull.

An equitable k-coloring of a graph G is a k-coloring of G such that the
sizes of any two color classes differ by at most one. We say that a vertex v

misses a color c (or that a color c misses a vertex v) when there is no edge
with color c incident to v. Otherwise, we say that the color c appears in v.

Lemma 2.3 Let n be an odd integer. If Kn is colored with n colors, then each
one of these n colors misses exactly one vertex and each vertex misses exactly
one color.

Lemma 2.4 Let n be an even integer. Then Kn has an equitable n-coloring
such that each vertex misses one color, each one of n

2
colors misses two ver-

tices, and the other n
2

colors appears in every vertex of Kn.

Lemma 2.5 Let n be an even integer and G = Kn \ F , where F is a subset
of E(Kn) with |F | = k. Then G has an equitable (n − 1)-coloring, such that
there are k′ = min{k, n − 1} colors missing at least two vertices of G.

Lemma 2.6 Let n be an odd integer and G = Kn \ F , where F is a subset
of E(Kn) with |F | = k, k ≥ n−1

2
. Then G has an equitable (n − 1)-coloring,

each one of the min{k − n−1
2

, n−1
2
} colors misses at least three vertices of G,

and each one of the remaining max{0, 3(n−1)
2

− k} colors misses at least one
vertex of G.

3 Coloring Split Graphs

A split graph is a graph that admits a partition {Q, S} of its set of vertices such
that Q is a clique and S is a stable set. The classification problem is solved for
some subclasses of split graphs [5,2]. In this work, we solve the classification
problem for a new subset of split graphs, presented in Theorem 3.1. This



result is strongly based on the work of Planthold [6]. In the following, we
assume that Q is a maximal clique.

Theorem 3.1 Let G be a split graph with even maximum degree. If exists
a ∆(G)-vertex v such that N [v] admits a partition {L, R} where |R| = ∆(G)

2
,

R ⊂ Q, the vertices in L are not adjacent to vertices in V (G)\N [v], G[L] has
k edges, k ≥ ∆

4
, and R has at most k′ ∆(G)-vertices, k′ = min{k, ∆

2
}, then G

is Class 1.

Proof. Let G be a split graph with partition {Q, S} and ∆ = ∆(G) even.
Suppose that there exist a ∆-vertex v of G as described above. Let P =
V (G)\{L∪R}. (See Fig. 1.) Since, by hypothesis, |R| = ∆

2
, then |L| = ∆

2
+1.

Hence, the maximum degree of G[L] is at most ∆
2
. We consider two cases: ∆

2

is odd and ∆
2

is even.

L

R

P

V

Fig. 1. A split graph G and the subsets L, R and P of V (G).

Case 1: ∆
2

is odd

The graph G[L] is isomorphic to a subgraph of K∆

2
+1 and, by hypothesis,

G[L] has k ≥ ∆
4

edges. By Lemma 2.5, G[L] has an equitable ∆
2
-coloring where

each color ci misses at least two vertices in L, 1 ≤ i ≤ k′ = min{k, ∆
2
}.

Let R = {v1, v2, . . . , v∆

2

}, and let J = {v1, v2, . . . v|J |} be the subset of

vertices of R that are adjacent to every vertex of L. The vertices in J are
adjacent to ∆

2
− 1 vertices in R and ∆

2
+ 1 vertices in L, therefore these

vertices have degree ∆. By hypothesis, there are at most k′ ∆-vertices in
R, so |J | ≤ k′. The graph G[R] is isomorphic to K∆

2

and ∆
2

is odd, hence,

by lemmas 2.1 and 2.3, R can be colored with ∆
2

colors such that each color
misses exactly one vertex and each vertex misses one color. By the symmetry
of G[R], we can perform the coloring of G[R] such that the color missed by
vertex vi is ci, 1 ≤ i ≤ ∆

2
. Since |J | ≤ k′ and the vertices in J are adjacent

to every vertex in L, each vertex vi in J is adjacent to a vertex u in L that
misses the color ci. Assign the color ci to the edge {vi, u}. For each vertex v



in R\J with degree ∆
2

+ 1, there is a vertex w in P such that w is adjacent
to v. So, assign the color c, missed by v in the coloring of G[R], to the edge
{v, w}. This process can be repeated for every vertex in R\J that is adjacent
to ∆

2
+ 1 vertices in L ∪ P because the color missed by each vertex in R is

distinct of the other ones.

By hypothesis, the vertices in L are not adjacent to vertices in V (G)\V (H).
Hence the graph induced by the uncolored edges of G is a bipartite graph and
its maximum degree is at most ∆

2
. Therefore, by Lemma 2.2, we can color this

subgraph with ∆
2

new colors.

Case 2: ∆
2

is even

In this case, G[L] is isomorphic to a subgraph of K∆

2
+1 with ∆

2
even,

|E(G[L])| = k and k ≥ ∆
4
. So, by Lemma 2.6, G[L] has an equitable ∆

2
-

coloring such that each one of p = min{k − ∆
4
, ∆

2
} colors misses at least 3

vertices in L and each one of the other ∆
2
− p colors misses at least 1 vertex

in L. Let c1, c2, . . . , cp be the colors missed by at least 3 vertices in L.

The graph G[R] is isomorphic to K∆

2

and ∆
2

is even. So, by Lemma 2.4,

G[R] has an equitable ∆
2
-coloring such that each one of ∆

4
colors misses two

vertices, each one of the other ∆
4

colors does not miss any vertex in R, and
each vertex in R misses exactly one color. The set R is divided in three
subsets namely J , J ′, and N , where: J = {v1, . . . , v|J |} is the set of the ∆-
vertices in R that are adjacent to every vertex in L; J ′ = {v|J |+1, . . . , v|J |+|J ′|}
is the set of the ∆-vertices in R that are adjacent to at least one vertex in
P = V (G)\{L ∪R}; and N = {v|J |+|J ′|+1, . . . , v∆

2

} is the set of the vertices in

R that are not ∆-vertices. Note that each one of this sets can be an empty
set, and |J | + |J ′| + |N | = ∆

2
.

The symmetry of R allows us to choose which vertex in R misses a specific
color. Let p′ = min{p, ∆

4
}, and let X = {v1, . . . , v2p′} be the set of vertices in

R such that vertices v2i−1 and v2i miss the color ci, 1 ≤ i ≤ p′. Note that X

can be empty. By hypothesis, there are at most k′ = min{k, ∆
2
} ∆-vertices in

R, so at least ∆
2
−k′ vertices in R are not ∆-vertices. Let Z = {vk′+1, . . . , v∆

2

}

be the set of these vertices and Y = {v2p′+1, . . . , vk′} = R \ (X ∪Z). The sets
X, Y , and Z are pairwise disjoint and |X| + |Y | + |Z| = ∆

2
.

If k ≥ ∆
2
, then X = R and the sets Y and Z are empty. If ∆

4
≤ k < ∆

2
,

then Z and Y have size ∆
2
−k′ > 0. In this case, let α = {cp′+1, . . . , c∆

4

}. Each

color of α has to miss two vertices in R and each vertex in Y ∪ Z has to miss
one color. Since |α| = |Y | = |Z| = ∆

2
−k′, for each color c in α, we choose one

vertex in Y and one vertex in Z to miss the color c. Now, no two vertices of
Y miss the same color.



If X is nonempty, for each vertex v in X that misses a color c and has
∆
2

+ 1 uncolored edges incident to it, we color one of these edges as follows. If
v belongs to J , we choose a vertex u that belongs to L and misses the color c,
and we assign the color c to the edge {v, u}. If v belongs to J ′, there are two
cases. If v is adjacent to a vertex w in P such that the color c is not incident
to w, then we assign the color c to the edge {v, w}. Otherwise, v is adjacent
to a vertex u that belongs to L and misses the color c, so we assign the color
c to the edge {v, u}. If Y is nonempty, we can color one edge incident to each
∆-vertex that is in Y . For each ∆-vertex vi in Y , choose a neighbor w in P ,
and assign the color missed by vi to {vi, w}, 2p′ + 1 ≤ i ≤ k′. Remind that
there are no ∆-vertices in Z, so each vertex of Z has at most ∆

2
uncolored

incident edges. Now, each ∆-vertex in R has at most ∆
2

uncolored incident
edges. The graph induced by the uncolored edges of G is a bipartite graph
with a partition {L ∪ P, R} and maximum degree ∆

2
. So, by Lemma 2.2, we

can color this subgraph with ∆
2

new colors.

Therefore, by cases 1 and 2, we conclude that G is Class 1. 2

We believe that the result of Theorem 3.1 can be extended to other subsets
of split graphs. It is easy to see that a split graph with odd ∆

2
containing more

than k′ ∆-vertices in R but with at most k′ vertices adjacent to every vertex
in L, while the other conditions of Theorem 3.1 are satisfied, is Class 1.
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Abstract

A strong oriented k-coloring of an oriented graph G is a homomorphism ϕ from G

to H having k vertices labelled by the k elements of an abelian additive group M ,
such that for any pairs of arcs −→uv and

−→
zt of G, we have ϕ(v)−ϕ(u) 6= −(ϕ(t)−ϕ(z)).

The strong oriented chromatic number χs(G) is the smallest k such that G admits
a strong oriented k-coloring. In this paper, we consider the following problem: Let
i ≥ 4 be an integer. Let G be an oriented planar graph without cycles of lengths 4
to i. What is the strong oriented chromatic number of G?

1 Introduction

Oriented graphs are directed graphs without loops nor opposite arcs. Let G
be an oriented graph. We denote by V (G) its set of vertices and by A(G)
its set of arcs. An oriented k-coloring of an oriented graph G is a mapping
ϕ from V (G) to a set of k colors such that (1) ϕ(u) 6= ϕ(v) whenever −→uv
is an arc in G, and (2) ϕ(u) 6= ϕ(x) whenever −→uv and −→wx are two arcs in
G with ϕ(v) = ϕ(w). The oriented chromatic number of an oriented graph,
denoted by χo(G), is defined as the smallest k such that G admits an oriented
k-coloring.
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Let G and H be two oriented graphs. A homomorphism from G to H is

a mapping ϕ : V (G) → V (H) such that: −→xy ∈ A(G) ⇒
−−−−−−→
ϕ(x)ϕ(y) ∈ A(H)

An oriented k-coloring of G can be equivalently defined as a homomorphism
from G to H, where H is an oriented graph of order k. Then, the oriented
chromatic number χo(G) of G can be defined as the smallest order of an
oriented graph H such that G admits a homomorphism to H.

The problem of bounding the oriented chromatic number has already been
investigated for various graph classes: graphs with bounded maximum average
degree [1], graphs with bounded degree [2], graphs with bounded treewidth
[7,8], graphs subdivisions [9].

Raspaud and Nešetřil [5] introduced the strong oriented chromatic number
χs(G). A strong oriented k-coloring of an oriented graph G is a homomorphism
ϕ from G to H with k vertices labelled by the k elements of an abelian additive
group M of order k, such that for any pair of arcs −→uv and

−→
zt of A(G), ϕ(v)−

ϕ(u) 6= −(ϕ(t) − ϕ(z)). The strong oriented chromatic number χs(G) is the
smallest k such that G admits a strong oriented k-coloring.

Therefore, any strong oriented coloring of G is an oriented coloring of G;
hence, χo(G) ≤ χs(G).

Let M be an additive group and let S ⊂ M be a set of group elements.
The Cayley digraph associated with (M, S), denoted by C(M,S), is then defined
as follows: V (C(M,S)) = M and A(C(M,S)) = {(g, g + s) ; g ∈ M, s ∈ S}. If
the set S is a group generator of M , then C(M,S) is connected. Assuming
that M is abelian and S ∩−S = ∅, then C(M,S) is oriented (neither loops nor
opposite arcs), and for any pair (g1, g1 + s1) and (g2, g2 + s2) of arcs of C(M,S),
g1 + s1 − g1 6= −(g2 + s2 − g2). Thus, finding a strong oriented k-coloring of
an oriented graph G may be viewed as finding a homomorphism from G to
an oriented Cayley graph C(M,S) of order k, for some abelian group M with
S ⊂ M and S ∩ −S = ∅.

In the following we will consider the Paley tournament QRp (where p ≡ 3
(mod 4) is a prime power) that is the Cayley graph C(M,S) with M = Fp =
Z/pZ and S = {x2 ; x ∈ Fp \ {0}}.

Strong oriented coloring of planar graphs was recently studied. Sámal [6]
proved that every oriented planar graph admits a strong oriented coloring with
at most 672 colors. Marshall [3] improved this result and proved the following:

Theorem 1.1 [3] Let G be an oriented planar graph. Then χs(G) ≤ 271.

Borodin et al. [1] studied the relationship between the oriented chromatic
number and the maximum average degree of a graph, where the maximum av-
erage degree, denoted by Mad(G) is: Mad(G) = max{2|E(H)|/|V (H)|, H ⊆



G}. Since they considered homomorphisms to oriented Cayley graphs, they
proved that if Mad(G) < 7/3 (resp. 8/3, 3, 10/3) then χs(G) ≤ 5 (resp. 7,
11, 19). The girth of a graph G is the length of a shortest cycle of G. Since
every planar graph G with girth g satisfies Mad(G) < 2g

g−2
, it follows that if

G is planar with girth at least 14 (resp. 8, 6, 5), then χs(G) ≤ 5 (resp. 7, 11,
19).

In this paper, we consider the following problem:

Problem 1.2 Let i ≥ 4 a integer. Let G be a planar graph without cycles of
lengths 4 to i. What is the smallest value k such that χs(G) ≤ k for each such
G?

We proved [4] that if G is a planar graph without cycles of lengths 4 to i
with i ≥ 5, then Mad(G) < 3 + 3

i−2
and that, for any ε > 0, there exists a

planar graph G without cycles of lengths 4 to i with 3 + 3
i−2

− ε < Mad(G).
Consequently, we obtain the following corollary by the above result of Borodin
et al. [1]:

Corollary 1.3 Let G be a planar graph without cycles of lengths 4 to 14,
χs(G) ≤ 19.

A first improvement over Corollary 1.3 is given by the authors [4].

Theorem 1.4 [4] Every oriented planar graph without cycles of lengths 4 to
11 has a homomorphism to the Cayley graph QR7.

In this paper, we continue this study and prove that:

Theorem 1.5 (i) Every oriented planar graph without cycles of length 4 has
a homomorphism to the Cayley graph QR43.

(ii) Every oriented planar graph without cycles of lengths 4 and 5 has a ho-
momorphism to the Cayley graph QR19.

(iii) Every oriented planar graph without cycles of lengths 4 to 9 has a homo-
morphism to the Cayley graph QR11.

In the following, we present a sketch of the proof of Theorem 1.5.(i) based
on the method of reducible configurations and discharging procedure. Theorems
1.5.(ii) and 1.5.(iii) are based on the same method of proof.

A k-vertex (resp. ≥k-vertex, ≤k-vertex) is a vertex of degree k (resp. ≥ k,
≤ k). The size of a face f , denoted by d(f), is the number of edges on its
boundary walk, where each cut-edge is counted twice. A k-face (resp. ≥k-face,
≤k-face) is a face of size k (resp. ≥ k, ≤ k). We say that an edge e is incident
to a face f if e belongs to the boundary walk of f .



2 The strong oriented chromatic number of planar graphs

without cycles of length 4 is at most 43

Let us define the partial order �. Let n3(G) be the number of ≥3-vertices in
G. For any two graphs G1 and G2, we have G1 ≺ G2 if and only if at least
one of the following conditions holds:

• G1 is a proper subgraph of G2.

• n3(G1) < n3(G2).

Note that this partial order is well-defined, since if G1 is a proper subgraph of
G2, then n3(G1) ≤ n3(G2). So � is a partial linear extension of the subgraph
poset.

Let H be a minimal counterexample to Theorem i according to ≺.

2.1 Structural properties of H

Let us begin with some definitions: A light 4-vertex is a 4-vertex incident to
two 3-faces. A light 3-face is a 3-face incident to two light 4-vertices.

Claim 2.1 The counterexample H does not contain:

(C1) A 1-vertex.

(C2) A 2-vertex incident to a 3-face.

(C3) A 3-vertex.

(C4) A k-vertex adjacent to k 2-vertices with k ≤ 42.

(C5) A k-vertex adjacent to k − 1 2-vertices with 2 ≤ k ≤ 21.

(C6) A k-vertex adjacent to k − 2 2-vertices with 3 ≤ k ≤ 11.

(C7) A k-vertex adjacent to k − 3 2-vertices with 4 ≤ k ≤ 5.

(C8) A 3-face incident to three 4-vertices.

(C9) A 3-face incident to two 4-vertices and to a 5-vertex which is adjacent to
a 2-vertex.

2.2 Discharging procedure

Lemma 2.2 Let H be a connected plane graph with n vertices, m edges and
r faces. Then we have the following:

∑

v∈V (H)

(3d(v) − 10) +
∑

f∈F (H)

(2d(f) − 10) = −20(1)



We define the weight function ω by ω(x) = 3 · d(x) − 10 if x ∈ V (H) and
ω(x) = 2·d(x)−10 if x ∈ F (H). It follows from identity (1) that the total sum
of weights is equal to −20. In what follows, we define discharging rules (R1)
to (R3) and redistribute weights accordingly. Once the discharging is finished,
a new weight function ω∗ is produced. However, the total sum of weights is
kept fixed by the discharging rules. Nevertheless, we can show that ω∗(x) ≥ 0
for all x ∈ V (H) ∪ F (H). This leads to the following obvious contradiction:

0 ≤
∑

x∈V (H)∪F (H)

ω∗(x) ≤
∑

x∈V (H)∪F (H)

ω(x) = −20 < 0

Thus no such counterexample exists.

The discharging rules are defined as follows:

(R1) Each ≥6-vertex gives 2 to each adjacent 2-vertex and to each incident
3-face.

(R2) Each 5-vertex gives 2 to each adjacent 2-vertex, 3
2

to each incident non
light 3-face and 2 to each incident light 3-face.

(R3) Let v be a 4-vertex.
(R3.1) If v is light, then it gives 1 to each incident 3-face
(R3.2) If v is not light, then it gives 2 to each incident 3-face.

Now, let us compute the new charges produced after the discharging pro-
cedure. Let v be a k-vertex, with k /∈ {1, 3} by (C1) and (C3).

If k = 2, then ω(v) = −4. Since v is adjacent to ≥5-vertices by (C1), (C3),
(C5) and (C7), it receives 2 from each adjacent vertices by (R1) and (R2). So,
ω∗(v) = 0.

If k = 4, then ω(v) = 2. If v is light, by (R3.1) it gives twice 1 and so,
ω∗(v) = 0. If v is not light, then v is incident to at most one 3-face. So,
ω∗(v) ≥ 0 by (R3.2).

If k = 5, then ω(v) = 5. By (C7), v is adjacent to at most one 2-vertex.
Moreover, it can be incident to at most two 3-faces. If v is adjacent to a 2-
vertex, then it is not incident to a light 3-face by (C9) and so, ω∗(v) ≥ 5− 2 ·
3
2
−2 ≥ 0 by (R2). If v is not adjacent to a 2-vertex, then ω∗(v) ≥ 5−2 ·2 ≥ 1.

Observe that (R1) is equivalent for v to give 2 per edge incident to a 2-
vertex and 1 per edge incident to a 3-face. It follows that the worst case of
discharging for v appears when v is adjacent to the biggest number of 2-vertices
according to (C4)-(C7). If k = 6, then ω(v) = 8. By (C6), v is adjacent to at
most three 2-vertices. So, ω∗(v) ≥ 8− 3 · 2− 2 ≥ 0. If k = 7, then ω(v) = 11.
By (C6), v is adjacent to at most four 2-vertices. So, ω∗(v) ≥ 11−4 ·2−2 ≥ 1.



If k = 8, then ω(v) = 14. By (C6), v is adjacent to at most five 2-vertices. So,
ω∗(v) ≥ 14 − 5 · 2 − 2 ≥ 2. If k = 9, then ω(v) = 17. By (C6), v is adjacent
to at most six 2-vertices. So, ω∗(v) ≥ 17 − 6 · 2 − 2 ≥ 3. If k ≥ 10, then
ω(v) = 3 · k − 10 and trivially ω∗(v) ≥ 3 · k − 10 − 2 · k ≥ k − 10 ≥ 0.

Let f be a 3-face; ω(f) = −4. By (C2) and (C3), f is incident to ≥4-
vertices. By (C8), f is incident to at most two 4-vertices. Let x, y, z be the
vertices incident to f . Without loss of generality, we consider that 4 ≤ d(x) ≤
d(y) ≤ d(z). If d(z) = 6, then by (R1)-(R3), f receives at least 2 + 2 · 1 = 4
and so ω∗(f) ≥ 0. Consider 4 ≤ d(x) ≤ d(y) ≤ d(z) ≤ 5. If d(y) = 5, then
ω∗(f) ≥ 2 · 3

2
+ 1 ≥ 0. Now, it remains one case: d(x) = d(y) = 4, d(z) = 5. If

x (resp. y) is not light, then x (resp. y) gives 2 and ω∗(f) ≥ 2 + 1 + 3
2
≥ 1

2
.

Consider that x and y are light; hence f is light and receives 1 from x, 1 from
y by (R3) and 2 from z by (R2) and ω∗(f) = −4 + 2 · 1 + 2 = 0.

That shows that ω∗(x) ≥ 0 for all x ∈ V (H) ∪ F (H). The contradiction
with (1) completes the proof.
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the maximum average degree and the oriented chromatic number of a graph.
Discrete Math., 206, 77–89, 1999.
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Abstract

In this paper, we study homomorphisms of 2-edge-colored graphs, that is graphs
with edges colored with two colors. We consider various graph classes (outerplanar
graphs, partial 2-trees, partial 3-trees, planar graphs) and the problem is to find,
for each class, the smallest number of vertices of a 2-edge-colored graph H such
that each graph of the considered class admits a homomorphism to H.

1 Introduction

Our general aim is to study homomorphisms of (n, m)-mixed graphs, that is
graphs with both arcs and edges respectively colored with n and m colors.
This notion was introduced by Nešetřil and Raspaud [5] as a generalization
of the notion of homomorphisms of edge-colored graphs (see e.g. [1]) and the

1 Emails: amanda@ma4.upc.edu, ochem@lri.fr, pinlou@lirmm.fr,
{raspaud,sopena}@labri.fr



notion of oriented coloring (see e.g. [8]). In this paper, we focus on (0, 2)-mixed
graphs, that is 2-edge-colored graphs.

An (n,m)-mixed graph is a set of vertices V (G) linked by arcs A(G) and
edges E(G), such that the underlying graph is simple (no multiple edges or
loops), the arcs are colored with n colors and the edges are colored with m

colors. In other words, there is a partition A(G) = A1(G) ∪ . . . ∪ An(G) of
the set of arcs of G, were Ai(G) contains all arcs with color i and a partition
E(G) = E1(G)∪ . . .∪Em(G) of the edges of G, where Ej(G) contains all edges
with color j. We denote the class of (n,m)-mixed graphs by G(n,m). Observe
that G(0,1) is the class of simple graphs and G(1,0) is the class of oriented graphs.

Let G = {V (G);
⋃n

i=1 Ai(G),
⋃m

j=1 Ej(G)} and H = {V (H);
⋃n

i=1 Ai(H),
⋃m

j=1 Ej(H)} be two (n, m)-mixed graphs. A homomorphism from G to H

is a mapping h : V (G) → V (H) such that (h(u), h(v)) ∈ Ai(H) whenever
(u, v) ∈ Ai(G) (for every i ∈ {1, . . . n}), and h(u)h(v) ∈ Ej(H) whenever
uv ∈ Ej(G) (for every j ∈ {1, . . . m}). The existence of a homomorphism
from G to H is denoted by G → H, and G 6→ H means there is no such
homomorphism.

Given an (n,m)-mixed graph G, the problem is to find the smallest number
of vertices of a graph H such that G → H. This number is denoted by
χ(n,m)(G) and is called the chromatic number of the (n,m)-mixed graph G.
For a simple graph G, the (n,m)-mixed chromatic number is the maximum of
the chromatic numbers taken over all the possible (n,m)-mixed graphs having
G as underlying graph. Note that χ(0,1)(G) is the ordinary chromatic number
χ(G), and χ(1,0)(G) is the oriented chromatic number χo(G). Given a family
F of simple graphs, we denote by χ(n,m)(F) the maximum of χ(n,m)(G) taken
over all members in F .

Note that a complexity result of Edwards and McDiarmid [3] on the har-
monious chromatic number implies that to find the (0, 2)-mixed chromatic
number of a graph is in general an NP-complete problem.

Recall that an acyclic coloring of a simple graph G is a proper vertex-
coloring satisfying that every cycle of G received at least three colors. The
acyclic chromatic number of G, denoted by χa(G), is the smallest k such
that G admits an acyclic k-vertex coloring. The class of graphs with acyclic
chromatic number at most k is denoted by Ak.

Nešetřil and Raspaud [5] proved that the families of bounded acyclic chro-
matic number have bounded (n,m)-mixed chromatic number. More precisely:

Theorem 1.1 [5] χ(n,m)(Ak) ≤ k(2n + m)k−1.



Combining this result with the well-know result of Borodin [2] (every planar
graph has an acyclic chromatic number at most 5), we get:

Corollary 1.2 [5] Let P be the class of (n,m)-mixed planar graphs.
Then χ(n,m)(P) ≤ 5(2n + m)4.

This last upper bound extends some previous known results on edge-
colored planar graph [1] and on oriented planar graphs [6].

Nešetřil and Raspaud [5] also provided the exact (n, m)-mixed chromatic
number of forests (F denotes the class of (n, m)-mixed forests):

Theorem 1.3 [5] χ(n,0)(F) = 2n + 1 and χ(n,m)(F) = 2(n +
⌊

m
2

⌋

+ 1) for
m 6= 0.

Recently, Fabila et al. [4] studied the (n, m)-mixed chromatic number of
paths. They proved that it is exactly the same as for the forests; this proves
that the lower bound of Theorem 1.3 is reached with paths.

We can obtain new bounds on the (n, m)-mixed chromatic number of par-
tial k-trees, planar graphs, and outerplanar graphs thanks to the above results.

A k-tree is a simple graph obtained from the complete graph Kk by re-
peatedly adding a new vertex adjacent to each vertex of an existing clique of
size k. A partial k-tree is a subgraph of some k-tree. It is not difficult to see
that every partial k-tree has acyclic chromatic number at most k+1. We then
get the following from Theorem 1.1:

Corollary 1.4 Let Tk be the class of (n, m)-mixed partial k-trees.
Then χ(n,m)(T

k) ≤ (k + 1)(2n + m)k.

In addition, we can derive lower bounds for outerplanar graphs, planar
graphs and partial 3-trees from Theorem 1.3 and the result of Fabila et al. [4]:

Corollary 1.5 Let ε = 1 for m odd or m = 0, and ε = 2 for m > 0 even.

1. There exist outerplanar graphs G with χ(n,m)(G) ≥ (2n+m)2+ε(2n+m)+1.

2. There exist planar partial 3-trees G with χ(n,m)(G) ≥ (2n + m)3 + ε(2n +
m)2 + (2n + m) + ε.

In this extended abstract, we study the particular class of (0, 2)-mixed
graphs. More precisely, we give the complete classification for the (0, 2)-mixed
chromatic number of outerplanar graphs and partial 2-trees with given girth
(this improves Corollary 1.4 for k = 2). We also provide the exact (0, 2)-mixed
chromatic number of partial 3-trees. Finally, we obtain upper bounds for the
(0, 2)-mixed chromatic number of the class of planar graphs with given girth.



(a) T9 = C3 × C3 (b) T8 (c) T5 = C5

T9,2

u2

u1

T9,1

(d) T20

Fig. 1. The four target graphs T9, T8, T5, and T20.

2 The target graphs

When studying homomorphisms to get bounds on the chromatic number of a
graph class C, one often tries to find an universal target graph for C, that is a
target graph H such that all the graphs of C admits a homomorphism to H.
To prove that a target graph is universal for a graph class, we need “useful”
properties. In this section, we construct four (0, 2)-mixed target graphs which
will be used in the sequel to get upper bounds for (0, 2)-mixed chromatic
number. Their useful properties are given below.

Consider the three graphs depicted in Figures 1(a), 1(b), and 1(c). These
graphs are all self complementary (i.e. isomorphic to their complement). Thus,
let T9 (resp. T8, T5) be the complete (0, 2)-mixed graphs on 9 (resp. 8, 5)
vertices where the edges of each color induce an isomorphic copy of the graphs
depicted in Figure 1(a) (resp. 1(b), 1(c)).

Proposition 2.1 For every pair of distinct vertices u and v of T9 (resp. T5)
and every (0, 2)-mixed k-path Pk = u0, u1, . . . , uk, k ≥ 2 (resp. k ≥ 3), there
exists a homomorphism h from Pk to T9 (resp. T5) such that h(u0) = u and
h(uk) = v.

Proposition 2.2 For each v ∈ V (T8) and each (0, 2)-mixed path of length k,
the number of vertices in T8 reachable from v by such a k-path is at least 3
(resp. 7, 8) if k = 1 (resp. k = 2, k ≥ 3).

For a (0, 2)-mixed graph, the edges can get two distinct colors: we will say
that the edges with the first color are of type 1 whereas the others are of type
2.

Let T20 be the complete (0, 2)-mixed graph defined as follows (the construc-
tion is illustrated by Fig. 1(d)). Take two disjoint copies of T9, namely T9,1,
T9,2, and two new vertices u1 and u2. We put edges of type 1 (resp. of type
2) linking ui to all vertices of T9,i (resp. T9,3−i) for 1 ≤ i ≤ 2. We also add an
edge of type 1 (resp. type 2) between u ∈ V (T9,1) and v ∈ V (T9,2) whenever



uv ∈ E(T9) is of type 2 (resp. type 1). This construction is known as the
Tromp construction and was already used to bound the oriented chromatic
number (i.e. the (1, 0)-mixed chromatic number) [7].

Proposition 2.3 For every triangle u, v, w of T20 and every triple (a, b, c) ∈
{1, 2}3, there exists a vertex t adjacent to u, v and, w such that tu (resp. tv,
tw) is of type a (resp. b, c).

3 Results

Let Og be the class of (0, 2)-mixed outerplanar graphs with girth at least
g. Outerplanar graphs form a strict subclass of partial 2-trees (also known
as series-parallel graphs); therefore, Corollaries 1.4 and 1.5 implies that 9 ≤
χ(0,2)(O3) ≤ 12. We improve this result and characterize the (0, 2)-mixed
chromatic number of outerplanar graphs for all girth:

Theorem 3.1 χ(0,2)(O3) = 9 and χ(0,2)(Og) = 5 for g ≥ 4.

These bounds are obtained by showing that every (0, 2)-mixed outerplanar
graph with girth 3 (resp. girth at least 4) admits a homomorphism to T9

(resp. T5). To get the second result, we construct, for every girth g ≥ 3,
an outerplanar graph G with girth g and χ(0,2)(G) = 5, which proves that
χ(0,2)(O) ≥ 5.

In the same vein, we find the (0, 2)-mixed chromatic number of partial
2-trees for all girths (T2

g denotes the class of partial 2-trees with girth at least
g):

Theorem 3.2 χ(0,2)(T
2
3) = 9, χ(0,2)(T

2
g) = 8 for 4 ≤ g ≤ 5, and

χ(0,2)(T
2
g) = 5 for g ≥ 6.

We get the upper bounds by showing that (0, 2)-mixed partial 2-trees with
girth 3 (resp. 4, 6) admits a homomorphism to T9 (resp. T8, T5). Each
lower bound is obtained by constructing a (0, 2)-mixed partial 2-tree with the
required girth which needs the specified number of colors.

Theorem 1.5 shows that χ(0,2)(T
3) ≥ 20. We prove that this bound is tight:

Theorem 3.3 χ(0,2)(T
3) = 20.

We get this result by showing that every (0, 2)-mixed partial 3-trees admits
a homomorphism to T20.

Finally, we bound the (0, 2)-mixed chromatic number of sparse graphs.
The maximum average degree of a simple graph G, denoted by mad(G), is



defined as mad(G) = max
{

2|E(H)|
|V (H)|

, H ⊆ G
}

, where H ⊆ G means H is a

subgraph of G.

Theorem 3.4 Let G be a simple graph. If mad(G) < 8
3

(resp. 7
3
), then

χ(0,2)(G) ≤ 8 (resp. χ(0,2)(G) = 5).

Our proof technique is based on the well-know method of reducible configu-
rations and discharging procedure. We consider a minimal counterexample H

to Theorem 3.4. We prove that H does not contain a set S of configurations.
Then, we prove, using a discharging procedure, that every graph containing
none of the configurations of S has a maximum average degree greater than
required by the theorem, that contradicts that H is a counterexample.

Let Pg be the class of (0, 2)-mixed planar graphs with girth at least g.

Since every planar graph G with girth g verifies mad(G) < 2g

g−2
, we get the

following corollary for planar graphs with given girth:

Corollary 3.5 χ(0,2)(P8) ≤ 8 and χ(0,2)(P14) = 5.
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Chromatic Edge Strength of Some Multigraphs

Jean Cardinal 1 Vlady Ravelomanana 2 Mario Valencia-Pabon 2

Abstract

The edge strength s′(G) of a multigraph G is the minimum number of colors in a
minimum sum edge coloring of G. We give closed formulas for the edge strength of
bipartite multigraphs and multicycles. These are shown to be classes of multigraphs
for which the edge strength is always equal to the chromatic index.

Keywords: graph coloring, minimum sum coloring, chromatic strength

1 Introduction

During a banquet, n people are sitting around a circular table. The table is large,
and each participant can only talk to her/his left and right neighbors. For each pair
i, j of neighbors around the table, there is a given number mij of available discussion
topics. Assuming that each participant can only discuss one topic at a time, and
that each topic takes an unsplittable unit amount of time, what is the minimum
duration of the banquet, after which all available topics have been discussed? What
is the minimum average elapsed time before a topic is discussed?

In this paper, we show that there always exists a scheduling of the conversations
such that these two minima are reached simultaneously. The underlying mathemat-
ical problem is that of coloring a multicycle with n vertices and mij parallel edges
between consecutive vertices i and j.

1 Université Libre de Bruxelles, Belgium. jcardin@ulb.ac.be.
2 Université de Paris-Nord, France. {vlad,valencia}@lipn.univ-paris13.fr.



Let G = (V,E) be a finite undirected (multi)graph without loops. A vertex
coloring of G is an application from V to a finite set of colors such that adjacent
vertices are assigned different colors. The chromatic number χ(G) of G is the mini-
mum number of colors that can be used in a coloring of G. An edge coloring of G is
an application from E to a finite set of colors such that adjacent edges are assigned
different colors. The minimum number of colors in an edge coloring is called the
chromatic index χ′(G).

In the sequel, we assume that colors are positive integers. The vertex chromatic
sum of G is defined as Σ(G) = min

{
∑

v∈V f(v)
}

where the minimum is taken over
all colorings f of G. Similarly, the edge chromatic sum of G, denoted by Σ′(G), is
defined as Σ′(G) = min

{
∑

e∈E f(e)
}

, where the minimum is taken over all edge
colorings. In both case, a coloring yielding the chromatic sum is called a minimum
sum coloring. The chromatic sum is a useful notion in the context of parallel job
scheduling (see [1,9] for example).

We also define the minimum number of colors needed in a minimum sum coloring
of G. This number is called the strength s(G) in the case of vertex colorings, and
the edge strength s′(G) in the case of edge colorings. Trivially, we have s(G) ≥ χ(G)
and s′(G) ≥ χ′(G).

Previous results. Chromatic sums have been introduced by Kubicka in 1989 [11].
The computational complexity of determining the vertex chromatic sum of a simple
graph has been studied extensively. It is NP-hard even when restricted to some
classes of graphs for which finding the chromatic number is easy, such as bipartite
or interval graphs [2,17]. Approximability results for various classes of graphs were
obtained in the last ten years [1,6,9,5]. Similarly, computing the edge chromatic
sum is NP-hard for bipartite graphs [7], even if the graph is also planar and has
maximum degree 3 [12]. Strong hardness results have also been given for the vertex
and edge strength of a simple graph by Salavatipour [16], and Marx [13].

It has been known for long that the vertex strength can be arbitrarily larger than
the chromatic number [4]. Nicoloso et al. however showed that s(G) = χ(G) for
proper interval graphs [15]. An analog of Brooks’theorem for the vertex strength of
simple graphs has been proved by Hajiabolhassan, Mehrabadi, and Tusserkani [8].

Concerning the relation between the chromatic index and the edge strength,
Mitchem, Morriss and Schmeichel [14] proved an inequality, similar to Vizing’s
theorem. Although it has been conjectured by Harary and Plantholt [18] that
s′(G) = χ′(G) for any simple graph G, this has been disproved by Mitchem et
al. [14] and Hajiabolhassan et al. [8].

2 Bipartite Multigraphs

Theorem 2.1 (König’s theorem [10]) Let G = (V,E) be a bipartite multigraph
and let ∆ denotes its maximum degree. Then χ′(G) = ∆.



Let C be the set of colors used in an edge coloring of a multigraph G. We
denote by Cx the subset of colors in C assigned to edges incidents with vertex x
of G. Moreover, let α and β be two different colors in C, thus a path in G in
which the edges alternate between α and β will be called an (α, β)-path. We also
denote by dG(x) the degree of vertex x in G. In [8] it is mentioned (without proof)
that s′(G) = χ′(G) for any bipartite graph G. We now show that in a bipartite
multigraph, the edge chromatic sum can always be obtained with χ′(G) colors.

Theorem 2.2 Let G = (V,E) be a bipartite multigraph and let ∆ denotes its max-
imum degree. Then s′(G) = χ′(G) = ∆.

Proof. We proceed by contradiction. It is sufficient to assume that s′(G) = ∆ + 1.
So, there is an edge coloring f for G using ∆+1 colors such that

∑

e∈E f(e) = Σ′(G).
Let C = {1, . . . ,∆ + 1} be the set of colors used by f . Choose an edge [a, b]0 in
G having color ∆ + 1. Clearly, Ca ∪ Cb = {1, . . . ,∆ + 1}, otherwise, there exists a
color α ∈ {1, . . . ,∆} not used by any edge adjacent to both vertices a and b which
can be used to color edge [a, b]0. We would obtain a new edge coloring f ′ such that
∑

e∈E f ′(e) <
∑

e∈E f(e) which is a contradiction to the minimality of f . Therefore,
there exist colors α ∈ Ca \ Cb and β ∈ Cb \ Ca such that α, β ≤ ∆.

Let Pαβ denotes a maximal (α, β)-path beginning at vertex a. Notice that such
a path cannot end at vertex b, otherwise G contains an odd cycle contradicting the
fact that G is bipartite. So, we can recolor the edges on Pαβ by swapping colors α
and β. Moreover, after such a color swap, color α is such that α 6∈ Ca and α 6∈ Cb

and thus we can color edge [a, b]0 with color α ≤ ∆ obtaining a new edge coloring
f ′.

We now prove that after such a recoloring,
∑

e∈E f ′(e) <
∑

e∈E f(e) (*). First,
note that if the length of Pαβ is even, the recoloring only affects the value of the
edge [a, b]0, so (*) holds. Therefore, it is sufficient to consider the effects of such a
recoloring when the length of Pαβ is odd. Let 2s+1 be the length of Pαβ , with s ≥ 0.
Thus, initially for f we have the sub-sum (∆ + 1) + (s + 1)α + sβ corresponding
to edge [a, b]0 and to the 2s + 1 edges on Pαβ . After the recoloring, we have for
f ′ that such values have changed to α + (s + 1)β + sα. The change value of f ′

w.r.t. f is β − ∆ − 1 < 0 and so (*) always holds, contradicting in this way the
minimality of f . Therefore, we have proved that if f is an edge coloring for G such
that

∑

e∈E f(e) = Σ′(G), then f uses at most ∆ colors to color the edges of G. 2

3 Multicycles

Let G be a multigraph without loops with m edges. It is easy to deduce that
χ′(G) ≥ max

{

∆, dm
τ
e
}

, where ∆ denotes the maximum degree and τ denotes the
cardinality of a maximum matching in G. This lower bound is indeed tight for
multicycles, defined as cycles in which we can have parallel edges between two



consecutive vertices.

Theorem 3.1 ([3]) Let G = (V,E) be a multicycle on n vertices with m edges and
degree maximum ∆. Let τ denotes the maximal cardinality of a matching in G.
Then

χ′(G) =







∆, if n is even,

max
{

∆, dm
τ
e
}

, if n is odd.

In order to determine the edge strength of a multicycle, we need the following
lemma proved by Berge in [3].

Lemma 3.2 (Uncolored edge Lemma [3]) Let G be a multigraph without loops
with χ′(G) = r + 1. If a coloring of G \ [a, b]0 using a set C of r colors cannot
be extended to color the edge [a, b]0, then the following identities are verified : (i)
|Ca ∪Cb| = r; (ii) |Ca ∩Cb| = dG(a) + dG(b)− r− 2; (iii) |Ca \Cb| = r− dG(b) + 1;
(iv) |Cb \ Ca| = r − dG(a) + 1.

Theorem 3.3 Let G = (V,E) be a multicycle on n vertices with m edges and
maximum degree ∆. Let τ denotes the maximal cardinality of a matching in G.
Then, s′(G) = χ′(G).

Proof. If n is even, by Theorem 2.2, the result follows. So, we assume that n = 2k+
1 for a positive integer k. We proceed by induction on m. Let r = max

{

∆, dm
τ
e
}

.

Assume that m = 2k + 1. In this case, G is a simple odd cycle. Color the edges
in G in such a way that there exist k edges colored with color 1, k edges colored
with color 2 and one edge colored with color 3. Clearly, it is always possible. As
χ′(G) = 3 and k is the size of a maximum matching in G, it is easy to deduce
that the theorem holds for this case. Therefore, we assume that m > 2k + 1 and
assume that the result holds for all multicycles on n vertices with fewer that m
edges. Let [a, b]0 be an edge in G and let G′ = G \ [a, b]0. By induction hypothesis,
we have that there exists an edge coloring f ′ for G′ using r = max

{

∆, dm
τ
e
}

≥
max

{

∆′, dm−1

τ
e
}

≥ χ′(G′) colors, such that
∑

e∈E′ f ′(e) = Σ′(G′), that is, under
f ′ the multigraph G′ verifies s′(G′) = χ′(G′) ≤ r. Assume, by contradiction, that
s′(G) = r+1. Thus, there exists an edge coloring f for G which uses r+1 colors and
verifies

∑

e∈E f(e) = Σ′(G). Notice that the restriction of f to edges in G′ verifies
∑

e∈E′ f(e) = Σ′(G′), otherwise contradicting the optimality of f in G. So, the edge
[a, b]0 is the only edge in G colored by f with color r + 1. So, let C = {1, . . . , r} be
the set of colors used by f on the edges in G′ and for each 1 ≤ i ≤ r, let Ei denotes
the set of edges in G′ colored with color i. By induction hypothesis, we have the
following claim.

Claim 1 There exists a color σ ∈ C such that |Eσ| < k.

The claim holds, otherwise we would have that m − 1 =
∑r

i=1
|Ei| = kr, and



r = m−1

k
< m/k, a contradiction.

By Lemma 3.2, we know that |Ca ∪ Cb| = r. Hence it is sufficient to analyze the
cases σ ∈ Cb \ Ca (or σ ∈ Ca \ Cb) and σ ∈ Ca ∩ Cb.
- Case σ ∈ Cb \ Ca. By Lemma 3.2, there exists a color α ∈ Ca \ Cb. Let G(α, σ)
denote the induced subgraph of G′ by the edges colored by f with colors α and σ.
Let Gb(α, σ) denote the connected component of G(α, σ) containing the vertex b.
Clearly, Gb(α, σ) is a simple (σ, α)-path having b as end-vertex and not containing
vertex a, otherwise, there is a contradiction to Claim 1. So, we can recolor the
edges on the path Gb(α, σ) by swapping colors α and σ in such a way that σ 6∈ Cb.
As color σ 6∈ Ca, we can color the edge [a, b]0 with color σ obtaining in this way an
edge coloring f ′′ for G which uses r colors.

We want to show that
∑

e∈E f ′′(e) <
∑

e∈E f(e) (**), contradicting s′(G) > r.
If the length of the path Gb(α, σ) is even, then

∑
e∈E f ′′(e)−

∑
e∈E f(e) = σ−r−1 ≤

r − r − 1 < 0. If the length of the path Gb(α, σ) is odd (say 2s + 1, with s ≥ 0),
then such a difference is equal to (σ + (s + 1)α + sσ) − (r + 1 + (s + 1)σ + sα) =
α − r − 1 ≤ r − r − 1 < 0. Thus, inequality (**) always holds.

- Case σ ∈ Ca ∩ Cb. By Lemma 3.2, there exist colors α ∈ Ca \ Cb and β ∈ Cb \ Ca

with α 6= β 6= σ. By induction hypothesis, the result holds for G′ = G \ [a, b]0 and
G′ has a minimum sum edge coloring using at most r colors. Thus, the edge [a, b]0
in G is the only edge colored by f with color r + 1.

Let us assume that vertices are ordered clockwise and let b be the right vertex
of edge [a, b]0. Recolor edge [a, b]0 by color β and the edge of color β incident to b
with color r + 1 respectively. Notice that such a procedure does change neither the
value of the sum of colors nor the number of colors used. Let [x, y]0 be the current
edge colored by such a recoloring with color r + 1 such that x is its left vertex, and
find a color βy ∈ Cy \ Cx. By Lemma 3.2 such a color βy exists, otherwise there is
a color θ ≤ r such that θ 6∈ Cx and θ 6∈ Cy, and so we can recolor edge [x, y]0 with
color θ which gives a contradiction to the minimality of f . Repeat such a procedure
until current edge [x, y]0 in G colored with color r + 1 is such that σ ∈ Cx \ Cy

or σ ∈ Cy \ Cx. Clearly it is always possible, because the cycle is odd. Moreover,
notice that |Eσ| < k always hold. Assume w.l.o.g. that σ ∈ Cy \ Cx. By relabeling
the vertex set of G in such a way that x becomes a and y becomes b, we are back
to the first case. This concludes the proof. 2
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A circular-arc graph is the intersection graph of a family of arcs on a circle. A charac-
terization by forbidden induced subgraphs for this class of graphs is not known, and
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1 Introduction

A graph G is a circular-arc (CA) graph if it is the intersection graph of a set
S of arcs on a circle, i.e., if there exists a one-to-one correspondence between
the vertices of G and the arcs of S such that two vertices of G are adjacent
if and only if the corresponding arcs in S intersect. Such a family of arcs
is called a circular-arc (CA) model of G. CA graphs can be recognized in
linear time [6]. A graph is proper circular-arc (PCA) if it admits a CA model
in which no arc is contained in another arc. Tucker gave a characterization
of PCA graphs by minimal forbidden induced subgraphs [8]. Furthermore,
this subclass can be recognized in linear time [2]. A graph is unit circular-arc
(UCA) if it admits a CA model in which all the arcs have the same length.
Tucker gave a characterization by minimal forbidden induced subgraphs for
this class [8]. Recently, linear and quadratic time recognition algorithms for
this class were presented [5,3]. Finally, CA graphs that are complements of
bipartite graphs were characterized by forbidden induced subgraphs [7].

Nevertheless, the problem of characterizing the whole class of CA graphs
by forbidden induced subgraphs remains open. In this work we present some
steps in this direction by providing characterizations of CA graphs by minimal
forbidden subgraphs when the graph belongs to one of four different classes.

Denote by N(v) the set of neighbours of v ∈ V (G); by G|W the subgraph
of G induced by W , for any W ⊆ V (G); by G the complement of G; and by G∗

the graph obtained from G by adding an isolated vertex. If t is a nonnegative
integer, then tG will denote the disjoint union of t copies of G. A graph G is
a multiple of another graph H if G can be obtained from H by replacing each
vertex x of H by a complete graph Kx and adding all possible edges between
Kx and Ky if and only if x and y are adjacent in H.

The graph P4 is an induced path on 4 vertices. A paw is the graph obtained
from a complete K3 by adding a vertex adjacent to exactly one of its vertices.
A diamond is the graph obtained from a complete K4 by removing exactly
one edge. A claw is the complete bipartite graph K1,3. A hole is an induced
cycle of length at least 4. A graph is chordal if it does not contain any hole.

Let A, B ⊆ V (G); A is complete to B if every vertex of A is adjacent to
every vertex of B; and A is anticomplete to B if A is complete to B in G. Let
G and H be two graphs; we say that G is an augmented H if G is isomorphic
to H or if G can be obtained from H by repeatedly adding a universal vertex;
and G is a bloomed H if there exists a subset W ⊆ V (G) such that G|W is
isomorphic to H and V (G) − W induces in G a disjoint union of complete
graphs B1, B2, . . . , Bj for some j ≥ 0, and each Bi is complete to one vertex



Fig. 1. Minimal forbidden induced subgraphs for the class of interval graphs

of H but anticomplete to the other vertices of H. If each vertex in W is
complete to at least one of B1, B2, . . . , Bj, we say that G is a fully bloomed H.
The graphs B1, . . . , Bj are the blooms. A bloom is trivial if it is composed by
only one vertex.

Special graphs needed throughout this work are depicted in Figures 1 and 2.
We use net and tent as abbreviations for 2-net and 3-tent, respectively.

Lekkerkerker and Boland determined all the minimal forbidden induced
subgraphs for the class of interval graphs, a known subclass of CA graphs.

Theorem 1.1 [4] The minimal forbidden induced subgraphs for the class of
interval graphs are: bipartite claw, n-net for every n ≥ 2, umbrella, n-tent for
every n ≥ 3, and Cn for every n ≥ 4 (cf. Figure 1).

This characterization yields some minimal forbidden induced subgraphs
for the class of CA graphs.

Corollary 1.2 [7] The following graphs are minimally non-CA graphs: bipar-
tite claw, net∗, n-net for all n ≥ 3, umbrella∗, (n-tent)∗ for all n ≥ 3, and C∗

n

for every n ≥ 4. Moreover, any other minimally non-CA graph is connected.

We call these graphs basic minimally non-CA graphs. Any other minimally
non-CA graph will be called nonbasic. The following result is a corollary of
Theorem 1.1 and Corollary 1.2, and gives a structural property for all nonbasic
minimally non-CA graphs.

Corollary 1.3 If G is a nonbasic minimally non-CA graph, then G has an
induced subgraph H which is isomorphic to an umbrella, a net, a j-tent for
some j ≥ 3, or Cj for some j ≥ 4. In addition, each vertex v of G − H is
adjacent to at least one vertex of H.

2 Partial characterizations

A cograph is a graph with no induced P4. We will call semicircular graphs to
the intersection graphs of open semicircles on a circle. By definition, semicir-
cular graphs are UCA graphs.



Fig. 2. Some minimally non-CA graphs.

Theorem 2.1 Let G be a graph. The following conditions are equivalent:

(i) G is an augmented multiple of tK2 for some nonnegative integer t.

(ii) G is a semicircular graph.

Theorem 2.2 Let G be a cograph that contains an induced C4, and such that
all its proper induced subgraphs are CA graphs. Then, exactly one of the
following conditions holds:

(i) G is isomorphic to G1 or C∗

4
.

(ii) G is an augmented multiple of tK2 for some integer t ≥ 2.

Corollary 2.3 Let G be a cograph. Then, G is a CA graph if and only if G

contains neither G1 nor C∗

4
as induced subgraphs.

Proof. Suppose that H is a cograph minimally non-CA graph and H is not
isomorphic to G1 or C∗

4
. Since H is not an interval graph and is P4-free

then, by Theorem 1.1, H contains an induced C4. By Theorem 2.2, H is an
augmented multiple of tK2, for some t ≥ 2. Thus, by Theorem 2.1, H is a
circular-arc graph, a contradiction. 2

A paw-free graph is a graph with no induced paw.

Theorem 2.4 Let G be a paw-free graph that contains an induced C4 and
such that all its proper induced subgraphs are CA graphs. Then, at least one
of the following conditions holds:

(i) G is isomorphic to G1, G2, G7, or C∗

4
.

(ii) G is a bloomed C4 with trivial blooms.

(iii) G is an augmented multiple of tK2 for some t ≥ 2.



Theorem 2.5 Let G be a paw-free graph that contains an induced Cj for some
j ≥ 5, and such that all its proper induced subgraphs are CA graphs. Then,
exactly one of the following conditions holds:

(i) G is isomorphic to G2, G4, or C∗

j .

(ii) G is a bloomed Cj with trivial blooms.

Corollary 2.6 Let G be a paw-free graph. Then G is a CA graph if and only
if G contains no induced bipartite claw, G1, G2, G4, G7, or C∗

n (n ≥ 4).

Proof. Suppose that H is not any of those graphs but it is still a paw-free
minimally non-CA graph. In particular, H is not basic. Since H is paw-
free then, by Corollary 1.3, H contains an induced Cj for some j ≥ 4. By
Theorem 2.4 and Theorem 2.5, H is an augmented multiple of tK2 for some
t ≥ 2 or H is a bloomed Cj with trivial blooms. In both cases H would be a
CA graph, a contradiction. 2

A graph is claw-free chordal if it is chordal and contains no induced claw.

Theorem 2.7 Let G be a claw-free chordal graph that contains an induced
net, and such that all its proper induced subgraphs are CA graphs. Then,
exactly one of the following conditions holds:

(i) G is isomorphic to a net∗, G5 or G6.

(ii) G is a CA graph.

Theorem 2.8 [1] Let G be a connected graph which contains no induced claw,
net, C4, or C5. If G contains an induced tent, then G is a multiple of a tent.

Corollary 2.9 Let G be a claw-free chordal graph. Then, G is CA if and
only if G contains no induced tent∗, net∗, G5 or G6.

Proof. Suppose that H is not any of those graphs but it is still a claw-
free chordal minimally non-CA graph. In particular, H is not basic. By
Corollary 1.3, H contains an induced net or an induced tent. If H contains
an induced net then, by Theorem 2.7, H would be isomorphic to a net∗, G5 or
G6, a contradiction. Thus H contains no induced net but an induced tent. If
H is connected, by Theorem 2.8, H is a multiple of a tent and, in particular,
a CA graph. Otherwise, H contains a tent∗, a contradiction. 2

A diamond-free graph is a graph with no induced diamond.

Theorem 2.10 Let G be a diamond-free graph that contains a hole, and such
that all its proper induced subgraphs are CA graphs. Then, exactly one of the
following conditions holds:



(i) G is isomorphic to G1, G2, G3, G4, G7, G8, G9, or C∗

j for some j ≥ 4.

(ii) G is a CA graph.

Theorem 2.11 Let G be a diamond-free chordal graph that contains an in-
duced net, and such that all its proper induced subgraphs are CA graphs. Then,
exactly one of the following conditions holds:

(i) G is isomorphic to a net∗, G5, or G6.

(ii) G is a fully bloomed triangle, and in consequence, it is a CA graph.

Corollary 2.12 Let G be a diamond-free graph. G is CA if and only if G

contains no induced bipartite claw, net∗, G1, G2, G3, G4, G5, G6, G7, G8, G9,
or C∗

n for every n ≥ 4.

Proof. Suppose that H is not isomorphic to any of those graphs but it is still
a diamond-free minimally non-CA graph. Since H is not an interval graph and
it is diamond-free, by Theorem 1.1, H contains either a hole or an induced
net. If H contains a hole, it contradicts Theorem 2.10. If H is chordal, it
contains an induced net, and so H contradicts Theorem 2.11. 2
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Abstract

A graph is clique-perfect if the cardinality of a maximum clique-independent set
equals the cardinality of a minimum clique-transversal, for all its induced sub-
graphs. A graph G is coordinated if the chromatic number of the clique graph
of H equals the maximum number of cliques of H with a common vertex, for every
induced subgraph H of G. Coordinated graphs are a subclass of perfect graphs.
The complete lists of minimal forbidden induced subgraphs for the classes of clique-
perfect and coordinated graphs are not known, but some partial characterizations
have been obtained. In this paper, we characterize clique-perfect and coordinated
graphs by minimal forbidden induced subgraphs when the graph is either paw-free
or {gem,W4,bull}-free, two superclasses of triangle-free graphs.
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1 Introduction

A graph G is perfect if the chromatic number equals the clique number for
every induced subgraph H of G. A graph G is perfect if and only if no induced
subgraph of G is an odd hole or an odd antihole [7]. This class of graphs can
be recognized in polynomial time [6].

A graph G is clique-Helly (CH) if its cliques satisfy the Helly property,
and it is hereditary clique-Helly (HCH) if H is clique-Helly for every induced
subgraph H of G. The clique graph K(G) of G is the intersection graph of
the cliques of G. A graph G is K-perfect if K(G) is perfect.

A paw is a triangle with a leaf attached to one of its vertices. A gem is
a graph of five vertices, such that four of them induce a chordless path and
the fifth vertex is universal. A bull is a triangle with two leafs attached to
different vertices of it. A wheel Wj is a graph of j + 1 vertices, such that j of
them induce a chordless cycle and the last vertex is universal. We say that a
graph is anticonnected if its complement is connected. An anticomponent of
a graph is a connected component of its complement.

A clique-transversal of a graph G is a subset of vertices that meets all the
cliques of G. A clique-independent set is a collection of pairwise vertex-disjoint
cliques. The clique-transversal number of G, τC(G), and the clique-independ-

ence number of G, αC(G), are the sizes of a minimum clique-transversal and a
maximum clique-independent set of G, respectively. Clearly, αC(G) ≥ τC(G),
for any graph G. A graph G is clique-perfect [10] if τC(H) = αC(H) for
every induced subgraph H of G. The only clique-perfect graphs which are
minimally imperfect are the odd antiholes of length 6j + 3, for any j ≥ 1 [4].
The complexity of the recognition problem for clique-perfect graphs is still not
known.

A K-coloring of a graph G is a coloring of K(G). A Helly K-complete

of a graph G is a collection of cliques of G with common intersection. The
K-chromatic number and the Helly K-clique number of G, denoted by F (G)
and M(G), are the sizes of a minimum K-coloring and a maximum Helly K-
complete of G, respectively. It is easy to see that F (G) ≥ M(G) for any
graph G. A graph G is C-good if F (G) = M(G). A graph G is coordinated if

1 Partially supported by UBACyT Grant X184, Argentina and CNPq under PROSUL
project Proc. 490333/2004-4, Brazil.
2 Partially supported by FONDECyT Grant 1050747 and Millennium Science Insti-
tute “Complex Engineering Systems”, Chile and CNPq under PROSUL project Proc.
490333/2004-4, Brazil.
3 The work of this author has been supported by a grant of the YPF Foundation.



every induced subgraph of G is C-good. Coordinated graphs were defined and
studied in [3], where it was proved that they are a subclass of perfect graphs.
The recognition problem for coordinated graphs is NP-hard and remains NP-
complete when restricted to some subclasses of graphs with M(G) = 3 [18].

A class of graphs C is hereditary if for every G ∈ C, every induced subgraph
of G also belongs to C.

Finding the complete lists of minimal forbidden induced subgraphs for the
classes of clique-perfect and coordinated graphs turns out to be a difficult
task ([1,17]). However, some partial characterizations have been obtained in
previous works (see [1,2,5,11]). In this paper, we characterize clique-perfect
and coordinated graphs by minimal forbidden induced subgraphs when the
graph is either paw-free or {gem,W4,bull}-free, two superclasses of triangle-
free graphs. In particular, we prove that in these cases clique-perfect and
coordinated graphs are equivalent to perfect graphs and, in consequence, the
only forbidden subgraphs are the odd holes. As a direct corollary, we can
deduce polynomial time algorithms to recognize clique-perfect and coordinated
graphs when the graph belongs to these classes.

2 Main results

Triangle-free graphs were widely studied in the literature, usually in the con-
text of graph coloring problems (see for example [12,13]). It is easy to see that
if a graph is triangle-free then it is perfect if and only if it is clique-perfect,
if and only if it is coordinated. We shall extend this result by analyzing two
superclasses of triangle-free graphs: paw-free and {gem,W4,bull}-free graphs.

Paw-free graphs were studied in [14]. In this work we prove that the
characterization mentioned above for clique-perfect and coordinated graphs
on triangle-free graphs also holds on paw-free graphs.

Lemma 2.1 [14] Let G be a paw-free graph. If G is not anticonnected then

the anticomponents of G are stable sets. If G is connected and anticonnected

then G is triangle-free.

We first prove the following auxiliary results.

Theorem 2.2 Let G be a paw-free, connected and anticonnected graph. Then

G is perfect if and only if G is bipartite.

Theorem 2.3 Let G be a paw-free graph. If G is not anticonnected, then G

is coordinated.

Now we can prove the main result for paw-free graphs.



Theorem 2.4 Let G be a paw-free graph. The following statements are equiv-

alent:

(i) G is perfect.

(ii) G is clique-perfect.

(iii) G is coordinated.

Proof:

(i) ⇒ (ii)) Since the class of paw-free perfect graphs is hereditary, it is
enough to see that αc(G) = τc(G). We can assume that G is connected. If
G is anticonnected, then by Theorem 2.2, G is bipartite, and so G is clique-
perfect. If G is not anticonnected, then by Lemma 2.1, G has A1, . . . , As

anticomponents with Ai being an stable set, for all 1 ≤ i ≤ s. Without
loss of generality, we can assume that |A1| ≤ |Ai| (2 ≤ i ≤ s). Denote
a = |A1|. Every clique of G is composed by exactly one vertex of each Ai.
Let vi

1, . . . , v
i
|Ai|

be an enumeration of the vertices of Ai (for 1 ≤ i ≤ s). For

each j (1 ≤ j ≤ a), let Kj = {v1
j , . . . , v

s
j}. Clearly, Kj is a clique and for

1 ≤ i < j ≤ a, Kj ∩ Ki = ∅. Therefore, K1, . . . , Ka is a clique-independent
set, which implies that αc(G) ≥ a. On the other hand, since every clique has
a vertex of A1, then A1 is a clique-transversal of G. Therefore τc(G) ≤ a. So,
a ≤ αc(G) ≤ τc(G) ≤ a, and hence αc(G) = τc(G).

(ii) ⇒ (iii)) We can assume that G is connected. If G is not anticonnected,
then by Theorem 2.3, G is coordinated. If G is anticonnected, then by Lemma
2.1, G has no triangles and therefore G does not have odd antiholes with length
greater than 5. On the other hand, since odd holes are not clique-perfect, G

has no odd holes. We conclude that G is perfect. Let G′ be an induced
subgraph of G. To see that G′ is C-good, it is enough to prove that every
connected component of G′ is C-good. Let H be a connected component of
G′. If H is not anticonnected, then by Theorem 2.3, H is coordinated; in
particular it is C-good. If H is anticonnected, since it is also connected and
perfect, by Theorem 2.2 it follows that H is bipartite. Then H is C-good.

(iii) ⇒ (i)) Coordinated graphs are a subclass of perfect graphs. 2

Corollary 2.5 Clique-perfect and coordinated graphs can be recognized in lin-

ear time when the graph is paw-free.

Bull-free graphs were studied in the context of perfect graphs [8,16], and
{gem,W4}-free graphs in the context of clique-perfect graphs [9]. It is not
difficult to build examples of {gem,W4}-free perfect graphs which are neither
clique-perfect nor coordinated. So, the equivalence of Theorem 2.4 does not



hold on this class. But we can prove the same equivalence if we also forbid
bulls.

First we will show that if {gem,W4,bull}-free graphs are perfect, they are
K-perfect. We prove the following auxiliary results.

Theorem 2.6 If G is a {gem,W4}-free graph then K(G) is a {gem,W4}-free
graph, hence K(G) contains no odd antihole of length greater than 5.

Let G be a graph. A K-hole Q1, . . . , Qk (k ≥ 4) is a set of cliques of G

which induces a hole in K(G) (i.e., Qi ∩Qj 6= ∅ ⇔ i = j or i ≡ j± 1 mod k).
An intersection cycle of a K-hole Q1, . . . , Qk is a cycle v1, . . . , vk of G such
that vi ∈ Qi ∩ Qi+1 for every i, 1 ≤ i ≤ k. Let C be a cycle of a graph G. An
edge (v, w) of C is improper if there is a vertex z ∈ C such that v, w, z is a
triangle. An edge of C is proper if it is not improper.

Lemma 2.7 Let G be a perfect {gem,W4,bull}-free graph and C = v1, . . . ,

v2k+1 (k ≥ 2) an intersection cycle of a K-hole Q1, . . . , Q2k+1. Then C con-

tains neither two consecutive improper edges nor two consecutive proper edges.

Now we can prove that a perfect {gem,W4,bull}-free graph is K-perfect.

Theorem 2.8 If G is a perfect {gem,W4,bull}-free graph then G is K-perfect.

Proof: Suppose G is not K-perfect. By Theorem 2.6, K(G) contains no
odd antihole of length greater than 5. Therefore, K(G) contains an odd hole,
so there is an odd-length intersection cycle v1, . . . , v2k+1 (k ≥ 2) in G. Call
ei = (vi, vi+1) for every i, 1 ≤ i ≤ 2k + 1. By Lemma 2.7 we may assume that
e1 is an improper edge and e2 is a proper edge. By a repeated application of
the same lemma (note that the cycle is odd) we obtain that e2k+1 is improper
and therefore e1 is proper, which is a contradiction. 2

By the characterization of HCH graphs by forbidden subgraphs [15],
{gem,W4,bull}-free graphs are also HCH. It is known that if C is an hereditary
class of K-perfect clique-Helly graphs, every graph in C is clique-perfect and
coordinated [1,5]. So, since {gem,W4,bull}-free graphs is an hereditary class
of graphs, we obtain as a corollary of Theorem 2.8 the following equivalence.

Theorem 2.9 Let G be a {gem,W4,bull}-free graph. Then G is perfect, if

and only if G is clique-perfect, if and only if G is coordinated.

Corollary 2.10 Clique-perfect and coordinated graphs can be recognized in

polynomial time when the graph is {gem,W4,bull}-free.

It remains as an open problem to determine the “biggest” superclass of
triangle-free graphs where perfect, clique-perfect and coordinated graphs are
equivalent.
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Abstract

A subset A of vertices in a graph G is an r-packing if the distance between every pair
of distinct vertices in A is more than r. The packing chromatic number, χρ(G), is



the smallest k for which there exists some partition V1, V2, . . . , Vk of the vertex set of
G such that Vr is an r-packing. We obtain lower and upper bounds for the packing
chromatic number of Cartesian products and subdivisions of finite graphs and study
the existence of monotone colorings in trees. The infinite, planar triangular lattice
and the three dimensional square lattice are shown to have unbounded packing
chromatic number.

1 Introduction

There are several equivalent ways to view a proper k-coloring of a graph G =
(V, E). One is that of a function c : V → {1, 2, . . . , k} such that c(u) 6= c(v)
for every edge uv of G. In this definition the positive integers are used simply
as distinct symbols. Such a coloring function corresponds in a natural way to
a partition V1, V2, . . . , Vk of V into independent sets that is obtained by letting
Vi = {v | c(v) = i}.

A subset A of V is an r-packing if the distance in G between each pair of
distinct vertices in A is more than r. The cardinality of a largest r-packing
is denoted ρr(G). An independent set is thus a 1-packing and a largest such
set has cardinality α(G) = ρ1(G), while a 2-packing is a collection of vertices
with pairwise disjoint closed neighborhoods. One application of these distance
packings is to coding theory. If G is the n-dimensional hypercube consisting
of all bit strings of length n, then a (2s + 1)-packing in G is a code C that
can correct s or fewer transmission errors using the method of closest-distance
decoding. See [4]. Perhaps it is desired to place broadcasting stations having
signals of various powers at the vertices of a graph. Stations using the same
frequency must be placed far enough apart in such a way that the power
of their signals do not allow them to propagate so as to interfere with one
another. In this model the vertex set must be partitioned with a distance
restriction on vertices in the same cell of the partition.

This more restrictive notion of coloring was introduced by Goddard, et
al, in [3] under the name broadcast coloring. Since both packings and col-
orings are involved, we have chosen to use the more descriptive name pack-
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3 Support from the Ministry of Science of Slovenia under grant PI-0297
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ing chromatic. Specifically, the packing chromatic number of a graph G, de-
noted χρ(G), is the smallest positive integer k such that there exists a map
c : V (G) → {1, 2, . . . , k} such that Vr = c−1(r) is an r-packing in G for each
1 ≤ r ≤ k. In this paper we use the term coloring to refer either to c or to
the accompanying induced partition V1, V2, . . . , Vk.

2 Monotone Colorings and Trees

One graphical invariant that has an influence on the size of χρ(G) is the
diameter of G. If c : V (G) → N is a packing coloring, then |c−1(k)| ≤ 1
for any k ≥ diam(G). In particular, if G has order n and diameter two,
then χρ(G) ≥ n − ρ1(G) + 1. In [3] the authors were able to give an explicit
formula for the packing chromatic number of trees of diameter at most four.
In addition, with the exception of two special cases, they proved a sharp upper
bound of (n+7)/4 for χρ(T ) when T is a tree of order n. It is NP-hard to decide
if an arbitrary graph G satisfies χρ(G) ≤ 4, but the complexity of computing
the packing chromatic number of a tree is not known. In considering this
question we were led to the notion of colorings with the following property. A
packing coloring V1, V2, . . . , Vk of G is said to be monotone if

|V1| ≥ |V2| ≥ · · · ≥ |Vk| .

Since ρr+1(G) ≤ ρr(G) for any G, it seemed reasonable that a graph—in
particular, any tree—would have an optimal coloring that is monotone. To
the contrary, we discovered an infinite family {Tk} of trees that each possess
a unique optimal coloring V1, V2, V3 such that |V3| = k + 1 but |V2| = 2. On
the other hand, we proved the following result that shows every graph has an
optimal coloring that is at least partially monotone.

Proposition 2.1 ([1]) Let G be any graph and let m be a positive integer

such that m ≤ bχρ(G)

2
c. Then there exists a packing coloring c : V (G) →

{1, 2, . . . , χρ(G)} such that |c−1(m)| ≥ |c−1(n)| for all n ≥ 2m.

3 Cartesian Products and Subdivisions

The Cartesian product of two graphs G and H is the graph, G 2 H, whose
vertex set is (set) Cartesian product V (G) × V (H). Two vertices of G 2 H
are adjacent if they are equal in one coordinate and adjacent in the other.

For finite graphs we prove the following generalization of a result of [3].



Theorem 3.1 ([1]) Let G and H be finite graphs of order at least two. Then

χρ(G 2 H) ≥ (χρ(G) + 1)|V (H)| − diam(G 2 H)(|V (H)| − 1) − 1 .

The subdivision graph, S(G), of G = (V, E) is obtained from G be replacing
each edge e = vivj of G by a new vertex vi,j and two edges vivi,j and vjvi,j.
We prove sharp bounds for the packing chromatic number of the subdivision
graph S(G) in terms of the clique number and packing chromatic number of
G. These bounds are achieved when G is complete.

Theorem 3.2 ([1]) For any connected graph G of order at least three,

ω(G) + 1 ≤ χρ(S(G)) ≤ χρ(G) + 1 .

4 Infinite Graphs

The two-way infinite path with the integers as vertex set will be denoted
P∞. Let R2 denote the planar square lattice (i.e., R2 = P∞ 2 P∞) while
R3 = P∞ 2 P∞ 2 P∞. The (planar) hexagonal lattice, H, is isomorphic to
the spanning subgraph of R2 obtained by removing all edges of the form
[(2j − 1, 2k), (2j, 2k)] and [(2j, 2k− 1), (2j +1, 2k− 1)]. The planar triangular
lattice, T , is the plane dual of H. Alternately, T is isomorphic to the graph
obtained from R2 by adding all edges of the form [(j, k), (j + 1, k − 1)].

Since the packing chromatic number of a subgraph H of G is bounded
above by χρ(G) we have the following chain of inequalities,

3 = χρ(P∞) ≤ χρ(H) ≤ χρ(R2) ≤ χρ(R3).(1)

In fact, we proved in [1] that the packing chromatic number of H is either
6, 7 or 8 and in [3] it was shown that 9 ≤ χρ(R2) ≤ 23. For the other two
infinite graphs defined above we show the following.

Theorem 4.1 ([2]) The planar triangular lattice, T , and the three dimen-

sional square lattice, R3 have unbounded packing chromatic number.
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Abstract

It is known that every simple graph with n3/2 edges contains a 4-cycle. A similar
statement for digraphs is not possible since no condition on the number of arcs
can guarantee an (oriented) 4-cycle. We find a condition which does guarantee the
presence of a 4-cycle and our result is tight. Our condition, which we call f -mixing,
can be seen as a quasirandomness condition on the orientation of the digraph. We
also investigate the notion of mixing for regular and almost regular digraphs. In
particular we determine how mixing a random orientation of a random graph is.
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1 Introduction
Throughout this paper we use the notation G for an undirected graph and
D for a digraph, V for a vertex set and E for an edge (or arc) set. Unless
otherwise stated all digraphs are without loops, multiple arcs or 2-cycles. We
write e(D), or simply e, for the number of arcs in a digraph D. We use
the notation xy or yx to represent an edge {x, y}. An arc (x, y) will be
denoted −→xy. For two not necessarily disjoint subsets A, B ⊂ V , we denote by
E(A, B) = {−→uv ∈ E : u ∈ A, v ∈ B} the set of arcs from A to B, and by
e(A, B) = |E(A, B)| its cardinality. The out-neighbours (resp. in-neighbours)
of u is the set Γ+(u) = {v : −→uv ∈ E} (resp. Γ−(u) = {v : −→vu ∈ E}). The out-
degree (resp. in-degree) of u is d+(u) = |Γ+(u)| (resp. d−(u)). We shall also
mention the out-out-neighbours Γ++(u) = {w : ∃v ∈ V such that−→uv,−→vw ∈ E}
and the in-in-neighbours Γ−−(u).
In a simple graph G (resp. a digraph D) a k-cycle consists of k distinct vertices
v0, . . . , vk−1 such that for all 0 ≤ i ≤ k − 1, vivi+1 modulo k (resp −−−→vivi+1) ∈ E.

Finally, for a more complete version, please refer to [1].

1.1 Our problem
It is known that every simple graph with n3/2 edges contains a 4-cycle. Specif-
ically, writing ex(n, C4) for the maximum number of edges a graph G on n
vertices can have without containing a 4-cycle, it was shown by Erdős, Rényi
and Sós [2] that ex(n, C4) = (1

2
+ o(1))n3/2, (see also [3] which shows that the

example of [2] is best possible).
A similar result for digraphs is not possible, consider the digraph D on

vertex set V = {1, ..., n}, with an arc
−→
ij whenever i < j. D has

(

n
2

)

arcs
(the most possible) but contains no (oriented) 4-cycle. So no condition on
the number of arcs can guarantee the existence of an 4-cycle. However, in
this example D has an extreme ‘bias’ in its orientation: we can find subsets
A, B ⊂ V with e(A, B) = n2/4 but e(B, A) = 0. Our main result will be that
only strongly biased digraphs can avoid containing 4-cycles.

Definition 1.1 Given a digraph D and f ∈ R, we say D is f -mixing if for
every (not-necessarily disjoint) pair of subsets A, B ⊂ V with e(A, B) ≥ f ,
we have e(B, A) > e(A, B)/2.

In words, a digraph D is f -mixing if whenever there are many arcs from
A to B (ie. at least f arcs) then we have more than half as many back. This
gives us a large range of mixing conditions getting stronger as f decreases.
We can now formulate the main theorem of this paper:

Theorem 1.2 i There exists ε > 0, such that every (εe2/n2)-mixing digraph
D contains a 4-cycle.

ii In fact D has at least ce4/n4 of them (for a constant c > 0).



Remark 1.3 i The number of 4-cycles in a typical simple graph is of the
order e4/n4. Hence the number of (oriented) 4-cycles given to us by the
above theorem is (up to multiplication by constant) the largest we could
possibly hope for. In fact any (εe2/n2)-mixing digraph contains the
correct order of any orientation of a 4-cycle.

ii In Section 3, we give examples of digraphs which are (Ke2/n2)-mixing
(where K is a large constant) and do not contain 4-cycles. This means
that the mixing condition cannot be weakened, so Theorem 1.2 is best pos-
sible.

iii In the case where e is of order n2, it is not too difficult to deduce Theorem
1.2 using Szemeredi’s regularity Lemma (cf [4] for a survey).

Given a result like Theorem 1.2 it is important to ask: Do there exist
digraphs which are (εe2/n2)-mixing? Lemma 1.4, which is obtained by a
simple application of Chernoff’s inequality, answers this question:

Lemma 1.4 There exists K such that for any simple graph G on n vertices,
the digraph D obtained by orienting the edges of G at random, is Kn-mixing
with positive probability (always) and with high probability (as n tends to infin-
ity). In particular, if e is much larger than n3/2 then Kn is less than (εe2/n2)
and so D is (εe2/n2)-mixing with positive probability and with high probability.

In Section 2, we sketch the proof of the first part of Theorem 1.2, the
complete proof can be found in [1] as well as all the omitted proofs. In Sec-
tion 3, we show that the condition (εe2/n2)-mixing can not be weakened to
(Ke2/n2)-mixing, where K is a large constant. In Section 4, we consider the
question of ‘how mixing’ a digraph can be. In particular, we find a constant
c > 0 such that randomly oriented random graphs are (with high probability)
not cn-mixing. This provides a converse to Lemma 1.4.

2 Proof of Theorem 1.2(i)
Given a digraph D on V = {1, ..., n}, it simplifies the proof to consider
(D, X, Y ), the double cover of D. (D, X, Y ) is defined on vertex set X ∪ Y
where X = {x1, ..., xn} and Y = {y1, ..., yn}, and has arc set E(D, X, Y ) =

{−−→xiyj,
−−→yixj :

−→
ij ∈ E(D)}. If D is f -mixing, then (D, X, Y ) has Property 1:

Property 1 For any pair A ⊂ X and B ⊂ Y (or A ⊂ Y and B ⊂ X) such
that e(A, B) ≥ f , we have e(B, A) > e(A, B)/2.

We take ε = 1/32, if D is εe2/n2-mixing then (D, X, Y ) has Property 1
with f = e2/32n2, we show that this implies the presence of a four cycle in
(D, X, Y ), which in turn implies the presence of a four cycle in D. We begin
by defining for each vertex x ∈ X the quantity ex = e(Γ+(x), Γ++(x)).



Lemma 2.1 With (D, X, Y ) as above, we have:
∑

x∈X ex ≥ e2/8n

We now give a compact version of our proof of Theorem 1.2(i), for the
complete version cf [1]. We focus on the set of vertices W = {x ∈ X : ex ≥
e2/16n2}. In doing so we keep most of the sum

∑

x∈X ex:
∑

x∈W

ex ≥ e2/16n.

Now for each x ∈ W we have e(Γ+(x), Γ++(x)) ≥ εe2/n2. Property
1 implies e(Γ++(x), Γ+(x)) ≥ ex/2. In other words, writing d++(x, u) for
|Γ+(x) ∩ Γ+(u)|, we have for each x ∈ W that,

∑

u∈Γ++(x) d++(x, u) ≥ ex/2.

Hence:
∑

u

∑

x∈Γ−−(u)

d++(x, u) =
∑

x

∑

u∈Γ++(x)

d++(x, u) ≥ 1
2

∑

x∈W

ex ≥ e2

32n

So there exists u with
∑

x∈Γ−−(u) d++(x, u) ≥ e2/32n2, ie. e(Γ−−(u), Γ+(u)) ≥

e2/32n2. By Property 1, we have: e(Γ+(u), Γ−−(u)) ≥ e2/64n2. Each arc from
Γ+(u) to Γ−−(u) gives us a 4-cycle so we are done because e2/64n2 > 0 (as
the empty graph is not εe2/n2-mixing). The proof works for ε = 1

32
.

3 (Ke2/n2)-mixing without a 4-cycle
We have proved that every (εe2/n2)-mixing digraph contains a 4-cycle. It
is natural to ask whether this result would fail if ε was replaced by a large
constant K. In this Section, we give examples of digraphs which are (Ke2/n2)-
mixing but do not contain any oriented 4-cycle.

Using Erdős-Rényi graphs, we can find for all m, a graph G on m vertices
with at least 1

20
m3/2 edges which does not contain a 4-cycle. By Lemma 1.4, a

random orientation of G is Lm-mixing with positive probability, where L is a
constant. Taking D′ as a Lm-mixing orientation of G gives our first example,
for D contains no (oriented) 4-cycle and is (Ke2/m2)-mixing, for K = 400L.

Theorem 1.2 holds for all pairs n, e, the examples above all have e =
Θ(n3/2). Are there examples for other pairs n, e? In fact taking a stronger
variant of the above example, and then taking a blow up of it in which each
vertex is replaced by l vertices and each arc by the corresponding l2 arcs,
we obtain a digraph D with |V (D)| = ml and e(D) = e(D′)l2, which is
K ′e(D)2/|V (D)|2-mixing (for some K ′, proof sketched below) which does not
contain 4-cycles. Hence, we obtain a wide class of examples, one for each pair
m, l. Now for any pair n, e with e > n3/2 a suitable choice of m, l yields a
digraph D with about n vertices and about e edges which is K ′e2/n2-mixing
and contains no 4-cycles.

D is K ′e(D)2/|V (D)|2-mixing for, if there were sets A, B ⊂ V (D) with
e(A, B) ≥ K ′e2/n2 and e(B, A) ≤ e(B, A)/2, then one can find A′, B′ ⊂ V (D)



each a union of cells of the blow up which also display a strong bias, this
contradicts the mixing property of D′, and thus no such pair A, B can exist,
ie. D is K ′e2/n2-mixing. See [1].

4 How mixing can digraphs be?
Lemma 1.4 says that, if K is a large constant, randomly oriented digraphs are
Kn-mixing with high probability. The presence of non necessarily disjoint sets
of vertices A and B with arcs from A to B and none from B to A (e(A, B) > 0
and e(B, A) = 0) is a natural obstruction for a digraph to be highly mixing.
It is why we ask the following question:

Given a digraph D, what is maxAB
D = max{A,B:e(B,A)=0}(e(A, B))? In fact

this question can be asked for any digraph, with or without 2-cycles. Let now
state some complexity results about it:

Theorem 4.1 Given a digraph potentially with 2-cycles, computing maxAB
D

is NP-hard and hard to approximate within a factor n1−ε for some ε > 0.

In a digraph with multiple arcs, maxAB
D can be equal to zero, but this is

strongly due to the presence of 2-cycles. What happens when the digraph has
no 2-cycles? We prove that for almost d-regular digraphs (digraphs such that
for all vertices v ∈ V we have d ≤ d−(v), d+(v) ≤ 2d), maxAB

D is at least linear
in n. This means that almost regular graphs cannot be εn-mixing for small ε.
To prove it, we construct the sets A and B using the following algorithm:

Algorithm 1 1: Let v ∈ V , set A = {v} and B = Γ+(v).
2: For all u ∈ V \ A evaluate the function:

f(u) = e({u}, A) + e(A, {u, })
∑

v∈A

(

|Γ+(v)∩ Γ−(u)|+ |Γ+(u)∩ Γ−(v)|
)

.

3: while there is a vertex u with f(u) < d+(u) do

4: Add to A the vertex v which maximizes d+(v) − f(v).

5: Update B: B =
(

B ∪Γ+(v)
)

\
(

A∪
(

B ∩Γ−(v)
)

∪
(

Γ+(v)∩Γ−(A)
)

)

.

6: Update f(u) for all u ∈ V \ A.
7: end while

8: return A and B.

Using this algorithm on almost d-regular digraphs, one can prove:

Lemma 4.2 Let D be an almost d-regular digraphs, there exist subsets A, B ⊂
V with e(A, B) ≥ n

16
and e(B, A) = 0. So that D is emphatically not ( n

16
)-

mixing.

As a random orientation of a random graph gives whp an almost regular
digraph, we may deduce:



Corollary 4.3 Consider the digraph D obtained by randomly orienting the
edges of the random graph G(n, p). If p = ω(log n/n) then whp there exist
subsets (A, B) ⊂ V (G)2 with e(A, B) ≥ n

16
and e(B, A) = 0. So that with high

probability D is emphatically not ( n
16

)-mixing for large n.

5 Conclusion
We have introduced a new notion: the notion of mixing digraphs. This notion
can be used to give a tight condition for guaranteeing the presence of a 4-
cycle in the digraph. For a fixed digraph D′ one can ask whether there exists
a mixing condition which guarantees the presence of a copy of D′. So far we
have only partial results. We have also investigated how mixing digraphs can
be. In particular, almost d-regular digraphs are not ( n

16
)-mixing and whp a

random orientation of a random graph is Kn-mixing but not εn-mixing where
K > ε > 0 are constants. In proving these results we have shown that it
is often possible to find subsets A, B with many edges from A to B, while
there are none from B to A. Many interesting questions remain such as, is
maxAB

D NP-hard in digraphs without 2-cycles, can we find algorithms to better
approximate maxAB

D .
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Abstract

We study properties of graphs related to the existence of certain vertex and edge
partitions. These properties give sufficient conditions for a graph to be Class 1 (i.e.,
edge-colorable with maximum degree colors). We apply these conditions for solving
the classification problem for graphs with acyclic core (the subgraph induced by the
maximum degree vertices), and for subclasses of join graphs and cobipartite graphs.
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1 Introduction

Let G = (V, E) be a simple graph (i.e., without loops or multiple edges). The
maximum degree of a vertex in G is denoted by ∆G. A vertex of maximum
degree is called a delta-vertex and we denote by ΛG the set of delta-vertices
of G. We denote by AdjG(v) the set of vertices of G adjacent to vertex v, and
by NG(v) the set AdjG(v) ∪ {v}. Similarly, for Z ⊂ V , we denote AdjG(Z) =
∪v∈ZAdjG(v) and NG(Z) = AdjG(Z)∪Z. G[Z] is the subgraph induced by Z.

1 This research was partially supported by CNPq 470420/2004-9.
2 Email: {raphael,celina}@cos.ufrj.br



Given a partition (VL, VR) of V , with VL, VR 6= ∅, we denote BG(VL, VR) =
(V, {uv ∈ E|u ∈ VL ∧ v ∈ VR}) and DG(VL, VR) = (V, {uv ∈ E|u, v ∈ VL ∨
u, v ∈ VR}). When the partition is clear, we write only BG and DG. Note
that BG is bipartite, DG is disconnected, and BG ∪ DG = G.

A k-edge-coloring of a graph G = (V, E) is a function π : E → C, with
|C| = k. A partial edge-coloring π′ of a graph is an edge-coloring of a subset
E ′ ⊂ E, π′ : E ′ → C. An edge-coloring is proper if no two edges incident to
the same vertex receive the same color. The chromatic index of G, denoted by
χ′(G), is the least k for which G has a proper k-edge-coloring. In the present
work, the edge-colorings are assumed to be proper.

Vizing’s theorem [1] states that χ′(G) = ∆G or χ′(G) = ∆G + 1, defining
the classification problem. Graphs with χ′(G) = ∆G are said to be Class 1 ;
graphs with χ′(G) = ∆G +1 are said to be Class 2. It is NP-complete even to
determine [3] if a cubic graph has chromatic index 3. The goal of this paper
is to find sufficient conditions for classifying graphs as Class 1.

2 Union of Graphs

We say that G = (V, E) is the union of G1 = (V1, E1) and G2 = (V2, E2) if
V = V1 ∪ V2 and E = E1 ∪ E2. We write G = G1 ∪ G2, we say that G is
a union graph, and that G1 and G2 are the operands of the union operation.
Observe that V1 ∩ V2 and E1 ∩ E2 are not necessarily empty.

2.1 Coloring an uncolored edge of a graph

We use Vizing’s theorem for determining sufficient conditions for being possi-
ble to color an uncolored edge in a partially colored graph without using new
colors. The following useful lemma identifies these conditions.

Lemma 2.1 Let π : E \ {uv} → C be a partial ∆G-edge-coloring of G =
(V, E). If (AdjG(u) \ {v}) ∩ ΛG = ∅, then G is ∆G-edge-colorable.

2.2 Union operations where the maximum degrees of the operands are added

Let G = G1 ∪ G2 with ∆G = ∆G1
+ ∆G2

. We consider two cases according to
the classification of the operands G1 and G2.

Case 1: Both G1 and G2 are Class 1. This condition easily implies
that no recoloring is needed — we just color the edges of G1 with ∆G1

colors
and the edges of G2 with additional ∆G2

colors.



Proposition 2.2 Let G = G1 ∪G2 be a union of two graphs such that ∆G =
∆G1

+ ∆G2
. If G1 and G2 are Class 1, then G is Class 1.

Case 2: Only G1 is Class 1. Now we state a sufficient condition for the
union graph G = G1 ∪ G2 to be Class 1 regardless the classification of G2.
First, we consider the special case where ∆G1

= 1; then, the general case.

Lemma 2.3 Let G1 = (V1, E1) and G2 = (V2, E2), where E1 is a matching

such that every edge has not both endvertices in NG2
(ΛG2

). If G = G1 ∪ G2

has maximum degree ∆G = ∆G2
+ 1, then G is Class 1.

Proof (Sketch) Consider a (∆G2
+ 1)-edge-coloring of G2 and add to G2 all

edges of E1, one at a time. We show that, independently of the order the
edges are added, they will always satisfy the conditions of Lemma 2.1. So, no
new color will be needed to color G = G1 ∪ G2. Since ∆G = ∆G2

+ 1, G is
Class 1. 2

Proposition 2.4 Let G = G1 ∪ G2 be the union of a Class 1 graph G1 =
(V1, E1) and a graph G2 = (V2, E2) such that ∆G = ∆G1

+ ∆G2
. If every edge

of E1 has not both endvertices in NG2
(ΛG2

), then G is Class 1.

Proof (Sketch) Let πG1
: E1 → {1, ..., ∆G1

} be an edge-coloring of G, M1 =
{e ∈ E1|πG1

(e) = 1}, G′

1 = (V1, M1), and G′′

1 = (V1, E1 \ M1). We show the
proposition in two steps: first, we use Lemma 2.3 for showing that G′ = G′

1∪G2

is Class 1; then, by Proposition 2.2, G′ ∪ G′′

1 = G is Class 1. 2

2.3 Union graph maximum degree equals the maximum degree of the operands

We investigate union graphs whose maximum degree is equal to the largest of
the maximum degrees of the operands. If this operand of largest maximum
degree is Class 2, then the union graph is also Class 2. So, we consider
unions where the operand of largest maximum degree is Class 1. We show the
following sufficient condition for the union graph to be Class 1:

Proposition 2.5 Let G = G1 ∪ G2 be the union graph of a Class 1 graph

G1 = (V1, E1) and a graph G2 = (V2, E2) such that ∆G = ∆G1
. If ΛG = ΛG1

and all edges of G2 have not both endvertices in NG1
(ΛG1

), then G is Class 1.

Proof (Sketch) We show that we can add to G1 the edges in E2 one at a
time and they will always be in the conditions of Lemma 2.1. 2



3 Applications

We investigate the subgraph induced by the delta-vertices of a graph — named
core — and by their neighborhoods. We apply our results for solving the
classification problem in subclasses of join graphs and cobipartite graphs.

3.1 Subgraphs induced by the delta-vertices and their neighborhoods

The following sufficient condition was established in [2] as a particular case of
a theorem about coloring edges of a multigraph. We show that this condition
follows from Lemma 2.1:

Proposition 3.1 Let G be a graph. If G[ΛG] is acyclic, then G is Class 1.

Proof (Sketch) Consider G′ obtained from G by removing the edges of
G[ΛG]. We use that G′ is ∆G edge-colorable and that we can add to G′

the edges of G[ΛG] in such an order that Lemma 2.1 can always be applied.2

We also show that the chromatic index of a graph G = (V, E) depends
only on the induced subgraph G[NG(ΛG)].

Proposition 3.2 Let G = (V, E) be a graph. Then χ′(G) = χ′(G[NG(ΛG)]).

Proof (Sketch) The result follows from Proposition 2.5 applied to G1 =
(V1, E1) = G[NG(ΛG)] and G2 = (V, E \ E1). 2

3.2 Graph classes

Join graphs. A graph G = (V, E) is the join graph of two vertex disjoint
graphs GL = (VL, EL) and GR = (VR, ER) if V = VL ∪VR and E = EL ∪ER ∪
{uv : u ∈ VL, v ∈ VR}. In this case, we write G = GL + GR. It is known [4]
that join graphs with |VL| ≤ |VR| and ∆GL

> ∆GR
are Class 1. We show here

a different sufficient condition for a join graph to be Class 1.

Theorem 3.3 Let G = GL + GR be the join graph of graphs GL = (VL, EL)
and GR = (VR, ER). If |VL| ≤ |VR| and ∆GR

< |VR| − |VL|, then G is Class 1.

Proof. Let DG = DG(VL, VR) and G′ = GR ∪ BG. The degree in G′ of any
vertex v ∈ VL is |VR|. So, since |VR| > ∆GR

+ |VL|, the delta-vertices of G′ are
the vertices of VL. Observe that these vertices are an independent set of G′.
So, by Proposition 3.1, G′ is Class 1.

Now, observe that G = GL ∪G′ and that ∆G = ∆GL
+ |VR| = ∆GL

+ ∆G′ .
Besides, G′ is Class 1 and all of its edges have at least one endvertex outside
NGL

(ΛGL
) — those vertices in VR. So, by Proposition 2.4, G is Class 1. 2



We observe that Theorem 3.3 exhibits some Class 1 join graphs not covered
by the mentioned result of [4] (for example, P2 + C5). We observe, also, that
the inequality ∆GR

< |VR| − |VL| must be proper, since there are Class 2 join
graphs with ∆GR

= |VR| − |VL| (for example, K1 + K2t = K2t+1).

Cobipartite graphs. A graph G = (V, E) is cobipartite if it is the
complement of a bipartite graph. In this case, there is a partition (VL, VR)
of V such that G[VL] and G[VR] are complete graphs. We denote di(VL, VR) =
max{dBG(VL,VR)(v)|v ∈ Vi}, i = L, R. We consider only connected cobipartite
graphs with VL, VR 6= ∅ (otherwise, the problem is reduced to determining the
chromatic index of complete graphs). We prove the following:

Theorem 3.4 Let G = (V, E) be a connected cobipartite graph with partition

(VL, VR), 0 < |VL| < |VR|. If dL(VL, VR) ≤ dR(VL, VR), then G is Class 1.

Proof. Let DG = DG(VL, VR) and BG = BG(VL, VR). Since the delta-vertices
of DG are in VR, all edges of BG have one endvertex outside NDG

(ΛDG
) (those

in VL). Since dR(VL, VR) ≥ dL(VL, VR), we have ∆BG∪DG
= ∆BG

+ ∆DG
and

we can apply Proposition 2.4 for showing that G = DG ∪ BG is Class 1. 2

We prove in Theorem 3.6 that, if |VL| = |VR|, the cobipartite graph is
Class 1. In the proof we use the following lemma:

Lemma 3.5 Let GL = (VL, EL) and GR = (VR, ER) be two vertex disjoint

complete graphs of equal order k and GLR = GL ∪GR. Now, let G′ = (V ′, E ′)
be a graph where V ′ = VL ∪ VR and E ′ is a matching such that each edge has

one endvertex in VL and the other in VR. Then G = GLR ∪ G′ is Class 1.

Proof (Sketch) If k is even, then GLR is Class 1. Since G′ is Class 1 and
∆G = ∆GLR

+ ∆G′ , by Proposition 2.2, G is Class 1. Now, suppose k odd.
Construct a k-edge-coloring of GLR in such a way that if uv ∈ E ′, then u and
v have the same free color. Now we can color every edge uv ∈ E ′ with the
free color of u and v, which gives a k-edge-coloring of G. 2

Theorem 3.6 Let G = (V, E) be a connected cobipartite graph with partition

(VL, VR), |VL| = |VR|. Then G is Class 1.

Proof (Sketch) Denote DG = DG(VL, VR) and BG = BG(VL, VR) and let
πB be a ∆BG

-edge-coloring of BG. Let G′ = (V, E ′), where E ′ is a matching
defined by edges of BG colored with an arbitrary color c in πB. By Lemma 3.5,
GM = DG ∪ G′ is Class 1. Now, consider G′′ = BG \ E ′, which is Class 1
and has degree is ∆G′′ = ∆BG

− 1. Since G = GM ∪ G′′ has degree ∆G =
∆DG

+ 1 + ∆BG
− 1 = ∆GM

+ ∆G′′ , by Proposition 2.2, G is Class 1. 2



4 Conclusion

In this work we investigated decomposition tools for the edge-coloring clas-
sification problem and applied those tools in subclasses of join graphs and
cobipartite graphs. We also considered the role of the core of a graph and its
neighborhood in the edge-coloring problem.

Besides those immediate applications, our decomposition results lead to
some problems, interesting on their own, related to the existence of certain
vertex partitions and edge orderings. We describe, next, one of such problems.

C1-Partition. For showing that a given graph G = (V, E) is Class 1, we
have applied a number of times the strategy of finding a partition (V1, V2) of V

with the following properties:

(i) ∆G[V1] > ∆G[V2],

(ii) ΛBG(V1,V2) ∩ ΛG1
6= ∅,

with BG(V1, V2) having a non-empty edge set. We call such partition a C1-

partition. If G has a C1-partition, then it is Class 1. This strategy was easily
applied to some join graphs and cobipartite graphs. A natural question is:
can this strategy be applied to more general Class 1 graphs?

Observe that, although having a C1-partition is sufficient for being Class 1,
there are Class 1 graphs that do not have a C1-partition (for example, C4). So,
it would be interesting to know for which graph classes having a C1-partition
is equivalent to being Class 1, and whether there exists any polynomial time
algorithm for determining if a graph has a C1-partition — at least for those
classes. This problem can be viewed as a decision problem whose input is a
graph G = (V, E) and whose answer is YES if this graph has a C1-partition.
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Abstract

The football pool problem asks for the minimun number of bets on the result on n

football matches ensuring that some bet correctly predicts the outcome of at least
n − 1 of them. This combinatorial problem has proven to be extremely difficult,
and is open for n ≥ 6. Integer programming techniques have been applied to
this problem in the past but, in order to tackle the open cases, a deep knowledge
of the polytopes associated with the integer programs modeling this problem is
required. In this work we address this issue, by defining and studying the football
pool polytope in connection with a natural integer programming formulation of
the football pool problem. We explore the basic properties of this polytope and
present several classes of facet-inducing valid inequalities over natural combinatorial
structures in the original problem.
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1 Introduction

Let S = {0, 1, 2} be a set of symbols and, given a positive integer n, define
An to be the set of all strings of length n over the alphabet S. The elements
of An are called codewords. If a, b ∈ An, we say that a covers b if they differ
in at most one symbol, i.e., if the Hamming distance between them is 0 or 1.
The football pool problem asks for the minimum-cardinality subset C ⊂ An

such that every codeword in An is covered by some codeword in C [1].

The football pool problem has been solved for n ≤ 5 [3], and for n = (3k −
1)/2 for any natural number k [4] (i.e., when there exists a ternary Hamming
code of length n). The football poll problem for n ≥ 6 is an important open
combinatorial problem [5]. Integer programming techniques have been applied
to this problem in the past but, in order to tackle the open cases, a deep
knowledge of the polytopes associated with the integer programs modeling
this problem is required. In this work we address this issue, by defining and
studying the football pool polytope in connection with a natural formulation of
the football pool problem as an integer program.

If the codeword length n is not explicitly needed, we write A instead of
An. If a, b ∈ A, we denote by dist(a, b) the number of symbols in which a and
b differ (i.e, the Hamming distance between a and b). For a ∈ A, we define the
neighborhood of a to be N(a) = {x ∈ A : dist(a, x) = 1}. Moreover, if C ⊆ A,
we define the neighborhood of C to be N(C) = {x ∈ A\C : dist(a, x) = 1 for
some a ∈ C}. Finally, for a ∈ A we define the closed neighborhood of a to be
N [a] = N(a) ∪ {a} and, similarly, for C ⊆ A we define N [C] = N(C) ∪ C.

2 The football pool polytope

If C ⊆ A is a set of codewords such that every codeword in A is covered by
some codeword in C, we say that C is a feasible set. The incidence vector
associated with a feasible set C is the vector xC ∈ {0, 1}|A| such that xC

a = 1
if and only if a ∈ C, for every a ∈ A.

Definition 2.1 [football pool polytope] We define the football pool polytope
Fppn ⊆ R|An| to be the convex hull of the incidence vectors associated to all
the feasible sets of An.

When the codeword length n is not explicitly needed, we write Fpp instead
of Fppn. With this definition, we can state the football pool problem as

min
{

∑

a∈A

xa : x ∈ Fpp

}

.



The football poll polytope Fpp is a special set covering polytope, hence we can
explore the basic properties and facets of Fpp by resorting to known results
on set covering polytopes [2,6]. It is not difficult to verify that the polytope
Fpp is full-dimensional [2]. For every a ∈ A, the binary bounds 0 ≤ xa and
xa ≤ 1 are trivial valid inequalities of Fpp and, moreover, a straightforward
argument shows that these inequalities define facets of Fpp.

Definition 2.2 [point inequalities] If a ∈ A, we define
∑

z∈N [a]

xz ≥ 1(1)

to be the point inequality associated with the codeword a.

Theorem 2.3 The point inequalities (1) are valid and facet-inducing for Fpp.

Note that the point inequalities (1) together with the binary constraints
xa ∈ {0, 1} for every a ∈ A define an integer programming formulation for Fpp,
i.e., this polytope equals the convex hull of all points x ∈ {0, 1}|A| satisfying
the point inequalities.

3 Box inequalities

We define a set B = {a, b, c, d} ⊆ A to be a box if dist(a, b) = 2, and c and
d are the only two codewords with dist(a, c) = dist(c, b) = 1 and dist(a, d) =
dist(d, b) = 1 (i.e., N(a) ∩ N(b) = {c, d}). For example, if a = 00000 and
b = 11000, then c = 10000 and d = 01000. Note that c and d are the only
two codewords which differ from a in only one symbol and differ from b in the
other symbol separating a from b.

Definition 3.1 [box inequalities] If B = {a, b, c, d} is a box, we define
∑

z∈B

xz +
∑

z∈N(B)

xz ≥ 2(2)

to be the box inequality associated with B.

Theorem 3.2 The box inequalities (2) are valid and facet-inducing for Fpp.

For x ∈ {a, b}, define NB(x) = N(x)\B and, for x ∈ {c, d}, define NB(x) =
N(x)\(B ∪NB(a)∪NB(b)). Note that NB(x) and NB(y) are disjoint if x 6= y.

Definition 3.3 [reinforced box inequalities] If B = {a, b, c, d} is a box, we
define

2xd +
∑

z∈B\{d}

xz + (xNB(a) + xNB(b) + xNB(d)) ≥ 2(3)



to be the reinforced box inequality associated with B and d.

Theorem 3.4 The reinforced box inequalities (3) are valid and facet-inducing
for Fpp.

If πx ≤ π0 is a valid inequality for Fpp, we define its support to be
supp(π) = {z ∈ A : πz 6= 0}, i.e., the set of codewords with nonzero co-
efficients in the inequality. Let B ⊆ A be a box, and let πx ≤ π0 be a valid
inequality for Fpp. We say that πx ≤ π0 is contained in the box structure
N [B] = B ∪N(B) if supp(π) ⊆ N [B] and, for every x ∈ B, all the codewords
in NB(x) have the same coefficient in π.

Theorem 3.5 The only facet-inducing inequalities of Fpp contained in a box
structure are the point inequalities (1), the box inequalities (2), and the rein-
forced box inequalities (3).

4 Diamond inequalities

Let B = {a, b, d, c} ⊆ A be a box. Let N(a)∩N(c) = {e}, N(c)∩N(b) = {f},
N(a)∩N(d) = {g}, and N(b)∩N(d) = {h}. We call the set D = B∪{e, f, g, h}
a diamond of A. For x ∈ D, we define ND(x) = N(x)\D. Note that ND(x)
and ND(y) are disjoint if x 6= y. The codewords in B are called the inner
codewords of the diamond, and the codewords in D\B are called the outer
codewords of the diamond.

The diamond structure generates two further classes of facet-inducing in-
equalities for Fpp, based on the codewords required for covering different sub-
sets of a diamond. The first family is based on the covering of two inner
codewords and one outer codeword, and the second family is based on the
covering of one inner codeword and two outer codewords.

Definition 4.1 [inner diamond inequalities] If D = {a, . . . , h} is a diamond,
we define

∑

z∈D

xz + (xND(b) + xND(d) + xND(e)) ≥ 2(4)

to be the inner diamond inequality associated with D.

Theorem 4.2 The inner diamond inequalities (4) are valid and facet-inducing
for Fpp.



Definition 4.3 [outer diamond inequalities] If D = {a, . . . , h} is a diamond,
we define

∑

z∈D

xz + (xND(a) + xND(f) + xND(h)) ≥ 2(5)

to be the outer diamond inequality associated with D.

Theorem 4.4 The outer diamond inequalities (5) are valid and facet-inducing
for Fpp.

Let B = {a, b, c, d} be a box and let D = B ∪ {e, f, g, h} be a diamond
of A. If πx ≤ π0 is a valid inequality for Fpp, we say that the inequality is
contained in the diamond structure N [D] = D ∪ N(D) if supp(π) ⊆ N [D]
and, for every x ∈ D, all the codewords in ND(x) have the same coefficient in
π.

Theorem 4.5 The only facet-inducing inequalities contained in any diamond
structure are the point inequalities (1), the box inequalities (2), the reinforced
box inequalities (3), the inner diamond inequalities (4), and the outer diamond
inequalities (5).

5 3D-Box inequalities

We define a 3D-Box to be a set T = B ∪ B′, where B = {a, b, c, d} and B′ =
{a′, b′, c′, d′} are two boxes such that dist(a, a′) = dist(b, b′) = dist(c, c′) =
dist(d, d′) = 1.

A 3D-Box is given by the eigth codewords differing in three fixed positions.
For example, we may take T = {xyz00 : x, y, z ∈ {0, 1}}. In this case, we
have a = 00000, b = 11000, c = 10000, and d = 01000 as in the standard
box structure and, furthermore, a′ = 00100, b′ = 11100, c′ = 10100, and
d′ = 01100.

For x ∈ {a, b}, define NT (x) = N(x)\T and, for x ∈ {a′, b′, c, d}, define
NT (x) = N(x)\(T ∪ NT (a) ∪ NT (b)). Finally, for x ∈ {c′, d′}, define NT (x) =
N(x)\(T ∪NT (a′)∪NT (b′)∪NT (c)∪NT (d)). Note that NT (x) and NT (y) are
disjoint if x 6= y.

Definition 5.1 [3D-Box 1-2 inequalities] If T = {a, b, c, d}∪ {a′, b′, c′, d′} is a
3D-Box, we define

2(xa′ + xb′ + xd + xd′) + (xa + xb + xc + xc′) +

+ (xNT (a) + xNT (b) + xNT (d)) + (xNT (a′) + xNT (b′) + xNT (c′)) ≥ 3(6)



to be the 3D-Box 1-2 inequality associated with T and the 6-cycle C =
{a, a′, c′, b′, b, d}.

Definition 5.2 [3D-Box 2-3 inequalities] If T = {a, b, c, d}∪ {a′, b′, c′, d′} is a
3D-Box, we define

3(xa′ + xb′ + xd + xd′) + 2(xa + xb + xc + xc′) +

+ (xNT (a) + xNT (b) + xNT (d)) + (xNT (a′) + xNT (b′) + xNT (c′)) ≥ 5(7)

to be the 3D-Box 2-3 inequality associated with T and the 6-cycle C =
{a, a′, c′, b′, b, d}.

Note that the 3D-Box 1-2 inequality (6) and the 3D-Box 2-3 inequality (7)
are defined over the same supporting codewords, the only difference between
them being the assignment of coefficients 1 and 2 resp. 2 and 3 within the
boxes B and B′.

Theorem 5.3 The 3D-Box 1-2 inequalities (6) and the 3D-Box 2-3 inequali-
ties (7) are valid and facet-inducing for Fpp.

As in the previous sections, we can define a valid inequality to be con-
tained in a 3D-Box structure. Again, it is possible to show that the only
facet-inducing valid inequalities contained in any 3D-Box structure are the
point inequalities (1), the box and reinforced box inequalities (2) and (3), the
diamond inequalities (4) and (5), and the 3D-Box inequalities (6) and (7).
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Abstract

We classify into polynomial time or NP -complete all three nonempty part sandwich
problems. This solves the polynomial dichotomy for this class of problems.
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1 Introduction

Consider an undirected, finite, simple graph G = (V (G), E(G)) and the pro-
blem of finding a partition of V (G) into nonempty subsets satisfying con-
straints internal or external. An internal constraint refers to constraints within
the parts as to be a clique, or an independent set. An external constraint refers
to constraints between different parts as to be completely adjacent or nonad-
jacent to other parts. The skew partition problem was defined [3] as finding
a partition of the vertex set of a given graph into four nonempty parts A, B,
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C, D such that there are all possible edges between A and B, and no edges
between C and D. It has a key role in the proof of the strong perfect graph
theorem [4], and it admits a polynomial-time algorithm [11]. The skew parti-

tion problem has only external constraints, variations with additional internal
constraints ou larger number of parts have been considered [6,8].

Given a graph G and a positive integer k, consider the problem of partition-
ing the vertex set into at most k parts A1, A2, . . ., Ak, subject to constraints
specified by a symmetric k× k matrix M over {0, 1, ∗} [9] such that for i 6= j,
if entry mi,j = 0 (resp., 1, ∗) then we require ‘no edges’ (resp., ‘all edges’, ‘no
restriction’) between a vertex placed in part Ai and a vertex placed in part
Aj; if entry mi,i = 0 (resp., 1, ∗) then we require Ai to induce a stable set
(resp., clique, arbitrary subgraph). An M -partition of graph G is a partition
of its vertex set into at most k parts so that all the constraints specified by
M are respected. The M -partition problem asks: “Given a graph G, does
G admit an M -partition?”. In the list M -partition problem, we are given a
graph G, and each vertex v of G has a nonempty list L(v) ⊆ {A1, A2, . . . , Ak}.
The problem asks: “Does G admit an M -partition in which each vertex v of
G is assigned to a part in L(v)?”. In particular, we note that if, for all v,
L(v) = {A1, A2, . . . , Ak}, then we have the M -partition problem.

Every list M -partition problem with M of dimension at most 4 was classi-
fied by the quasi-dichotomy as either solvable in quasi-polynomial time or NP -
complete and every list M -partition problem with M of dimension at most 3
was classified as either solvable in polynomial time or NP -complete [9]. Re-
cently, every list M -partition problem with M of dimension 4 was classified as
either solvable in polynomial time or NP -complete [1], with the single excep-
tion of the stubborn problem and its complement. The H-partition problem

considers [7] a 4 × 4 matrix M with only ∗s in its main diagonal, it does not
impose internal constraints, and requires the four parts of the partition to be
nonempty. The skew partition problem is an H-partition problem.

Graph sandwich problems [12] are generalized recognition problems arising
from applications in computational biology. Say that a graph G1 = (V, E1) is a
spanning subgraph of G2 = (V, E2) if E1 ⊆ E2; and that a graph G = (V, E)
is a sandwich graph for the pair G1, G2 if E1 ⊆ E ⊆ E2. For notational
simplicity in the sequel, we let E3 be the set of all edges in the complete
graph with vertex set V which are not in E2. Thus every sandwich graph for
the pair G1, G2 satisfies E1 ⊆ E and E ∩ E3 = ∅. We call E1 the forced

edge set, E2 \ E1 the optional edge set, E3 the forbidden edge set. The graph

sandwich problem for property Π asks, given a vertex set V , a forced edge
set E1, and a forbidden edge set E3, whether there is a graph G = (V, E) such



that E1 ⊆ E and E ∩ E3 = ∅ that satisfies property Π.

Graph sandwich problems for properties Π related to decompositions aris-
ing in perfect graph theory have been considered: homogeneous set [2], join
composition [10], (k, l) graphs [5], clique and star cutsets [13]. Homogeneous
set, (2, 1) graph, and clique cutset are three dimensional M -partition prob-

lems, with the additional constraint that the three parts of the partition are
required to be nonempty.

In this paper, we consider all graph sandwich problems corresponding to
three dimensional M -partition problems, with the additional constraint that
the parts of the partition are required to be nonempty. We completely solve the
polynomial dichotomy for this class of problems, by classifying each problem
into polynomial time or NP -complete.

Three nonempty part M -partition sandwich problem (3NPMSP)
Instance: Vertex set V , forced edge set E1, forbidden edge set E3.
Question: Is there a graph G = (V, E) such that E1 ⊆ E and E ∩E3 = ∅
that admits a three nonempty part M -partition?

2 Listing the 61 interesting matrices

The complement Mx of a matrix Mx is the matrix obtained from Mx by
replacing each 1 by 0 and each 0 by 1 (the ∗ constraints remain unchanged).
Two matrices Mx, M` are isomorphic if M` represents the same partition as
Mx or Mx. This means that M` is obtained from Mx or Mk by a permutation
of its part names Ai, i.e., its lines and columns.

If all entries of a matrix M are 0 or ∗, then M defines a hereditary property,
and the sandwich problem is a recognition problem, for which it is sufficient to
test whether G1 admits a three nonempty part M -partition. If all entries of a
matrix M are 1 or ∗, then M defines an ancestral property, and the sandwich
problem is a recognition problem, for which it is sufficient to test whether G2

admits a three nonempty part M -partition. Since all three nonempty part M -
partition recognition problems are classified, we focus on interesting matrices
containing at least one entry 0 and one entry 1.

Figure 1 depicts all, up to isomorphisms, 61 interesting 3×3 matrices Mx,
each matrix defines its corresponding decision sandwich problem 3NPMxSP.
The 61 matrices are sorted by increasing number of internal constraints, and
then by increasing number of external constraints. In case the matrix contains
an internal constraint, we fix m11 = 0.
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Fig. 1. All interesting 3 × 3 matrices up to isomorphisms

3 Tools

For some matrices Mx of Figure 1, the corresponding 3NPMxSP has already
been classified: M1 corresponds to homogeneous set sandwich problem, proved
polynomial [2]; M3 corresponds to clique cutset sandwich problem, and M38

corresponds to (2, 1)-graph sandwich problem, both proved NP -complete [13,5].
The remaining problems are classified by applying the seven tools defined next.

Tool 1(Two part reducible): Mx has two equal lines, which implies that
3NPMxSP is a two part problem, polynomially reducible to 2-SAT.

Tool 2(Stable Cutset and 3-coloring): Let MS and MC be, respectively, the 3×
3 matrices of the only NP -complete three nonempty part recognition problems:
stable cutset and 3-coloring. Suppose Mx is obtained from MS by changing
some entries ∗ to 1, then a polynomial reduction shows 3NPMxSP is NP -



complete. If G is and instance of stable cutset, then (V, E1, E3) such that
E1 = E and E3 = ∅ is the required instance for 3NPMxSP. An analogous
construction holds for Mx obtained from MC by changing some entries ∗ to 1.

Tool 3(Universal vertex): Mx contains a line i with all entries 0 or with all
entries 1. If 3NPMxSP has a solution, then every vertex placed in part Ai is
universal with respect to G2. Vertices that cannot be placed in Ai must be
placed in the two remaining parts, which is decided by 2-SAT.

Tool 4(Disconnected partition): Mx satisfies: for some i, mij = mik = 0
and mii 6= 0. If 3NPMxSP has a solution, then G1 must be disconnected.
Solve 3NPMxSP by considering the connected components of G1 and solving
a polynomial number of 2-part problems.

Tool 5(Homogeneous set): Mx is obtained from M1 by the addition of a
constraint that allows a polynomial solution.

Tool 6(Singleton part): If 3NPMxSP has a solution, then it has a solution
with a singleton part Ai. A polynomial algorithm solves n 2-SAT problems
obtained by setting Ai = {x}, for each v ∈ V .

Tool 7(3-SAT): Each such 3NPMxSP is proved NP -complete by a reduction
from 1-in-3 3-SAT (without negative literals), for an example see Figure 2.

Tools Problems Class

Two part reducible 6, 30, 40, 54, 56, 58. Polynomial

Stable cutset, 3-colour 7, 12, 16, 23, 28, 36, 39, 41, 45, 48, 55, 59. NP-Complete

Universal vertex 9, 22, 29, 34, 35, 46, 52, 53, 57, 61. Polynomial

Disconnected partition 2, 8, 10, 11, 13, 19, 21, 24, 26, 31, 33, 37, 50. Polynomial

Homogeneous set 4, 5, 27 Polynomial

Singleton part 15, 17, 18, 25, 32, 44, 47. Polynomial

3-SAT 14, 20, 42, 43, 49, 51, 60. NP-Complete
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Abstract

Given a graph G = (V,E) on n vertices, the Minimum Linear Arrangement Prob-

lem (MinLA) calls for a one-to-one function ψ : V → {1, . . . , n} which minimizes
∑

{i,j}∈E |ψ(i) − ψ(j)|. MinLA is strongly NP-hard and very difficult to solve to
optimality in practice. One of the reasons for this difficulty is the lack of good lower
bounds. In this paper, we take a polyhedral approach to MinLA. We associate
an integer polyhedron with each graph G, and derive many classes of valid linear
inequalities. It is shown that a cutting plane algorithm based on these inequalities
can yield competitive lower bounds in a reasonable amount of time. A key to the
success of our approach is that our linear programs contain only |E| variables. We
conclude showing computational results on benchmark graphs from literature.

Keywords: linear arrangement problem, polyhedral combinatorics, cutting planes



1 Introduction

Given a graph G = (V,E), with V = {1, . . . , n}, an arrangement (also called a
permutation, labelling, ordering or layout) is a one-to-one function ψ : V → V .
If we view ψ as a placing of the vertices on a line segment, the quantity
|ψ(i) − ψ(j)| corresponds to the Euclidean distance between vertices i and j.
Several important combinatorial optimization problems, collectively known as
graph layout problems, call for an arrangement minimizing a function of these
distances (see the survey [3]). Here, we are concerned with the Minimum
Linear Arrangement Problem (MinLA), in which the objective is to minimize
∑

{i,j}∈E |ψ(i) − ψ(j)|, the sum of the distances.

MinLA was originally proposed in [7]. It was proven to be strongly NP-
hard and this was later shown to hold even when G is bipartite. For general
graphs, the fastest known exact algorithm is based on dynamic programming
and runs in O(2n|E|) time. However, MinLA is known to be solvable in poly-
nomial time on trees, outerplanar graphs and certain Halin graphs. Indeed,
for some restricted classes of graphs, optimal layouts are known explicitly [8].

Recently, some progress has been made on the approximability of MinLA.
Approximation algorithms with performance guarantee O(log n) were intro-
duced in [2,11]. Very recently, an O(

√
log n log log n) approximation algorithm

was found [6]. It has been conjectured, however, that MinLA cannot be ap-
proximated to within a constant factor in polynomial time.

Some heuristics are known which give good performance in practice, see for
example [9,10,12,13]. On the other hand, MinLA is very difficult to solve to
proven optimality in practice and there are no good exact algorithms available
at present. The main reason for this difficulty appears to be the lack of strong
and efficiently computable lower bounds.

In [5], an interesting new lower bound was proposed, based on solving a lin-
ear program (LP) with |E| variables and an exponential number of constraints.
However, to our knowledge, the bound was never tested computationally. In
the extended version of this paper, we explore and significantly extend the
approach in [5]. We derive several new families of valid inequalities in this ex-
tended abstract, while the extended paper presents a cutting plane algorithm
based on these inequalities and gives extensive computational results. The
lower bounds produced by the algorithm are much stronger than other known
bounds.

We do not present the proofs of the theorems in this extended abstract.
Also the sections with other inequalities, separation procedures and compu-
tational results have been removed due to the limit in the number of pages.



2 The Polyhedral Study

In this section, we study certain integer polyhedra associated with MinLA.

2.1 Definitions and elementary results

Our goal is to work with only m distance variables, de for each e ∈ E. At first
sight, it seems natural to work with the projection of the MinLA polytope
onto the subspace defined by the edges in E, i.e., with the following integer
polytope:

P(G) := conv
{

d ∈ Z
m
+ : ∃ψ : dij = |ψ(i) − ψ(j)| ({i, j} ∈ E)

}

.

However, we have found that P(G) has an extremely complex structure that
makes it hard to study. In fact, even determining the dimension of P(G)
seems difficult.

We have found it more helpful to study the dominant of P(G), which is
the Minkowski sum of P (G) and the non-negative orthant R

m
+ . That is:

DOM(G) :=
{

d ∈ R
m
+ : d ≥ d′ for some d′ ∈ P(G)

}

.

Since the objective function in MinLA is non-negative, optimising over DOM(G)
is equivalent to optimising over P(G). However, DOM(G) is much easier to
work with. Indeed, we have the following three elementary results, the proofs
of which are more or less immediate.

Proposition 2.1 DOM(G) is a full-dimensional, unbounded polyhedron. It
is of blocking type, i.e., its recession cone is the non-negative orthant.

Proposition 2.2 If the inequality αTd ≥ β is valid for DOM(G), then α and
β are non-negative. Moreover, if it is supporting (i.e., there exists at least
one vertex d∗ of DOM(G) such that αTd∗ = β), then β is positive.

Proposition 2.3 Let G = (V,E) be a general graph, let E ′ ⊂ E be a sub-
set of the edges and let G′ = (V ′, E ′) be the subgraph of G induced by E ′.
The inequality

∑

e∈E′ αede ≥ β is valid (or supporting, or facet-inducing) for
DOM(G′) if and only if it is valid (respectively, supporting, facet-inducing) for
DOM(G).

When G = Kn, the relationship between P (G) and DOM(G) is clear:

Proposition 2.4 P (Kn) is the unique bounded facet of DOM(Kn), induced
by the equation

∑

1≤i<j≤n dij =
(

n+1

3

)

.



From now on we concentrate on DOM(G). In the following subsections,
we present various valid and facet-inducing inequalities. Our main method for
deriving valid inequalities for DOM(G) is simply to look at classes of graphs
for which there is an explicit formula for the cost of the optimal arrangement.
If G′ = (V ′, E ′) is such a graph, and β is the cost of the optimal arrangement,
then obviously

∑

{i,j}∈E

dij ≥ β

is valid for DOM(G), for any graph G containing G′ as a subgraph.

2.2 Clique inequalities

MinLA is trivial when G = Kn, since any arrangement satisfies the equation
d(E) =

(

n+1

3

)

. This leads immediately to the following clique inequalities:

Theorem 2.5 For any n ≥ 2, and for any S ⊆ V inducing a clique in G, the
clique inequality

∑

{i,j}⊂S

dij ≥
(|S| + 1

3

)

is valid and facet-inducing for DOM(G).

Note that the clique inequalities with |S| = 2 are the trivial lower bounds
de ≥ 1.

2.3 Star inequalities

MinLA is also trivial when G is a star (i.e., a graph in which all edges are
incident on a common vertex). In this case, the optimal MinLA solution has
cost bn2/4c. This leads to the following star inequalities:

Lemma 2.6 For any i ∈ V and any S ⊂ n(i), the star inequality

∑

j∈S

dij ≥ b(|S| + 1)2/4c

is valid for DOM(G).

Star inequalities were shown to be valid for Pn, where it was also noted
that they do not in general induce facets of Pn. In the case of DOM(G),
however, we have:

Theorem 2.7 Star inequalities induce facets of DOM(G) if and only if |S| 6=
2.



2.4 Circuit inequalities

MinLA is also trivial when G is a circuit (i.e., a simple cycle). Clearly, if G
is a circuit on n vertices, then the optimal MinLA solution has cost 2n − 2.
This leads to the following circuit inequalities:

Lemma 2.8 For any C ⊂ E inducing a circuit in G, the circuit inequality

d(C) ≥ 2|C| − 2

is valid for DOM(G).

Note that the circuit inequality with |C| = 3 is a clique inequality.

Theorem 2.9 Circuit inequalities induce facets of DOM(G).

2.5 Bipartite and double star inequalities

A more general class of graphs for which MinLA is polynomially solvable
(though by no means trivial) is that of the complete bipartite graphs. We
denote the complete bipartite graph by Kp,q and assume without loss of gen-
erality that p ≤ q. In [8] it is shown that the optimal solution to MinLA for
Kp,q is p(3q2+6pq−p2+4)/12 (when p+q is even) and p(3q2+6pq−p2+1)/12
(when p + q is odd). For simplicity of notation we denote this optimal value
by R(p, q).

The above result leads immediately to the following bipartite inequalities:

Lemma 2.10 Let F ⊂ E induce the complete bipartite subgraph Kp,q in G,
with p ≤ q. Then the bipartite inequality d(F ) ≥ R(p, q) is valid for DOM(G).

Note that, when p = 1, the bipartite inequalities reduce to star inequalities,
and are therefore facet-inducing for q 6= 2. The following theorem deals with
the case p ≥ 2.

Theorem 2.11 Bipartite inequalities induce facets of DOM(G) if 3 ≤ p ≤ q,
and also if p = 2 and q is even.

In the remaining case, in which p = 2 and q is odd, the bipartite inequalities
do not induce facets. To see this, we need the following result.

Theorem 2.12 Let {i, j} ⊂ V and T ⊂ V \ {i, j} be such that i and j are
adjacent to every vertex in T , and such that q = |T | is odd and at least 3.



Then the double star inequality

∑

k∈T

(2dik + djk) ≥ 3(q2 + 4q − 1)/4

is valid and facet-inducing for DOM(G).
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Department of Computer Science, Catholic University of Rio de Janeiro

Rua Marquês de São Vicente 225, Rio de Janeiro, RJ 22453-900, Brazil

Celso C. Ribeiro

Department of Computer Science, Universidade Federal Fluminense

Rua Passo da Pátria 156, Niterói, RJ 24210-240, Brazil

{tfn,cynthia,celso}@inf.puc-rio.br

Abstract

We propose a new formulation for the Diameter Constrained Minimum Spanning
Tree Problem using constraint programming. Computational results have shown
that this formulation combined with an appropriate search procedure solves larger
instances and is faster than the other approaches in the literature.

1 Introduction

Given an undirected connected graph G = (V, E) with a set V of vertices, a
set E of edges, and costs cij associated to every edge [i, j] ∈ E, with i < j,
the Diameter Minimum Spanning Tree Problem (DCMST) consists in finding
a minimum spanning tree T = (V, E ′), with E ′ ⊆ E, where the diameter

required does not exceed a given positive integer value D, where 2 ≤ D ≤
|V | − 1. The diameter of a tree T is equal to the number of edges in the



longest path between any two nodes i, j ∈ V in T . This problem is NP -
hard when D ≥ 4. DCMST applications appear in telecommunications, data
compression and distributed mutual exclusion in parallel computing.

Some mixed integer programming (MIP) formulations for DCMST implic-
itly use a property [5] that ensures that a central vertex c ∈ V exists in any
feasible tree T when D is even, such that no vertex is more than D/2 edges
away from c. If D is odd, a central edge e = [a, b] ∈ E exists in T , such that
no vertex is more than (D − 1)/2 edges away from the closest extremity of e.

The first DCMST formulations, using single commodity flows, were pre-
sented in [2]. Improved formulations with valid inequalities and a lifting pro-
cedure are found in [1,6]. An alternative formulation for the odd D case was
also proposed in [6]. Multicommodity flow formulations with tighter linear
programming relaxations are presented in [3]. However, they require more
memory and computation time to solve the linear relaxation. Formulations
strengthened with valid inequalities were proposed in [4]. A comparison with
other formulations appears in [4]. The computational results showed that
no approach dominates any other. The formulations using single commodity
flow produce weak linear programming relaxations, especially for small diam-
eters. On the other hand, the multicommodity flow formulations give tighter
lower bounds, but require much more memory and time to solve the linear
relaxation, because of their large number of variables and constraints.

Constraint Programming (CP) is a programming paradigm for formulating
and solving combinatorial problems. Instead of using only the linear relaxation
for pruning the search tree, it uses a variety of bounding techniques based
on constraint propagation, which consists in operating with the constraints
to generate new constraints that reduce the domain of some variables and,
consequently, the size of the search space.

In the next section, we propose a new approach based on constraint pro-
gramming for solving DCMST. It is capable to handle both the odd and even
diameter cases in the same formulation, contrary to most approaches in the
literature. Computational experiments are reported in Section 3. Concluding
remarks are drawn in Section 4.

2 Constraint programming formulation

We propose a new approach to DCMST based on constraint programming
that tackles both the odd and even D cases. It was motivated by the fact that
some MIP formulations have weak lower bounds, while others require a huge
amount of memory because of the large number of variables and constraints.



CP reduces these drawbacks by allowing concise formulations with a small
number of variables and by using constraint propagation for pruning the search
space, instead of the linear relaxation. Since it is based on a backtracking
procedure, CP requires less memory than branch-and-bound algorithms.

The directed graph G′ = (V ′, A′) is obtained from the original undirected
graph G = (V, E) as follows. Let r be an artificial vertex and V ′ = V ∪ {r}.
For every edge [i, j] ∈ E, with i < j, there exist two arcs (i, j) and (j, i) ∈ A
with costs cij = cji. Then, A′ = A∪{(r, 1), . . . , (r, |V |)}, with costs cri = 0 for
every i ∈ V . For any i ∈ V , we define backwardStar[i] as the set of all vertices
j ∈ V ′ such that (j, i) ∈ A′ and forwardStar[i] as the set of all vertices j ∈ V
such that (i, j) ∈ A′. Let L = bD/2c. The number of edges in the path from
the artificial vertex r to i ∈ V is said to be the height of vertex i.

We give below the formulation of DCMST using the ILOG OPL language.
Variables a and b denote the central vertices of the spanning tree. When D is
odd, [a, b] denotes the central edge of the spanning tree. In the even D case,
a = b denotes the central vertex. Variable yi ∈ V ′ denotes de parent of vertex
i ∈ V . Furthermore, variable ui ∈ {0, ..., L+1} represents the height of vertex
i ∈ V ′. Sets V and V ′ are designated by nodes and nodes p, respectively. The
costs cij are denoted by cost[i,j]. In case i = j, then cost[i,j] returns
zero:

var nodes a;

var nodes b;

var nodes p y[nodes];

var int u[nodes p] in 0..L+1;

minimize

sum(i in nodes) cost[i,y[i]] + cost[a,b](1)

subject to {

sum(i in nodes) (y[i]=r) = 1 + (D mod 2);(2)

forall(i in nodes) u[i]=u[y[i]]+1;(3)

forall(i in nodes) y[i] in backwardStar[i];(4)

if D mod 2 = 1 then a<b else a=b endif;(5)

y[a]=y[b]=r;(6)

};

The objective function is handled by (1). Constraint (2) ensures that the
artificial vertex r is connected to two vertices (i.e., the extremities of the
central edge) when D is odd, or to exactly one vertex (i.e., the central vertex)
when D is even. Constraints (3) establish that the height of every vertex i ∈ V
in the tree is equal to one plus the height of its parent. Constraints (4) ensure



that there is an edge e ∈ E connecting every vertex i with its parent. If D
is even Constraint (5) establishes that a is equal b, otherwise it ensures that
a is smaller (different) than b. Constraint (6) establishes that vertex r is the
parent of vertices a and b.

Solving a combinatorial optimization problem by constraint programming
involves two steps: generating the set of constraints that must be satisfied and
describing how to search for solutions. The above formulation gives the set of
constraints that must be satisfied, i.e., it describes the search space. For sake
of conciseness, the search procedure is omitted.

3 Computational results

The computational experiments were carried out on a Pentium 4 with 3.0
GHz clock and 1Mb of RAM memory, using OPL Studio 3.7.1 as the con-
straint programming solver. We compared our results with the best over all
those obtained by any of the MIP approaches in [4,6], according with the
computation times presented in Table 1 of [4] for the same 29 instances used
in our study: 18 on complete graphs and 11 on sparse graph, with diameters
equal to 4, 5, 6, 7, 9, and 10.

Numerical results are presented on Table 1. For each instance, the first
three columns give its number of vertices, its number of edges, and its max-
imum diameter, respectively. The next three columns give statistics for the
CP formulation: the number of nodes visited in the search tree, the amount
of memory (in bytes) used by the algorithm, and the computation time in sec-
onds to prove optimality. The next two columns give the time in seconds (on
a Pentium 4 with 2.8 GHz clock and 2Mb of RAM memory, using CPLEX 8.1
as MIP solver) to prove optimality by the best MIP formulation in [4,6] and
the corresponding algorithm version. The best MIP formulations of [4] and [6]
are denoted by ILP and Santos, respectively (the symbol ‘+’ denotes the use
of connect cuts, while an ‘*’ indicates the use of cycle elimination cuts [4]).
The last column shows the ratios between the computation times to find the
optimal solution with constraint programming and the best MIP approach.

CP performed better than the best MIP approach on all but four out of
the 29 test instances. On average, the CP approach run on 45% of the time of
the best MIP variant. The computation times were particularly remarkable
for the instances with odd diameter: for these instances, the time needed by
the CP algorithm to prove optimality was only 23% of that taken by the best
MIP variant, on average. The larger is the time to prove optimality, the better
is the performance of the CP algorithm when compared with all MIP variants.



CP Best MIP
|V | |E| D nodes memory time (s) time (s) version CP/MIP

15 105 4 1,044 463,780 0.08 0.7 ILP 11.43%
15 105 5 2,850 463,780 0.22 3.0 ILP 7.33%
15 105 6 6,960 479,800 0.28 8.1 ILP 3.46%
15 105 7 8,240 527,860 0.38 20.0 ILP+* 1.90%
15 105 9 11,743 527,860 0.47 6.2 Santos+* 7.58%
15 105 10 11,830 511,840 0.41 1.0 Santos+ 41.00%

20 190 4 3,143 607,960 0.2 2.5 ILP 8.00%
20 190 5 18,283 640,000 1.06 8.1 ILP 13.09%
20 190 6 35,383 672,040 2.03 95.0 ILP 2.14%
20 190 7 19,142 688,060 0.97 5.5 ILP* 17.64%
20 190 9 119,906 752,140 5.01 66.7 ILP+* 7.51%
20 190 10 151,969 672,040 6.08 29.7 Santos+* 20.47%

25 300 4 28,842 800,200 1.48 12.0 ILP 12.33%
25 300 5 37,608 864,280 2.83 64.3 ILP+* 4.40%
25 300 6 534,222 864,280 39.14 26.4 ILP 148.26%
25 300 7 812,957 979,424 56.06 770.5 ILP 7.28%
25 300 9 2,655,810 1,043,504 114.14 246.0 Santos+ 46.40%
25 300 10 1,126,130 944,380 55.47 254.8 Santos+ 21.77%

20 50 4 389 466,784 0.05 0.2 ILP 25.00%
20 50 5 3,611 466,784 0.17 1.0 ILP 17.00%
20 50 6 2,678 498,824 0.13 0.8 Santos+ 16.25%
20 50 7 1,975 498,824 0.14 0.8 Santos+ 17.50%
20 50 9 13,040 495,820 0.45 0.7 Santos+ 64.29%
20 50 10 17,937 514,844 0.64 0.2 Santos+ 320.00%

40 100 4 130,480 911,340 5.44 1.9 ILP 286.32%
40 100 5 161,961 927,360 7.31 6.4 ILP 114.22%
40 100 6 91,022 943,380 4.72 13.2 ILP+ 35.76%
40 100 7 778,699 975,420 34.38 212.4 ILP 16.19%
40 100 9 769,161 1,007,460 40.16 979.8 ILP* 4.10%

Average: 44.78 %

Table 1
Numerical results.

For dense graphs, the CP algorithm run on average in 21% of the time
of the best MIP variant: the search strategy implemented within the CP
algorithm significantly reduces the size of the search space, when the number
of nodes is much smaller then the number of edges.

The algorithms in [4] are more appropriate to small diameter instances,
while those in [6] perform better on large diameter instances. However, the
CP approach surpassed both MIP approaches on small and large diameter
instances. Furthermore, no instance required more than 1 Mbyte of RAM
memory to be solved, because the search tree is explored by a depth first
search algorithm and no node is stored to be further explored.



4 Conclusions

We proposed a new approach based on constraint programming to solve the
degree constrained minimum spanning tree problem. Constraint programming
was capable to overcome the main drawbacks of MIP: first, by using more
concise formulations with a smaller number of variables; and second, by using
constraint propagation for pruning the search space, instead of the bound
provided by the linear relaxation. One single algorithm was capable to handle
both the odd and even diameter instances.

Constraint programming obtained better results (i.e., smaller computation
times to find exact optimal solutions and to prove their optimality) than all
MIP approaches for most (25 out of the 29) of the test instances. On the
average, the constraint programming computation times were only 45% of
those observed with the MIP approach. The advantage of the CP approach
was even stronger for the instances with odd diameter and for those on dense
graphs, for which the previous ratio was equal to 23% and 21%, respectively.
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Department of Mathematics and Computer Science

Emory University

Atlanta, GA 30322, USA

Abstract

In this note we report on our recent work, still in progress, regarding Folkman
numbers. Let f(2, 3, 4) denote the smallest integer n such that there exists a K4–
free graph of order n having that property that any 2–coloring of its edges yields
at least one monochromatic triangle. It is well–known that such a number must
exist [4,10]. For almost twenty years the best known upper bound, given by Spencer,
was f(2, 3, 4) < 3 · 109 [13]. Recently, the authors and Lu showed that f(2, 3, 4) <

130 000 [2] and f(2, 3, 4) < 10 000 [9]. However, it is commonly believed that, in
fact, f(2, 3, 4) < 100. All previous bounds are based on an idea of Goodman [6].
It seems that such methods will not yield substantial further improvement. In this
note we will generalize this idea by giving a necessary and sufficient condition for a
graph G to yield a monochromatic triangle for every edge coloring. In particular,
for any graph G we construct a graph H such that G is Folkman if and only if the
value of the maximum cut of H is less than twice the number of triangles in G. We
believe this technique may be used to find a new upper bound on f(2, 3, 4).
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1 Introduction

Let r, k, l be positive integers with k < l, and let F(r, k, l) be a family of
Kl–free graphs having the following property that if G ∈ F(r, k, l), then ev-
ery r–coloring of edges of G must yield at least one monochromatic copy of
Kk. J. Folkman showed in [4] that F(2, k, l) 6= ∅. The general case, i.e.
F(r, k, l) 6= ∅, r ≥ 2, was settled by J. Nešetřil and the second author in [10].
Let f(r, k, l) = minG∈F(r,k,l) |V (G)|. The problem of determining the num-
bers f(r, k, l) in general includes the classical Ramsey numbers and thus is
not easy. In this note we focus to the case where r = 2 and k = 3. We
will write G → (4) and say that G arrows a triangle if every 2–coloring
of G yields a monochromatic triangle. Since the Ramsey number R(3, 3) = 6
clearly f(2, 3, l) = 6, for l > 6. The value of f(2, 3, 6) = 8 was determined
by R. Graham in [7], and f(2, 3, 5) = 15 by K. Piwakowski, S. Radziszowski
and S. Urbański in [11]. In the remaining case, the upper bounds on f(2, 3, 4)
obtained from [4] and [10] are extremely large (iterated tower function). Con-
sequently, in 1975, P. Erdös [3] offered $100 for proving or disproving that
f(2, 3, 4) < 1010. Based on the idea of Goodman of counting triangles in a
graph and in its complement [6] applied to random graphs P. Frankl and the
second author came relatively close to the desired bound showing in [5] that
f(2, 3, 4) < 1012. Subsequently, J. Spencer in [13] refined this argument and
proved f(2, 3, 4) < 3 ·109 giving a positive answer to the question of Erdös [3].
Subsequently, F. Chung and R. Graham in [1] conjectured that f(2, 3, 4) < 106

and offered $100 for a proof of disproof. Recently, L. Lu and independently
the authors gave the computer assisted proof of f(2, 3, 4) < 10 000 [9] and of
f(2, 3, 4) < 130 000 [2], respectively. Similarly as in [5] and [13] the proofs
from [2] and [9] are based on the modification of the idea from Goodman’s pa-
per [6]. The idea explores the local property of every vertex neighborhood in a
graph (See Corollary 2.2). While this property easily yields that a graph con-
tains a monochromatic triangle in every edge coloring, it seems to be stronger
than needed. We believe that this method may not yield substantial further
improvement without additional modifications. We will give a necessary and
sufficient condition for a graph G to yield a monochromatic triangle for every
edge coloring. More precisely, for every graph G we will construct a weighted
graph H such that G arrows a triangle if and only if the corresponding value
to the maximum cut of H is less than twice number of triangles in G.



2 Counting blue and red triangles

In order to establish a necessary and sufficient condition for a graph G to yield
a monochromatic triangle for every edge coloring, we will use a modification of
an idea of [6]. For any blue–red coloring of G let TBR(v), TBB(v) and TRR(v)
count the number of triangles containing vertex v, for which two edges inci-
dent to v are colored blue–red, blue–blue and red–red, respectively. The sum
∑

v∈V (G) TBR(v) counts 2 times the number of nonmonochromatic triangles.
This is because each such triangle is counted once for two different vertices.
On the other hand, the sum

∑

v∈V (G)

(

TBB(v) + TRR(v)
)

counts 3 times the
number of monochromatic triangles and once the number of nonmonochro-
matic triangles. Consequently, G → (4) if and only if for every edge coloring
of G the following holds

∑

v∈V (G)

TBR(v) < 2
∑

v∈V (G)

(

TBB(v) + TRR(v)
)

. (1)

Denote by N(v) the set of neighbors of a vertex v ∈ V and let G[N(v)] be
a subgraph of G induced on N(v). Also we denote by M(G) the size of the
maximum cut of G. One can show using (1) the following Proposition.

Proposition 2.1 Let G = (V, E) be a graph that satisfies

∑

v∈V (G)

M(G[N(v)]) <
2

3

∑

v∈V (G)

∣

∣E(G[N(v)])
∣

∣. (2)

Then, G → (4).

A special case of Proposition 2.1 was used to determine the upper bounds on
f(2, 3, 4) in [2,5,9,13].

Corollary 2.2 (Frankl and Rödl [5]; Spencer [13]) Let G = (V, E) be a

graph which satisfies

M(G[N(v)]) <
2

3

∣

∣E(G[N(v)])
∣

∣ (3)

for every vertex v ∈ V (G). Then, G → (4).

We extend the idea of Goodman [6] and give a necessary and sufficient
condition for a graph G to yield a monochromatic triangle for every edge col-
oring. More precisely, for every graph G = (V, E) with t4 = t4(G) triangles,
we construct a weighted graph H with 2|E| vertices such that G → (4) if and
only if the value of the maximum cut of H is less than 2t4.



Let G be a graph with the vertex set V (G) = {1, 2, ..., n}. For every
vertex i ∈ V (G), let Gi be a graph with V (Gi) =

{

(i, j) | j ∈ N(i)
}

and
E(Gi) =

{

{(i, j), (i, k)} | {j, k} ∈ E(G)
}

. Clearly Gi is isomorphic to the
subgraph G[N(i)] of G induced on the neighborhood N(i). Now we define a
weighted graph H as follows: V (H) =

{

(i, j) ∈ V (G)×V (G) | (i, j) ∈ V (Gi)
}

and E(H) = E+(H) ∪ E−(H), where E+(H) =
{

{(i, j), (i, k)} | {j, k} ∈
G[N(i)]

}

and E−(H) =
{

{(i, j), (j, i)} | (i, j) ∈ V (Gi) and (j, i) ∈ V (Gj)
}

.

To every edge in E+ and E− we assign the weight 1 or −∞, respectively.
Clearly |V (H)| = 2|E(G)|, |E+(H)| = 3t4(G) and |E−(H)| = |E(G)|. Note
that the adjacency matrix of H is is a 2|E(G)|×2|E(G)| matrix with adjacency
matrices of Gi

∼= G[N(i)] around the diagonal.

We say that H has a positive cut if the value of this cut is positive. Let
V (H) = V1∪V2 be a positive cut. Since the value of each edge

{

(i, j), (j, i)
}

∈

E(H) is −∞, we infer that
{

(i, j), (j, i)
}

∈
(

V1

2

)

∪
(

V2

2

)

, whenever {i, j} ∈ E(G).
Consequently, each blue–red coloring of edges of G defines a bipartition of
vertices of H and vice versa. Summarizing, the following holds.

Proposition 2.3 There is a one to one correspondence between edge colorings

of G and positive cuts of H.

Based on Proposition 2.3 we proved the main result of this note, which we
state here without the proof. Now M(H) denotes the value of the maximum
cut for a weighted graph H.

Theorem 2.4 Let G be a graph. Then, G → (4) if and only if

M(H) < 2t4(G).

We will show how Theorem 2.4 can be used in the following simple exam-
ple. Let G17 be a graph with the vertex set V (G17) = {1, 2, ..., 17} and the edge
set defined as follows: {i < j} ∈ E(G17) if j − i is a quadratic residue of 17.
One can check that G17 is K4–free. Let G18 be a graph obtained from G17 by
adding one additional vertex, say 18, connected to all vertices from V (G17).
Then, |V (G18)| = 18, |E(G18)| = 85, t4(G18) = 136. Clearly G18 is K5–free.
In [8], R. Irving proved that G → (4), thus establishing f(2, 3, 5) ≤ 18. An al-
ternative (computer assisted) proof of Irving’s result is based on Theorem 2.4.
Let H be the graph of order 170 from Theorem 2.4 that corresponds to G18.
Since M(H) < 272 = 2 · 136, 3 Theorem 2.4 yields that G18 ∈ F(2, 3, 5). Note
that we could not apply a simpler condition given by Proposition 2.1. This is
because the maximum cut of G18[N(i)], i = 1, ..., 17, equals 14 and the max-
imum cut of G18[N(18)] ∼= G17 equals 44. Hence,

∑

i∈V (G18) M(G18[N(i)]) =

3 The authors used Biq Mac solver [12] to compute M(H).



17 · 14 + 44 = 282. Also, 2
3

∑

i∈V (G18)

∣

∣E(G18[N(i)])
∣

∣ = 2
3
(17 · 20 + 68) = 272.

We observe that due to the above equalities condition (2) fails and hence
Proposition 2.1 cannot be applied.
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Ciudad Universitaria 04510 México, D.F.
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Abstract

Let q = 2β and n = q2 + q + 1. Further, let G = L(Kn) be the complete line graph

and ψ(G) its pseudoachromatic number. By exhibiting an explicit colouring of
E(Kn), we show that ψ(G) ≥ q3 + q. This result improves the bound ψ(G) ≥ q3 +1
due to Jamison (1989) [9].
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1 Introduction

Let G = (V,E) be a (simple) graph. A complete colouring of G is a function
ς:V → [k] from its vertices onto a k-set [k] := {0, 1, . . . , k − 1} —the set of
colours— such that for each pair of (different) colours i, j ∈ [k] there is an
edge e = uv ∈ E which uses the two colours in its vertices

ς(e) = {ς(u), ς(v)} = {i, j}.

The pseudoachromatic number ψ(G) is the maximum k for which there exists
such a complete colouring. The achromatic number α(G) is defined analo-
gously to the pseudoachromatic number, but the colouring is required also to
be proper, i.e., that no edge is coloured monochromatic.

The pseudoachromatic number was introduced by Gupta [7] while proving
that

χ(G) + ψ(Gc) ≤ n+ 1,

where n = |V | is the order of G and Gc denotes its complement. This result
refines that of Harary and Hedetniemi [8] which asserts that

χ(G) + α(Gc) ≤ n+ 1.

Both inequalities where motivated by the well-known one due to Nordhaus
and Gaddum [11]:

χ(G) + χ(Gc) ≤ n+ 1.

Clearly, χ(G) ≤ α(G) ≤ ψ(G).

Further interest of such invariants can be found in [2,3,5] (see also [10] for
a surprising connection with abstract convexity).

We are mainly interested in the pseudoachromatic number of the complete
graph’s line graph; that is, we will bound, from below, ψ(L(Kn)) exhibiting
a complete colouring of the edges of Kn. For this, we use some combinatorial
properties of the projective plane of even order (see [4] for similar results on
the achromatic number); explicitly, we prove that

Theorem 1.1 If q = 2β and n = q2 + q + 1, then ψ(L(Kn)) ≥ q3 + q.

In the case β = 1 (i.e., in the case of the Fano Plane) our colouring
does not improve the known one; indeed, it is easy to see that ψ(L(K7)) =
α(L(K7)) = 11 (see [1]). However, for β > 1 this result improves the bound
ψ(L(Kn)) ≥ α(L(Kn)) ≥ q3 + 1 due to Jamison [9], whenever both theorems
can be applied —e.g., whenever q − 1 is an odd prime power.



2 Preliminaries

If n = q2 + q + 1 and q = pβ is a prime power, then there exists an algebraic
projective plane Πq = PG(2, q) which consists of n points and n lines, each
line being a subset of q + 1 points, such that every two lines intersect in a
unique point and every pair of points is contained in a unique line. Such a
projective plane defines a partition on the edges ofKn induced by the following
equivalence relation:

ab ∼ cd ⇐⇒ ab = cd,

where ab denotes the (unique) line which contains the points a and b. Here,
and in the sequel, we identify the points of Πq with the vertices of Kn, and
the lines with the complete subgraph induced by theirs points. We denote by
[q] = {0, 1, . . . , q − 1} the canonic q-set.

We will use the following useful description of Πq. There is an affine set
of q2 points, which we identify with the set [q] × [q], and another set of q + 1
points which are elements of the so-called line at infinity

`∞ := {P0, . . . , Pq−1, P∞}.

Besides the line at infinity, there are other q lines which contains the point
P∞; we say that they have slope equal to infinity , and denote them by

[x = i] := {(i, 0), (i, 1), . . . , (i, q − 1), P∞},

for each i ∈ [q]. The rest of the lines are defined, in the affine part, by
equations of the form y = mx + b — all the arithmetic is done in the Galois
field GF (q) — and we add, at infinity, the point Pm; explicitly, we write

[m, b] := {(x, y) : y = mx+ b} ∪ {Pm},

to denote the remaining q2 lines.

3 The colouring

Let n = q2 + q + 1, q = 2β and β ∈ IN be natural numbers, and denote by
G = L(Kn) the line graph of Kn. To show that

ψ(G) ≥ q3 + q = (q − 1)n+ (q + 1)

it is enough to exhibit a complete colouring of G with that number of colours.
For, let C = [q − 1] be a set of colours — we will use them as a “pattern box



of colours” — and let Ĉ = C1 t · · · t Cn be the disjoint union of n copies
of C. Further, consider an extra box of colours D = [q + 1]. We will exhibit

a complete colouring ς:V (G) → Ĉ t D where each line ` of Πq will use a
different box of colours C` and an extra colour d` ∈ D from the last extra box;
that is, ς(`) = C` ∪ {d`}, where ς(`) = {ς(uv) : uv = `}. Here, and in the
sequel, we identify the vertices of Kn and the points of Πq (see Section 2).

It is well known that the complete line graph L(Kq) of even order q accepts
a complete proper colouring with q− 1 colours; that is, α(L(Kq)) ≥ q− 1 if q
is even (see Füredi [6] for a nice discussion and generalisation of the subject).
In such a colouring, each colour class induces a matching into the complete
graph. We extend that colouring to L(Kq+1) by, first coping the colours from
the edges incident to a fixed vertex v ∈ V (Kq), to the new vertex u ∈ V (Kq+1),
and then, adding a new colour to the edge uv ∈ E(Kq+1) (see Figure 1 for the
case q = 4).

Fig. 1. A complete colouring of L(K5)

Now, for each line ` of Πq we can copy such a colouring into the edges of
the complete subgraph induced by its points — we just have to choose the
“special” edge uv and pick-up colours from the box C`, which has order q− 1;
the colour of uv will be picked-up from the box D.

To select the special edges we proceed as follows. For each line with slope
equal to infinity, say [x = i], we pick the point (i, 0) and the colour i ∈ D to
assign it to the edge P∞(i, 0); we choose different colours for different lines,
i.e., di 6= dj if i 6= j. We use the remaining colour q ∈ D for the pair P∞P0.

To choose the remaining special edges, to be coloured from the box D,
consider the line ` = [m, b] 6= [0, 0] and let Q = ` ∩ [x = m]. If Q ∈ [0, 0]
then we choose the edge QPm as the special edge and colour it with q ∈ D;



otherwise we colour such an edge with colour m ∈ D. Finally, colour the line
` = [0, 0] arbitrarily; i.e., choose any edge as the special one (see Figure 2).

Fig. 2. The colouring of L(K7) related to the Fano plane.

From here, it is not hard to see that ς:V (G) → Ĉ tD, as described above,

is a complete colouring of L(Kn) with |Ĉ tD| = (q − 1)n + (q + 1) = q3 + q

colours (see [1] for details). 2
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Márcia R. Cerioli a,c,1, Fabiano de S. Oliveira c,2 and
Jayme L. Szwarcfiter a,b,c,3

a Instituto de Matemática
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Abstract

A PI graph G is the intersection graph of a family of triangles ABC between two
distinct parallel lines L1 and L2, such that A is on L1 and BC is on L2. We study
the orders defined by transitive orientations of the complement of G, the PI orders.
We describe a characterization for such orders in terms of a special order dimension
called linear-interval dimension. We show that the linear-interval dimension of an
order is a comparability invariant, which generalizes the well-known result that the
interval dimension is a comparability invariant.
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1 Introduction

A graph G is an intersection graph if we can associate a family of sets to G,
each set corresponding to a vertex, such that (u, v) ∈ E(G) if and only if the
sets corresponding to u and v have non-empty intersection (or simply that they
are intersecting). We call such a family a model of G. An interval graph is the
intersection graph of a family of intervals of the real line, called an interval
model. Let L1 and L2 be two distinct parallel lines. A permutation graph is
the intersection graph of a family of line segments, such that each segment
has an extreme point on L1 and the other on L2. A trapezoid graph is the
intersection graph of a family of trapezoids ABCD, such that AB is on L1 and
CD is on L2 [2]. A point-interval graph or PI graph is the intersection graph
of a family of triangles ABC, such that A is on L1 and BC is on L2, called a
PI model [2]. Let T be a triangle ABC. Denote t(T ) = A and b(T ) = BC.
Figure 1 illustrates a PI graph and a PI model of it.

Figure 1. A PI graph and a PI model.

The left and right extreme points of an interval I are denoted by `(I) and
r(I), respectively. When `(I) = r(I), we say that I is trivial. Given a set
of distinct parallel lines L1, . . . , Ln, a figure is a set of intervals {I1, . . . , In},
where I i ⊂ Li for all 1 ≤ i ≤ n. Two figures F1 = {I i

1 | 1 ≤ i ≤ n} and
F2 = {I i

2 | 1 ≤ i ≤ n} are disjoint if one of them, say F1, is such that
r(I i

1) < `(I i
2) for all 1 ≤ i ≤ n, denoted by F1 � F2. Two figures F1 and F2

are intersecting if they are not disjoint, denoted by F1 × F2.

An order P = (X,≺) is an irreflexive and transitive binary relation ≺ on
the set X. If x ≺ y or y ≺ x, we say that x and y are comparable. Otherwise,
they are incomparable and we denote this relation by x ‖ y. An order is a
linear order if any two distinct elements of it are comparable. An order (X,≺)
is an interval order if it can be associated to an interval model {Ix | x ∈ X},
such that x ≺ y if and only if Ix � Iy. An order P ′ = (X,≺′) is an extension
of an order P = (X,≺) if x ≺ y =⇒ x ≺′ y, for all x, y ∈ X. If an extension
is a linear order, we call it a linear extension. Similarly, we call an extension
an interval extension if it is an interval order.



Let P = (X,≺P ) and Q = (X,≺Q) be orders. The relation P∩Q is defined
to be the order (X,≺R) such that x ≺R y ⇐⇒ x ≺P y and x ≺Q y. Let L be

a set {P1, . . . , Pk} of extensions of P . We call L a realizer of P if P =
⋂k

i=1
Pi.

The linear (interval) dimension of an order P is the least k such that there
exists a realizer of P containing precisely k linear (interval) extensions [9].

Let G be a graph and P the order defined by some transitive orientation
of G. We call G and G respectively the comparability and the incomparability
graph of P . A property about orders is said to be a comparability invariant if
either all orders with the same comparability graph have such a property or
none of them does. It is known that both the linear and the interval dimensions
are comparability invariants [4,5].

It is clear that the class of PI graphs generalizes both classes of interval
and permutation graphs and is generalized by the class of trapezoid graphs.
Both interval and permutation graph classes are well-known, and there are
algorithms to recognize both of them in linear time [8]. Trapezoid graphs
are also recognized efficiently, and the fastest algorithm is due to Ma and
Spinrad [7], which runs in O(n2) time. Another approach for the recognition
of such graphs is based on the following steps. First, characterize trapezoid
orders (transitive orientations of the complements of trapezoid graphs) as
those having interval dimension at most 2. Then, formulate a polynomial
time algorithm to recognize orders of interval dimension at most 2 [3,6]. The
recognition problem of PI graphs has been open since 1987 [2,1,8]. In this
work, we reduce the recognition problem of PI graphs to that of recognizing PI
orders, and characterize such orders as those having linear-interval dimension
at most (2, 1). If there is a polynomial algorithm to recognize such orders, PI
graphs would be recognized efficiently.

2 Linear-Interval Dimension and PI Orders

Let P be an order and F be a realizer of P . We say that F is a (p, q)-linear-
interval realizer of P , if F is an interval realizer with p elements and precisely
q of them are non-linear. We define (p, q) ≤ (p′, q′) if (p, q) is lexicographically
smaller than or equal to (p′, q′). A linear-interval dimension of an order P ,
denoted by lidim(P ), is the lexicographically smallest ordered pair (p, q) such
that there exists a (p, q)-linear-interval realizer of P . We show that the linear-
interval dimension of an order is a comparability invariant, as follows.

Given a graph G = (V, E), we say that A ⊆ V is a homogeneous set
if every vertex in V \ A is adjacent either to all of the vertices in A or to
none of them. Let P1 = (X,≺1) and P2 = (X,≺2) be orders with the same



comparability graph G. We say that P2 is obtained from P1 by an elementary
reversal if there is a homogeneous set A ⊆ X of G that satisfies the following
properties: (i) A is not an independent set of G; (ii) if x, y are not both in A,
then x ≺1 y ⇐⇒ x ≺2 y; and (iii) if x, y ∈ A, then x ≺1 y ⇐⇒ y ≺2 x.

Theorem 2.1 (Gallai [4]) Let π be a property about orders. In order to
prove that π is a comparability invariant, it suffices to prove that if an order
Q is obtained from an order P by an elementary reversal and π holds for P ,
then π holds for Q.

The proof of the next Lemma is straightforward.

Lemma 2.2 ([4]) Let P1 = (X,≺1) and P2 = (X,≺2) be orders such that P2

is obtained from P1 by an elementary reversal of the homogeneous set A ⊆ X.
Then, X \ A is partitioned into the sets P−

1 (A) = {x ∈ X \ A | x ≺1 a for all
a ∈ A}, P+

1 (A) = {x ∈ X \ A | a ≺1 x for all a ∈ A} and P×

1 (A) = {x ∈
X \ A | x ‖1 a for all a ∈ A}.

Given distinct parallel lines L1, . . . , Lp and a set X, a family of figures
{Fx | x ∈ X}, where Fx = {I i

x | 1 ≤ i ≤ p} for all x ∈ X, is a (p, q)-linear-
interval model if: (i) for all 1 ≤ i ≤ q, I i

x is non-trivial for some x ∈ X;
(ii) for all q < i ≤ p, I i

x is trivial for all x ∈ X. Figure 2 illustrates a (3, 2)-
linear-interval model. To make the picture clearer, `(I i

x) is joined to `(I i+1
x )

and r(I i
x) to r(I i+1

x ) both by a line segment, for all 1 ≤ i < p.

Figure 2. A (3, 2)-linear-interval model.

An order P = (X,≺) is (p, q)-linear-interval representable if there exists a
(p, q)-linear-interval model {Fx | x ∈ X} such that x ≺ y ⇐⇒ Fx � Fy. It
can be shown the equivalence between these two concepts.

Lemma 2.3 Let P = (X,≺) be an order. Then P has a (p, q)-linear-interval
realizer if and only if P is (p, q)-linear-interval representable.

Let S be a set of points and M < N be real constants such that s ≥ M
for all s ∈ S. Let W (S) = max{s − M | s ∈ S}. The operation of fitting S
between M and N is that of making the width of W (S) equal to N −M , such



that s ∈ S is moved to (s − M)(N − M)/W (S) + M . Let R = {Fx | x ∈ X}
be a (p, q)-linear-interval model and M < N be real constants. The operation
of resizing Y ⊆ X between M and N consists of fitting Fx into the region
delimited by the vertical lines at M and N of the model, for all x ∈ Y , as
follows. Let R be the rectangle with minimum width in which all figures
corresponding to Y are included. First, slide horizontally those figures (and
therefore R) such that the left side of R is on the vertical line at M . Next,
apply fitting operation on {`(I i

y), r(I
i
y) | y ∈ Y, 1 ≤ i ≤ p} between M and N .

Theorem 2.4 Being (p, q)-linear-interval representable is a comparability in-
variant.

Proof (Sketch) By Theorem 2.1, it is sufficient to show that if P = (X,≺P )
is (p, q)-linear-interval representable, then Q = (X,≺Q) is (p, q)-linear-interval
representable, where Q is obtained from P by an elementary reversal of A ⊆ X.

Let R = {Fx | x ∈ X} be a (p, q)-linear-interval model of P . By the
property (i) of an elementary reversal, there exist b, c ∈ A such that b ≺P c.
Let M = r(I1

b ) and N = `(I1
c ). It is possible to adjust R so that r(I i

b) = M
and `(I i

c) = N , for each 1 ≤ i ≤ p, by sliding conveniently the extreme
points in each horizontal line of R. Then, apply the resizing operation on
A between M and N . Next, flip horizontally the figures corresponding to
vertices in A through a vertical line at (M + N)/2, obtaining the final model
R′ = {F ′

x | x ∈ X}. We claim that R′ is a (p, q)-linear-interval model of Q.

Since the resizing operation is composed with a horizontal flip, it follows
that for all x, y ∈ A, x ≺Q y ⇐⇒ y ≺P x ⇐⇒ F ′

x � F ′

y, which is according
to our claim. It also holds that for all x, y ∈ X \ A, x ≺Q y ⇐⇒ x ≺P y
⇐⇒ F ′

x � F ′

y, again consistent with our claim. Finally, for all x ∈ X \ A
and y ∈ A, consider the subcases where x ≺Q y, y ≺Q x or x ‖Q y. If x ≺Q y,
then x ≺P y. By Lemma 2.2, x ≺P a, for all a ∈ A, and in particular, x ≺P b.
Therefore, Fx � Fb and then F ′

x � F ′

a, for all a ∈ A, and in particular,
F ′

x � F ′

y. The other two cases are similar. 2

Corollary 2.5 Linear-interval dimension is a comparability invariant.

As a consequence, we have the well-known result:

Corollary 2.6 Interval dimension is a comparability invariant.

Proof Let P and Q be orders with the same comparability graph. By Corol-
lary 2.5, lidim(P ) = lidim(Q) = (p, q). Then, idim(P ) = idim(Q) = p. 2

An order (X,≺) is a PI order if there exists a PI model R = {Tx | x ∈ X},
such that x ≺ y if and only if Tx � Ty.



Theorem 2.7 An order P is a PI order if and only if lidim(P ) ≤ (2, 1).

Proof Let P = (X,≺) be a PI order and R = {Tx | x ∈ X} be a PI model of
P . Consider the orders PI = (X,≺I) and PL = (X,≺L) such that x ≺I y ⇐⇒
b(Tx) � b(Ty) and x ≺L y ⇐⇒ t(Tx) � t(Ty). Since x ≺ y ⇐⇒ x ≺L y
and x ≺I y, then {PL, PI} is either a (2, 1)- or a (2, 0)-linear-interval realizer
of P . Conversely, let P = (X,≺) be an order such that lidim(P ) ≤ (2, 1). If
lidim(P ) ≤ (2, 0), the result holds. Suppose lidim(P ) = (2, 1) and then let
{PI , PL} be a (2, 1)-linear-interval realizer of P , such that PI = (X,≺I) is the
non-linear interval order. Let RI = {Ix | x ∈ X} be an interval model of PI .
We build a PI model R = {Tx | x ∈ X} such that b(Tx) = Ix for all x ∈ X,
and t(Tx) � t(Ty) ⇐⇒ x ≺L y. Thus, x ≺ y ⇐⇒ Tx � Ty. 2

Corollary 2.8 Being a PI order is a comparability invariant.
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Abstract

A circular-arc graph is the intersection graph of a set of arcs on the circle. It is a
Helly circular-arc graph if it has a Helly model, where every maximal clique is the set
of arcs that traverse some clique point on the circle. A clique model is a Helly model
that identifies one clique point for each maximal clique. A Helly circular-arc graph
is proper if it has a Helly model where no arc is a subset of another. In this paper,
we show that the clique intersection graphs of Helly circular-arc graphs are precisely
the proper Helly circular-arc graphs. This yields the first polynomial (linear) time
recognition algorithm for the clique graphs of Helly circular-arc graphs. Next, we
develop an O(n) time algorithm to obtain a clique model of Helly model, improving
the previous O(n2) bound. This gives a linear-time algorithm to find a proper Helly
model for the clique graph of a Helly circular-arc graph. As an application, we find
a maximum weighted clique of a Helly circular-arc graph in linear time.

Keywords: algorithms, Helly circular-arc graphs, proper Helly circular-arc graphs,
clique graphs, maximum weight cliques.



1 Introduction

If G = (V (G), E(G)) is a graph, we denote by n and m the values of |V (G)|
and |E(G)|. A complete set is a subset of pairwise adjacent vertices, while a
clique is a maximal complete set. If the vertices of G are weighted, let us say
that G is a weighted graph. The weight of a clique is the sum of the weights
of its vertices. The clique graph K(G) of G is the intersection graph of its
cliques.

A graph is a clique graph if it is isomorphic to K(G) for some graph G [5,8].
Clique graphs of several classes have been characterized and several algorithms
are known for testing if a graph is a clique graph of some class. Some of these
can be recognized in polynomial time [11]. However, in the last year the
complexity of recognition of clique graphs of arbitrary graphs was proved to
be NP-Hard [1].

A circular-arc (CA) model M is a pair (C,A), where C is a circle and A is
a collection of arcs of C. When traversing the circle C, we will always choose
the clockwise direction. If s, t are points of C, write (s, t) to mean the arc of
C defined by traversing the circle from s to t. Call s, t the extremes of (s, t),
while s is the beginning point and t the ending point of the arc. For A ∈ A,
write A = (s(A), t(A)). The extremes of A are those of all arcs in A. Without
loss of generality, we assume that all arcs of C are open arcs, no two extremes
coincide, and no single arc covers C. We will say that ε > 0 is small enough if
ε is smaller than the minimum arc distance between two consecutive extremes
of A.

When no arc of A contains any other, M is a proper circular-arc (PCA)
model. When every set of pairwise intersecting arcs share a common point,
M is called a Helly circular-arc (HCA) model. If no two arcs of A cover C,
then the model is called normal. A proper Helly circular-arc model (PHCA)
is one which is both HCA and PCA. Finally, an interval model is a CA model
where

⋃
A∈A

A 6= C. A CA (PCA) (HCA) (PHCA) (interval) graph is the
intersection graph of a CA (PCA) (HCA) (PHCA) (interval) model. A graph
is K(HCA) if it is the clique graph of some HCA graph. Two CA models are
equivalent when they have the same intersection graph.

Denote by A(p) the collection of arcs that contain p. Clearly, the vertices

1 Partially supported by UBACyT Grants X184 and X212, CNPq under PROSUL project
Proc. 490333/2004-4.
2 Partially supported by UBACyT Grant X184 and CNPq under PROSUL project Proc.
490333/2004-4, and by a grant of the YPF Foundation.
3 Partially supported by CNPq and FAPERJ, Brasil.



corresponding to A(p) form a complete set. If this set is a clique, then p is
called a clique point. For points p, p′ on the circle, p (properly) dominates
p′ if A(p′) is (properly) contained in A(p). When A(p) = A(p′) then p, p′

are equivalent. Point p is a complete point if it is not properly dominated
by any other point. In HCA graphs there is a one-to-one correspondence
between cliques and non-equivalent complete points. An intersection segment
(s, t) is a pair of consecutive extremes where s is a beginning point and t is
an ending point. Points inside intersection segments are called intersection
points. Every complete point is an intersection point, but the converse is
not necessarily true [4], because there can be multiple intersection segments
that are contained in exactly the same set of arcs. However, when M is
a PHCA model, then every intersection point is also a complete point. A
complete (intersection) (clique) point representation of M is a maximal set of
non-equivalent complete (intersection) (clique) points. Let I = (s(Ai), t(Aj))
be an intersection segment and p ∈ I. The arc reduction of p is the arc
(s(Ai), t(Ak)) where Ak ∈ A(p) and t(Ak) is the ending point farthest from p

when traversing C. Observe that when M is PHCA then the arc reduction of p

is Ai. Let Q be a clique (complete) point representation, the clique (complete)
model (with respect to Q) is the model formed by the arc reductions of Q. In
particular, any clique model of an HCA graph G is a PCA model of K(G) [4].

Circular-arc graphs and its subclasses have been receiving much attention
recently ([2,10]). For CA, PCA, HCA and PHCA graphs, there are several
characterizations and linear linear time recognition algorithms which construct
a model (see [6,7]). In [3], K(HCA) graphs are studied. It is proved that
K(HCA) graphs are both PCA and HCA graphs. In the same paper some
characterizations are shown, but these characterizations did not lead to a
polynomial time recognition algorithm. On the other hand, in [4] an O(n2)
time algorithm that outputs the clique graph of an HCA graph is described.

In Section 2, we prove that the class of K(HCA) graphs is precisely the
class of PHCA graphs. A PHCA model can be obtained in O(n) time from
any PCA model of a PHCA graph [7], so PHCA graphs can be recognized
in linear time. This implies a linear time recognition algorithm for K(HCA)
graphs. In the last section, we also describe a new simple linear time algorithm
for constructing a clique model of an HCA graph. In fact, we describe a more
general linear time algorithm that finds a maximal dominating subset of some
set of points in a CA model. This algorithm can be easily extended to find
the weighted clique graph of an HCA graph, solving the maximum weighted
clique problem in linear time. For CA graphs, the maximum weight clique
problem can be solved in O(n log n + m log log n) time [9].



2 Characterization of K(HCA) graphs

Theorem 2.1 [4] Let G be a PHCA graph. Then K(G) is PHCA and every
complete point model of G is a PHCA model of K(G).

Theorem 2.2 [7] Let G be a PCA graph. Then G is a PHCA graph if and
only if G contains neither W4 nor 3-sun as induced subgraphs.

Theorem 2.3 Let G be a graph. Then the following are equivalent:

(i) G = K(H) for some PHCA graph H.

(ii) G = K(H) for some HCA graph H.

(iii) G is a PHCA graph.

Proof (Sketch). Clearly (i) implies (ii). To see that (ii) implies (iii), con-
sider an HCA graph H. Graph G = K(H) is PCA [3], contains no 3-sun as
an induced subgraph [5] and it is not a difficult task to check that G con-
tains no W4 as an induced subgraph. Hence, by Theorem 2.2, G is PHCA.
Finally, we show that (iii) implies (i). Let G be a PHCA graph. If G is a
proper interval graph, then (i) follows (see [11]). Otherwise, let M = (C,A)
be a PHCA model of G and assume that it is also normal by [7]. By The-
orem 2.1, it suffices to find a PHCA supermodel of M whose clique model
is M. Let Q be the set of arc reductions of A and N = A \ Q. Observe
that since M is PHCA, Q is a subset of A. Also note that since G is not an
interval graph then every arc of A contains at least one ending point of some
other arc. Now, fix a small enough ε. For each arc Ai ∈ N let Bi be the
arc (s(Aj) − ε, s(Ai) + ε) where t(Aj) is the first ending point that appears
when traversing C from s(Ai). If two arcs Bi, Bj share their beginning points,
then modify one of them so that none of them is included in the other. We
claim that M′ = (C,A ∪ {Bi : Ai ∈ N}) is PHCA and has M as a clique
model. To observe this, check that M′ is a PHCA model and that the set of
arc reductions of M′ is precisely A. 2

To check whether a graph is K(HCA) is the same as to check if the graph
is PHCA. This can be done in linear time [7].

3 Construction of a clique model of an HCA graph

In [4] an O(n2) algorithm for constructing a clique model of an HCA model is
described. The algorithm consists of two well defined procedures: 1) Find a
clique point representation Q of the model and 2) build the clique model with
respect to Q. The first procedure is the bottleneck of the algorithm, and takes



O(n2) time, while the second procedure can be done in O(n) time. In this
section we develop a linear-time algorithm that reduces the bottleneck step to
O(n). Given a set P of points in an arbitrary CA model, the algorithm finds a
minimum subset of the points that dominates all members of P in O(n + |P |)
time. Letting P be one intersection point in each of the O(n) intersection
segments solves the bottleneck step. From now on, let M = (C,A) be a CA
model.

The ascendant (descendant) semi-dominating sequence of P is the sub-
sequence SD+(P ) = {pi ∈ P : A(pi) 6⊆ A(pj) for all pj ∈ P and j > i}
(SD−(P ) = {pi ∈ P : A(pi) 6⊆ A(pj) for all pj ∈ P and j < i}).

Lemma 3.1 Let M = (C,A) be a CA model and P = {p1, . . . , pk} be a
sequence of circularly ordered points from C. Then both SD−(SD+(P )) and
SD+(SD−(P )) are P -dominating sequences.

Algorithms to find SD+ and SD− are symmetric. We describe the one
to find SD+. The algorithm works by induction on the size of a Pi =
{p1, p2, . . . , pi}. After step i, we have a partition of SD+(Pi) into the fol-
lowing two sets:

• The members Di that are contained in some arc that is a subset of the open
interval (pk, pi), hence that cannot be dominated by any arc in {pi+1, pi+2,

. . . , pk}. These are already known to be members of SD+(P ).

• The set Qi = SD+(Pi) − Di in clockwise order (q1, q2, . . . qj) of appearance
in [p1, pi]. Their status as members of SD+(P ) is uncertain; though they
are in SD+(Pi), they might be dominated by points in {pi+1, pi+2, . . . pk}.

After step k, the algorithm returns SD+(P ) = Dk ∪ Qk. It remains to
describe how to obtain Di+1 and Qi+1 from Di and Qi. We first find Di+1 by
finding the members of Qi that must be added to Di. We need only consider
the effect of arcs that begin in (pk, pi+1) and that end in [pi, pi+1), since arcs
in (pk, pi+1) that end earlier have already been considered in determining Di.
Of these arcs, let D be the one that reaches farthest to the left, that is, whose
beginning point is closest to pk; D is the one that covers the most members
of Qi, so Di+1 − Di is just the points of Qi that are covered by D.

The remaining members Qi+1 = SD+(Pi+1) − Di+1 are just the members
of Qi − Di+1 that aren’t dominated by pi+1. A point p ∈ Qi − Di+1 is in
Qi+1 if and only if it is contained in an arc A that doesn’t contain pi+1, since
otherwise it would be dominated by pi+1, and that contains pk, since otherwise
it would already be identified as a member of Di+1. Of all such arcs, let D

be the one that reaches farthest to the right of pk; since this is the one that



covers the most members of Qi − Di+1, Qi+1 is just the points of Qi − Di+1

that are contained in D.

It is easy to see that the algorithm can be implemented to run in O(n+|P |)
time using elementary techniques, since, at each step, the points of Qi that
are moved to Di+1 or discarded are a suffix of (q1, q2, ..., qj).

Theorem 3.2 Let M = (C,A) be an HCA model of a graph G. Then a
PHCA model of K(G) can be found in O(n) time.

Theorem 3.3 Let M = (C,A) be an HCA model of a graph G. Then the
maximum weight clique of G can be found in O(n) time.

References

[1] Alcón, L., L. Faria, C. Figueiredo and M. Gutiérrez, Clique graph recognition

is NP-complete, Proc. of WG 2006, Lect. Notes in Comput. Sci. 4271 (2006),
269–277.
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Arithmetic relations in the set covering
polyhedron of circulant clutters
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Abstract

We study the structure of the set covering polyhedron of circulant clutters, P (C k
n ),

especially the properties related to contractions that yield other circulant clutters.
Building on work by Cornuéjols and Novick, we show that if C k

n /N is isomorphic
to C k′

n′ , then certain algebraic relations must hold and N is the union of particu-
lar disjoint simple directed cycles. We also show that this property is actually a
characterization. Based on a result by Argiroffo and Bianchi, who characterize the
set of null coordinates of vertices of P (C k

n ) as being one of such N ’s, we then ar-
rive at other characterizations, one of them being the conditions that hold between
the existence of vertices and algebraic relations of certain parameters. With these
tools at hand, we show how to obtain by algebraic means some old and new results,
without depending on Lehman’s work as is traditional in the field.

Keywords: circulant clutter, set covering polyhedron, directed cycle, relative
prime numbers.
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1 Background and results

Given a clutter C with vertices V (C ) and edges E(C ), we denote by

P (C ) = {x ∈ R
n : M(C )x ≥ 1, x ≥ 0},

the corresponding set covering polyhedron. Our work is concerned with the
circular clutters C k

n , having vertex set Zn = {0, 1, . . . , n− 1} and edges {i, i⊕
1, . . . , i ⊕ (k − 1)} for i ∈ Zn (⊕ being addition modulo n), so that it will
convenient to regard vectors in R

n as having coordinates (x0, . . . , xn−1). G(C k
n )

will denote the directed graph having vertex set V (C k
n ) = Zn, and (i, i′) is an

arc of G(C k
n ) if and only if i′ 	 i ∈ {k, k + 1}.

Cornuéjols and Novick [5] described many ideal and minimally non ideal
(mni for short) clutters, in particular finding all of the clutters C k

n which are
ideal or mni. Their results are based on the work by Lehman [6,7], and the
following lemma, which is central to our work:

Lemma 1.1 (lemma 4.5 in [5]) Suppose 2 ≤ k ≤ n − 2. If a subset N
of V (C k

n ) induces a simple directed cycle, D, in G(C k
n ), then there exists

n1, n2, n3 ∈ Z+, n1 ≥ 1, such that

(i) nn1 = kn2 + (k + 1) n3,

(ii) gcd(n1, n2, n3) = 1,

(iii) If k − n1 ≤ 0, then E(C k
n /N) = ∅ or {∅}. If k − n1 ≥ 1, then C k

n /N is
of the form C

k−n1

n−n2−n3
.

In a previous paper [1] we have shown that the condition gcd(m, n1) = 1
in lemma 1.1 is not only necessary, but also sufficient, for the existence of a
simple directed cycle, giving a constructive proof:

Theorem 1.2 Let n, k and m be given, 1 ≤ k ≤ n−1, 1 ≤ m ≤ n−1. Then
there exists a simple directed cycle D in G(C k

n ) with |V (D)| = m if and only
if the following two conditions are satisfied:

⌈km

n

⌉

=
⌊(k + 1) m

n

⌋

, (1)

and if n1 is its common value, then gcd(m, n1) = 1.

Moreover, such a cycle can be constructed in O(m) steps.

The following result—with little changes—is part of the proof given by
Cornuéjols and Novick of lemma 1.1, and reveals an important part of the
structure of cycles in G(C k

n ):



Proposition 1.3 Suppose 1 ≤ k ≤ n − 1, D is a simple directed cycle in
G(C k

n ), having n2 arcs of length k and n3 arcs of length k + 1, n1 is defined
as in lemma 1.1(i), N = V (D) is written in the canonical form

N = {i0, i1, . . . , im−1} so that i0 < i1 < · · · < im−1, (2)

and s : N → N is defined by s(i) = i′ if (i, i′) is an arc of D.

Then, if ⊕
m

indicates addition modulo m,

s(ij) = ij⊕
m

n1
for j = 0, . . . ,m − 1, (3)

or, equivalently, |{i, i ⊕ 1, . . . , s(i) 	 1} ∩ N | = n1.

The following is a generalization to the case of several cycles:

Theorem 1.4 Suppose 1 ≤ k ≤ n − 1, 1 ≤ m ≤ n − 1.

If D1, . . . , Dd are disjoint simple directed cycles in G(C k
n ), all having length

m/d, N = ∪uV (Du) is written in the canonical form (2), and m = |N |, then:

(a) dkm/ne = b(k + 1) m/nc,

(b) if n1 = dkm/ne, then gcd(m, n1) = d,

(c) if s : N → N is defined by s(i) = i′ if (i, i′) is an arc of Du for some u =
1, . . . , d, then equation (3) holds, i.e., s(ij) = ij⊕

m

n1
for j = 0, . . . ,m − 1.

Conversely,

Theorem 1.5 Suppose the conditions (a) and (b) above are satisfied, N ⊂
Zn is written in the canonical form (2), and s : N → N defined by the
condition (3) satisfies

(i, s(i)) is an arc of G(C k
n ) for all i ∈ N . (4)

Then there exist (uniquely determined) d disjoint simple directed cycles in
G(C k

n ), D1, . . . , Dd, all having the same length m/d, such that N = ∪uV (Du).

If the previous conditions hold, then we have the following interlacing
property of the cycles:

Lemma 1.6 Suppose the assumptions of theorem 1.4 hold. Then in each
cyclic interval of N (expressed as in (2)) of length d, there is exactly one
point of each cycle.

We now generalize theorem 1.2 to the case of several disjoint cycles.

Theorem 1.7 Let n, k, m be given, with 1 ≤ k ≤ n − 1 and 0 ≤ m ≤ n − 1.



There exist d disjoint cycles in G(C k
n ) each of length m/d if and only if

equation (1) holds and gcd(m,n1) = d, where n1 is the common value.

Lemma 1.1 relates the existence of a simple cycle D to the condition
gcd(n1, m) = 1 and contractions C k

n /V (D), and we have seen that existence
of several disjoint cycles is related to some algebraic conditions. The following
result shows that contractions are also related.

Theorem 1.8 Suppose n, k, m, n′, k′ ∈ N and N ⊂ Zn are given, such that
2 ≤ k ≤ n− 2, m = |N |, 1 ≤ m ≤ n− 2, and 1 ≤ k′ < n′. Then the following
are equivalent:

(a) C k
n /N ∼ C k′

n′ .

(b) |E(C k
n /N)| = |V (C k

n /N)|.

(c) There exist d disjoint simple directed cycles of G(C k
n ), D1, D2, . . . , Dd,

having the same length, such that N = ∪uV (Du).

From a geometric point of view, given a clutter C and a subset N ⊂ V (C ),
we may interpret P (C /N) as the intersection of P (C ) with the subspace
{x ∈ R

n : xi = 0 ∀ i ∈ N}. Since the conditions xi ≥ 0 for all i ∈ N , are
some of the inequalities defining P (C /N), vertices in P (C /N) (considered
as subset of R

n) are already vertices of P (C ). Thus, if for x ∈ R
n we let

N(x) = {i ∈ Zn : xi = 0} and m(x) = |N(x)|, we see that a vertex x of P (C k
n )

with N(x) 6= ∅ will have a corresponding vertex in P (C k
n /N(x)) (regarded now

as a subset of R
n−m(x)), all of whose coordinates are positive. The remarkable

fact, as shown by Argiroffo and Bianchi [3], is that for all vertices x ∈ P (C k
n ),

N(x) is such that C k
n /N(x) is a circulant clutter. The following is a variant

of their result:

Theorem 1.9 The point x is a vertex of P (C k
n ) if and only if there exist n′

and k′, such that 1 ≤ k′ < n′, C k
n /N(x) ∼ C k′

n′ , gcd(n′, k′) = 1, and xi = 1/k′

for all i /∈ N(x). (Here we allow N(x) = ∅.)

Using our previous results, we obtain alternative characterizations of the
vertices of P (C k

n ):

Theorem 1.10 Suppose n and k are given, with 1 ≤ k < n. For x ∈ R
n, let

N(x) be written in the canonical form (2) (if N(x) 6= ∅), and let m = |N(x)|.

Then, x is a vertex of P (C k
n ) if and only if the following conditions hold:

(i) m ≤ n − 2, and the equality (1) is satisfied,

(ii) if n1 is the common value in the equality (1), then n1 < k and gcd(n −
m, k − n1) = 1,



(iii) xi = 1/(k − n1) for all i /∈ N(x), and

(iv) if m > 0 and d = gcd(m, n1), then there exist d disjoint simple directed
cycles in G(C k

n ), D1, . . . , Dd, all of length m/d, and such that N(x) =
∪uV (Du).

Alternatively, we could change the condition (iv) to:

(iv’) if m > 0, and s is defined by equation (3), then equation (4) holds.

Corollary 1.11 Let n, k and m be given non negative integers, such that
1 ≤ k < n and 1 ≤ m < n− 1. Then, P (C k

n ) has a vertex with exactly m zero
coordinates and the remaining coordinates taking the value 1/k′ if and only if
(i) the equation (1) holds, (ii) if n1 is its common value, then k′ = k − n1 is
positive, and (iii) gcd(n − m, k′) = 1.

Our results can be used to study many families of circulant clutters. For
example, the following is a characterization of ideal and mni circulant clutters
in purely arithmetical terms:

Proposition 1.12 If n ≥ 3 and 1 ≤ k ≤ n−1, then C k
n is ideal or mni if and

only if for every m, 1 ≤ m ≤ n−2, for which (i) dkm/ne = b(k+1) m/nc, and
(ii) if n1 = dkm/ne and gcd(n − m, k − n1) = 1, then necessarily n1 = k − 1.

If these conditions are satisfied, then C k
n is mni if gcd(n, k) = 1, and

otherwise is ideal.

As already mentioned, Cornuéjols and Novick [5] gave a complete descrip-
tion of all the ideal and mni circulant clutters. Using properties of the Farey
series, we may obtain the same results, without using Lehman’s theorems.

There have been many efforts to introduce and study more general classes
of clutters encompassing ideal and mni clutters. Of interest to us are near-
ideal clutters, introduced by Argiroffo in her Ph.D. thesis [2] (see also [4]).
Near-ideal circulant clutters may be defined as those for which P (C k

n ) ∩ {x ∈
R

n : 1 · x ≥ dn/ke} is the convex hull of the 0 -1 vertices of P (C k
n ).

We have:

Proposition 1.13 Suppose n and k are given, n > k ≥ 3. Then,

(i) C k
n is not near-ideal if and only if there exist n′ and k′ such that

k > k′ > 1, gcd(k′, n′) = 1,
n′

k′
>

⌈n

k

⌉

,
n

k + 1
≥

n′

k′ + 1
.

(ii) For any ν ≥ 2, C k
νk is not near-ideal except for C 3

6 , C 3
9 and C 4

8 , which
are ideal.



(iii) If k ≥ 2
3
n − 1, then C k

n is near-ideal.

(iv) If k ≥ 3 and n ≥ 13k, then C k
n is not near-ideal.

(ii) was observed in [3]. A result very similar to (iii), with the bound
k ≥ b2n/3c, was obtained by Argiroffo [2], using techniques involving blockers.

It is rather simple to construct a table to show the values of n and k for
which C k

n is near-ideal. Examining such a table reveals that we cannot hope
for an exhaustive classification of near-ideal circulant clutters, similar to that
given by Cornuéjols and Novick for ideal and mni circulant clutters.

As a final application, we show that the 0 -1 vertices of P (C k
n ) always have

fewer non zero coordinates than fractional vertices, and the number of non
zero coordinates of 0 -1 vertices are consecutive:

Proposition 1.14 Suppose x is a 0 -1 vertex of P (C k
n ), with |N(x)| = m,

and x′ is another vertex, not necessarily 0 -1, with |N(x′)| = m′. Then,

(i) If x′ is a fractional vertex, then m′ < m.

(ii) If x′ is 0 -1 and m < m′, then, for any m′′ ∈ N with m < m′′ < m′, there
exists a 0 -1 vertex, x′′, of P (C k

n ) with |N(x′′)| = m′′.
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Fortaleza, Brazil
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Abstract

The class of planar graphs has unbounded treewidth, since the k × k grid, ∀k ∈ N,
is planar and has treewidth k. So, it is of interest to determine subclasses of planar
graphs which have bounded treewidth. In this paper, we show that if G is an even-
hole-free planar graph, then it does not contain a 9× 9 grid minor. As a result, we
have that even-hole-free planar graphs have treewidth at most 44.
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1 Introduction

The definitions of tree decomposition and treewidth were introduced by Robert-
son and Seymour in their series of papers on graph minors, published during
the nineties. It is known that many NP-hard problems can be polynomially
solved if a tree decomposition of bounded treewidth is given. So, it is of in-
terest to bound the treewidth of certain classes of graphs. In this context, the
planar graphs seem to be specially challenging because, in despite of having
many known bounded metrics (for example, maximum clique and chromatic
number at most four [4],[5]), they have unbounded treewidth (one only need
to notice that the k × k grid is a planar graph and has treewidth k, for all
k ∈ N [2]). So, an alternative approach is to restrict ourselves to a subclass of
planar graphs. In this paper, we investigate the class of even-hole-free planar
graphs (from now on, we will refer to this class as Γ). In [9], we show that
a graph in Γ does not contain a 10 × 10 grid subdivision. In this paper, we
prove a stronger fact: a graph in Γ does not contain a 9 × 9 grid minor. In
[6], Robertson et al. prove that if a planar graph G does not have a k×k grid
minor, then G has treewidth at most 6k− 5. The same authors improve their
result by proving that if G, planar, does not have a k × k grid minor, then G

has treewidth at most 5k − 1[7]. This last result, together with ours, imply
that a graph of Γ has treewidth at most 44.

2 Preliminaries

Let G = (V, E) be a graph. We say that G contains H if H is a subgraph of G,
and that G is H-free if H is not an induced subgraph of G. A hole in G is an
induced cycle of size at least four. If a hole has even size, we say that it is an
even-hole. Let A, B ⊆ V . We denote by NA(B) the set {u ∈ A\B : u ∈ N(v),
for some v ∈ B}, and call it the neighborhood of B in A. The k × l grid is
the graph Gk×l = (V, E), where V = {vi,j : 1 ≤ i ≤ k, 1 ≤ j ≤ l, i, j ∈ N}
and E = {(vi,j, vi′,j′) : |i − i′| + |j − j′| = 1}. Let (x, y) be an edge in
G. The graph Gxy obtained from G by the contraction of (x, y) is such that
V (Gxy) = V (G) \ {x, y}∪ {x ∗ y}, and E(Gxy) = E(G) \ {(x, y)}∪ {(x ∗ y, z) :
z ∈ NG(x) ∪ NG(y)}, where x ∗ y is the vertex obtained by the identification
of x and y. We say that a graph H is a minor of G if it can be obtained by a
sequence of vertex or edge deletions, or edge contractions.

A tree decomposition of G is a pair 〈{Xi|i ∈ I}, T 〉, where each Xi is a

1 The authors are partially supported by CNPq/Brazil. Email: {aline, shirley,

linhares}@lia.ufc.br



subset of V and T is a tree whose nodes are the elements of I. Furthermore, the
following three properties must hold:

⋃
i∈I Xi = V ; for every edge (u, v) ∈ E,

there exists i ∈ I such that {u, v} ⊆ Xi; and for all i, j, k ∈ I, if j lies on the
path from i to k in T , then Xi ∩ Xk ⊆ Xj. The width of 〈{Xi|i ∈ I}, T 〉 is
equal to max{|Xi| | i ∈ I}− 1. The treewidth of G, tw(G), is the minimum k

such that G admits a tree decomposition of width k. The following theorem
is the main result presented in this paper:

Theorem 2.1 If G ∈ Γ, then G has no 9 × 9 grid minor.

Theorem 2.2, together with Theorem 2.1, leads to an upper bound for the
treewidth of even-hole-free planar graphs, as stated by Corollary 2.3.

Theorem 2.2 ([6],[7]) If a planar graph G contains no Gk×k minor, then
tw(G) ≤ 5k − 1.

Corollary 2.3 If G ∈ Γ, then tw(G) ≤ 44.

The proof of Theorem 2.1 will be sketched in the next section. We finish
this section by introducing some notation and definitions that will be used
there. Let G be any graph and let H ⊆ G be a minimal induced subgraph of
G that contains a Gk×l minor, k, l ∈ N. We say that H is a model of Gk×l

in G. Note that, since H is minimal, Gk×l can be obtained from H only by
edge contractions or deletions. Moreover, observe that each vertex vi,j of Gk×l

is originated by a set of vertices, denoted by Vi,j, that induces a connected
subgraph of H. We say such a set is a node and that the nodes Vi,j and Vp,q

are adjacent if vi,j and vp,q are adjacent vertices in Gk×l. Note that if Vi,j and
Vp,q are adjacent, then there must be at least one edge between them in H;
however, if there is such an edge, they are not necessarily adjacent. Finally,
let Vi,j be a node. If 1 < i < k and 1 < j < l, we say that Vi,j is an internal
node.

Given three induced paths, P1, P2 and P3, we say that they are fittable if
there are no chords between them, except if they intersect in their extremities.
A dot-dot structure consists of two vertices and three fittable paths connecting
them of length at least two. A triangle-triangle structure consists of two K3’s,
〈x, y, z〉 and 〈x′, y′, z′〉, and three fittable paths, Px, Py and Pz, connecting x

to x′, y to y′, and z to z′, respectively. In addition, at most one of Px, Py and
Pz has length one. Since at least two of the paths have the same parity, we
have that if G is even-hole-free, then it does not contain a dot-dot structure
neither a triangle-triangle structure.



3 Forbidden G9×9 minor

In the following, a forbidden structure is a dot-dot structure or triangle-triangle
structure. Let G be any graph of Γ and let H be a model of Gk×l, k, l ∈ N.
Next, we present lemmas that analyze the internal structure of a model.

Lemma 3.1 For every node Vi,j of H, G[Vi,j] is either a tree or its induced
cycles are of length at most three.

Actually, the structure of a node Vi,j of H is more accurately represented
in Figure 1. The “upper” (or “lower”) path represented in the figure may not
exist. Also, the paths might be connected by an edge, instead of triangles.

Fig. 1. Structure of a node.

Note that H may admit more than one partition whose contraction of the
Vi,j’s lead to a Gk×l grid. The next lemma guarantees that always exists a
partition satisfying some requirements.

Lemma 3.2 Let Vi,j be an internal node. If G has a model of a Gk×l grid,
then G has a model of Gk×l such that there is a unique edge connecting Vi,j to
Vi,j+1, Vi−1,j and Vi+1,j.

We say that H ′ ⊂ H is a (p, q)-internal submodel of H if it is a Gp×q model
that uses consecutive “rows” and “columns” of H and contains only internal
nodes of H. We denote by r(H ′) and c(H ′) the indices of the row and column
of the left uppermost node of H ′, respectively. As we have said before, we
will prove that a G9×9 model has a forbidden structure. The following lemma
gives a hint on how to pick the vertices or triangles of the forbidden structure.

Lemma 3.3 Let H ′ be a (3, 2)-internal submodel of H. Set i = r(H ′) and j =
c(H ′). Then H ′ contains a vertex (or a triangle) and three fittable paths con-



necting this vertex (or triangle) to vertices u ∈ NVi,j(Vi−1,j), b ∈ NVi+2,j(Vi+3,j)
and r ∈ NVi+1,j+1(Vi+1,j+2) of H ′.

The following theorem implies Theorem 2.1.

Theorem 3.4 Let H be a G9×9 model. Then, H contains a forbidden struc-
ture.

The proof of Theorem 3.4 basically consists of taking three (3, 2)-internal
submodels in the G9×9 model, away from each other, and a substructure as
described in Lemma 3.3. As at least two of them are of the same “type” and,
if there is no chords between them, we can easily pick fittable paths in the
model in order to construct a dot-dot or a triangle-triangle structure. Figure 2
shows a choice of (3, 2)-internal submodels and paths. The vertices represent
the nodes of H and the edges represent the edges between adjacent nodes.
The (3, 2)-internal submodels are in grey and the paths are in black. Note
that the paths in Figure 2 do not have chords to the substructures in the
(3, 2)-internal submodels, except in their extremities. In addition, the paths
are not necessarily induced. However, by using planarity arguments and the
removal of vertices when a chord is detected, we can easily obtain induced
paths whose union produces the desired forbidden structure.

1    2     3    4     5     6     7     8     9
1

2

3

4

5

6

7

8

9

Fig. 2. G9×9 model.

4 Conclusion

In this paper, we have found an upper bound for the treewidth of the graphs
of Γ. With respect to lower bounds, a graph of Γ having a 3 × 3-grid mi-



nor exists [8]. The manual attempt to design graphs of Γ with bigger grid
minors revealed the hardness of this task. Perhaps, some computation effort
should be employed on this. In [8], two polynomial, non-exact algorithms to
compute a tree decomposition of a graph G ∈ Γ are given, both based on
known characterizations of even-hole-free graphs ([1],[3]). In the first one, a
tree decomposition is built from basic graphs by concatenating the tree decom-
position of small pieces via the clique, k-stars (k = 1, 2, 3) and 2-join cutsets.
In the second one, a tree decomposition is built by including one by one the
vertices of G, following their bi-simplicial order. In the first case, if G has
no 2-join cutset, the algorithm returns a tree decomposition of width at most
4 · (h(T ) + 1) where T is the decomposition tree given by the Decomposition
Theorem of [3] and h(T ) is the height of T . In the second one, if G admits a
bi-simplicial order 〈vn, . . . , v1〉 such that for every vi, the two cliques of N(vi),
if they exist, belong to distinct components of G[vi−1, . . . , v1], then using this
order, the algorithm returns an optimal tree decomposition of G.
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[3] Conforti, M., G. Cornuéjols, A. Kapoor and K. Vuskovic, Even-hole-free graphs
part i: Decomposition theorem, J. Graph Theory 39 (2002), pp. 6–49.

[4] Kuratowski, C., Sur le problème des courbes gauches en topologie, Fund. Math.
15 (1930), pp. 271–283.

[5] Robertson, N., D. Sanders, P. Seymour and R. Thomas, The four-colour theorem,
J. of Comb. Theory, Series B. 70 (1997), pp. 2–44.

[6] Robertson, N., P. Seymour and R. Thomas, Quickly excluding a planar graph, J.
of Comb. Theory, Series B 62 (1994), pp. 323–348.

[7] Robertson, N., P. Seymour and R. Thomas, Tree decompositions of graphs,
www.math.gatech.edu/∼thomas/SLIDE/CBMS/trdec.pdf (2000).

[8] Silva, A., “Decomposição e Largura em Árvore de Grafos Planares Livres de
Ciclos Pares Induzidos,” Master’s thesis, Universidade Federal do Ceará (2007).
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Abstract

In this paper we prove a result about vertex list colourings which in particular shows
that a conjecture of the second author (1999, Journal of Graph Theory 31, 149-153)
is true for triangle free graphs of large maximum degree. There exists a constant K

such that the following holds: Given a graph G and a list assignment L to vertices
of G, assigning a list of available colours L(v) to each vertex v ∈ V (G), such that
|L(v)| = K∆

log(∆) , then there exists a proper list colouring of vertices of G provided

that for each colour c, the graph induced by all vertices v with c ∈ L(v) is triangle
free and has maximum degree at most ∆.

Keywords: Graph colouring, List colouring, Probabilistic method, Randomised
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1 Introduction

Let G = (V, E) be a graph. A list assignment to vertices of G associates a
list L(v) of available colours to each vertex v ∈ V . A proper L-colouring of
G is a proper colouring such that the colour of each vertex v belongs to L(v).
Given a colour c in L =

⋃
v∈V L(v), we denote by Gc the graph induced on all

vertices v with c ∈ L(v), i.e. Gc = G[{v ∈ V | c ∈ L(v)}].

We denote by ∆ the integer maxc∈L ∆(Gc), and we write `(v) = |L(v)|. It
was conjectured by Reed in [5] that if `(v) ≥ ∆ + 1, then G admits a proper
L-colouring. Bohman and Holzman [1] provided a counter-example to this
conjecture. Reed [5] and Haxell [2] proved sufficient linear bounds of type,
respectively, `(v) ≥ 2e∆ and |L(v)| ≥ 2∆ for the existence of a proper L-
colouring. Furthermore Reed and Sudakov [6] proved that the conjecture is
asymptotically true. An intriguing open question is the following

Question 1 Is there any constant C such that for every G and L as above
with the extra condition that |L(v)| ≥ ∆+C, G admits a proper L-colouring?

The work of this paper is motivated by the above question restricted to triangle
free graphs. We prove the following theorem which in particular provides an
answer to the above question for triangle free graphs.

Theorem 1 Let G be a graph and L be a list assignment as above. Suppose
that each subgraph Gc is triangle free. There exists an absolute constant K
such that if |L(v)| ≥ K∆

log ∆
then G admits a proper L-colouring.

The general idea of the proof comes from Johansson’s proof [3] that triangle
free graphs have list chromatic number at most O( ∆

log(∆)
). It uses a randomised

greedy algorithm [3], known as semi-random method, which at each step con-
sists of, a) colouring a small set of vertices, b) removing the colour of these
vertices from the lists of all neighbours, and c) removing all the coloured ver-
tices. The main point of this approach is the key observation that with a good
choice of parameters the size of lists shrinks more slowly than the maximum
degree of the colour classes Gc and so after a sufficient number of iterations,
each list should contain a number of colours at least twice the maximum de-
gree of colour classes. At this stage, one can finish the colouring using Haxell’s
deterministic theorem [2]. The analysis of this algorithm uses classical con-
centration tools but also needs the polynomial method of [4] and is similar to
Vu’s approach in [7].

1 Email: omid.amini@sophia.fr,breed@cs.mcgill.ca
2 This research has been supported by the European project AEOLUS.



2 Proof of Theorem 1: Main ideas

An L-distribution is the following data: for each vertex v and each c ∈ L(v), we
are given a non-negative weight p(v, c) < 1. Given an L-distribution, by C(v)
we denote the total weight of colours at v, i.e. C(v) =

∑
c∈L(v) p(v, c). For a

colour c /∈ L(v), we understand implicitly that p(v, c) = 0. An L-distribution
is called normalised if in addition we have C(v) = 1 for all v ∈ V (G). An
L-distribution proposes a natural way for generating a set of colours at a given
vertex v: For each colour c ∈ L(c), we conduct a coin flip with probability of
win equal to p(v, c) and generate c if we win. So with probability p(v, c), c
is among the generated colours for v. By xv,u we will denote the expected
number of common generated colours for v and u. We have

xv,u =
∑

c∈L(v)∩L(u)

p(v, c)p(u, c)

On the other hand, applying a simple Chebyshev inequality, we have

Prob( there exists at least one colour generated for both v and u) ≤ xv,u.

To prove Theorem 1 we use the Generalised Wastefull Colouring Proce-
dure (GWCP). The greedy algorithm then consists of several iterations, let
us say T , of the proposed procedure GWCP. We suppose that two global
fixed parameters α and α∗ are also given, see later for a possible choice. At
each iteration, GWCP takes as an input a subset Vi ⊂ V (G) (the set of un-
coloured vertices), a list assignment Li, an Li-distribution {pi(v, c)} and a
subset Fi(v) ⊂ Li(v) for each vertex v (the set of forbidden colours for v). It
then provides as output a subset Vi+1 ⊂ Vi, a new list assignment Li+1 ⊂ Li,
an updated Li+1-distribution {pi+1(v, c)}, and a new subset Fi+1(v) of forbid-
den colours (Fi(v) ⊂ Fi+1(v)). The general scheme of the procedure at the
beginning of the ith iteration is described below:

Generalised Wastefull Colouring Procedure:

(i) Generating colours For each vertex v ∈ Vi and each colour c, choose the
colour c for v with probability α.pi(v, c). Let Cv be the set of generated
colours for v.

(ii) Updating the lists: For each vertex v and each generated colour c ∈ Cv,
remove c from the lists of all neighbours u of v for which c is not forbidden
(for c /∈ Fi−1(u)). The new lists will be called Li+1.

(iii) Colouring some vertices: If Cv ∩ (Li+1(v)\Fi(v)) 6= ∅, give a colour to
v from this subset. Define Vi+1 to be the set of still uncoloured vertices
after this step.



(iv) Updating the probabilities and the new sets of forbidden colours:
The way we update the weights of colours, i.e. the definition of pi+1(v, c)
and so Fi+1(v), is described below.

Let us first define some more notations: L′
i := Li \Fi is the set of available

colours at v at step i. `i(v) will denote the cardinality of L′
i(v). Gi,c is the

graph induced on vertices v with c ∈ L′
i(v). For a vertex v with a colour

c ∈ L′
i(v), by di,c(v) we will represent the degree of v in Gi,c. We initialise

d1,c(v) = ∆ and `1(v) = K∆
log ∆

for some large constant K.

We now describe the way we update the Li-distributions and the sets
Fi: At the beginning, we define the distribution {p1(v, c)} to be the uni-
form normalised distribution on L(v), i.e.: p1(v, c) = 1

`1
if c ∈ L1(v) and

is zero otherwise. Let us define Keepi(v, c) to be the probability that v
keeps the colour c after the step updating the lists of the ith iteration,
i.e. Keepi(v, c) = Prob( c ∈ Li+1(v)).

For a given vertex v and given colour c ∈ Li+1(v), we will define pi+1(v, c)
essentially as follows:

• If pi(v,c)
Keepi(v,c)

≤ α∗, define pi+1(v, c) = pi(v,c)
Keepi(v,c)

;

• If c ∈ Fi(v, c), then we set pi+1(v, c) = α∗;

• Otherwise, pi(v,c)
Keepi(v,c)

> α∗ > pi(v, c). If c is not assigned to any neighbour

of v during the ith iteration, we set pi+1(v, c) = α∗. If c is assigned to
a neighbour of v, then conduct a coin flip with probability of win equal

to
pi(v,c)

α∗

−Keepi(v,c)

1−Keepi(v,c)
and define pi+1(v, c) = α∗ if we win and pi+1(v, c) = 0

otherwise.

It is not difficult to see that with this definition we have E(pi+1(v, c)) = pi(v, c).
Now define Fi+1 = {c | pi+1(v, c) = α∗}. We have Fi(v) ⊂ Fi+1(v). Note
that {pi(v, c)} does not remain necessary a normalised distribution on Li(v).
Remark that by the linearity of expectations we also have E(Ci+1(v)) = Ci(v).

The first remark is that the variable Ci is highly concentrated around
its expected value, which implies that Ci(v) ∼ 1. How about the random
variables xu,v at the (i + 1)th iteration, which we denote by xi+1,u,v? How do
their value evolve 3 ? Remember that xi+1,u,v =

∑
c pi+1(u, c)pi+1(v, c).

As all the graphs Gc are triangle free, it follows that the variables pi+1(u, c)
and pi+1(v, c) are independent and so we have E(xi+1,u,v) =

∑
c pi(u, c)pi(v, c) =

3 Remark that in the ith iteration, xi+1,u,v is a random variable which depends on the
random choices we make at this step, while we have already from previous iterations the
values of pi(v, c) and so xi,u,v.



xi,u,v. It turns out that these variables are also highly concentrated around
their expected value, which roughly permits us to conclude that with positive
probability we can ensure xi,u,v ∼ x1,u,v =

∑

c p1(u, c)p1(v, c) = |Lu∩Lv |

`21
. To

describe the behaviour of lists sizes and degrees through the time, it is more
comfortable to introduce some new variables: for each i and each v ∈ Vi−1, we
define a new random variable ti,v as follows:

ti,v =







1 if v remains uncoloured after the (i − 1)th iteration, i.e. v ∈ Vi;

0 if v gets a colour, i.e. v /∈ Vi.

It is clear 4 that

di,c(v) ≤
∑

u∈NGi−1,c(v)

ti,u.(1)

For a given vertex v, let us define the random variable xi,v as follows:

xi,v =
∑

u∈NGi−1
(v)

xi,v,uti,u.(2)

The random variable xi,v has a simple interpretation: xi,v counts the expected
number of common colours between v and one of its neighbours in Gi with
respect to the distribution Li. The two above equations are very similar:
Equation 2 can be seen as a weighted version of Equation 1. We can see
that it is possible to apply the polynomial method of [4] to prove that both
the variables are some how concentrated 5 . Remember xi,u,v is also highly

concentrated and so xi,u,v ∼ |L(u)∩L(v)|

`21
≤ 1

`1
. Intuitively E(ti,u) ∼ 1 − α

which implies that E(xi,v) ∼
∑

u∈NGi−1
(v) xi−1,u,vE(ti,u) ∼ (1 − α)xi−1,v, and

E(di,c(v)) ≤ (1 − α)di−1,c(v).

To finish the outline of the proof, let us show how one can use the entropy
function Hi(v) to bound the size of lists. We remember that the entropy Hi(v)
is defined as

Hi(v) := −
∑

c

pi(v, c) log(pi(v, c)).

Remark that eHi(v) =
∏

c pi(v, c)−pi(v,c). It turns out eHi(v) provides a lower
bound for the number of colours in Li(v) 6 . Writing the changes in entropy

4 We have an inequality here because it is possible that u loses the colour c.
5 We note that the classical concentration tools can not be applied directly here.
6 An intuitive idea: because of the concentration phenomena we should have Ci =
∑

c pi(v, c) ∼ 1. With the extra hypothesis that the distribution {pi(v, c)} is almost uni-
form, i.e. pi(v, c) ∼ 1

`i

, we infer that eHi(v) = ( 1
`i

)−
P

pi(v,c) ∼ `i. One can see that the size
of Fi(v) is small enough and we can ignore it.



step by step, we can see that the random variables xi,v enter to the picture
very naturally: indeed we have

Hi(v) − Hi−1(v) = −αxi,v − (pi(v, c) − pi−1(v, c)) log(pi(v, c)).

and so Hi(v) − Hi−1(v) ∼ −αxi,v which shows that

Hi(v) − Hi−1(v) ∼ −α(1 − α)i−1 ∆

`1

.

Summing up over all i and using `1 = K∆
log(∆)

and H1(v) ∼ log(∆), we infer

that Hi(v) ≥ log(∆1− 1
K ). This proves that after T steps we (intuitively) have

≥ ∆1− 1
K colours in each list LT (v). The size of FT will be also small enough

to ensure that `T (v) ≥ ∆1− 1
K /2. On the other hand, the degree sequence

will decrease by at least a multiplicative factor (1 − α) and so after T steps,
dT,c(v) ≤ (1 − α)T ∆ ∼ e−αT ∆. If we choose T and α in such a way that

αT ≥ log(∆)
500

, the above arguments implie dT,c(v) ≤ e−
log(∆)

500 .∆ = ∆1− 1
500 .

Now if K = 1000, we will have lT (v) ≥ ∆1− 1
K /2 ≥ 2∆1− 1

500 ≥ 2.dT,c(v). This
finishes the outline of the proof. For the choice of α and α∗ we can for example
suppose α∗ = ∆− 49

50 , α = ∆− 1
20 . The omitting details are postponed to the

full version of this paper.
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Cláudia Linhares-Sales 1

Universidade Federal do Ceará, Brazil
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Abstract

In this paper, we consider a new edge colouring problem motivated by wireless
mesh networks optimization: the proportional edge colouring problem. Given a
graph G with positive weights associated to its edges, we want to find a proper edge
colouring which assigns to each edge at least a proportion (given by its weight) of all
the colours. If such colouring exists, we want to find one using the minimum number
of colours. We proved that deciding if a weighted graph admits a proportional edge
colouring is polynomial while determining its proportional edge chromatic number
is NP-hard. We also give a lower and an upper bound that can be polynomially
computed. We finally characterize some graphs and weighted graphs for which we
can determine the proportional edge chromatic number.

Keywords: edge colouring, proportional colouring, wireless mesh network.



1 Introduction

Given a weighted graph (G, w) where w is a weight function from E(G) to
R+, several distinct colouring problems of G have been defined. In [2], one
wants to colour the vertices of G while minimizing the sum of the weights
of the edges whose extremities receive the same colour. In [5], one wants to
colour the vertices of G so that for each edge uv, |c(v)− c(u)| ≥ w(uv), where
c(u) and c(v) are the colours assigned to u and v. In this paper, we consider
a proper edge colouring which assigns to each edge e at least a fraction (given
by the weight of e) of all the colours used. By ”proper”, we mean that, for any
two adjacent edges, the sets of assigned colours have an empty intersection.
If such colouring exists, we want to find one using the minimum number of
colours, number which we call proportional edge chromatic number.

In next section, we introduce the notations we will use throughout this
paper and recall some results about edge colouring. Then we will present
the telecommunication problem which is modelled by the proportional edge
colouring problem, together with some complexity results and bounds for the
proportional edge chromatic number. Finally, we characterize a class of graphs
and a class of weighted graphs whose proportional edge chromatic number can
be computed in polynomial time.

2 Preliminaries

Throughout the paper, (G, w) denotes a weighted simple graph where w is a
positive function called weight function defined on the edges of G, w : E(G) →
[0, 1]. We denote by ∆(G) the maximum degree of G.

The classical edge colouring problem is to determine the edge chromatic
number of a simple graph G, χ′(G), that is, the minimum integer k such that
G admits a proper edge colouring using k colours. In 1964, Vizing proved that
χ′(G) is at most ∆+1 [7]. Since it is at least ∆, we can classify every graph: a
graph is in Class 1 if its edge chromatic number is ∆ and in Class 2 otherwise.
Surprisingly, deciding if a graph is Class 1 or 2 is hard [3], even for cubic graphs
[4]. For the upper bound presented in this work, we recall a possible definition

of the fractional edge chromatic number: χ′∗ = mink≥1
χ′(Gk)

k
, where Gk is the

graph obtained from G by replacing each edge by k parallel edges. Also recall
that this parameter can be determined in polynomial time [6].

1 C. Linhares-Sales is partially supported by CNPq/Brazil. F. Huc is supported by CNRS
and région PACA. This work has been partially funded by European project IST/FET
AEOLUS and ANR-JC OSERA. Email: Florian.Huc, Claudia.Linhares-Sales,

Herve.Rivano@sophia.inria.fr



Since we only consider proportional edge colouring, we will omit to precise
edge in the remainder of the paper.

3 Proportional colouring

The proportional colouring problem is motivated by the following telecommu-
nication problem. We consider a slotted time division multiplexing wireless
mesh network connecting routers through directional antennas. We denote by
call two antennas communicating together. The network topology defines a
graph G = (V, E) whose vertices are the routers and the edges are the achiev-
able calls. For the sake of radio interferences and near-far effect, each router
can be involved in at most one call at a time. Therefore, a set of simultane-
ously achievable calls is a matching of G. More precisely, given a set of calls,
the classical timeslot assignment problem consists in decomposing this set
into a minimum number of subsets of simultaneously achievable calls, which
is equivalent to the proper edge colouring problem [1]. Remark that without
the assumption of directional antennas, this problem would be modelled by
the induced matching problem.

The proportional colouring problem arises when we consider Constant Bit
Rates (CBR) requests. We are given a set of communication requests, each
request being a source-destination path in the network, and a bit rate. Sending
this amount of data on the paths induces that each call has to be periodically
activated in a given proportion of the time. This is modelled by a weight
function w : E(G) → [0, 1].

The problem is now, if possible, to find a periodical schedule of the calls
satisfying the CBR requests, that is, such that to each call a number of times-
lots proportional to its weight is assigned to. Besides, the length of the period
is proportional to the size of the buffer needed at each router, which is an
important parameter of the cost of the network.

We therefore want a proper edge colouring of G that satisfies the propor-
tions given by the weights of the edges, with the minimum number of colours.
This is the proportional colouring problem formally defined as follows.

Definition 3.1 [proportional colouring] Given a weighted graph (G, w), a
proportional colouring of (G, w) is a function C : E → P({1, . . . , c}) such
that for all e ∈ E, we have: |C(e)| ≥ c · w(e) and for all adjacent edges e, f ,
C(e) ∩ C(f) = ∅. We call the proportional chromatic number of G, χ′

π(G, w),
the minimum number of colours c for which a proportional colouring of G
exists. If it does not exist then χ′

π(G, w) = ∞.

Definition 3.2 [m-graph] Given a weighted graph (G, w) and an integer m,
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Fig. 1. A weighted C5 and a proportional colouring using 4 colours

the m-graph Gm is constructed on vertex set V (G) as follows: given an edge
e = (uv) ∈ E(G), we put dmw(e)e multiple edges uv in E(Gm).

Remark 3.3 Notice that given a weighted graph (G, w) and an integer m,
if a colouring using km colours (where k is a constant) which gives at least
k colours to all the edges of Gm exists, then this colouring can be easily
transformed into a proportional colouring of (G, w).

Definition 3.4 [mcd(w)] Given a weighted graph (G, w) with w taking value
in Q, we set mcd(w) as the minimum common denominator of all the values
taken by w.

Figure 1 is an example of a weighted graph and its proportional colouring.
The proportional colouring problem is divided into two subproblems. The first
one consists in proving that there exists an integer c such that a c-proportional
colouring of (G, w) exists. The second one is to determine the proportional
chromatic number of (G, w). We start by giving simple facts which we will
use to prove Theorem 3.6.

Fact 3.5 Let (G, w) be a weighted graph.

• If there is a vertex u of G with
∑

uv∈E(G) w(uv) > 1 then χ′
π(G, w) = ∞.

• If for all uv ∈ E(G), w(uv) ≤ 1/(∆ + 1) then χ′
π(G, w) ≤ ∆ + 1.

• Similarly, if for all uv ∈ E(G), w(uv) ≤ 1/χ′∗(Gmcd(w)) then χ′
π(G, w) ≤ q

where q is the numerator of χ′∗(Gmcd(w)).

Theorem 3.6 Let (G, w) be a weighted graph with w taking value in Q.

i) Determining if there exists a proportional colouring for (G, w) is polynomial.

ii) Determining the proportional chromatic number of (G, w) is NP-hard.

Proof.

i) Let (G, w) be any weighted graph with w : E(G) → [0, 1] ∩ Q. Let mcd :=
mcd(w). In the mcd-graph, we have χ′∗(Gmcd) ≤ mcd ⇔ χ′

π(G, w) < ∞.



Indeed, suppose χ′
π(G, w) = k < ∞. Then, there exists a proportional

colouring using k colours. If we repeat this colouring mcd times, we still
have a proportional colouring, even if it is not minimal. This colouring
gives a proper edge colouring of Gmcd using k · mcd colours, in which each
edge receives at least k colours. Therefore, χ′∗(Gmcd) ≤

k·mcd
k

. On the other
hand, suppose that χ′∗(Gmcd) = q

p
and consider this optimal fractional edge

colouring of Gmcd. This colouring can be extended to an edge colouring
of G that uses q colours and assigns p · mcd · w(e) to each edge e. This
colouring is proportional, since, by assumption, mcd · w(e) · p ≥ q · w(e).
Hence χ′

π(G, w) = k ≤ q < ∞.

ii) Given a graph G of maximum degree ∆, we set the weights of its edges to
1

∆+1
. Since G is ∆ + 1 colourable, G is proportionally ∆ + 1 colourable.

Now, observe that if (G, w) admits a proper edge colouring with ∆ colours,
then it admits a proportional colouring with ∆ colours. Since determining
if G is ∆ or ∆ + 1 colourable is NP-hard [3], it is NP-hard to determine the
proportional chromatic number of an instance (G, w). 2

In despite of the difficulty of computing the proportional chromatic number
of a weighted graph (G, w), we can deduce polynomially computable lower
and upper bounds. Clearly, for a weighted graph (G, w), χ′

π(G, w) ≥ ∆(G).
Theorem 3.7 improves this lower bound.

Theorem 3.7 (Lower bound) Let m be the minimum integer satisfying for
all u ∈ V ,

∑
v st uv∈Edmw(uv)e ≤ m. If no m satisfies all the above equations,

then no proportional colouring exists. Otherwise, if there is a solution m and
that (G, w) admits a proportional colouring, χ′

π(G, w) is at least m.

Theorem 3.8 (Upper bound) Let (G, w) be a weighted graph such that w
takes value in Q. If G, w) admits a proportional colouring, then there is a
proportional colouring of (G, w) using q colours, where q is the numerator of
χ′∗(Gmcd(w)).

The proof of Theorem 3.8 follows from item (i) of Theorem 3.6. In general,
given a weighted graph (G, w), the mcd of the values taken by w is not an
upper bound. Indeed, consider (P, 1

3
): the Petersen graph P with the constant

weight function equal to 1
3
. Since χ′∗(P ) = 3, we have χ′

π(P, 1

3
) < ∞. However

χ′
π(P, 1

3
) > 3 = mcd(1

3
), since P is not 3-colourable.

The proportional chromatic number may also be different from the upper
bound given by Theorem 3.8, because an edge can receive proportionally more
colours than it required. This is illustrated by Figure 1. Indeed, in this
example, we have χ′∗(C5 mcd(w)) ≥ 50 > 4 = χ′

π(C5, w).



One can also ask for which classes of graphs the proportional colouring
problem can be polynomially solved. The next theorems announce two positive
results, the first one giving a condition to the lower bound be reached.

Theorem 3.9 Let (G, w) be a weighted bipartite graph. If there is a solution
m to the set of equations given by Theorem 3.7, then (G, w) admits a pro-
portional colouring using m colours. In fact, for any weighted graph (G, w),
χ′

π(G, w) = m ⇔ χ′(Gm) = m.

Theorem 3.10 Let (G, w) be a weighted graph with w taking values in Q.
Let e be an edge with an end vertex v such that

∑
uv∈E w(uv) = 1. Then,

the denominator of w(e) divides χ′
π(G, w). In particular, if the proportional

chromatic number of (G, w) is finite and every edge e has an end vertex v with∑
uv∈E w(uv) = 1, then χ′

π(G, w) = mcd(w).

Motivated by the applications modelled by the proportional colouring
problem and its hardness, we pose the following general open questions: find
approximation algorithms for the classes of graphs which usually occur in
telecommunication, as circular-arc graphs and triangular lattices, and deter-
mine other classes of graphs (and weighted classes of graphs) for which the
proportional chromatic number can be calculated in polynomial time.
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Abstract

Clique-Helly and hereditary clique-Helly graphs are polynomial-time recognizable. Recently,
we presented a proof that the clique graph recognition problem is NP-complete [1]. In this
work, we consider the decision problems: given a graph G = (V,E) and an integer k ≥ 0,
we ask whether there exists a subset V ′ ⊆ V with |V ′| ≥ k, such that the induced subgraph
G[V ′] of G is, respectively, a clique, clique-Helly or hereditary clique-Helly graph. The first
problem is clearly NP-complete from [1]; we prove that the other two mentioned decision
problems are NP-complete, even for maximum degree 6 planar graphs. We consider the
corresponding maximization problems of finding a maximum induced subgraph that is,
respectively, clique, clique-Helly or hereditary clique-Helly. We show that these problems
are Max SNP-hard, even for maximum degree 6 graphs. We generalize these results for
other graph classes. We exhibit a polynomial 6-approximation algorithm to minimize the
number of vertices to be removed in order to obtain a hereditary clique-Helly subgraph.

1 Introduction

A complete set of a graph G = (V, E) is a subset of V inducing a complete
subgraph. A clique is a maximal complete set. Denote by C(G) the clique

family of G. The clique graph K(G) of G is the intersection graph of C(G).
Say that G is a clique graph if there exists a graph H such that G = K(H).
A clique-Helly graph is a graph where C(G) satisfies the Helly property : any



pairwise intersecting subfamily of C(G) has non empty total intersection [5].
A hereditary clique-Helly graph is a graph where every induced subgraph is
clique-Helly. The class of hereditary clique-Helly graphs (hKH) is contained in
the class of clique-Helly graphs (KH), which in turn is contained in the class
of clique graphs (K).

Clique graphs and subclasses have been much studied as intersection graphs,
in the context of graph operators, and are included in several books [4,9,12,14].

Let A represent a class of graphs; consider the following problems:

A-recognition (A-rec)
Instance: Graph G = (V,E).
Question: Does G belong to A?

A-subgraph (A-sub)
Instance: Graph G = (V,E) and a positive integer k.
Question: Is there a subset V ′ ⊆ V with |V ′| ≥ k, such that the subgraph G[V ′]
induced by the set V ′ belongs to A?

maximum A-subgraph (max-A)
Instance: Graph G = (V,E).
Goal: Find a subset V ′ ⊆ V such that |V ′| is maximum and the subgraph G[V ′] induced
by the set V ′ belongs to A.

Clearly, if A-rec is an NP-complete problem, then A-sub is also an NP-
complete problem. Moreover, A-sub is NP-complete for any polynomial-time
recognizable class of graphs A which is hereditary, contains arbitrarily large
graphs and is not the class of all graphs [7]. Examples of such classes are hered-
itary clique-Helly, comparability, permutation, perfect, circular-arc, circle,
line, planar, bipartite, chordal and interval graphs. However, there are some
important - of course non-hereditary - classes of graphs, for which both A-rec

and A-sub are polynomial. Examples are the class of connected graphs and
the class of graphs with a perfect matching. Consequently, studying the com-
plexity of A-sub is not trivial. In addition, when A-sub is NP-complete, there
is no polynomial-time algorithm for solving max-A (providing that P 6= NP );
so it is natural to ask for approximation algorithms for max-A.

In this paper we study those problems for the classes hKH, KH and K. The
nomenclature used for them is summarized in a table at the end of Section 2.

In [11,13], it was shown that KH-rec and hKH-rec are polynomial-time
solvable problems. In [1], we presented a proof that K-rec is NP-complete, K-

sub is NP-complete. In Section 2, we prove that both KH-sub and hKH-sub are
NP-complete for maximum degree 6 planar graphs. We also prove that max-

K, max-KH and max-hKH are Max SNP-hard for maximum degree 6 graphs,
meaning that [10] they are approximable with a fixed ratio in polynomial time
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Fig. 1. Graph Gu,v,H obtained by replacing each edge of G by a Hajós graph.

but [3] there is a constant ε > 0, such that the existence of a polynomial-time
approximation algorithm for max-K, for max-KH, or for max-hKH, restricted
to maximum degree 6 graphs, with performance ratio at most 1 + ε, implies
that P = NP.

In Section 3, we present a general result giving necessary conditions for a
class of graphs A, characterized by a collection of forbidden induced subgraphs,
to satisfy the property that max-A is Max SNP-hard.

Besides the negative result of Section 2, we show in Section 4 a naive
polynomial-time 6-approximation algorithm to minimize the number of ver-
tices to be removed in order to obtain a hereditary clique-Helly subgraph.

Our results are supported by reductions from the NP-complete [6] problem
vertex cover (vc) for cubic planar graphs, and the Max SNP-complete [2,3,10]
problem minimum vertex cover (min-vc) for cubic graphs. For establishing that
a problem is Max SNP-hard, we use the approximation preserving reduction,
called L-reduction, of Papadimitriou and Yannakakis [10].

Due to space limitations some definitions and proofs are omitted.

2 Clique, clique-Helly and hereditary clique-Helly classes

A polynomial-time recognition algorithm for the class of hereditary clique-
Helly graphs was presented in [11]. This algorithm uses a finite family of for-
bidden induced subgraphs, the so-called ocular graphs. In [11], ocular graphs
were shown to be the minimal forbidden configurations for hereditary clique-
Helly graphs. The graph H in Figure 1, called the Hajós graph, is one of the
ocular graphs.

For K4−free graphs, the classes of clique graphs, clique-Helly graphs and
hereditary clique-Helly graphs are the same [14].

Let G = (V, E) be a graph. Let H be the Hajós graph and u, v be the two



non-adjacent vertices H depicted in Figure 1. We obtain a new graph Gu,v,H

by replacing each edge of G by a Hajós graph. This means that Gu,v,H is the
graph where V (G) ⊆ V (Gu,v,H) and, for each edge xy of G, there is a copy
Sxy of H − {u, v} in Gu,v,H , and the additional set of edges
Exy = {xs : s ∈ V (Sxy) and us ∈ E(H)} ∪ {yt : t ∈ V (Sxy) and vt ∈ E(H)}.
We give an example for this operation in Figure 1.

Lemma 2.1 Let G = (V, E) be any graph and Gu,v,H be the graph obtained

from G by the process described above. Then,

1. Gu,v,H is K4-free.

2. If G is cubic and planar, then Gu,v,H is a maximum degree 6 planar graph.

3. For any edge xy of G, the subgraphs of Gu,v,H induced by V (Sxy) ∪ {x, y},
is isomorphic to the Hajós graph H. These are the only induced subgraphs of

Gu,v,H that are isomorphic to an ocular graph.

4 . |V (Gu,v,H)| = |V | + 4 |E|.
5. If V ′ ⊆ V , then V ′ is a vertex cover of G if and only if Gu,v,H − V ′ is an

ocular-free induced subgraph of Gu,v,H . Moreover V ′ is minimum if and only

if Gu,v,H − V ′ has the largest number of vertices.

Theorem 2.2 KH-sub and hKH-sub are NP-complete problems for maximum

degree 6 planar graphs.

Theorem 2.3 max-K, max-KH and max-hKH are Max SNP-hard for maxi-

mum degree 6 graphs.

We summarize in the following table our results and the ones in the liter-
ature. (∗: in the present paper for maximum degree 6 graphs).

Class Recognition Induced subgraph Maximum induced subgraph

clique graph K-rec K-sub max-K

NPC [1] NPC Max SNP-hard

clique-Helly KH-rec KH-sub max-KH

P [13] NPC Max SNP-hard

hereditary hKH-rec hKH-sub max-hKH

clique-Helly P [11] NPC[7] ∗ Max SNP-hard[8]∗

3 A general theorem

In order to generalize the results of Section 2, we consider in the present
section, general graphs G and H, and u, v two non-adjacent vertices of H.



The (u, v, H)-edge-replacing operation of G is the one which obtains the graph
Gu,v,H where V (G) ⊆ V (Gu,v,H), and for each edge xy of G there is a copy
Sxy of H − {u, v} in Gu,v,H , and the additional set of edges

Exy = {xs, yt : s, t ∈ V (Sxy) and us, vt ∈ E(H)}.

For each edge xy of G, denote by Hxy the subgraph of Gu,v,H induced by
V (Sxy) ∪ {x, y}. Notice that H and Hxy are isomorphic, i.e. Gu,v,H contains
H as an induced subgraph.

Observe that the obtained graph Gu,v,H may depend on the order the end
vertices of each edge xy of G are considered. However, the properties of Gu,v,H

used in proof of the following results hold regardless we consider for an edge
xy of G the order x, y or the order y, x.

Theorem 3.1 Let A be a class of graphs, F be a collection of graphs which

characterize A by forbidden induced subgraphs, and H be an element of F
with a pair of non adjacent vertices u and v, such that, for every graph G,

the only induced subgraphs of Gu,v,H isomorphic to any element of F are the

subgraphs Hxy, where xy is any edge of G. If n = |V (G)| and m = |E(G)|
then Optmax-A(Gu,v,H) = n + m(|V (H)| − 2) − Optmin-vc(G).

Theorem 3.2 If A is a class of graphs satisfying the conditions of Theo-

rem 3.1, then max-A is Max SNP-hard.

We mention diamond-free, gem-free, and K3,3-free graphs as other classes
of graphs for which these results are applicable.

4 A 6-approximation algorithm

In this section we consider the following minimization problem: given a graph
G = (V, E), find a minimum subset V ′ ⊂ V such that V −V ′ induces a hered-
itary clique-Helly subgraph of G. Since the class hKH is characterized by for-
bidding an ocular graph as induced subgraph, we can design a 6-approximation
algorithm Π by recursively looking for an ocular induced subgraph in the cur-
rent graph; in case we find, its 6 vertices are removed from the current graph.

Each found ocular induced subgraphs requires at least one vertex in the
optimum solution. As all of them are vertex disjoint, we have taken at most
6 times the size of the optimum solution.

Future work: We have proved that if A is hKH, KH or K then A-sub

is NP-complete and max-A is Max SNP-hard for maximum degree 6 graphs.
However, since any ocular graph has a 4-degree vertex, all these problems are
polynomial for maximum degree 3 graphs. Hence, it is left as an open problem



to determine the maximum k, 3 ≤ k ≤ 5, such that A-sub or max-A are
polynomial-time solvable problems for maximum degree k graphs. Besides,
we are currently working on the design of approximation algorithms to the
problems max-K, max-KH, and max-hKH.
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Abstract

G-graphs have been introduced in [4], and have some applications in both symmetric
and semi-symmetric graphs, cage graphs, and expander graphs [1], [2], [3]. In this
paper we present a characterization of G-graphs, introduce the notion of principal
clique hypergraphs, and present some of their basic properties.
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1 Introduction

The graphs called G-graphs are constructed from a group [1], [4]. These
graphs, like Cayley graphs, have nice and highly regular properties; they may
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or may not be regular. Most well-known graphs are in fact G-graphs: Ham-
ming graphs, meshes of d-ary trees MT (d, 1), and some star graphs, to name
a few. Moreover the algorithm to construct G-graphs is simple. These graphs
can be used in many areas of science where Cayley graphs occur and have ap-
plications in coding theory [3] as well as in the construction of symmetric and
semi-symmetric graphs [2]. One can also use G-graphs to construct expander
graphs.
In this article we first characterize G-graphs. We shall then introduce the
notion of principal-clique hypergraphs and investigate their basic properties.

2 Preliminaries

In this article all graphs are finite, and we allow multiple edges between ver-
tices; such graphs are sometimes termed multigraphs. We write a graph as
Γ = (V ; E; ε), with vertices V , edges E, and a function ε assigning each edge
to a set of one or two endpoints in V . For convenience, if a ∈ E, we denote
ε(a) = [x; y] with the meaning that the extremities x, y of a may be equal
(loop) or not. For x, y ∈ V , the set M = {a ∈ E, ε(a) = [x; y]} is called
multiedge or p-edge if the cardinality of M is p. For complete definitions, see
[1].
A graph is k-partite if there is a partition of V in k parts such that each part
consists contains no edges other than loops; we will write such a graph as
Γ = (ti∈IVi; E; ε), taking |I| = k. When k is minimal Γ is called a k-graph.
AutπΓ is the subgroup of automorphisms of Γ that take each part of the par-
tition to itself.
Recall that an action of a group G (with identity e) on a set X is a map
G × X → X, (g, x) 7→ g.x satisfying e.x = x and g.(g′.x) = (gg′).x, for every
x ∈ X, g, g′ ∈ G. The action is transitive if ∀x, y ∈ X ∃g ∈ G such that
g.x = y. The stabilizer of x ∈ X is StabGx = {g|g.x = x}.
A hypergraph H on a finite set S is a family (Ei)i∈I , I = {1, 2, . . . , n} of
non-empty subsets of S, called hyperedges, with

⋃
i∈I Ei = S. We write H =

(S; (Ei)i∈I). An intersecting family in a hypergraph H is a set of hyperedges
having non-empty pairwise intersection. For x ∈ S, a star of H with x as
a center is the set of all hyperedges that contain x, and is denoted H(x).
The degree of x is the cardinality of the star H(x). We will denote it by
deg(x). A triangle is an intersecting family with three hyperedges which is
not contained in a star. The dual of a hypergraph H on S with vertices xi

and hyperedges Ej is a hypergraph H∗ whose vertices ej are identified with
the hyperedges Ej of H, and whose hyperedges are Xi = {ej|xi ∈ Ej}. Equiv-



alently, H∗ = (E, (H(x))x∈S). A hypergraph has the Helly property if each
intersecting family has a non-empty intersection, thus belonging to a star.
The 2-section of a hypergraph H is the graph denoted by [H]2 whose vertices
are vertices of H and such that two vertices form an edge if and only if they
are in the same hyperedge of H. A hypergraph H is conformal if all the cliques
of [H]2 are hyperedges of H. It can be shown that a hypergraph H has the
Helly property iff its dual is conformal [6]. For a hypergraph H = (S; (Ei)i∈I)
a family E0 ⊂ E is defined to be a matching if the hyperedges of E0 are pair-
wise disjoint. ν(H) denotes the maximum cardinality of a matching in H. A
transversal of a hypergraph H = (S; E1, E2, · · · , Em) is defined to be a set of
T ∈ S such that T ∩ Ei 6= Ø, i = 1, 2, · · · , m. The transversal number τ(H)
is defined as the minimum number of vertices in any transversal. It is easy to
see that ν(H) ≤ τ(H). If ν(H) = τ(H) we will say that H has the Koenig

property.

3 G-Graphs of groups

In what follows, G will be a finite group and S a set of elements in G. We
consider for any s ∈ S the (left) action of 〈s〉 (the subgroup generated by
s) on G; this gives a partition G = tx∈Ts

〈s〉x when Ts is a so-called right

transversal of 〈s〉 [1], [4]. If o(s) = |〈s〉| is the order of s, we have the cycles
(s)x = (x, sx, s2x, . . . so(s)−1x) of the permutation gs : x 7→ s x (x ∈ Ts).
We are going to build a graph, called the G-graph for (G, S), denoted by
Φ(G; S) = (V = ts∈SVs; E; ε) in the following way:

• The vertices of Φ(G; S) are the cycles of gs, s ∈ S. So V = ts∈SVs with
Vs = {(s)x, x ∈ Ts}.

• For (s)x, (t)y ∈ V , if |〈s〉x ∩ 〈t〉y| = p, p ≥ 1 then [〈s〉x; 〈t〉y] is a p-edge.

We may represent the set of edges as E = {([〈s〉x; 〈t〉y]; u)|u ∈ 〈s〉x ∩〈t〉y} so
that for an edge a = ([〈s〉x; 〈t〉y]; u) one has ε(a) = [〈s〉x; 〈t〉y]. Φ(G; S) is a

k-partite graph with |S| = k. Any vertex has a o(s)-loop. We denote Φ̃(G; S)
the graph Φ(G; S) with loops removed.
Example: Let G be the Klein group , G = {e, a, b, ab}, and S = {a, b} with
a2 = b2 = e and ab = ba. The cycles of ga are: (a)e = (e, ae) = (e, a) and
(a)b = (b, ab) The cycles of gb are: (b)e = (e, be) = (e, b) and (b)a = (a, ba) =
(a, ab) The graph Φ̃(G; S) is:



Many well known graph families such as Hamming graphs, 1−dimensional
meshes of d-ary trees , and certain star graphs, are G-graphs. Moreover many
classical graphs such as Pappus graphs, the Heawood graph, and the Cuboc-
tahedral graph are G-graphs as well [5].

4 Properties and characterization

Proposition 4.1 Let Φ(G; S) = (V ; E; ε) be a G-graph. Then the following

properties are equivalent:

• Φ(G; S) has no multiedges except for loops.

• For all s, t ∈ S, 〈s〉 ∩ 〈t〉 = {e}.

In particular these properties are obtained when for all s, t ∈ S, gcd(o(s), o(t)) =
1.

As with the Cayley graph Cay(G; S), it is easy to prove that Φ(G; S) is con-
nected if 〈S〉 = G; see [4].
Throughout the rest of the paper we limit ourselves to simple graphs (graphs
with at most one edge between vertices).

Let Φ̃(G; S) = (V ; E) be a G-graph. For any g ∈ G one can define the
maps δg−1 : V → V with δg−1((s)x) = (s)xg−1, and δ

#
g−1 : E → E with

δ
#
g−1(([〈s〉x; 〈t〉y], u)) = ([〈s〉xg−1; 〈t〉yg−1], ug−1).

For x ∈ G we denote by Kx the set of vertices of Φ̃(G; S) that are endpoints
of edges of the form a = ([〈s〉y; 〈t〉z], x) : Kx is a clique, called a principal

clique. We have the following results:

Theorem 4.2 Let Φ̃(G; S) = (V ; E) be a G-graph.

• For all g ∈ G, (δg−1 , δ
#
g−1) ∈ Autπ(Φ̃(G; S)).

• The map δ : G → Autπ(Φ̃(G; S)) defined by δ(g) = (δg−1 , δ
#
g−1) is a mor-

phism.

• δ(G) acts transitively on every Vs, s ∈ S.

Stabδ(G)((s)) = δ(〈s〉) is a cyclic subgroup of δ(G) with an order ds|o(s).
Stabδ(G)((s)x) = δ(x−1〈s〉x) and the stabilizers of the vertices of a principal

clique are pairwise distinct.



• Kerδ = s∈S;x∈G x〈s〉x−1.

If there exist s, t ∈ S such that 〈s〉 ∩ 〈t〉 = {e} then δ is injective.

• If S = {s1, s2, . . . sk} and if for all i ∈ {1, 2, . . . k} there is σi ∈

AutΦ̃(G; S) such that σi((si)) = (si+1), then Φ̃(G; S) is vertex transitive.

Theorem 4.3 Let Γ = (V ; E) with V = ti∈IVi be a k-partite semi regular

graph. Assume that there exists a subgroup H of Autπ(Γ) such that:

• H acts transitively on each Vi, i ∈ I.

• For all x ∈ V , StabHx is a cyclic group.

• For all i, j, i 6= j, H acts transitively on the set of edges incident to Vi and

Vj.

• The graph Γ contains a clique with k vertices, K = {x1, x2, . . . xk} such that

StabHxi, i ∈ {1, 2, 3 . . . k} are pairwise distinct and
o(G)

|StabHxi|
= |Vi|.

Then there exists a (G; S) such that Φ̃(G; S) w Γ.

5 Principal clique hypergraphs

In this section we restrict our attention to groups G that are generated by a
set S of involutions (i.e., G = 〈S〉 with a2 = e for all a ∈ S). These types
of groups are very important; for example the Artin group and the braid
groups are generated by involutions. It has been conjectured that every non-
abelian finite simple group is generated by three involutions. Let Φ(G; S) be
a G-graph. We build a hypergraph in the following way :

• The set of vertices S is the same as in Φ(G; S)

• The set of hyperedges is the set of principal cliques.

We denote this hypergraph by H(Φ(G; S)) = (S, E), and call it a principal

clique hypergraph. We now investigate some of its basic properties.

Proposition 5.1 Let G be a group, and suppose that the set S of generating

involutions is minimal. Then:

• H(Φ(G; S)) has the Helly property.

• H(Φ(G; S)) is conformal.

Proof. It is easy to see that the dual H∗(Φ(G; S)) of H(Φ(G; S)) is a simple
graph. Because H(Φ(G; S)) does not contain any triangle, H∗(Φ(G; S)) does
not contain any triangle as well. Consequently the property follows. 2

Proposition 5.2 The hypergraph H(Φ(G; S)) has the Koenig property.



Proof. It is easy to see that ν(H) = n
2

(n being the cardinality of G). More-
over the number of vertices in gsi

is equal to n
2
. So ν(H) = τ(n). 2

6 Conclusion

In this article we have introduced principal clique hypergraphs and have laid
out some of their basic properties. We have seen that the properties arise
from the group, namely the minimality of S and the cardinality of G. Is it
possible to extract some information about (G; S) from the structure of the
hypergraph H(Φ(G; S))? For example, what does the Helly property mean
when translated into group theory [7]? Is it possible to generalize the proper-
ties given in section 5 for any group? Finally, investigating the automorphism
group of the hypergraph also appears to be a promising avenue to explore.
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Abstract

In this paper we present an Integer Programming reformulation for a hard batching
problem encountered in feeding assembly lines. The study was motivated by the real
process to feed the production flow through the shop floor in a leading automobile
industry in Brazil. The problem consists of deciding the assignment of items to
containers and the frequency of moves from the storage area to the line in order to
meet demands with minimum cost. Better lower and upper bounds were obtained
by a branch-and-bound algorithm based on the proposed reformulation. We also
present valid inequalities that may improve such algorithm even further.
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1 Introduction

Firms employing just-in-time attain consistent quality with low cost due to
standardization of work methods. The shop floor is arranged in parallel as-
sembly lines to produce efficiently high volumes, as it happens in automobile
assembly plants. A feed process supplies the serial work centers with all the
necessary items to complete the required operations. This leads to hard batch-
ing problems since materials handling to meet a time based demand must be
done in standard sizes of containers. The feed process is subjected to quite
restrictive operational constraints: (i) a container must carry only one kind
of item; (ii) for each kind of item exactly one container size have to be cho-
sen to handle the item within the whole planning horizon; and, (iii) only full
conteiners can be used, i.e., the quantity a container size must always carry
when handling a certain kind of item is defined a priori.

The assembly line feed problem (LFP, for brief), consists of jointly deciding
the assignment of items to containers and the frequency of moves from the
storage area to the line in order to meet work centers’ demands with minimum
cost. The costs are associated to holding stock of items besides the line and
to handling the containers. The LFP, introduced by Souza et al. [3], is a real
shop floor problem encountered in a major automobile industry plant located
in Brazil. The authors discussed the problem complexity, and proposed an
integer programming model and a GRASP heuristic. This problem is related
to the lot-sizing with constant batches [1]. In this paper, we propose an IP
reformulation and adapt valid inequalities coming from the lot-sizing literature
for the LFP problem. The reformulation is compared, from a computational
point of view, with the IP formulation presented in [3]. We conclude with
suggestions for future investigations.

2 Integer programming formulations

A production plan determines the demand dit for item i, i = 1, . . . , I, to be
met in period t, t = 1, . . . , T of a finite horizon. The line is supplied with a
fixed quantity qik whenever a container of size k arrives with an item i. The
handling cost is bk per movement of a container k, and the holding cost is ci

per unity of item i remaining besides the line from a period to another. We
assume that lk containers of size k are availabe to feed the line at each period.

The IP formulation introduced in [3] used a binary variable xik assuming
value 1 if item i was assigned to container size k, and 0 otherwise. A variable
fk

it denoted the frequency of movements with container k carrying item i in



t, and sit denoted the stock of item i at the end of period t. The resulting
formulation was written as follows:

min

{

T
∑

t=1

I
∑

i=1

(

cisit +
K
∑

k=1

bkf
k
it

)}

(1)

si(t−1) − sit +
K
∑

k=1

qikf
k
it = dit, ∀i,∀t,(2)

K
∑

k=1

xik = 1, ∀i,(3)

T
∑

t=1

fk
it − Mxik ≤ 0, ∀i,∀k,(4)

I
∑

i=1

wk
itxik ≤ lk, ∀k,∀t,(5)

fk
it ∈ Z+,∀i,∀t,∀k, xik ∈ {0, 1}, ∀i,∀k, sit ∈ R+,∀i,∀t,(6)

The objective function (1) minimizes the total cost, and constraints (2) are
the classical flow balance. Constraints (3) and (4) respectively assign items
to container sizes and couple frequency and assignment variables. Parameter
M is an upper bound on the frequency variables. In [3], M was estimated as
max{

∑T

t=1d
dit

q
ik

e, i = 1, . . . , I}, where k is the smallest container. Constraints

(5) impose that at most lk containers of size k can be used in each period t.
Parameter wk

it denotes the number of containers of size k required to feed the
line with item i in t (see [3] for a detailed discussion on parameter wk

it).

In the present study, we decompose the assigning variable per period t, i.e.,
we use new variables zk

it which assume 1 if item i is assigned to container size
k in period t, and 0 otherwise. We also redefine upper bound M as a function

of i, k and t, i.e., Mk
it :=

⌈

∑T

t′=t

d
it′

qik

⌉

. After eliminating decision variables sit,

we propose the resulting LFP reformulation:

min

{

I
∑

i=1

T
∑

t=1

[

−ciD(i, 1, t) +
K
∑

k=1

(bk + (T − t + 1)ciqik) fk
it

]}

(7)

t
∑

t′=1

K
∑

k=1

qikf
k
it′ ≥ D(i, 1, t), ∀i,∀t,(8)

K
∑

k=1

zk
it ≤ 1, ∀i,∀t,(9)



zk
it = zk

i(t−1), ∀i,∀k,∀t ∈ {2, . . . , T},(10)

I
∑

i=1

wk
itz

k
it ≤ lk, ∀t,∀k,(11)

T
∑

t=1

fk
it − Mk

i1z
k
i1 ≤ 0, ∀i,∀k,(12)

fk
it − Mk

itz
k
it ≤ 0, ∀i,∀k,∀t,(13)

fk
it ∈ Z+, zk

it ∈ {0, 1}, ∀i,∀k,∀t.(14)

where D(i, t′, t) :=
∑t

j=t′ dij. Constraints (8) ensure stocks are non negative,
while (9) and (10) assign items to container sizes. Constraints (13) try to
impose a tighter coupling between frequency and assignment variables. This
formulation can be strengthened even further by the following results.

Proposition 2.1 Let sil =
∑K

k=1

∑l

t=1 fk
itqik −D(i, 1, l) be the stock of item i

at period l. Given L = {1, . . . , l} and S ⊆ L, the (i, L, S) inequality

∑

j∈S

K
∑

k=1

fk
ijqik ≤

∑

j∈S

K
∑

k=1

D(i, j, l)zk
ij + sil(15)

is valid for LFP.

Proof. There exists, in a solution feasible for (7)-(14), only one container size

k such that zk
ij = 1 for all j ∈ S. If t denotes the least period in S, then:

∑

j∈S

K
∑

k=1

fk
ijqik ≤

l
∑

j=t

K
∑

k=1

fk
ijqik ≤ D(i, t, l) + sil

≤
∑

j∈S

D(i, j, l)zk
ij + sil ≤

∑

j∈S

K
∑

k=1

D(i, j, l)zk
ij + sil.

(16)

2

Corollary 2.2 The (i, L, S) inequality can be written in the (z, f) space as:

∑

j∈L\S

K
∑

k=1

fk
ijqik +

∑

j∈S

K
∑

k=1

D(i, j, l)zk
ij ≥ D(i, 1, l).(17)

Inequalities (15) are a generalization of facet-defining inequalities for the un-
capacitated single-item lot-sizing problem (see Section 7.4 in [2] for details).
Although exponentially many exist, (i, L, S) inequalities (17) can be used to
strengthen the LP relaxation bounds of (7)-(14), if they are generated as cut-
ting planes. Given a vector (z, f) ∈ (RK×I×T , RK×I×T ), the associated separa-



tion problem can be solved efficiently in O(IKT 2) time by computing, for each

(i, l) ∈ {1, . . . , I}×{1, . . . , T}, αil =
∑l

j=1 min{
∑K

k=1 f
k

ijqik;
∑K

k=1 D(i, j, l)zk
ij}.

If αil < D(i, 1, l) then the separation routine returns i, L = {1, . . . , l}, and

S = {j ∈ L :
∑K

k=1 f
k

ijqik >
∑K

k=1 D(i, j, l)zk
ij}.

3 Preliminary computational results

Our preliminary computational experiments comprise evaluating the formu-
lations presented in the previous section by means of the strength of their
LP relaxations and by the overall performance of a branch-and-bound (BB)
algorithm based on them. Accordingly, two BB algorithms were tested: BB1,
based on the original formulation (1)-(6), and BB2, based on the proposed
reformulation (7)-(14). Inequalities (17) were not considered yet. We used
XPRESS-MP Mosel modeling language. Parameters PRESOLVE, HEURSTRATEGY,

NODESELECTION, CUTSTRATEGY and CUTFREQUENCY were set, respectively, to
0,3,5,2 and 1. We have thus given more priority on finding feasible solutions.
Both BB algorithms were ran for one hour of CPU on a 2.4 GHz Intel Pentium
IV, with 1Gb of RAM memory, under Linux Operating System.

The experiments were conducted with a set of 24 real FLP instances in-
troduced in [3] (I = 191, K = 3 and T = 7). For each instance, the first
(resp. second) formulation involve 2123 (10717) rows, 5922 (8022) columns
and 21011 (43548) non zero entries. Table 1 shows numerical results. In the
first column of the table, we identify each instance by its name. In the next
three columns we present the following ratios: LP2

LP1

, between the lower bounds

given by the LP relaxations of (7)-(14) and (1)-(6); BLB2

BLB1

, between the best

overall lower bounds obtained by the BB algorithms; UB2

UB1

, between the best
upper bounds found within the enumeration tree by each BB algorithm. We
then report BLB2 and UB2, respectively the best lower and upper bound
attained by BB2, followed by the corresponding duality gap UB2−BLB2

BLB2

. In
the last column we show the upper bounds attained by GRASP [3]. The
computation of LP1 and LP2 typically takes less than 1 second.

As depicted in Table 1, much better results were obtained when LFP refor-
mulation (7)-(14) was used instead of (1)-(6). From the one hand, LP2 values
were, on the average, 14.6% stronger than LP1 counterparts, while the best
overall lower bounds attained by BB2 were 36.7% tighter. From the other
hand, the best feasible solutions found by BB2 were 45.2% cheaper than those
found by BB1. BB2 also compares favorably in terms of solution quality with
the GRASP proposed in [3]. We were able, with the reformulation proposed



in this paper, to improve the best known upper bounds for all the 24 instances
(31.3% on average).

Instance LP2

LP1

BLB2

BLB1

UB2

UB1

BLB2 UB2
UB2−BLB2

BLB2

UB GRASP
t191 111 1.075 1.432 0.560 152,633.8 206,841 0.355 301,239
t191 112 1.270 1.490 0.611 157,639.8 203,102 0.288 307,551
t191 113 1.747 1.502 0.742 173,484.0 222,904 0.285 324,428
t191 121 1.000 1.254 0.528 172,283.4 190,713 0.107 293,342
t191 122 1.000 1.243 0.599 170,650.7 192,290 0.127 297,568
t191 123 1.001 1.244 0.662 170,913.6 207,914 0.216 300,127
t191 211 1.083 1.333 0.556 165,158.9 213,046 0.290 310,867
t191 212 1.285 1.374 0.559 169,881.0 210,576 0.240 317,445
t191 213 1.769 1.503 0.651 186,150.8 225,963 0.214 336,429
t191 221 1.000 1.224 0.517 183,166.2 198,930 0.086 308,444
t191 222 1.000 1.225 0.529 183,295.6 199,320 0.087 308,554
t191 223 1.002 1.238 0.586 183,794.4 220,180 0.198 311,041
tb191 111 1.395 1.428 0.468 160,562.0 220,235 0.372 303,443
tb191 112 1.006 1.307 0.483 151,504.7 207,971 0.373 307,361
tb191 113 1.000 1.388 0.482 151,598.6 213,953 0.411 309,741
tb191 121 1.000 1.353 0.619 170,837.4 202,148 0.183 298,467
tb191 122 1.039 1.373 0.478 181,087.7 234,213 0.293 326,143
tb191 123 1.039 1.381 0.527 184,726.4 252,720 0.368 337,711
tb191 211 1.648 1.442 0.499 181,312.8 225,353 0.243 331,144
tb191 212 1.057 1.296 0.600 161,783.1 221,008 0.366 316,910
tb191 213 1.000 1.779 0.367 162,167.9 220,534 0.360 319,356
tb191 221 1.000 1.219 0.502 182,610.2 215,093 0.178 310,318
tb191 222 1.039 1.408 0.483 193,404.0 239,685 0.239 338,280
tb191 223 1.039 1.383 0.548 196,946.8 256,420 0.302 349,552
Average 1.146 1.367 0.548 - - 0.252 -

Table 1
Numerical results on lower and upper bounds

Although much better lower and upper bounds were obtained with a BB
algorithm based on the proposed reformulation, we are still unable to solve
instances of practical interest to proven optimality within a reasonable amount
of computational time. A Branch-and-cut algorithm where inequalities (17)
are used as cutting planes may help us to go around this difficulty.

References

[1] Pochet, Y., and L.A. Wolsey, Lot-sizing with constant batches: Formulations

and valid inequalities, Math. Oper. Res. 14 (1993), 767–785.

[2] Pochet, Y., and L.A. Wolsey, “Production Planning by Mixed Integer
Programming”, Springer, 2006.

[3] de Souza, M.C., C.R.V. de Carvalho, and W.B. Brizon, Packing items to feed

assembly lines, Eur. J. Oper. Res. (2007), doi:10.1016/j.ejor.2006.09.091.



Flow-Critical Graphs

Cândida Nunes da Silva 1, Cláudio L. Lucchesi 2
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Abstract

In this paper we introduce the concept of k-flow-critical graphs. These are graphs
that do not admit a k-flow but such that any smaller graph obtained from it by
contraction of edges or of pairs of vertices is k-flowable. Any counterexample for
Tutte’s 3-Flow and 5-Flow Conjectures must be 3-flow-critical and 5-flow-critical,
respectively. Thus, any progress towards establishing good characterizations of k-
flow-critical graphs can represent progress in the study of these conjectures. We
present some interesting properties satisfied by k-flow-critical graphs discovered
recently.

Keywords: nowhere-zero k-flows, Tutte’s Flow Conjectures, edge-k-critical graphs,
vertex-k-critical graphs.

1 Introduction

Let k be an integer, k > 2. Let D be a digraph and f a mapping f : E(D) → Z.
Let X be a set of vertices of D and the cut of X, denoted by ∂X, the set of
edges of D having precisely one end in X. We define the outflow at X as the
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sum of the weights of the edges in ∂X having tail in X minus the sum of the
weights of the edges in ∂X having head in X. In the particular case in which
X has one single vertex v we say it is the outflow at v and denote it by f(v).
The outflow at X is equal to the sum of the outflows at the vertices in X.

Mapping f is a k-flow of D if the following properties are satisfied:

(i) For any edge e, f(e) is not a multiple of k.

(ii) Every vertex v is balanced, i.e., f(v) = 0.

Similarly, f is a mod-k-flow of D if property (i) is satisfied and every vertex
is balanced modulo k, i.e., f(v) ≡ 0 (mod k). Mapping f is a near-mod-k-

flow that misses u and v if property (i) is satisfied and balance modulo k is
achieved at every vertex, except precisely vertices u and v.

If a mapping f satisfies property (i) and all but possibly one vertex v
are balanced, then f must be a k-flow. Recall that the outflow at v is the
complement of the outflow at X := V (D) − v. Since the outflow at X :=
V (D) − v is 0, then v must be balanced as well. Similarly, if a mapping f
satisfies property (i) and all but possibly one vertex v are balanced modulo
k, then f must be a mod-k-flow. Using a similar argument we conclude that
when f is a near-mod-k-flow that misses u and v and the outflow at u is x,
then the outflow at v must be −x. In order to specify the outflow at u (and
consequently at v) we say f is a near-mod-k-flow that misses u and v by x.

When f is either a k-flow or a mod-k-flow then, for every set X, the outflow
at X is 0 or 0 mod k, respectively. Thus, D cannot have a cut-edge.

We say a graph G has a k-flow if there is a k-flow for some orientation
D of G. Similarly, we say that G has a mod-k-flow if there is a mod-k-flow
for some orientation D of G. The following result is well known. Proofs of
Theorem 1.1 can be found in papers by Younger [6] and Seymour [4], and in
a book by Zhang [7].

Theorem 1.1 A graph G has a k-flow if and only if G has a mod-k-flow.

It should be noted, however, that there is a mod-k-flow f for some orienta-
tion D of G if and only if there is a mod-k-flow f ′ for every orientation D′ of
G. If D and D′ differ on a set E ′ of edges, we obtain f ′ by simply stating that
f ′(e) ≡ −f(e) (mod k) for all edges in E ′ and f ′(e) = f(e) for the remaining
edges.

We denote by G/e or G − e, respectively, the graph resulting from con-
tracting or removing edge e. For a pair of distinct vertices u and v of G, Guv

is the graph obtained from G by contracting the set {u, v} to a single vertex.
Graph G + uv is the graph obtained from G by the addition of edge uv. All



these definitions can be extended to a digraph D. In this case, graph D + uv
is an extension of D in which edge uv is directed from u to v.

A graph G is edge-k-critical if it does not admit a k-flow but G/e admits a
k-flow, for every edge e of G. Similarly, we say that graph G is vertex-k-critical

if it does not admit a k-flow but Guv admits a k-flow, for every pair of distinct
vertices u and v of G. These definitions can be extended to digraphs. A
digraph D is edge-k-critical or vertex-k-critical, respectively, if its underlying
undirected graph is edge-k-critical or vertex-k-critical.

Every loopless vertex-k-critical graph must be edge-k-critical. A graph
G that is edge-k-critical must have exactly one non-trivial connected compo-
nent. This non-trivial component of G must be edge-k-critical itself. It is
easy to see that every vertex-k-critical graph is connected. There are edge-
k-critical graphs that are not vertex-k-critical, but all examples we know are
disconnected.

Conjecture 1.2 Every connected edge-k-critical graph is vertex-k-critical.

Graph K4 is an example of a vertex-3-critical graph. Actually, every odd
wheel is vertex-3-critical. Other examples of vertex-3-critical graphs are shown
on Figure 1. The Petersen graph is vertex-4-critical. Many other snarks are
vertex-4-critical. Examples are Blanuša, Loupekhine, Celmins-Swart, double-
star and Szekeres snarks, and flower-snarks Jn for n odd and 5 ≤ n ≤ 15 [1].
We used a characterization of vertex-k-critical graphs demonstrated on Sec-
tion 3 to implement a computer program that checks whether a graph is
vertex-k-critical for k = 3 or k = 4. This program runs in exponential time.

Fig. 1. Examples of vertex-3-critical graphs

2 Motivation

Tutte proposed three well known conjectures concerning 5-, 4- and 3-flows.
Tutte’s 5-Flow Conjecture states that every 2-edge-connected graph admits a
5-flow. The 4-Flow Conjecture states that every 2-edge-connected graph with
no Petersen minors admits a 4-flow. Finally, the 3-Flow Conjecture states
that every 4-edge-connected graph admits a 3-flow. All three conjectures
are theorems for planar graphs. Robertson, Seymour and Thomas [3] have



proved the 4-Flow Conjecture for cubic graphs. The 3-Flow Conjecture has
been proved for planar graphs with up to three 3-cuts and for projective
planar graphs with at most one 3-cut [5]. There are many more interesting
results concerning these conjectures that are not mentioned here. Refer to
Seymour [4] or Zhang [7] for a more thorough review on related results. All
three conjectures are still open.

Since the contraction of pairs of vertices does not create new cuts, any
counterexample for the 5-Flow Conjecture or the 3-Flow Conjecture must
be, respectively, vertex-5-critical or vertex-3-critical. Moreover, contraction
of edges does not create Petersen minors, thus any counterexample for the
4-Flow Conjecture is edge-4-critical. We do not know, however, whether it
is also vertex-4-critical. There are examples of graphs that do not have a
Petersen minor for which the contraction of some pair of vertices creates a
Petersen minor.

Therefore, the search for good characterizations of edge and vertex-k-
critical graphs for k = 3, 4, 5 stands up as a new interesting approach towards
proving these conjectures.

3 Characterizations of k-critical Graphs

Theorems 3.1 and 3.2 are, respectively, characterizations of edge and vertex-
k-critical graphs. We omit here the proof of Theorem 3.2, but it can be proved
using essentially the same techniques presented on the proof of Theorem 3.1.

Theorem 3.1 Let D be a digraph with no mod-k-flow. Then, the following

properties are equivalent:

(i) Graph D is edge-k-critical.

(ii) For every edge e of D, graph D − e has a mod-k-flow.

(iii) For every edge e = uv of D, graph D has a near-mod-k-flow that misses

u and v.

Proof.

(i) ⇒ (ii): Let e be an edge of D and f a mod-k-flow of D/e. Either f is a
mod-k-flow of D − e or f is a near-mod-k-flow of D − e that misses the ends
of e. But the latter cannot be the case, otherwise, f can be extended to a
mod-k-flow of D, a contradiction. Thus, f is a mod-k-flow of D − e.

(ii) ⇒ (iii): Let e = uv be an edge of D and f ′ be a mod-k-flow of D − e.
Extend f ′ to a mapping f of D by assigning to e a weight f(e) that is not a



multiple of k; f is a near-mod-k-flow of D that misses u and v.

(iii) ⇒ (i): Let e = uv be an edge of D and f a near-mod-k-flow of D that
misses u and v. Take the restriction f ′ of f to D/e. All vertices, except
perhaps the vertex of contraction uv, are balanced modulo k. Thus, so is
vertex uv and f ′ is a mod-k-flow of D/e. 2

Theorem 3.2 Let D be a digraph with no mod-k-flow. Then, the following

properties are equivalent:

(i) Graph D is vertex-k-critical.

(ii) For every pair {u, v} of two distinct vertices of D, the graph D + uv has

a mod-k-flow.

(iii) For every pair {u, v} of two distinct vertices of D, there is a near-mod-

k-flow of D that misses u and v.

4 Composition and Decomposition of k-critical Graphs

Let D1 and D2 be two digraphs, e = u1v1 an edge of D1 and u2 and v2 be two
vertices of D2. The composition of D1 and D2 by (u1, v1) and (u2, v2) is the
graph obtained from D1−e and D2 by the identification of the pairs of vertices
u1, u2 into a vertex u and v1, v2 into a vertex v. A digraph D is a composition
of D1 and D2 if for some edge e = u1v1 of D1 and for two specified vertices u2

and v2 of D2, D is a composition of D1 and D2 by (u1, v1) and (u2, v2).

Kochol [2, Lemma 1] proves that given two digraphs D1 and D2 such that
neither D1 nor D2 has a mod-k-flow, then no composition of D1 and D2 has a
mod-k-flow. We thus state a conjecture and present some evidence in support
of its validity.

Conjecture 4.1 Let D1 and D2 be two vertex-k-critical digraphs. Then any

composition of D1 and D2 is vertex-k-critical.

Theorem 4.2 Let k be a prime, D1 an edge-k-critical digraph and D2 a loop-

less vertex-k-critical digraph. Then any composition of D1 and D2 is edge-k-

critical.

Proof. Let e = u1v1 be an edge of D1 and u2 and v2 two vertices of D2 such
that D is a composition of D1 and D2 by (u1, v1) and (u2, v2). Let e2 be an
edge of D2. By hypothesis D2 is loopless and vertex-k-critical. Thus, it is
edge-k-critical. By Theorem 3.1(ii), D2 − e2 has a mod-k-flow f2 and D1 − e
has a mod-k-flow f1. The union of f1 and f2 is a mod-k-flow of D − e2.



Now let e1 be an edge of D1 − e. By Theorem 3.1(ii), D1 − e1 has a mod-
k-flow f1. Thus, D1 − e1 − e has a near mod-k-flow f ′

1
that misses u1 and v1

by f1(e) = x. By Theorem 3.2(iii), D2 has a near mod-k-flow f2 that misses
u2 and v2 by, say, y. Since k is prime, the inverse z ≡ y−1 (mod k) exists.
Multiplying f2 by −xz we obtain a near mod-k-flow f ′

2
of D2 that misses u2

and v2 by −x mod k. The union of f ′

1
and f ′

2
is a mod-k-flow of D−e1. Every

edge of D is either an edge of D2 or of D1 − e, thus, D is edge-k-critical. 2

Given a digraph D, a decomposition of D is a pair of graphs D1 and D2

such that D is a composition of D1 and D2. Clearly, a decomposition of D
exists if and only if D has a 2-vertex-cut. Every vertex-k-critical digraph D
with a 2-vertex-cut has a decomposition into two vertex-k-critical digraphs.

Theorem 4.3 Let k be a prime, D a vertex-k-critical digraph, {u, v} a 2-

vertex-cut of D and D1 and D2 subgraphs of D such that V (D1) ∩ V (D2) =
{u, v} and D = D1 ∪ D2. Then, either (i) D1 + uv and D2 are both vertex-k-

critical or (ii) D1 and D2 + uv are both vertex-k-critical.

A similar result holds for edge-k-critical graphs.
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Abstract

A matching covered graph is a nontrivial connected graph in which every edge is
in some perfect matching. A single ear of a connected graph G is a path P of odd
length in G whose internal vertices, if any, have degree two in G. Let G−P denote
the graph obtained from G by deleting the edges and internal vertices of G. A double

ear of G is a pair (R1, R2) of vertex-disjoint single ears of G. A matching covered
graph G is near-bipartite if it is non-bipartite and there is a double ear (R1, R2)
such that G−R1−R2 is matching covered and bipartite, but G−Ri is not matching
covered, for i = 1, 2. In 2000, C. Little and I. Fischer characterized Pfaffian near-
bipartite graphs in terms of forbidden subgraphs [2]. However, their characterization
does not imply a polynomial time algorithm to determine whether a near-bipartite
graph is Pfaffian. In this report, we give such an algorithm. Our algorithm is
based in an Inclusion-Exclusion principle and uses as a subroutine an algorithm
by McCuaig [4] and, independently, by Robertson, Seymour and Thomas [6] that
determines whether a bipartite graph is Pfaffian.

Keywords: Pfaffian graphs, polynomial time algorithms, matching theory,
matching covered graphs.



1 Introduction

Let A := (aij) be an n × n skew-symmetric matrix. When n is even, say
n = 2k, there is a polynomial P := P (A) in the aij called Pfaffian of A. This
polynomial is defined as follows:

P :=
∑

sgn(M)ai1j1 ai2j2 . . . aikjk
,

where the sum is taken over the set of all partitions M := (i1j1, i2j2, . . . , ikjk) of
{1, 2, . . . , n} into k unordered pairs, and sgn(M) is the sign of the permutation:

π(M) :=





1 2 3 4 . . . 2k − 1 2k

i1 j1 i2 j2 . . . ik jk



 .

It can be seen that the definition of Pfaffian of A given above is independent
of the order in which the constituent pairs in a partition M are listed. The
order in which the elements in a pair are listed is also immaterial, since A is
skew-symmetric.

Now suppose that G is a graph whose set of vertices is {1, 2, . . . , n}. Let D

be an orientation of G such that A is the adjacency matrix of D. Then each
nonzero term in the expansion of the Pfaffian of A corresponds to a perfect
matching M of G. Thus, if D is such that sgn(M) is constant, for all perfect
matchings M of G, then |P | is the number of perfect matchings of G.

A directed graph D is Pfaffian if all perfect matchings of D have the same
sign. An undirected graph G is Pfaffian if it admits a Pfaffian orientation.

An edge e of a graph G is admissible if G has a perfect matching con-
taining e. A graph is matching covered if it is connected and each edge is
admissible. An edge e = uw of G is admissible if and only if G− u−w has a
perfect matching. Thus, one can determine the set of admissible edges of G in
polynomial time. The definition of Pfaffian orientation immediately reduces
the problem of Pfaffian orientations to matching covered graphs.

Proposition 1.1 Let G be a graph and H the graph obtained from G by re-
moving every non-admissible edge of G. An orientation D of G is Pfaffian if

1 Research supported by Fapesp – Fundação de Amparo à Pesquisa do Estado de São Paulo,
proc. #05/04426-6
2 Email: alberto.miranda@ic.unicamp.br
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and only if the restriction of D to each connected component of H is Pfaffian.

1.1 Parities of Circuits

The parity of a circuit C of even length in a directed graph D is the parity of
the number of its edges that are directed in agreement with a specified sense
of orientation of C. As C has an even number of edges, the parity is the same
in both senses and thus is well defined. If the parity of C is odd we say C

is oddly oriented in D. For any two sets X and Y , we denote by X4Y the
symmetric difference of X and Y .

Theorem 1.2 ([3] Lemma 8.3.1) Let D be a directed graph. Let M1 and
M2 be any two perfect matchings of D and let k denote the number of even
parity circuits of D[M14M2]. Then, M1 and M2 have the same sign if and
only if k is even.

Let G be a graph and H a subgraph of G. The graph H is conformal in
G if G − V (H) has a perfect matching.

Proposition 1.3 Let G be a graph, H a conformal subgraph of G, and J a
conformal subgraph of H. Then, J is a conformal subgraph of G.

Theorem 1.4 ([3] Theorem 8.3.2) Let D be a directed graph, M a perfect
matching of D. Then the following are equivalent:

• D is Pfaffian;

• Every M-alternating circuit of D is oddly oriented;

• Every conformal circuit of D is oddly oriented.

Corollary 1.5 Let G be a graph, D a Pfaffian orientation of G, and H a
conformal subgraph of G. Then, the restriction D(H) of D to H is a Pfaffian
orientation.

1.2 Near Bipartite Graphs

A single ear of a connected graph G is a path P := (v0, e1, v1, . . . , e2k−1, v2k−1)
of odd length in G whose internal vertices v1, v2, . . . , v2k−2, if any, have degree
two in G. If P is a single ear of G then we denote by G−P the graph obtained
from G by deleting the edges and internal vertices of P . A double ear of G

is a pair (R1, R2), where R1 and R2 are two vertex-disjoint single ears of G.
An ear of G is either a single ear or a double ear of G. If R is an ear of G

then we denote by G − R the graph obtained from G by deleting the edges
and internal vertices of the constituent paths of R.



Any edge of G spans a single ear and any pair of nonadjacent edges spans a
double ear. A graph G is near-bipartite if it is non-bipartite, matching covered
and it has a double ear R such that G−R is bipartite and matching covered.

Let G be a near-bipartite graph, R a double ear of G such that G − R is
bipartite and matching covered. Clearly, each of the two constituent paths of
R may be replaced by a single edge, so that the new graph G′ is near-bipartite.
We shall refer to those two edges as the removable doubleton of G′. Moreover,
G is Pfaffian if and only if G′ is Pfaffian. In the remainder of this article,
we shall assume that each ear of R has length one. Thus, we assume that
the near-bipartite graph G has two edges e1 and e2, such that G − e1 − e2

is bipartite and matching covered. Clearly, every perfect matching of G that
contains one of e1 and e2 contains both e1 and e2.

2 The Algorithm

Let S be a set of edges of a graph G. We denote by V (S) the set of ends of
edges in S.

Theorem 2.1 (Inclusion-Exclusion Theorem) Let D be a directed near-
bipartite graph, R a removable doubleton of D, and Q a conformal circuit of
D that contains some edge of R. Then, D is Pfaffian if and only if each of
the following three properties holds:

(i) D − R is Pfaffian;

(ii) D − V (R) is Pfaffian; and

(iii) Q is oddly oriented in D.

Proof. (only if part) The graphs D − R, D − V (R) and Q are conformal
subgraphs of D. Therefore, if D is Pfaffian then each of the three directed
graphs is also Pfaffian. As Q is a circuit, it must be oddly oriented, by
Theorem 1.4.

(if part) To prove the converse, assume that the three properties hold. Let
M be the set of perfect matchings of D. By hypothesis, R is a removable
doubleton. Then, a perfect matching of D either contains all the edges of
R or no edge of R, as mentioned above. Therefore, M can be partitioned
in two sets MR and MR, the set of perfect matchings of D that contain all
the edges of R and the set of those that contain no edge of R, respectively.
Property (i) implies that every perfect matching of MR has the same sign s

in D. Every M, N -alternating circuit, for M, N ∈ MR, is a conformal circuit
of D − V (R). Therefore, Property (ii) implies that every perfect matching of



MR has the same sign t in D. Circuit Q is conformal in D. So, let M be the
union of a perfect matching of D − V (Q) and a perfect matching of Q. Note
that M is a perfect matching of D. Let M ′ := M4Q. As Q contains some
edge of R, one of M and M ′ is in MR and the other is in MR. On the other
hand, Property (iii) implies that sgn(M) = sgn(M ′) in D. Therefore, s = t.
Thus, every perfect matching of D has the same sign. We deduce that D is
Pfaffian. 2

Theorem 2.2 ([1] Theorem 3.9) There exists a polynomial time algorithm
that, given a matching covered graph G, determines an orientation D of G

such that G is Pfaffian if and only if D is a Pfaffian orientation of G.

The following result was first proved by Vazirani and Yannakakis [7].

Theorem 2.3 ([1] Corollary 3.11) The problem of determining whether or
not a given orientation D of a matching covered graph G is Pfaffian is poly-
nomially reducible to the problem of deciding whether or not G is Pfaffian.

The following algorithm, discovered in 1998, is due to McCuaig and, in-
dependently, to Robertson, Seymour and Thomas. An alternative proof for
this algorithm was given by Miranda in his Master’s dissertation [5], written
under the supervision of Lucchesi.

Theorem 2.4 ([4,6,5]) There exists a polynomial time algorithm that, given
a (possibly non matching covered) bipartite graph G, determines whether G is
Pfaffian.

Corollary 2.5 There exists a polynomial time algorithm that, given an ori-
entation D of a (possibly non matching covered) bipartite graph G, decides
whether D is a Pfaffian orientation.

Finally, we are in position to describe our algorithm. Let G be a near-
bipartite graph. First, apply Theorem 2.2 to obtain an orientation D such
that D is Pfaffian if and only if G is Pfaffian, then apply Theorem 2.1, using
twice the algorithm mentioned in Corollary 2.5.
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Abstract

Let G be a graph, and u, v ∈ V (G). The monophonic interval J [u, v] is the set
of vertices of all induced paths linking u and v. If X ⊆ V (G), the monophonic
closure J [X] of X is defined as J [X] =

⋃
u,v∈X J [u, v]. In addition, if X = J [X]

then X is said to be monophonically convex or simply m-convex. The m-convexity
number of G, denoted by cm(G), is the cardinality of a maximum proper m-convex
subset of V (G). The smallest m-convex set containing X is denoted Jh[X] and
called m-convex hull of X. A subset X ⊆ V (G) is called a monophonic set if
J [X] = V (G), and an m-hull set if Jh[X] = V (G). The monophonic number of G,
denoted by m(G), is the cardinality of a minimum monophonic set of G, and the
m-hull number of G, denoted by hm(G), is the cardinality of a minimum m-hull set
of G. In this work we study the complexity of computing the parameters cm(G),
m(G) and hm(G).

Keywords: monophonic convexity, m-convex set, monophonic set, m-hull set, m-
convexity number, monophonic number, m-hull number
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1 Introduction

We consider only connected graphs. Let G be a graph, and u, v ∈ V (G). A
path linking u and v is induced when there is no edge linking nonconsecutive
vertices in the path. For X ⊆ V (G), write X = V (G) \X. Denote by N(v)
the set of neighbors of v ∈ V (G) and NX(v) = N(v) ∩ X. Following the
terminology used in [5,8], the monophonic interval J [u, v] is the set of vertices
of all induced paths linking u and v. If X ⊆ V (G), the monophonic closure

J [X] of X is defined as J [X] =
⋃

u,v∈X J [u, v]. In addition, if X = J [X]
then X is said to be monophonically convex or simply m-convex. Clearly, if
X = {v} or X = V (G) then X is m-convex. The m-convexity number of G,
denoted by cm(G), is the cardinality of a maximum proper m-convex subset
of V (G).

The smallest m-convex set containing X is denoted Jh[X] and called m-

convex hull of X. Note that X ⊆ J [X] ⊆ Jh[X] ⊆ V (G). A subset X ⊆ V (G)
is called a monophonic set if J [X] = V (G), and an m-hull set if Jh[X] = V (G).
The monophonic number of G, denoted by m(G), is the cardinality of a
minimum monophonic set of G, and the m-hull number of G, denoted by
hm(G), is the cardinality of a minimum m-hull set of G. It is clear that
hm(G) ≤ min{m(G), cm(G) + 1}, for any graph G. Observe also that every
monophonic or m-hull set of a graph G must contain all of its simplicial ver-
tices. This implies that every graph containing a simplicial vertex satisfies
cm(G) = n− 1.

Although there are many interesting theoretical results on monophonic
convexity, few results on its algorithmic aspects are known. For chordal
graphs, it is known that m(G) and hm(G) can be computed in polynomial
time, since in such graphs every nonsimplicial vertex lies on a induced path
between two simplicial vertices [5].

Besides the monophonic convexity, other types of path convexities are stud-
ied, such as the geodesic convexity, the coarsest convexity, the triangle-path

convexity and the total convexity. See [2,5,8] for details. In particular, some
works have investigated algoritmic aspects of the geodesic convexity. The
parameters cg(G), g(G) and hg(G) are defined by simply replacing “induced
paths” by “shortest paths” in the definitions of the corresponding concepts
cm(G), m(G) and hm(G). Computing any of these parameters is NP-complete
for general graphs [3,4,6], while polynomial-time algorithms are known for
computing hg(G) for unit interval graphs [3] and for finding the three param-
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eters for cographs [3,4]. We note that cm(G), m(G) and hm(G) can also be
computed in polynomial time for cographs, because for distance-hereditary
graphs the geodesic and monophonic convexities are equivalent, and cographs
form a subclass of distance-hereditary graphs.

This work is organized as follows. In Section 2, we present a characteriza-
tion for m-convex sets that leads to a polynomial-time recognition algorithm,
and prove that deciding cm(G) ≥ k is NP-complete. In Section 3, the main
result is showing that testing whether a set is monophonic is NP-complete,
and deciding m(G) ≤ k is NP-hard. (No polynomial-time verifiable certificate
is known for this problem). In Section 4 we show a polynomial-time algorithm
for computing the m-convex hull of a subset; as a corollary, testing whether a
subset is an m-hull set can be done in polynomial time. Still in Section 4, we
prove that deciding hm(G) ≤ k is NP-complete. Finally, in Section 5 we show
that computing cm(G), m(G) and hm(G) can be done in polynomial time for
cographs.

2 M-convex sets

We start this section by presenting a characterization for m-convex sets.

Theorem 2.1 Let G be a graph. A subset X ⊆ V (G) is m-convex if and only

for every pair of nonadjacent vertices u, v ∈ X and every connected component

C of G−X it holds that V (C) ∩NX(u) = Ø or V (C) ∩NX(v) = Ø.

Proof. Assume that X is m-convex. The existence of a pair of nonadjacent
vertices u, v ∈ X and a connected component C of G − X containing a pair
u′, v′ such that u′ ∈ NX(u) and v′ ∈ NX(v) implies the existence of a sequence
of vertices w0 = u, w1 = u′, w2, . . . , wk−1, wk = v′, wk+1 = v, with k ≥ 1, such
that: (i) wi /∈ X, 1 ≤ i ≤ k; (ii) either u′ = v′ or (wi, wi+1) ∈ E(G − X),
1 ≤ i ≤ k. Hence, there exists an induced path linking u and v and containing
at least one vertex outside X, a contradiction.

Assume now that X is not m-convex. Let w0 = u, w1, . . . , wk, wk+1 = v
be an induced path linking a pair of vertices u, v ∈ X such that k ≥ 1 and
wi /∈ X for some i ∈ {1, . . . , k}. Let j be an index such that wj−1 ∈ X
and wj, wj+1, . . . , wi ∈ X. (Such an index j exists, since u′ ∈ X). Analo-
gously, let ` be an index such that wi, wi+1, . . . , w` ∈ X and w`+1 ∈ X. This
implies that wj−1, w`+1 is a pair of nonadjacent vertices in X and there is
a connected component C of G − X such that V (C) ∩ NX(wj−1) 6= Ø and
V (C) ∩NX(w`+1) 6= Ø. 2

The previous theorem implies the following result:



Theorem 2.2 Let G be a graph. Deciding whether a subset X ⊆ V (G) is

m-convex can be done in polynomial time.

Proof. The number of pairs of nonadjacent vertices in X is in the worst case
O(|X|2). Computing the connected components of G − X can be done in
O(n + m) time, and in the worst case we have O(n) such components. For
each pair u, v of nonadjacent vertices in X and each component C of G−X,
checking whether V (C) ∩ NX(u) = Ø or V (C) ∩ NX(v) = Ø can be done in
O(n + m) time. The overall complexity is thus O((n + m)n|X|2).

If V (C)∩NX(u) 6= Ø and V (C)∩NX(v) 6= Ø for some triple u, v, C (that
is, X is not m-convex), a “no-certificate” (an induced path linking u and v in
C) can be constructed in additional linear time. 2

To conclude this section, we prove that deciding cm(G) ≥ k is NP-complete.

Theorem 2.3 Let G be a graph and k a positive integer such that k < |V (G)|.
Deciding whether cm(G) ≥ k is NP-complete.

Proof. The problem is in NP because testing whether a subset X ⊆ V (G)
with |V (G)| > |X| ≥ k is m-convex can be done in polynomial time by
Theorem 2.1.

The hardness proof is a reduction from the clique problem: given a graph
H and a positive integer `, decide whether H contains a clique (complete
subset) of size at least `. We may assume that ` < |V (H)| − 1. From the
graph H, construct G as follows. Define V (G) = V (H) ∪ {u, v}, where u and
v are new vertices, and E(G) = E(H) ∪ {(u, x), (v, x) | x ∈ V (H)}. Also, set
k = ` + 1.

If X ⊆ V (H) is a clique with size at least `, then Y = X ∪ {u} is clearly
an m-convex subset of G with size at least `+1. Conversely, let Y be a proper
m-convex subset of G with size at least ` + 1. Observe that Y cannot contain
both u and v, for otherwise Y = V (G). This implies that Y cannot contain
two nonadjacent vertices w1 and w2, for otherwise u and v would necessarily
belong to Y . Hence, Y \{u, v} is a clique of size at least ` in H. 2

3 Monophonic sets

Before presenting the main result of this section, we need some preliminary
propositions.

Lemma 3.1 Let u, v, w be three distinct vertices in a graph G. Deciding

whether there is an induced path from u to v passing through w is NP-complete.



The hardness proof of Lemma 3.1 may be done via a reduction from the
following NP-complete problem [1]: given two distinct nonadjacent vertices x

and y of a graph H, decide whether there is an induced cycle in H passing
through x and y. Another way to prove this lemma is to use a parameterized
version of the above problem given in [7].

Three important consequences are implied by Lemma 3.1:

Lemma 3.2 Let u, v, w be three distinct vertices in a graph G. Deciding

whether w ∈ J [u, v] is NP-complete.

Lemma 3.3 Let X be a subset of vertices of a graph G, and let u ∈ V (G)\X.

Deciding whether u ∈ J [X] is NP-complete.

Lemma 3.4 Let X, Y be vertex subsets of a graph G. Deciding whether

Y ⊆ J [X] is NP-complete.

Hence computing the monophonic interval is computationally hard. The
main result of this section follows from the previous lemmas:

Theorem 3.5 Let Z be a subset of vertices of a connected graph H. Deciding

whether Z is a monophonic set of H is NP-complete.

Proof. The hardness proof is a reduction from the problem stated in Lemma 3.4:
define H by adding to G two new vertices a, b which are adjacent to all the
vertices in V (G)\Y , and set Z = X ∪ {a, b}. Due to the lack of space, the
remainder of the proof is omitted. 2

The last result of this section is the NP-hardness of deciding m(G) ≤ k.

Theorem 3.6 Let G be a graph and k a positive integer. Deciding whether

m(G) ≤ k is NP-hard.

4 M-hull sets

Although computing the monophonic closure is hard, as we have seen in the
previous section, now we show that computing the m-convex hull of a given
subset is polynomial-time solvable.

Theorem 4.1 Let G be a graph and X ⊆ V (G). Computing Jh[X] can be

done in polynomial time.

Proof. By Theorem 2.1, the m-convexity test for X takes polynomial time.
In the affirmative case, Jh[X] = X. Otherwise, the test returns an induced
path P linking a pair of vertices of X such that V (P ) contains a non-empty
subset S satisfying S ⊂ X. Set X ← X ∪ S and repeat the above procedure.



At most O(n) iterations are needed to complete the computation of Jh[X]. 2

An important corollary of the previous theorem is:

Corollary 4.2 Let X be a subset of vertices of a graph G. Deciding whether

X is an m-hull set can be done in polynomial time.

We can relate the computation of the m-convex hull to the parameter
cm(G):

Lemma 4.3 Let G be a graph and k ≥ 1 an integer. Then cm(G) < k if and

only if Jh[S] = V (G) for every S  V (G) with k vertices.

The above lemma implies that, for a fixed k, deciding whether cm(G) ≥ k

can be done in polynomial time.

We conclude this section by making the following observation:

Corollary 4.4 Let G be a connected graph and k a positive integer. Deciding

whether hm(G) ≤ k is in NP.
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Abstract

A clique-colouring of a graph G is a colouring of the vertices of G so that no
maximal clique of size at least two is monochromatic. The clique-hypergraph, H(G),
of a graph G has V (G) as its set of vertices and the maximal cliques of G as its
hyperedges. A vertex-colouring of H(G) is a clique-colouring of G. Determining the
clique-chromatic number, the least number for which a graph G admits a clique-
colouring, is known to be NP -hard. We establish that the clique-chromatic number
for powers of cycles is equal to two, except for odd cycles of size at least five,
that need three colours. For odd-seq circulant graphs, we show that their clique-
chromatic number is at most four, and determine the cases when it is equal to
two.
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1 Introduction

A hypergraph H is a pair (V, E) where V is a finite set of vertices and E is a
family of non-empty subsets of V called hyperedges. A k-colouring of H is a
mapping φ : V → {1, 2, . . . , k} such that for each S ∈ E , with |S| ≥ 2, there
exist u, v ∈ S with φ(u) 6= φ(v), that is, there is no monochromatic hyperedge
of size at least two. The chromatic number χ(H) of H is the smallest k for
which H admits a k-colouring.

Let G be an undirected simple graph with vertex set V (G) and edge set
E(G). A clique is a set of pairwise adjacent vertices of G. The clique number
of a graph G, ω(G), is the greatest integer k for which there exists a clique
Q with |Q| = k. A maximal clique of G is a clique not properly contained in
any other clique.

Given a graph G, we define the clique-hypergraph H(G) of G as the hy-
pergraph whose vertices are the vertices of G, and whose hyperedges are the
maximal cliques of G. A k-colouring of H(G) is also called a k-clique-colouring
of G, and the chromatic number χ(H(G)) of H(G) is the clique-chromatic
number of G. If χ(H(G)) = k, then G is k-clique-chromatic. Note that if
ω(G) = 2, then H(G) = G, which implies χ(H(G)) = χ(G).

The clique-hypergraph colouring problem was posed by Duffus et al. [6].
Kratochvil and Tuza [9] have proved that determining the bicolourability of
clique-hypergraphs of perfect graphs is NP -hard, but solvable in polynomial
time for planar graphs. Additionally, the chromatic number of triangle-free
graphs is known to be unbounded [12], and so it is their clique-chromatic
number. On the other hand, Bacsó et al. [1] proved that almost all perfect
graphs are 3-clique-colourable. Other works considering the clique-hypergraph
colouring problem in classes of graphs can be found in the literature [5,7].

We study the clique-hypergraph colouring problem on circulant graphs,
that are graphs whose adjacency matrix is circulant. This class of graphs has
several applications in combinatorics and linear algebra, having been exten-
sively studied over the years [4,11,13]. There are different characterizations of
these graphs. For instance, circulant graphs are a particular case of Cayley
graphs. We postpone the definition used in this work to the following section.

Determining the clique number and the chromatic number of circulant
graphs in general is an NP -hard problem [4]. Here, we study two subclasses
of circulant graphs. Motivated by recent works in powers of certain classes of
graphs [2,3], the first class considered is powers of cycles. We prove that its
clique-chromatic number is equal to two, except for Cn, n odd and n ≥ 5, that
needs three colours. The second class considered is odd-seq circulant graphs.



For this class, we show that its clique-chromatic number is at most four, and
determine the cases when it is equal to two. Also, we verify similar bounds
for the chromatic number of these graphs.

2 Preliminaries

Let d1, . . . , dk be a (nonempty) sequence of positive integers satisfying d1 ≤
· · · ≤ dk ≤ bn/2c. A circulant graph Cn(d1, . . . , dk) is a simple graph with
V (G) = {v0, . . . , vn−1} and E(G) = Ed1 ∪ · · ·∪Edk , with {vi, vj} ∈ Edl if, and
only if, dl = (j − i) mod n. If e ∈ Edi , then edge e has reach di. Moreover, if
the reach of e is even (odd), then e is called an even (odd) edge. An important
property of circulant graphs [10] is stated next.

Lemma 2.1 Let G = Cn(d1, . . . , dk), di ≤ bn/2c. Then, for each di, the
induced subgraph Cn(di) is comprised by gcd(n, di) connected components, each
one being a cycle of length n/ gcd(n, di), 2

Let G be a circulant graph and Q be a clique of G. If E(G[Q]) is comprised
by edges of same reach, Q is called a homogeneous clique; otherwise it is called
non-homogeneous. Corollary 2.2 is a consequence of Lemma 2.1.

Corollary 2.2 Let G = Cn(d1, . . . , dk), di ≤ bn/2c, and Q be a maximal
homogeneous clique of G. Then, |Q| ≤ 3. Moreover, |Q| = 3 if, and only if,
there exists some di such that n/ gcd(n, di) = 3. In addition, di is unique and
di = n/3. 2

3 Powers of cycles

A circulant graph G = Cn(d1, . . . , dk) is a power of cycles when d1 = 1,
di = di−1 + 1, dk < bn/2c, and it is denoted Ck

n. We show that the clique-
chromatic number of Ck

n is equal to two, except for odd cycles with n ≥ 5.
Note that cycles Cn, i.e., powers of cycles with k = 1, have χ(H(Cn)) = 3 if n
is odd and n ≥ 5; and χ(H(Cn)) = 2 otherwise.

Let Q be a clique of Ck
n. If every vertex vi ∈ Q has even (odd) index, then

Q is an even (odd) clique. The next two lemmas determine the existence of
maximal cliques in a power of cycles that are even or odd.

Lemma 3.1 Let G = Ck
n, k ≥ 2, n odd, be a power of cycles. Then, there

does not exist a maximal clique in G that is even or odd.



Lemma 3.2 Let G = Ck
n, k ≥ 2, n even, be a power of cycles. Graph G has a

maximal clique that is even or odd if, and only if, k is even and k = n
(

i
2i+1

)

,
i ≥ 1, integer. 2

Theorem 3.3 Let G = Ck
n, k ≥ 2, be a power of cycles. Then, χ(H(G)) = 2.

Sketch of the proof: We consider two cases and in each case we construct
π, a 2-clique colouring for G.

If n is even with k 6= n
(

i
2i+1

)

, or n is odd, then π(vi) := i mod 2. By
Lemma 3.1 and by Lemma 3.2, we conclude that there are no maximal clique
in G that is even or odd. Therefore, each maximal clique of G has at least
one vertex of even index and one vertex of odd index.

If n is even and k = n
(

i
2i+1

)

, then π is defined as: π(vi) = 0, if 0 ≤ i ≤
bn/3c − 1; π(vi) = 1, if bn/3c ≤ i ≤ 2bn/3c − 1; and π(vi) = i mod 2, if
2bn/3c ≤ i ≤ n−1. In this case we prove that each maximal clique comprised
by k +1 consecutive vertices (modulo n) are not monochromatic. Afterwards,
we consider the maximal cliques comprised by non-consecutive vertices and
conclude that these ones are also non-monochromatic. 2

4 Odd-Seq Circulant graphs

A circulant graph Cn(d1, . . . , dk) is an odd-seq circulant graph when each di,
1 ≤ di ≤ dk, is odd. We analyse two cases depending on the parity of n.

Let G = Cn(d1, . . . , dk) be an odd-seq circulant graph with n even. These
graphs were shown bipartite by Heuberger [8]. Therefore, ω(G) is 2 and each
maximal clique in G is maximum. We conclude that there exists a 2-clique
colouring for odd-seq circulant graphs with n even.

Consider now G = Cn(d1, . . . , dk), an odd-seq circulant graph with n odd.
We analyse some cases, according to the clique number of G. Lemma 4.1
establishes conditions for which a graph G has ω(G) equal to 2 or 3. The next
result is a structural property of odd-seq circulant graphs.

Property 4.1 Let G = Cn(d1, . . . , dk) be an odd-seq circulant graph with n
odd. Then, each cycle of size 3 has at least one vertex vi, with 0 ≤ i ≤ bn/2c,
and at least one vertex vj, with dn/2e ≤ j ≤ n − 1. 2

Lemma 4.1 Let G = Cn(d1, . . . , dk) be an odd-seq circulant graph with n
odd. Then, ω(G) = 3 if, and only if, there exist di, dj, dl ∈ {d1, . . . , dk}, not
necessarily distinct, such that di + dj + dl = n. Otherwise, ω(G) = 2.

Proof. Let V (G) = {v0, . . . , vn−1}. First, we prove that every clique of G has
size at most 3. Suppose that Q is a clique in G and that |Q| = 4. Adjust



notation so that v0 ∈ Q. Let vi, vj, vk be the other vertices of Q. Assume
that i < j < k. Because set Q is a clique, (v0, vi, vj, vk, v0) is a cycle (not
induced) in G. Since every edge of G is odd, we conclude that i and k are
odd and j is even. However, for vl adjacent to v0, if l is odd, then l ≤ bn/2c;
otherwise l ≥ dn/2e. Therefore, we conclude that i, k ≤ bn/2c and j ≥ dn/2e,
a contradiction, since i < j < k.

Now, assume that Q = {vi, vj, vl} is a clique in G. Adjust notation so that
0 ≤ i < j < l ≤ n − 1. By Property 4.1, we can assume that i ≤ bn/2c and
l ≥ dn/2e. Let di, dj and dl be the reaches of vivj, vjvl, and vlvi, respectively.
Thus, di = j − i, dj = l − j and dl = n − l + i. Therefore, di + dj + dl = n.

Consider now that there exist di, dj, dl ∈ {di, . . . , dk} such that di + dj +
dl = n. Edges v0vdi

, vdi
vdi+dj

and vdi+dj
vdi+dj+dl

belong to E(G). Since
di + dj + dl = n, we have that vdi+dj+dl

= v0. Therefore, (v0, vdi
, vdi+dj

, v0)
is a cycle and {v0, vdi

, vdi+dj
} is a clique in G. We remark that, whenever

di = dj = dl, we have a homogeneous clique in G.

In order to conclude the proof note that we have already proved that
ω(G) ≤ 3. However, if ω(G) 6= 3, then ω(G) = 2 because E(G) 6= ∅. 2

We proceed considering first odd-seq circulant graphs G with ω(G) = 3
for which every maximal clique is also maximum. Afterwards, we assume
that G has maximal cliques of size two and establish bounds to the clique-
chromatic number of G in this case. We close this section with Corollary 4.4,
that extends the bounds of Theorem 4.3 to the chromatic number of odd-seq
circulant graphs.

Theorem 4.2 Let G = Cn(d1, . . . , dk) be an odd-seq circulant graph with n
odd. If every maximal clique of G has size three, then χ(H(G)) = 2. 2

Theorem 4.3 Let G = Cn(d1, . . . , dk) be an odd-seq circulant graph with n
odd. If G has maximal cliques of size two, then 3 ≤ χ(H(G)) ≤ 4.

Proof. We start by showing that χ(H(G)) ≤ 4. Consider the following 4-
colour assignment π to vertices of G: π(vi) = i mod 2, if 0 ≤ i ≤ bn/2c; and
π(vi) = 2+ (i mod 2), if dn/2e ≤ i ≤ n− 1. The validity of π follows from the
fact that vertices of same colour are non-adjacent.

It remains to show that χ(H(G)) ≥ 3. Let Q = {u, v} be a maximal clique.
By definition of odd-seq circulant graphs, edge uv belongs to an odd cycle C.
By symmetry of circulant graphs, uv can be any edge of C. By maximality of
Q, |C| > 3. Therefore, in order to construct a clique-colouring for this cycle
at least three colours are needed. 2



Corollary 4.4 If G is an odd-seq circulant graph with n odd, then 3 ≤ χ(G) ≤
4. 2

It is important to notice that the bounds obtained in Theorem 4.3 are
tight. For instance, G = C21(1, 5, 9) has χ(H(G)) = 4 and G = C21(1, 3, 7)
has χ(H(G)) = 3.
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cliques of graphs, SIAM J. Discrete Math. 17 (2004), pp. 361–376.
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Facultad de Ciencias Exactas, Ingenieŕıa y Agrimensura.
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Abstract

Ideal matrices are precisely those matrices M where the set covering polyhedron
Q∗(M) equals the polyhedron Q(M) = {x : Mx ≥ 1, x ≥ 0}. In a previous work
(2006) we defined a nonidealness index equivalent to max{t : Q(M) ⊂ tQ∗(M)}.
Given an arbitrary matrix M the nonideal index is NP-hard to compute and for
most matrices it remains unknown.

A well known family of minimally nonideal matrices is the one of the incidence
matrices of chordless odd cycles. A natural generalization of them is given by
circulant matrices. Circulant ideal matrices have been completely identified by
Cornuéjols and Novick (1994). In this work we obtain a bound for the nonidealness
index of circulant matrices and determine it for some particular cases.

Keywords: set covering polyhedron, circulant matrix, nonidealness index.



1 Introduction

Given a n × m 0, 1 matrix M without domination rows, we denote by Q(M)
the polyhedron

Q(M) = {x ∈ R
n : Mx ≥ 1, x ≥ 0},

where 1 ∈ R
n is the vector with all entries at value one. If conv(X) denotes

the convex hull of X, the set covering polyhedron of M is defined as

Q∗(M) = conv(Q(M) ∩ Z
n).

A matrix M is ideal if Q∗(M) = Q(M).

Contracting j ∈ {1, . . . , n} means that column j is removed from M as
well as the resulting dominating rows and hence, corresponds to setting xj = 0
in the constraints Mx ≥ 1. Deleting j ∈ {1, . . . , n} means that column j
is removed from M as well as all the rows with a 1 in column j and this
corresponds to setting xj = 1 in the constraints Mx ≥ 1. We denote by
M/j and M \ j the matrices obtained by contraction and deletion of column j
respectively. Then, given M and V1, V2 ⊂ {1, . . . , n} disjoint, we will say that
M/V1 \ V2 is a minor of M . If a matrix is ideal then so are all its minors [3].

Given a m× n matrix M and a column j ∈ {1, . . . , n}, let us consider the
matrix obtained from M by duplication of j, as the matrix M ∗ j having n+1
columns, whose rows are constructed as follows: for every row m of M such
that mj = 0 there is a row m′ of M ∗ j defined as: m′

i = mi for all i = 1, . . . , n
and m′

n+1 = 0, and for every row m of M such that mj = 1 there are two
rows m′ and m′′ of M ∗ j defined as: m′

i = m′′
i = mi for all i = 1, . . . , n when

i 6= j, m′
j = 1, m′

n+1 = 0 and m′′
j = 0, m′′

n+1 = 1. A matrix obtained from
M by a sequence of deletions and duplications is a parallelization of M , and
it is easy to check that the order in which these operations are performed is
irrelevant. Then, parallelizations of M can be associated with vectors w ∈ Z

n
+

in the following way: Mw is the matrix obtained by deletion of columns i with
wi = 0 and duplicating wi − 1 times any column with wi ≥ 1.

A cover of M is a 0, 1 n−dimensional vector in Q(M) and the covering
number of M is

τ(M) = min{1x : x cover of M},

1 Partially supported by CONICET grant PIP 5810
2 Email: garua@fceia.unr.edu.ar
3 Email: sbianchi@fceia.unr.edu.ar



and clearly τ(M) = min {1x : x ∈ Q∗(M)}. We denote by τf (M) the frac-
tional covering number of M , defined by

τf (M) = min {1x : x ∈ Q (M)} = min {1x : Mx ≥ 1} .

For any 0, 1 matrix M we have that Q∗(M) ⊂ Q(M) and trivially τf (M) ≤
τ(M). It is known (see [3]) that a matrix M is ideal if and only if τf (M

w) =
τ(Mw) for all w ∈ Z

n
+.

The blocker of M is the matrix denoted by b(M) whose rows are the
minimal covers of M . Also (see [3]), b(b(M)) = M , b(M/i) = b(M) \ i and
b(M \ i) = b(M)/i and, in [8], Lehman proved that a matrix M is ideal if and
only if its blocker is.

A matching in a matrix M is a 0, 1 vector y such that yM ≤ 1, and the
matching number ν(M) is

ν(M) = max
{

y1 : yM ≤ 1, y ∈ Z
m
+

}

.

Defining νf (M), the fractional matching number of M as

νf (M) = max
{

y1 : yM ≤ 1, y ∈ R
m
+

}

,

by linear programming duality we have τf (M) = νf (M).

Therefore, given w ∈ Z
n
+ we have that 0 <

νf (Mw)

τ(Mw)
≤ 1. It follows that M

is ideal if and only if
νf (Mw)

τ(Mw)
= 1 for all w ∈ Z

n
+. Equivalently, M is not ideal

if and only if there exists some w ∈ Z
n
+ for which

νf (Mw)

τ(Mw)
< 1. We introduced

in [2] the nonidealness index of a matrix M , denoted by ini(M), as follows:

ini(M) = inf

{

νf (M
w)

τ(Mw)
for all w ∈ Z

n
+, w 6= 0

}

.

This nonidealness index has equivalent definitions

Theorem 1.1 ([2]) For any matrix M ,

ini(M) = max{r ∈ R : Q(M) ⊂ rQ∗(M)} = min{xy : x ∈ Q(M), y ∈ Q(b(M))}.

In addition, the nonidealness index has the following properties:

Theorem 1.2 ([2]) For any matrix M ,

(i) ini(M) = ini(b(M)).

(ii) For every minor M ′ of M , ini(M) ≤ ini(M ′).

(iii) ini(M) ≤ n
τ(M)τ(b(M))

.

A matrix M is minimally nonideal (mni, for short), if it is not ideal but
all its proper minors are. A starting point of the study of mni matrices is



Lehman’s work (see [8] and [9]). In particular, in [8], Lehman proved that the
incidence matrices of chordless odd cycles C2

n and their blockers are mni.

A natural generalization of this family of matrices is given by circulant
matrices, denoted by Ck

n and defined as matrices having n columns and whose
rows are the incidence vectors of {i, i + 1, . . . , i + k − 1} for i ∈ {1, · · · , n},
where additions are taken modulo n. Actually, it is known that:

Theorem 1.3 ([4], [8]) Let k and n be integer numbers such that 2 ≤ k ≤
n − 2, then

i) the only ideal circulant matrices are C3
6 , C3

9 , C4
8 and C2

n, for even n ≥ 4.

ii) the only mni circulant matrices are C2
n, for odd n ≥ 3 and

C3
5 , C

3
8 , C

3
11, C

3
14, C

3
17, C

4
7 , C

4
11, C

5
9 , C

6
11, C

7
13.

As the equivalent definitions of the nonidealness index given in Theorem
1.1, involve the polyhedral structure of Q(M) we will take into account the
following result that completely describes the fractional extreme points of
Q(M) when M is any circulant matrix.

Theorem 1.4 ([1]) Let x̄ ∈ Q(Ck
n) and Nx̄ = {i ∈ {1, · · · , n} : xi = 0}.

The point x̄ is a fractional extreme point of Q(Ck
n) if and only if Ck

n/Nx̄ is
isomorphic to Ck′

n′ , where n′ y k′ are relative prime numbers. Moreover, x̄ is

x̄i =







1
k′

i /∈ Nx̄,

0 i ∈ Nx̄.

2 The nonidealness index of circulant matrices

Let M be a matrix having Mi i = 1, . . . , s as minors. Combining (ii) and (iii)
of Theorem 1.2, we obtain

ini(M) ≤ min

{

ni

τ(Mi)τ(b(Mi))
, i = 1, . . . , s

}

,(1)

where ni is the number of columns of matrix Mi for i = 1 . . . , s.

A natural question is for which nonideal matrices we obtain equality?

When a matrix M is mni it is known [3], that Q(M) has a unique fractional
extreme point. In addition, in the case of a mni circulant matrix Ck

n, this point
is 1

τ(b(M))
1 ∈ R

n. Then, after Theorem 1.1, it is not hard to see that

ini(Ck
n) =

n

τ(b(Ck
n))τ(Ck

n)
.



As every circulant matrix Ck
n has τ(b(M)) = k and τ(M) =

⌈

n
k

⌉

, we obtain
that the nonidealness index of a mni circulant matrix Ck

n is

ini(Ck
n) =

n

k
⌈

n
k

⌉ .

We will see that mni circulant matrices are not the only ones for which
equality in equation (1) holds.

Let Ck
n be a nonideal circulant matrix and from now on let C be the set

of nonideal circulant minors Ck′

n′ of Ck
n with n′ and k′ relative prime numbers.

Let B = b(Ck
n) and B′ = b(Ck′

n′) for Ck′

n′ ∈ C. Hence, from Theorem 1.4 and
blocking duality (see [6]),

Q∗(B) = Q(B) ∩ {x :
∑

j∈{1,...,n′}

xj ≥ τ(B′), b(B′) ∈ C}.

With the help of Theorem 1.1 we obtain that

Theorem 2.1 If B = b(Ck
n), then ini(B) = min{ini(B′) : b(B′) ∈ C}.

From the previous result and Theorem 1.2, and exploting algebraic prop-
erties of circulant matrices, we have

Theorem 2.2 Let Ck
n be a circulant matrix. Then ini(Ck

n) = min{ini(Ck′

n′) :
Ck′

n′ ∈ C}. Moreover, if the minimum in the previous equation is achieved for
Ck0

n0
, then

ini(Ck
n) = ini(Ck0

n0
) =

n0

k0d
n0

k0

e
.

Then we can ensure that for every circulant matrix equality (1) holds.
Moreover,

Theorem 2.3 Let Ck
n be a circulant matrix. If for every Ck′

n′ ∈ C is dn′

k′
e =

dn
k
e, then ini(Ck

n) = n
kdn

k
e
.

In fact,

Corollary 2.4 If k ≥
⌊

2
3
n
⌋

then, ini(Ck
n) = n

kdn
k
e
.

On the other hand, observe that when n = sk, the minor Ck′

n′ in Theorem
2.2 is a proper minor of Ck

sk.

Theorem 2.5 Let Ck
sk be a circulant matrix with s, k ≥ 3, then

ini(Ck
sk) = ini(Ck−1

(k−1)s+1).



Many polydedral aspects associated with the stable set polytopes of webs
and antiwebs have their counterpart in the set covering polyhedra associated
with circulant matrices and their blockers. As we have pointed out in [1],
some polyhedral results can be transferred from one problem to the other. In
fact, an analogous result to Theorem 2.2 has been established by Coulonges
et al. in [5] for webs and antiwebs using an imperfection index due to Gerke
and McDiarmid [7] which can be viewed as the symmetric concept of the
nonidealness index used in this work.

The connection between properties of nonideal and imperfect matrices is
an interesting task to study and these results, in particular, offer a promising
line for further research.
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Abstract

We consider the clique-coloring problem, that is, coloring the vertices of a given
graph such that no maximal clique of size at least two is monocolored. More specif-
ically, we investigate the problem of giving a class of graphs, to determine if there
exists a constant C such that every graph in this class is C-clique-colorable. We
consider the classes of UE and UEH graphs.

A graph G is called an UE graph if it is the edge intersection graph of a family of
paths in a tree. If this family satisfies the Helly Property we say that G is an UEH
graph.

We show that every UEH graph is 3-clique-colorable. Moreover our proof is
constructive and provides a polynomial-time algorithm. We also describe, for each
k ≥ 2, an UE graph that is not k-clique-colorable. The UE graphs form one of the
few known classes for which the clique-chromatic number is unbounded.
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UEH graphs.
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1 Introduction

Let G = (V, E) be a graph. A clique of G is a maximal complete induced
subgraph of G. We identify a clique with its vertex set. We denote by C the
set of all cliques of a given graph. Kn denotes the complete graph with n

vertices, Cn is the chordless cycle of length n, and Sn is a star with n spokes,
that is a tree with one universal vertex of degree n and n leaves.

A k-clique-coloring of a graph G is a function c : V (G) → {1, ..., k}, such
that for every clique C of G with at least 2 vertices, there are u, v ∈ C such
that c(u) 6= c(v). We say that G is k-clique-colorable if such a function exists.
The clique-chromatic number of G is the smallest k for which G is k-clique-
colorable. As usual, a clique-coloring is a k-clique-coloring for some k.

Clique-coloring has some similarities with usual coloring (that is coloring
the vertices of a graph such that two adjacent vertices get different colors),
for example, any coloring is also a clique-coloring, and optimal colorings and
clique-colorings coincide in the case of triangle-free graphs. But there are
also essential differences, for example, a clique-coloring of a graph may not
be a clique-coloring for its subgraphs. Subgraphs may have a greater clique-
chromatic number than the original graph. Another difference is that even a
2-clique-colorable graph can contain an arbitrarily large clique. Actually, the
2-clique-coloring problem is NP-Complete. This result holds even for perfect
graphs [4] which are however known for their good algorithmic properties.

Since the chromatic number of triangle-free graphs is known to be un-
bounded [2] we get that this is also the case for the clique-chromatic number.
On the other hand, it is conjectured that there exist a constant C such that
every perfect graph is C-clique-colorable (see [1]). Although this conjecture
remains open so far, several subclasses have positive answer and mostly of the
obtained results prove that for special classes of perfect graphs C is equal to
either 2 or 3.

It is not hard to find a bound for the well known class of chordal graphs,
that is, graphs that do not contain Cn, n ≥ 4 as subgraphs. In fact, every
chordal graph is 2-clique colorable.

We are interested in graph classes defined as the intersection graphs of a
family of paths in a tree. More specifically, the intersection graph on edges

of a family of paths P (not necessarily containing all paths) in a tree is the
graph G with a vertex for each path in P and an edge between two different
vertices if and only if the correspondent paths have a common edge. A graph
G is an UE graph if there exists a family of paths P in a tree T such that
G is the intersection graph on edges of P . A such pair (P , T ) is called an



UE representation of G. These graphs were introduced as EPT graphs in [3].
Figure 1 shows a graph G and two different UE representations of it.
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Fig. 1. An UE graph G and two of its UE representations.

A family of sets satisfies the Helly property when every one of its subfam-
ilies whose members pairwise intersect has a common element. A graph G is
an UEH graph if it has an UE representation (P , T ) such that P satisfies the
Helly property. In this case, we say that (P , T ) is an UEH representation of
G. The graph G in Figure 1 is an UEH graph. The Hajós graph (graph Ge in
[5]) is an UE graph which is not UEH.

The UE graphs model conflict of message routes in communication net-
works. A x-y-path corresponds to a message route from x to y. We say that
two paths are conflicting when they use some same link, i.e., when they have
a common edge. The intersection graph of this family of paths with the pro-
viso that the paths are given by its edge sets, models this conflict situation as
proposed by Golumbic and Jamison in [3] where the class of UE graphs was
by the first time considered.

The graph class UV is defined when we consider that the paths in a tree
are given by its vertex sets instead of edge sets. Monma and Wei in [5] present
an extensive and comparative study between all these classes of intersection
graphs of paths in a tree. Since every UV graph is chordal, UV graphs are
2-clique-colorable as well.

In Section 2 we show that every UEH graph is 3-clique-colorable. In Sec-
tion 3 we present a family of UE graphs containing, for all k ≥ 2, a graph that
is not k-clique-colorable.

2 Clique-coloring UEH graphs

UEH graphs can be characterized in terms of a very special UE representation,
as shown in Theorem 2.1, where Cv denotes the set of cliques in C containing
the particular vertex v and T (Cv) denotes the subgraph of T whose edges



correspond to Cv. A tree satisfying Theorem 2.1 is a clique tree of G. Tree T2

in Figure 1 is a clique tree of G.

Theorem 2.1 ([5]) A graph G = (V, E) is UEH if and only if there exists a

tree T with edge set C, such that for every v ∈ V , T (Cv) is a path in T .

A clique C is a clique separator of a connected graph G if G \ C is not
connected. Monma and Wei characterized the UEH graphs that do not have
clique separators. More specifically, these graphs are the ones having an UEH
representation (P , T ) in which T is a star [5]. The theorem below implies that
the clique-coloring problem is completely solved for this class.

Theorem 2.2 If G is a connected UEH graph without clique separators, then

G is 3-clique-colorable. Moreover G is 3-clique-chromatic if and only if

G = Ck, for some odd k, k > 3.

In a clique tree, every edge not incident to a leaf corresponds to a clique
separator of G. Moreover, assign colors to paths of an UEH representation
given by a clique tree is the same as assign colors to vertices in G. For each
edge of the clique tree, there are two paths having different colors sharing this
edge if and only if the corresponding coloring in G is a clique-coloring. Based
on these facts we have that the clique-chromatic number is bounded for UEH
graphs.

Theorem 2.3 If G is an UEH graph then G is 3-clique-colorable.

Proof. Whithout loss of generality, assume that G is connected. Let (P , T ) be
an UEH representation of G where T is a clique tree. The proof is by induction
on the number of clique separators of G. If G has no clique separator, then T

is a star and, by Theorem 2.2 we have that G is 3-clique-colorable.

Now, suppose that T is not a star. Then there exists an edge e = (v, w) in
T such that all neighbors of w, except v, are leaves. Consider T ′ and T ′′ the
subtrees of T such that T ′ is induced by v, w and all vertices in T that are
not neighbors of w, and T ′′ is the star induced by w and its neighbors in T .

Let P ′ and P ′′ be the subsets of P such that P is in P ′ if and only if P

has an edge of T ′, and P is in P ′′ if and only if P has an edge of T ′′. Let G′

and G′′ be the intersection graphs on edges of P ′ and P ′′, respectively.

By the induction hypothesis, G′ is 3-clique-colorable. Take the partial
coloring of P that corresponds to the given assignment of colors in {1, 2, 3} to
the vertices of G′. The paths in P ′′ that have the edge e are already colored.
To extend this to the whole set of paths, we first classify the edges in T ′′ − e.

An edge is type 2 when there exist two paths in P ′′, both containing this



edge, having different colors; an edge is type 1 if all the colored paths in P ′′

that contain this edge have the same color and there exists at least one such
path; finally when none of the paths containing an edge is colored, we say
that it is type 0. Set Ai, i ∈ {0, 1, 2}, as the set of edges of type i. Since each
edge in T corresponds to a clique of G, when an edge a ∈ A1 there exists a
non-colored path P ∈ P ′′ containing a. This property is an invariant to the
procedure below. To assign colors to the paths in P ′′ that are not yet colored
we proceed as follows:

Step 1: While A1 6= ∅ choose an edge a ∈ A1 and a non-colored path Pa in
P ′′ that contains a. Suppose, without loss of generality, that all colored paths
that contains a are in color 1. If Pa consists only of the edge a, then assign
color 2 to Pa and move a to A2. Otherwise, let Pa = (a, b). If b is type 2,
proceed as in the previous case. If b is type 0, then proceed as in the previous
case but also move b to A1. Now, assume b is type 1. If all colored paths in P
that contains b are in color 1, then assign color 2 to Pa, else assign the missing
color to Pa and, in any case move both a and b to A2.

Step 2: If A0 6= ∅, choose a non-colored path P that contains a type 0
edge. Assign color 1 to P , move all type 0 edges in P to A1, and go back to
Step 1.

Step 3: If A0 = ∅, then assign color 1 to every non-colored path that still
remains.

Since A1 = ∅ when Step 3 is reached, for each edge in T ′′, there exist
two paths in different colors that contain this edge. Therefore, G is 3-clique-
colorable. 2

The proof of Theorem 2.3 leads to a polynomial-time algorithm to obtain a
3-clique-coloring of an UEH graph. This greedy algorithm may use 3 colors in
graphs that are in actual fact 2-clique-chromatic. We observe also that there
exist 3-clique-chromatic UEH graphs, whose subgraphs G′ and G′′ as specified
in the proof of the theorem are both 2-clique-chromatic.

3 On the clique-coloring problem for UE graphs

For each n, we consider the very special UE graph Gn defined by the UE
representation (Pn, Sn), where Sn is a star and Pn is the set of all possible
two-edges paths of Sn.

In this way Gn has exactly
(

n

2

)

vertices, each one labeled by an unordered
pair ab ⊆ {1, . . . , n}. Notice that Gn has

(

n

3

)

cliques that are triangles, thus
each k-clique-coloring of Gn corresponds to an edge coloring of the complete



graph Kn in such a way that every triangle of Kn is not monocolored.
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Fig. 2. The UE graph G6.

Since the Ramsey number r(3, 3) = 6 we have that G6 is not 2-clique-
colorable. Now, let r(k1, k2, . . . , km) be the smallest integer n such that every
edge coloring (E1, E2, . . . , Em) of Kn contains, for some i, a complete subgraph
on ki vertices, all of whose edges are in color i. These are natural generaliza-
tions of the Ramsey numbers for which an upper bound is known [2]. When we
take n = r(3, 3, . . . , 3) for some m, we have that Gn has no m-clique-coloring.

As a consequence we have:

Theorem 3.1 There is no constant C such that all UE graphs are C-clique-

colorable.

A natural question that remains is to determine the complexity, for a given
k, of the k-clique-coloring problem for UE graphs.
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Departamento de Matemáticas, Universidad Autónoma Metropolitana, Iztapalapa,
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We disprove the following conjecture due to Vı́ctor Neumann-Lara: for every couple
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exists an infinite set of circulant tournaments for which the conjecture is valid.
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1 Introduction

The dichromatic number and the acyclic (resp. cyclic triangle free) discon-
nection were introduced as measures of the complexity of the cyclic structure
of digraphs. A large value of the dichromatic number and, oppositely, a small
value of the acyclic disconnection express a more complex cyclic structure of
a given digraph. Among other papers, see [1,3,4,5,6] for old and recent results
on the study of these parameters as well as open problems.

We define the dichromatic number of a digraph D, denoted by dc(D), as
the minimum number of colors with which one can color the vertices of D

such that each chromatic class induces an acyclic subdigraph of D (that is,
a subdigraph containing no directed cycles). On the other hand, the cyclic

triangle free (briefly, the
−→
C 3-free) disconnection of a digraph D, denoted by

−→ω 3(D), is defined to be the maximum number of colors with which one can
color the vertices of D not producing heterochromatic cyclic triangles.

In 1999, V. Neumann-Lara posed the following

Conjecture 1.1 ([5], Conjecture 5.8) For every couple of integers (r, s)
such that r ≥ s ≥ 2 there is an infinite set of circulant tournaments T such
that dc(T ) = r and −→ω 3(T ) = s.

In [3], the authors positively answer the conjecture for the special case
when r = 3 and s = 2. However, in this paper the conjecture is disproved
in general. We show that for every integer s ≥ 2 there exists a lower bound
b(s) for the dichromatic number r such that for every r < b(s) there is no a
circulant tournament T satisfying the conjecture with these parameters. We
construct an infinite set of circulant tournaments T such that dc(T ) = b(s) and
−→ω 3(T ) = s and give an upper bound B(s) for the dichromatic number r such
that for every r ≥ B(s) there exists an infinite set of circulant tournaments
for which the conjecture is valid. Some infinite sets of circulant tournaments
confirming the conjecture are given for b(s) < r < B(s). The construction of
the remaining cases in this interval is an open problem since the tools used in
the paper do not apply for them.

For the terminology on digraphs and tournaments, see [2].

2 Preliminaries

Let D = (V, A) be a digraph. For any v ∈ V (D) we denote by N+(v) and
N−(v) the out- and in-neighborhood of v in D respectively. A digraph D is
said to be acyclic if D contains no directed cycles. A subset S ⊆ V (D) is



acyclic if the induced subdigraph D [S] of D by the set S is acyclic. The
maximal cardinality of an acyclic set of vertices of D is denoted by β(D).

An r-coloring ϕ : V (D) → {1, 2, ..., r} of a digraph D is a surjective
function defined on the vertices. A subdigraph D′ of D is heterochromatic
if every pair of vertices of D′ receive different colors from ϕ. A subset S of
vertices of D that receive the same color from ϕ is called a chromatic class
and it is singular if |S| = 1. We say that a proper r-coloring ϕ of a digraph

D is
−→
C 3-free if it does not produce heterochromatic cyclic triangles.

Let D and F be digraphs and Fv a family of mutually disjoint isomor-
phic copies of F for all v ∈ V (D). The composition (or lexicographic prod-
uct) D[F ] of the digraphs D and F is defined by V (D[F ]) =

⋃

v∈V (D) V (Fv)

and A(D[F ]) =
⋃

v∈V (D) A(Fv) ∪ {(i, j) : i ∈ V (Fv), j ∈ V (Fw) and (v, w) ∈

A(D)}. It is easy to prove that the composition of digraphs is an associative
but not a commutative operation.

A tournament T is said to be tight if −→ω 3(T ) = 2. We define Fr,s = {T :
dc(T ) = r,−→ω 3 (T ) = s}.

Let Z2m+1 be the cyclic group of integers modulo 2m + 1 (m ≥ 1) and
J a nonempty subset of Z2m+1 \ {0} such that |{−i, i} ∩ J | = 1 (and there-

fore |J | = m). A circulant (or rotational) tournament
−→
C 2m+1(J) is defined by

V (
−→
C 2m+1(J)) = Z2m+1 and A(

−→
C 2m+1(J)) = {(i, j) : i, j ∈ Z2m+1 and j − i ∈ J}.

Let Im = {1, 2, ...,m}. We denote by
−→
C 2m+1 〈∅〉 and

−→
C 2n+1 〈j〉 the circulant

tournaments
−→
C 2m+1(J) where J = Im and J = (Im�{j})∪{−j} respectively.

We use the following definition taken from [5].

A digraph D is said to be −→ω 3-keen if there exists a proper
−→
C 3-free r-

coloring ϕ of D such that ϕ is optimal (that is, it uses the maximum number

of colors), there exists a unique singular chromatic class and no proper
−→
C 3-free

r-coloring of D leaves more than one such a class.

3 An infinite family of tight r-dichromatic circulant tour-
naments for all r ≥ 2

Let
−→
C n(p+1)+1 (J) be the family of circulant tournaments defined in [1], where

p = (n − 1) (t + 1)+1, n ≥ 2, t ≥ 0 and J = {1, 2, . . . , p}∪{p + 2, p + 3, . . . , 2p − t}
∪ {2p + 3, . . . , 3p − 2t} ∪ . . . ∪ {(n − 1) p + n}.

Lemma 3.1 ([1], Theorem 6) dc
(−→

C n(p+1)+1 (5p,t)
)

= n + 1.

Theorem 3.2
−→
C n(p+1)+1 (5p,t) is tight.



Corollary 3.3 For all r ≥ 2 there exists an infinite family of tight r-dichromatic
circulant tournaments.

4 Infinite families for s ≥ 3

Let H = (V, E) a finite hypergraph. A hypergraph H is t-uniform (or simply
a t-graph) if all of its edges have cardinality t. A hypergraph H is called
circulant if it has an automorphism which is a cyclic permutation of V (H).
If t ≤ m, the circulant t-graph Λm,t is defined by V (Λm,t) = Zm and E (Λm,t) =
{αj : j ∈ Zm} where αj = {j, j + 1, . . . , j + t − 1} for j ∈ Zm.

Proposition 4.1 ([6], Propositions 3.2(iii) and 3.4, Corollary 4.3) Let
T, U be circulant tournaments, T of order 2m + 1, and U a r-dichromatic

tournament. Then dc (T [U ]) ≥
⌈

r(2m+1)
m+1

⌉

. Moreover, if β (T ) = t and

T contains a isomorphic copy of Λ2m+1,t as a spanning subhypergraph, then

dc (T [U ]) =
⌈

r(2m+1)
t

⌉

.

Proposition 4.2 ([5], Proposition 3.6(i)) Let T be an ω3-keen tournament
and let U be a tournament. Then −→ω 3 (T [U ]) = −→ω 3 (T ) + −→ω 3 (U) − 1.

Proposition 4.3 ([7], Corollary 1) Consider the recurrence relation Dn =
⌈

3
2
Dn−1

⌉

(n ≥ 1, D0 = 1), then Dn =
⌊

K
(

3
2

)n⌋

(n = 1, 2, . . .) , where
K = 1.62227 05028 84767 31595 69509 82899 32411 . . .

Let s ∈ N and define
−→
C

s

3 =
−→
C

s−1

3

[−→
C 3

]

, where
−→
C

1

3 =
−→
C 3 by convention.

As a consequence of Proposition 4.2, we have the following

Corollary 4.4 Let T be a circulant tournament such that −→ω 3 (T ) = s, then
there exist s − 1 tight circulant tournaments T1, T2, . . . , Ts−1 such that T ∼=
T1 [T2 [. . . [Ts−1]]].

Theorem 4.5 Let T be a circulant tournament such that dc(T ) = r and
−→ω 3(T ) = s (2 ≤ s ≤ r) . Let b (s) = Ds−1. Then r ≥ b (s) =

⌈

3
2
Ds−2

⌉

=
⌊

K
(

3
2

)s−1
⌋

Moreover,
{−→

C
s−2

3 [α] , α ∈ F2,2

}

is an infinite set of r-dichromatic

circulant tournaments such that r = b(s) and −→ω 3

(−→
C

s−2

3 [α]
)

= s.

Note that b(s) is a lower bound for dc(T ) = r when −→ω 3(T ) = s and there
are no r-dichromatic circulant tournaments for which r < b(s).

For example, if −→ω 3 (T ) = 4, then dc (T ) ≥
⌊

K
(

3
2

)3
⌋

= 5 = b(4).



Let D be a digraph. The hypergraph H1(D) is defined by V (H1(D)) =
V (D) and E(H1(D)) = {U ⊆ V (D) : U is a maximal acyclic set}.

Lemma 4.6 Let m ≥ 2. Then H1 (
−→
C 2m+1 〈m − 1〉 ) ⊇ Λ2m+1,m−1 and

β(
−→
C 2m+1 〈m − 1〉) = m − 1.

As a consequence of Proposition 4.1 and Lemma 4.6, we have

Corollary 4.7 Let α be a r-dichromatic tournament, then dc
(−→

C 2m+1 〈m − 1〉 [α]
)

=
⌈

r(2m+1)
m−1

⌉

. Moreover, if m ≥ 3r + 1, then dc
(−→

C 2m+1 〈m − 1〉 [α]
)

= 2r + 1.

Let fi, f ′

i : N2 → N (i = 0, 1, 2) be functions defined by

f ′

0 (q, m) = q (m + 1) − 1, f0 (q, m) = q (2m + 1) − 1 (q ≥ 1, m ≥ 2) ,

f ′

1 (q, m) = qm + 1, f1 (q, m) = q (2m + 1) + 3 (q ≥ 1, m ≥ 3) ,

f ′

2 (q, m) = 2q + m, f2 (q, m) = 3q + m + 1 (q ≥ 1, 1 ≤ m ≤ 2.

We define the (infinite) digraphs Di for i = 0, 1, 2 as follows:V (Di) =
{v ∈ Z : v ≥ 3} and A (Di) = {(f ′

i (q, m) , fi (q, m))}. Let D = D0 ∪ D1 ∪ D2.

Clearly, D0, D1 and D2 are arc-disjoint and acyclic. We point out that fi, f ′

i

and Di (i = 0, 1) were defined in [6], where more details can be found.

Lemma 4.8 For each positive integer n ≥ 3, there is a directed path in D

from a vertex in S = {3, 4, 5, 7} to n.

Remark 4.9 The set of vertices of D with indegree 0 is {3, 4, 5, 7}.

Proposition 4.10 (i) F2r,s+1 =
{−→

C 2r+1 〈∅〉 [α] : α ∈ Fr,s

}

.

(ii) F2r+1,s+1 =
{−→

C 2(3r+1)+1 〈3r〉 [α] : α ∈ Fr,s

}

.

(iii) F3r,s+1 =
{−→

C 3 [α] : α ∈ F2r,s

}

.

(iv) F3r+2,s+1 =
{−→

C 3 [α] : α ∈ F2r+1,s

}

.

Let B(s) (s ≥ 2) be a positive integer such that for all r ≥ B(s) there
exists an infinite set of circulant tournaments T ∈ Fr,s. Clearly, B(2) = 2 (see
Corollary 3.3).

Proposition 4.11 B(s) ≤ 2B(s − 1) − 1 ≤ 2s−1 for all s ≥ 3.

Theorem 4.12 For the following couples of integers (r, s) there exists an in-
finite set Fr,s of circulant tournaments.

(i) 3 ≤ s ≤ 5 and all r ≥ b (s) .



(ii) s = 6 and all r ≥ 12, r 6= 13.

(iii) s = 7 and r = 18, 21 and all r ≥ 23.

(iv) s = 8 and r = 27, 32 and all r ≥ 35.

(v) s = 9 and r = 41, 48, 51 and all r ≥ 53.

(vi) s = 10 and r = 62, 72, 76, 77 and all r ≥ 80.

(vii) s = 11 and r = 93, 121 and all r ≥ 123.

We conjecture that B(s) ≤ 2b(s − 1) − 1 for all s ≥ 3.
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Abstract

We consider a track assignment problem in a train depot leading to an online
bounded coloring problem on permutation graphs or on overlap graphs. For per-
mutation graphs we study the competitiveness of a First Fit-based algorithm and
we show it matches the competitive ratio of the problem. For overlap graphs, even
the unbounded case does not admit a constant competitive ratio.
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1 Introduction

This work is motivated by the track assignment problem in a train depot.
Some aspects of this problem have been studied before [3,4,5,8].

In a train depot, trains must be stored on tracks. Furthermore, the number
of available tracks is known and fixed to k. The tracks are organized as stacks,
such that the last train to enter must be the first to leave. In order to save
upkeep costs, one wants to use as few tracks as possible. Meanwhile, in order
to save time and energy, one wants to make sure that, when a train departs, it
is always at the top of the stack. Since the trains have accumulated lateness
before arriving at the depot, the time of arrival of each train is unpredictable.
The tracks must thus be assigned online, as the trains arrive, on the basis of
departure times and previous assignments.

Our main contribution to this problem resides in the introduction of a
finite length to the tracks: each one of them may contain at most b trains,
where b is a fixed integer.

One can represent on a time-axis the time-intervals during which each train
must be stored in the depot. Thus, each interval corresponds to one train.
Two trains may be on the same track if their intervals are completely disjoint
or if the interval of one train is contained in the interval of the other train (the
first train arrives before and leaves after the second). One can make a graph
where each vertex represents an interval and two vertices are joined by an edge
if and only if the two intervals overlap but have no containment relationship.
Such a graph is called an overlap graph [7]. To model our track assignment
problem, we can thus use online coloring of overlap graphs with the constraint
that each color may not contain more than b elements. However, since one
gets the knowledge of a train at the time when it arrives, the online model
must state that the vertices of the overlap graph are presented in the order of
the left extremity of their corresponding intervals along the time axis.

It is natural to consider the same problem for night depots: we can assume
that all trains are in the depot before the first scheduled departure in the
morning. This is called the midnight condition and it means that the intervals
of the trains all share at least one point. It has been proved [6] that in this
particular case, the overlap graph is a permutation graph. It is thus natural

1 This work was partially supported by the Future and Emerging Technologies Unit of EC
(IST priority - 6th FP), under contract no. FP6-021235-2 (project ARRIVAL).
2 Email: demange@essec.fr
3 Email: gabriele@ing.univaq.it
4 Email: benjamin.leroy-beaulieu@epfl.ch



to study the online bounded coloring of permutation graphs.

2 Definitions and notations

Any term related to graph theory not defined here can be found in [1].

We consider online versions of the graph coloring problem. An online
problem can be seen as a two players game involving an adversary and an
algorithm. The adversary presents the instance and the algorithm gives the
solution. The online problem is characterized by the underlying offline problem
and two sets of rules that have to be respected by the adversary and the
algorithm, respectively.

Online algorithms are evaluated according to their competitive ratio. Let
A be an online algorithm and P a minimization problem. Then pA(I) de-
notes the maximum score A achieves for P over the online presentations of
the instance I respecting the given rules. An online algorithm is said to guar-
antee a competitive ratio of c (or to be c-competitive) if, for every instance
I, pA(I) 6 c · p(I), where p(I) is the offline optimal solution for P on I. It is
called exact if it guarantees an optimal offline solution. It is called optimal if
its competitive ratio can not be improved by any other online algorithm. The
competitive ratio of a problem is the competitive ratio of an optimal algorithm
for the problem.

Overlap graphs and permutation graphs are defined in [7]. In this paper,
we will use a very common representation for permutation graphs, called the
lattice representation. The permutation is represented by points on a two-
dimensional lattice. A point (x, y) on the lattice means that the element y
is at position x in the permutation. Given a set of points in the lattice as
above, the corresponding permutation graph is such that the points are the
vertices and two points (x, y) and (x′, y′) are adjacent if x < x′ and y > y′.
The (bounded) coloring of permutation graph is equivalent to partitioning a
permutation into (bounded) increasing subsequences.

If a graph is colorable with k colors such that each color contains at most
b elements, we call this graph (k, b)-colorable.

A very common algorithm for coloring graphs is the greedy algorithm First-

Fit, denoted by FF. It considers the vertices one after the other following a
given order. It assigns to vertex v the first color that was not assigned to an
adjacent vertex of v. Chvátal [2] characterized the perfect orderings that are
such that FF solves the graph coloring problem on the graph and all its induced
subgraphs optimally. For permutation graphs, it is the case when the vertices
are presented following the order in the permutation from the left to the



S

Aα

Aβ

Fig. 1. Zone A after presenting one increasing sequence S. The zone denoted Aα

represents A if S is of type α and the zone denoted Aβ represents A if S is of type β.

right. Note however that for arbitrary vertex-orderings the FF algorithm can
behave arbitrarily bad even on permutation graphs [8]. Moreover, it is known
that, in the online case, receiving a permutation gives more informations that
receiving the corresponding permutation graph [4]. We consider that the graph
is presented in the form of the corresponding permutation, which is natural in
the track assignment problem. In this paper we also consider the b-bounded
First-Fit algorithm (b-FF): it colors a new vertex with the smallest possible
color used less than b times.

3 Bounds

We start by studying the particular case respecting the midnight condition.

Theorem 3.1 The performance ratio c of the online coloring of a (k, b)-colorable
permutation is c = 2− 1/l, where l = min{b, k}, and b-FF achieves this ratio.

Proof. We prove Theorem 3.1 with two claims. 2

Claim 3.2 A lower bound for the online bounded coloring of a permutation

is 2 − 1/l, where l = min{b, k}.

Proof. Suppose that k is known and fixed a priori. We prove Claim 3.2 with
a permutation presented on its lattice representation. The zone A denotes the
admissible zone where any element in the future will be presented. At the
beginning, A is the complete plan.

(i) Present a stable set S (an increasing sequence) of size b in A.

(ii) If the elements of S are colored with two or more different colors, define
A as the part of the plan which is below and to the right of S, such that
every element on A will be in a clique with every element in S. S is said
to be of type α. If all elements of S are colored with the same color,



define A as the part of the plan which is above and to the right of S, such
that every element on A will be in a stable set with every element in S.
S is said to be of type β. See Fig. 1.

(iii) Repeat steps i and ii until l − 1 sequences S have been presented.

(iv) Let Nβ be the number of sequences S of type β. Present a clique Cγ of
size Nβ + 1 in A.

2

Remark 3.3 If k is unknown in advance, we can consider the same instance
as above with k > b and thus have c > 2 − 1/b.

Claim 3.4 The performance ratio of FF for the online bounded coloring of

a (k, b)-colorable permutation delivered from left to right is at most 2 − 1/l,
where l = min{b, k}.

Proof. Let λ
b-FF(π) be the number of colors used by FF for the online boun-

ded-coloring of the permutation π presented from left to right. b is the bound
imposed by the problem.

Let NS be the number of colors which are saturated at the end of the
execution, i.e., the colors which contain exactly b vertices. Let NS̄ be the
number of colors which are not saturated. 2

Remark 3.5 If one considers only the permutation π′ induced by elements
colored by colors in NS̄, we have λ

b-FF(π′) = λFF(π′) = χ(π′) where λFF(·)
denotes the number of colors used by the FF algorithm for usual coloring and
where the last equality holds since the permutation is presented from left to
right (a perfect order).

Let χb be the exact bounded-chromatic number of the permutation π for
the bound b.

λ
b-FF(π) = NS + NS̄(1)

Since colors in NS̄ are non-empty, we have:

n > bNS + NS̄(2)

χb >

⌈n

b

⌉

>

⌈

bNS + NS̄

b

⌉

= NS +

⌈

NS̄

b

⌉

(3)

NS 6 χb −

⌈

NS̄

b

⌉

(4)

We deduce from remark 3.5 that NS̄ 6 χb. Thus,

λ
b-FF(π) 6 2χb −

⌈χb

b

⌉

(5)



Calculations, skipped here for the sake of space, lead to the conclusion
that

c
b-FF 6

λ
b-FF(π)

χb

6 2 −
1

b
6 2 −

1

l
(6)

This ends the proof of Claim 3.4. Together, Claims 3.2 and 3.4 end the
proof of Theorem 3.1. 2

In the case of unbounded coloring, FF is exact on a permutation if it is
delivered from left to right [7]. For overlap graphs, on the contrary, no constant
competitive ratio can be guaranteed:

Theorem 3.6 For any online coloring algorithm, it is possible to force any

positive number of colors on a bipartite overlap graph presented online from

left to right, according the the left-most point of each interval.

Proof. For the sake of space, the proof is omitted. 2
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Abstract

This paper explores the design of a P2P architecture that sends real-time video
over the Internet. The aim is to provide good quality levels in a highly dynamic
P2P topology, where the frequent connections/disconnections of the nodes makes it
difficult to offer the Quality-of-Experience (QoE) needed by the client.

We study a multi-source streaming approach where the stream is decomposed
into several flows sent by different peers to each client including some level of re-
dundancy, in order to cope with the fluctuations in network connectivity. We employ
the recently proposed PSQA technology for evaluating automatically the perceived
quality at the client side. We introduce a mathematical programming model to
maximize the global expected QoE of the network (evaluated using PSQA), select-
ing a P2P connection scheme which enhances topology robustness. In addition, we
provide an approximated algorithm to solve the proposed model, and we apply it
to solve a case study based on real life data.
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1 P2P Robust Assignment Model

This work studies the characteristics of a P2P based solution for live video
broadcasting. In particular, in this section we develop a mathematical pro-
gramming model for the stream assignment problem in order to maximize the
expected perceived quality taking into account the network dynamics.

Time. The system is reconfigurated at discrete points in time, every ∆t. Let
us use ∆t as unit of time, and denote by It the tth interval (t, t + 1].

Distribution scheme. The stream is originally sent to the clients (or terminals)
by a brodcaster node s. Some clients act also as servers, relaying streams to
other clients. For this purpose, each node v has an available output bandwidth
BW out

v . The system distributes a single stream of live video by means of
K sub-streams denoted by σ1, σ2, ..., σK . Each substream σk is sent with a
constant bandwidth bwk. The total bandwidth of the stream is

∑K

k=1 bwk.
When a client receives the K substreams, it reproduces perfectly the stream.
If it does not receive all the K substreams, it will reproduce a stream that can
have a lower quality, depending on which substreams it receives and which
redundant scheme is used (not discussed here).

Dynamics. The evolution of the system from t to t + 1 is as follows: some
nodes leave in It, possibly disconnecting other clients in some substreams; at
the same time, some nodes enter the network requesting for connection; they
remain isolated from the rest of the nodes until t + 1 when the new reconfig-
uration action is performed. The goal of the reconfiguration is to reconnect
the disconnected nodes and to connect the new arrivals to the network. The
connexion scheme always builds trees of peers. At time (t + 1)−, just before
the reconfiguration, the general situation is the following. For each substream
σk there is a principal tree, Pk, containing (at least) the source s; all its nodes
receive substream σk. There are also Mk ≥ 0 other trees, disjoint between
them and with Pk, denoted by τk,1, τk,2, · · · , τk,Mk

; their nodes do not receive
σk. The set of trees associated with substream σk is called plane k. A perfect

network is a system where for each substream σk there is only one directed
tree (Pk, the principal one), meaning that Mk = 0. One of the goals of the
reconfiguration action is to build a perfect network.

Quality. To evaluate the quality at the client side, we use the PSQA technol-
ogy. Pseudo-Subjective Quality Assessment (PSQA) [3] is a general procedure
that automatically measures the perceived quality, accurately and in real time.
For instance, if we assume that the PSQA metric is scaled on [0..1] and if the
network is perfect, its instantaneous total quality is equal to the number of
connected clients (because PSQA = 1 for each client).



Optimization. As said before, the reconfiguration action will try to build a
perfect network, and, among the huge number of possible perfect newtorks, it
will try to build a robust one. For this purpose, we keep statistics about the
nodes’ behavior allowing us to evaluate their expected departure times from
the network. Specifically, we maintain an estimate pi of the probability that
node i remains connected in the current period, when it is connected at the
beginning (see below).

Formal Model. We propose now an Integer Mathematical Programming Model
which contemplates the P2P dynamics (described above) in a time interval
(t, t+1]. Consider the system at time t+ and let N (t) be the set of connected
nodes at t+ (N = ‖N (t)‖). Define for each k ∈ {1, 2, · · · , K} and i, j ∈ N (t),

xk
i,j =

{

1 if node i sends σk to node j,

0 otherwise,

yk
i,j =

{

1 if node i precedes node j in the tree containing j in plane k,

0 otherwise.

Since the perceived quality at node i depends on which substream is re-
ceived by i, we assume available a function f() of K variables such that the
quality at time t experienced by node i ∈ N (t) (and measured using PSQA)
is Qi = f(y1

s,i, y
2
s,i, .., y

K
s,i).

For all i ∈ N (t), let zi be the binary random variable equal to 1 if node i

remains connected until t + 1, 0 otherwise, where Pr(zi = 1) = pi. The sets
{

xk
ij

}

and
{

yk
ij

}

specify the network configuration at t whereas the network

configuration at t+1 is determined by the variables
{

x̃k
ij

}

and
{

ỹk
ij

}

satisfying

the following relations: x̃k
i,j = zix

k
i,jzj, ỹk

i,j = x̃k
i,j+

∑N

l=1 ziỹ
k
i,lx̃

k
l,j, and ỹk

i,j ≤ yk
i,j.

The PSQA evaluation of the quality as perceived by node i at time t+1 is a
random variable which is a function of

{

ỹk
s,i

}

and r.v. {zi}. We will maximize

its expected value, E{Q̃i}, where Q̃i = f(ỹ1
s,i, ỹ

2
s,i, .., ỹ

K
s,i) (actually, we use a

scaled expression, see Fig. 1, which shows the complete model).

2 Algorithmic solution based on GRASP

GRASP [4] is a well known metaheuristic that has been successfully used
to solve many hard combinatorial optimization problems. It is an iterative
process which operates in two phases. In the Construction Phase an initial
feasible solution is built whose neighborhood is then explored in the Local

Search Phase. Next, we present a GRASP customized to solve our problem.



max E

(

PN
i=1

Q̃i
PN

i=1
zi

)

// global expected perceived quality

st:

yk
i,j + yk

j,i ≤ 1, ∀i, j ∈ N, ∀k ∈ K, // loops are not allowed

yk
i,j = xk

i,j +
N

X

l=1

yk
i,lx

k
l,j , ∀i ∈ N, ∀j ∈ N − {s}, ∀k ∈ K, // precedence constraints

N
X

i=1

xk
i,j ≤ 1, ∀j ∈ N, ∀k ∈ K, // each substream arrives from an only node

K
X

k=1

{bwk
N

X

j=1

xk
i,j} ≤ BW out(i), ∀i ∈ N, // bandwidth capacity constraints

xk
i,j = 1, ∀i ∈ N, ∀j ∈ N, ∀k ∈ K|xk

i,j ∈ Ek
t , // network configuration at t

x̃k
i,j = zix

k
i,jzj , ∀i ∈ N, ∀j ∈ N, ∀k ∈ K, // a link is preserved if source and terminal do not leave

ỹk
i,j = x̃k

i,j +

N
X

l=1

ziỹ
k
i,lx̃

k
l,j , ∀i ∈ N, ∀j ∈ N − {s}, ∀k ∈ K, // ỹ represents the precedence at t + 1

ỹk
i,j ≤ yk

i,j , ∀i ∈ N, ∀j ∈ N, ∀k ∈ K,

zi ∼ Bern(pi), ∀i ∈ N, // random variables with Bernoulli distribution (parameters pi)

xk
i,j , yk

i,j ∈ {0, 1}, ∀i ∈ N, ∀j ∈ N, ∀k ∈ K

Fig. 1. Mathematical Programming Model.

Construction phase. Let’s assume that the initial graph is not connected, and
that the distribution trees were pruned in some arcs. We will identify dis-
connected subtrees τk,i by their roots for each substream k and nodes i with
available bandwidth. The tree that contains the stream source will be called
the main tree Pk, for each substream k. Let p a list be the set of all possible
assignments that can be performed in that state, which reconnect the graph.
Each component of the assignment is a triplet (source node, target node, sub-
stream), and belongs to the set if and only if: (i) the source node belongs to
the main tree, (ii) the target node is root of some disconnected tree, (iii) the
source node has enough bandwidth to transmit the substream. Fig. 2 describes
the construction of the initial solution. The procedure constructively builds
the initial solution starting from the disconnected graph. A set, RCL, of the
eligible assignments which result in the larger improvements to the current
partial solution is constructed. The parameter n determines the size of the set
RCL. At each iteration one of the elements from RCL is added to the current
solution, this decision is made determining randomly the element current a

from the set RCL. The set p a list has to be updated due to the assignation
of current a. The p a list set may become empty if no disconnected trees



Procedure GRASP P2P Network;

Input: G, k;

1 a list← empty list;
2 current psqa← 0; best psqa← −1;
3 for i = 1 to MAXITER do
4 [Gsol, a list]← P2P Const Phase(G, a list);
5 [Gsol, a list]← P2P Local Search(Gsol, k);
6 current psqa← PSQA Expected(Gsol) ;
7 if (current psqa > best psqa) then
8 best psqa← current psqa;
9 Gbest ← Gsol;
10 end if;
11 a list← empty list;
12 end for
13 return Gbest;

Procedure P2P Const Phase;

Input: G; a list, n;

1 p a list← Possible Assignments(G) ;
2 while not empty(p a list) do
3 RCL← Compute RCL(p a list, n);
4 current a← SelectRandom(RCL);
5 a list← Add Assignment(a list, current a);
6 p a list← Update PA(G, current a, p a list);
7 end while;
8 Gsol ← Apply Assignments(G, a list);
9 return Gsol, a list;

Fig. 2. Customized GRASP and Construction Phase.

remain. It might be also the case that there is no more available bandwidth in
any node of the main tree, thus, no allocation is possible and p a list becomes
empty. These cases are the stop conditions.
Local search phase. The previous procedure generates a random solution
a list. To improve the solution constructed, a local search is applied. Fol-
lowing directly the ideas in [1], we use a RNN in the local search phase. After
the m executions of the algorithm, m̂ different initial solutions are obtained:
a list1, a list2, . . . , a listm̂.
Metric for enhancement of a given assignment. Selecting one solution amongst
the m̂ constructed is done by a Monte Carlo estimation of their future PSQA
(by randomly simulating sequences of nodes entries and exits). The selected
solution will be the one with higher mean PSQA.

3 Numerical Results and Discussion

We compare the performance of our P2P assignment metaheuristic with a
traditional Content Delivery Network (CDN) [2] based implementation. Two
important variables have to be considered in the analysis: the global perceived
quality of the network, and the total bandwidth consumption (at the broad-
caster and at the peers). We have statistical data coming from a live video
delivery service of a medium size ISP, with 10.000 access of different users per
month, and an average of 100 concurrent users per live-TV channel.

In the CDN architecture case, the broadcaster is a set of servers in the ISP
datacenter, where the bandwidth consumption is the most expensive compo-



nent cost of the service. The broadcaster absorbs all the load of the clients,
with a stream of 512 Kbps; this means at least 50 Mbps of bandwidth in peak
use. The broadcaster of the CDN study case has no failures in the service. If
we consider the packet losses in the network negligible, we can assume that the
CDN network has a perfect global quality (i.e Q = 1.00). We simulate a P2P
architecture with the same clients’ behavior (connections/disconnections) than
the real CDN. Our results show that the broadcaster absorbs only 5.6 Mbps,
and the peers the rest of the load (in average 0.6 Mbps per peer). The quality
is not considerably degraded, with a worst case of Q = 0.966 on the average.

As main conclusions, we think that the numerical results obtained show the
interest of employing a live-video P2P distribution system following a multi-
source procedure. The PSQA technique allows to automatically measure the
perceived quality as seen by the final users, and this in turn is a key issue in
developing a formalized model and algorithmic solution procedures to define
the topology and flow assignment of such a system.
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Abstract

In this paper, we present two Integer Programming formulations for the k-Cardinality
Tree Problem. The first is a multiflow formulation while the second uses a lifting of
the Miller-Tucker-Zemlin constraints. Based on our computational experience, we
suggest a two-phase exact solution approach that combines two different solution
techniques, each one exploring one of the proposed formulations.

Keywords: k-Cardinality Tree Problem, Integer Programming

1 Introduction

Let G = (V, E) be a connected undirected graph with a set of vertices V

(n = |V |) and a set of edges E (m = |E|). Assume that costs {ce : e ∈ E}
as well as weights {dv : v ∈ V } are respectively assigned to the edges and
vertices of G. The cost of a tree T = (VT , ET ) in G is given by the sum of
its edges’ costs c(ET ) :=

∑
e∈ET

ce plus the sum of the weights of its spanned

1 Research supported by Programa Recém Doutores - UFMG/PRPq-2006



vertices d(VT ) :=
∑

v∈VT
dv. In the k-Cardinality Tree Problem (KCT), one

seeks a minimal cost tree of G with exactly k edges.

Recently, KCT has been extensively studied in the literature. Most of
the studies concentrate, however, in the design of heuristic and metaheuristic
procedures: the Local Searches in [2], the Tabu Search in [5], the VNS in [3],
just to name a few. The complexity of the problem has been investigated in
[1]; KCT being proved to be NP-hard if 2 ≤ k ≤ n − 2. To the best of our
knowledge, reference [1] is the only study where exact solution methods are
discussed. In [1], a polyhedral study and an Integer Programming formulation
based on the Generalized Subtour Elimination Constraints (GSECs) were pre-
sented for KCT. Finally, the works in [7] and [6] are dedicated to the rooted
version of the problem.

The aim of this paper is to present two compact IP formulations for KCT.
In Section 2, we present these formulations. Preliminary computational re-
sults of Branch-and-bound algorithms based on them are discussed in Section
3. Based on our computational results, we also introduce a two-phase exact
solution approach that combines Lagrangian Relaxation and Local Branching
[10]. The paper is closed in Section 4.

2 Integer Programming Formulations

In this Section, we formulate KCT as an arborescence in a conveniently defined
digraph D = (V , A) obtained from the vertices and edges of G as follows.
First, let’s introduce in V two new vertices, n + 1 and n + 2, resulting V :=
V ∪ {n + 1, n + 2}. Now let A be the union of the following sets: (i) the
set of arcs leaving n + 1, {[n + 1, i] : i ∈ V } and {[n + 1, n + 2]}, with costs
{c[n+1,i] = 0 : i ∈ V } and {c[n+1,n+2] = 0} (ii) the set of arcs leaving n + 2,
{[n+2, i] : i ∈ V }, with costs {c[n+2,i] = di : i ∈ V } and (iii) the set of pairs of
arcs obtained from each edge of E, AE = {[i, j], [j, i] : (i, j) ∈ E}, with costs
c[i,j] = c(i,j) + dj and c[j,i] = c(i,j) + di.

Note that one can map each feasible tree T for KCT in G to an arborescence
rooted at n + 1 in D, satisfying additional constraints (see Figure 1): (i) the
n − (k + 1) vertices not spanned by T (dashed circles in the Figure) are
connected to vertex n + 1 by arc [n + 1, i]; (ii) there is a path in D from n + 1
to every spanned vertex that necessarily includes the arc [n+1, n+2] and (iii)
among those vertices spanned by T , only one is directly connected to vertex
n + 2.
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Fig. 1. A feasible solution in D with n = 5 and k = 2

2.1 A Multiflow Formulation

To each vertex i ∈ V ′ := V ∪{n+2}, we associate one unity of a commodity i,
available at root n+1, that must be delivered to its corresponding destination
vertex through a path in D. In this model, we use binary decision variables
{xa : a ∈ A} assuming value 1 if arc a is used in any path (0, otherwise)
and nonnegative real valued variables f q

a representing the quantity of com-
modity q ∈ V ′ that flows through arc a ∈ A. Before proceeding, assume that
δ+({i}) = δ+(i) and δ−({i}) = δ−(i) denote, respectively, the set of arcs of A

leaving and entering i ∈ V . The multiflow formulation (MFF) is:

min
∑

a∈A

caxa (1)

∑

a∈δ+(n+1)

fq
a = 1, ∀q ∈ V ′, (2)

∑

a∈δ+(i)

fq
a −

∑

a∈δ−(i)

fq
a = 0, ∀q, i ∈ V ′, i 6= q, (3)

∑

a∈δ+(q)

fq
a −

∑

a∈δ−(q)

fq
a = −1, ∀q ∈ V ′, (4)

∑

q∈V ′

f
q

[n+1,n+2] = k + 2, (5)

∑

a∈δ+(n+2)

xa = 1, (6)

∑

a∈δ+(n+1)

xa = n − k, (7)

fq
a ≤ xa, ∀q ∈ V ′, ∀a ∈ A, (8)

xa ∈ B, ∀a ∈ A, fq
a ∈ R+, ∀a ∈ A, ∀q ∈ V ′. (9)

Note that according to previously defined arc costs, the objective function (1)
correctly captures the cost of a KCT solution. Constraints (2)-(4) impose flow
balance of each commodity at every vertex in V and eliminate cycles from the
solutions. Constraints (8) ensure that f q

a assume positive values only if arc a

is selected. Finally, constraints (5)-(7) guarantee that a feasible solution must
include k arcs [i, j] ∈ AE.



2.2 A formulation based on the Miller-Tucker-Zemlin constraints

Assume now that set A also includes zero cost arcs {[i, n + 1] : i ∈ V } and
{[i, n + 2] : i ∈ V }. In addition to binary decision variables xa, our second
model uses level variables ui ∈ R+, i ∈ V indicating the number of arcs in
the path between n + 1 and i in any feasible arborescence in D. The MTZF
formulation is then:

min
∑

a∈A

caxa (10)

∑

a∈δ−(j)

xa = 1, ∀j ∈ V ′, (11)

∑

i∈V ′

x[n+1,i] = n − k, (12)

∑

a∈AE

xa = k, (13)

x[n+1,i] + x[i,j] ≤ 1, ∀[i, j] ∈ A, (14)

(k + 3)x[i,j] + ui − uj + (k + 1)x[j,i] ≤ (k + 2), ∀[i, j] ∈ A, (15)

x[n+1,n+2] = 1, xa ∈ B,∀a ∈ A, (16)

un+1 = 0, ui ≥ 0, ∀i ∈ V ′. (17)

Inequalities (15) are a lifting of the well known Miller-Tucker-Zemlin con-
straints [8,9] that guarantee the solution is cycle-free.

3 Preliminary Computational Results

The computational results we carried out comprise evaluating the formulations
presented here by the strength of their Linear Programming (LP) relaxation
bounds and also by the overall performance of Branch-and-bound (BB) al-
gorithms based on them. These algorithms were implemented using CPLEX
package, version 9.1.3, with default parameters. Our tests were carried out on
an Intel Pentium IV machine with 2.4GHz, 1GB of RAM and 512KB of cache,
under Linux Operating System. Two sets of instances were used to evaluate
the proposed formulations: KLIB, coming from the KCTLib 2 , and GRID,
grid instances generated as proposed in [3]. For reasons of space, we do not
quote in Table 1 results for all instances in our test bed. Since CPLEX ran
out of memory when attempting to solve some KLIB instances (g-400-4-02,
g-400-4-04 and g-400-4-05) with MFF formulation, we only report results for
those instances with 400 vertices that were solved by both models. All other
KLIB instances with n < 400 were solved by MTZF and MFF.

2 KCT instance on-line archive – http://iridia.ulb.ac.be/~cblum/kctlib/



MFF MTZF

Instance |V | |E| k Opt t(s) tLP (s) gap(%) t(s) gap(%)
g200-4-01 200 400 20 308 3270.50 1085.84 0.83 388.63 86.67
g200-4-02 200 400 20 299 2099.29 1012.18 0.50 149.53 113.57
g200-4-03 200 400 20 300 1287.81 1246.2 0.00 59.10 156.41
g200-4-04 200 399 20 304 113141.96 1124.94 3.05 215.96 112.59
g200-4-05 200 399 20 357 13405.98 1122.81 0.97 418.27 111.24
g400-4-01 400 800 20 253 3804.38 835.00 0.06 576.61 145.63
g400-4-03 400 799 20 302 7880.70 884.19 0.89 9924.65 137.80
grid 10 10 1 100 180 10 24746 11609.20 207.22 1.55 93.61 76.05
grid 10 20 1 100 180 20 34409 1152.94 106.17 0.40 1009.45 47.40
grid 10 30 1 100 180 30 68401 6422.59 140.01 1.26 422.14 14.27
grid 15 15 1 225 420 15 23594 710.84 698.34 0.00 2247.56 123.57
grid 15 15 4 225 420 15 27411 1445.71 1443.42 0.00 3137.46 125.90
grid 15 15 6 225 420 15 24017 892.43 532.67 0.10 238.48 79.85

Table 1
Computational results for some KLIB and GRID instances.

In the first column of Table 1, instances are indentified by their names.
The next three columns are |V | and |E|, followed by k. In the next column,
optimal objective function values (OPT) are shown. In the following three
columns, we present results for MFF. They are: the CPU time taken to run
the BB algorithm to completion, t(s), the CPU time required to evaluate the
LP relaxation of (1)-(9), tLP (s), and the duality gaps between these LP bounds
and optimal objective values. Finally, in the last two columns, we report on
similar entries for MTZF: the total BB CPU time, t(s), and the duality gap.
All CPU times are quoted in seconds.

All KLIB and GRID instances indicated in Table 1 were solved to proven
optimality by both BB algorithms. To the best of our knowledge, no optimality
certificates were previously available to these KLIB instances in the literature.

The results in Table 1 suggest MFF LP bounds are stronger than MTZF
counterparts. However, they are very expensive to evaluate. When these
factors are balanced together, the MTZF based BB algorithm proved to be,
in most cases in our computational testings, much faster than the BB that
uses MFF. Therefore, we propose a two-phase exact solution method: the
first phase is a Lagrangian heuristic using MFF while the second is a Local
Branching [10] approach using MTZF. In doing so, our aim is to take the most
out of each formulation by a conveniently chosen solution method. In the first
phase, inequalities (2)-(5) are going to be relaxed in a Lagrangian fashion and
(Lagrangian) modified costs will be used to drive a constructive heuristic to
find feasible KCT solutions. Since MFF LP bounds were good in our testings
and the heuristic is driven by dual information, these upper bounds should
also be good. If the first phase does not solve KCT alone, it will then work
as a starter to the next. With the Lagrangian upper bound in hands, a Local
Branching algorithm based on MTZF should run faster than a BB algorithm
based on MTZF alone.



4 Final remarks

We presented two IP formulations for the k-Cardinality Tree Problem. The
first is multiflow formulation and the second uses the Miller-Tucker-Zemlin
constraints. Our computational experience suggests MFF provides bounds
stronger than MTZF counterparts at a higher computational time. As a result,
we suggested a two-step hybrid solution approach that uses both formulations.
We plan to compare the proposed method with a Branch-and-cut algorithm
where GSECs are used as cutting planes as in [1].
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Totally Multicolored diamonds
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Abstract

Let G be a graph of order p. For every n ≥ p let f(n, G) be the minimum integer k

such that for every edge-coloring of the complete graph of order n which uses exactly
k colors, there is at least one copy of G all whose edges have different colors. Let F be
a set of graphs. For every n ≥ 3 let ext(n, F) be the maximum number of edges of a
graph on n vertices with no subgraph isomorphic to an element of F. Here we study
the relation between f(n, G) and ext(n, C(G)) when G is a graph with chromatic
number 3 obtained by adding an edge (a chord) to a cycle, and C(G) is the set of
cycles which are subgraphs of G. In particular, an upperbound and a lowerbound
of f(n, G) are given; and in the case when G is the diamond (C4 with a chord), we

prove that the supremum and infimum limits of f(n,G)
n
√

n
are bounded by 2

3 and 1
2
√

2

respectively, and we conjecture that for every n ≥ 4, f(n, G) = ext(n, {C3, C4})+2.

Keywords: Colorings, totally multicolored, anti-Ramsey.

1 Introduction

Let Kn denotes the complete graph of order n. A subgraph G of Kn is said
to be totally multicolored (with respect to a given edge-coloring of Kn) if G

1 Email: juancho@matem.unam.mx



contains no two edges of the same color. The problem of determining, given
a graph G and an integer n ≥ 3, the minimum integer f(n, G) such that
every edge-coloring of Kn which uses exactly f(n, G) colors, leaves at least
one totally multicolored copy of G (TMC for short), was introduced in [3] and
has been widely studied (see, for instance, [1], [4], [5], [6], [7]).

In [3] it is showed that f(n, G) is at least ext(n, L(G)) + 2, where L(G)
is the family of all subgraphs obtained from G by removing an edge, and
that ext(n, {HG}) is an upperbound for f(n,G), where HG is obtained in
the following way: consider M ∈ L(G) of minimum chromatic number. By
definition, M = G − xy for some xy ∈ E(G). Take two copies, M ′ and M”,
of M and obtain HG by identifying the vertices x′ with x” and y′ with y”.

In [2] the asintotic behavior of ext(n, G) is determinated, provide L(G)
contains no bipartite graph. Using this, in [3] the asintotic behavior of f(n, G)
is determinated, provide G is not bipartite or G contains no edge e ∈ E(G)
such that G − e is bipartite. Although, as it was proof in [3], for every graph
G, ext(n, {HG}) ≥ f(n, G) ≥ ext(n, L(G)), in the case when G is bipartite
or G contains an edge e ∈ E(G) such that G − e is bipartite, the behavior of
ext(n, L(G)) and ext(n, {HG}) are, in general, unknown.

Some studies concerning f(n,G) when G is bipartite or G contains an edge
e ∈ E(G) such that G − e is bipartite are [1], [4], [6] and [7].

In this paper we focus our attention in the relation between f(n, G) and
ext(n, C(G)) when G is a graph of chromatic number 3 (a 3-chromatic graph)
obtained by adding a chord to a cycle, and C(G) is the set of cycles which
are subgraphs of G (observe that C(G) contains always an even cycle). We
present a lowerbound of f(n, G) (ext(n, C(G)) + 2); and an upperbound of
f(n, G) which definition depends on the maximum of the set of minimum
degrees of the graphs which has no element of C(G) as a subgraph. Clearly,
if the behavior of ext(n, C(G)) is unkown, so will be the one of f(n, G), but
since the upperbound depends on the minimum degrees of the graphs of that
particular family, this approach allow us to study the gap between the given
upperbound and lowerbound.

1.1 Notation and preliminary results

Let G be a graph. V (G), E (G) and δ(G) will denote the set of vertices, the
set of edges and the minimum degree of G respectively. Given S ⊆ E(G),
the subgraph of G induced by S is the subgraph H of G of minimum order
such that E(H) = S. Given a family of graphs P, let Fn[P] be the family
of graphs of order n which contains no element of P as a subgraph, and let



δ(Fn[P]) = max{δ(G) : G ∈ Fn[P]}. A cycle C belongs to C(G) if and only if
there is a subgraph H of G which is isomorphic to C.

Let D be a digraph. V (D), A (D) and gr (D) will denote the set of ver-
tices, the set of arcs and the underlying (simple) graph of D, respectively. If
x ∈ V (D), N+

D (x) and N−
D (x) will denote the out-neighborhood and the inner-

neighborhood of x in D, respectively; d+
D(x) and sd+

D(x) will denote the car-
dinality of N+

D (x) (the out-degree of x) and the cardinality of N+
D (x) \N−

D (x),
respectively. δ+(D) will denote the minimum out-degree of D. Given a family

of digraphs
−→
P , let Fn[

−→
P ] be the family of digraphs of order n which contains no

element of
−→
P as a subdigraph, and δ+(Fn[

−→
P ]) = max{δ+(D) : D ∈ Fn[

−→
P ]}.

Let n ≥ 3 be an integer. As an edge-coloring of Kn we will understand a
function Γ : E(Kn) → N. Given an edge-coloring Γ of Kn, Γ [Kn] denotes the
image of Γ. Γ will be called G-bad if it leaves no TMC copy of G and will be
called extremal G-bad if it is G-bad and |Γ [Kn]| = f(n,G) − 1.

Let Γ be an edge-coloring of Kn. If x ∈ V (Kn), ν(x, Γ, Kn) will denote
the difference |Γ [Kn]| − |Γ [Kn \ {x}]|, i.e. the number of colors of Γ that
only appear in edges which are incidents to x. Given x ∈ V (Kn), a subset
W of V (Kn) \ {x} will be said to be a selective (x, Γ)-set provided |W | =
ν(x, Γ, Kn) and all the xW -edges have different colors which do not appear in
Γ [Kn \ {x}]. A digraph D will be called a selective (Γ, Kn)-digraph provided
V (D) = V (Kn) and that for each x ∈ V (D), N+

D (x) is a selective (x, Γ)-set.

Observe that given a selective (Γ, Kn)-digraph D, the subgraph of Kn

induced by the set of edges of gr(D) is TMC with respect to Γ in Kn; and
the colors appearing in such subgraph are exactly those colors i ∈ N such
that Γ−1(i) is a star (maybe an edge). Γ−1(i) its the edge xy if and only if
x ∈ N+

D (y) and y ∈ N+
D (x).

Lemma 1.1 Let Γ be an edge-coloring of Kn, and let D be a selective (Γ, Kn)-
digraph. Let H be a subdigraph of D with two non-adjacent vertices, x, y ∈
V (H), such that sd+

H(x) = sd+
H(y) = 0.

Then the subgraph of Kn induced by E(gr(H)) ∪ {xy} is TMC.

Sketch of the proof. Let suppose there is such subdigraph H in D. By
definition of D, this implies the subgraph of Kn induced by E(gr(H)) is TMC.
If there is vw ∈ E(gr(H)) such that Γ({vw}) = Γ({xy}), again by definition,
|{x, y} ∩ {w, v}| = 1 and so sd+

H(x) > 0 or sd+
H(y) > 0.

Lemma 1.2 Let G be a graph of order p and let Γ be an extremal G-bad
edge-coloring of Kn+1. If n ≥ p then

f(n + 1, G) − f(n, G) ≤ ν∗(Γ, Kn+1)



where ν∗(Γ, Kn+1) = min{ν(x, Γ, Kn+1) : x ∈ V (Kn+1)}.

Sketch of the proof. Given x ∈ V (Kn+1), the number of colors appearing
in E(Kn+1) (f(n + 1, G) − 1) is equal to the number of colors appearing in
E(Kn+1 − x) (which is at most f(n, G)− 1) plus the colors that disappear by
deleting x, i.e. the number of colors of Γ that only appear in edges which are
incidents to x ( ν(x, Γ, Kn)).

From Lemmas 1.1 and 1.2 we can see the following: Given a graph G,
let

−→
P (G) be the set of digraphs H such that for some e = xy ∈ E(G),

gr(H) ∼= G− e and sd+
H(x) = sd+

H(y) = 0. Then, given a G-bad edge-coloring

Γ of Kn+1, any selective (Γ, Kn+1)-digraph D belongs to Fn+1[
−→
P (G)] and,

since ν∗(Γ, Kn+1) = δ+(D), the difference f(n+1, G)− f(n,G) is bounded by

δ+(Fn+1[
−→
P (G)]).

In the case when G is a 3-chromatic graph obtained by adding a chord to
a cycle, we can say a little more, as we see in the next lemma.

Lemma 1.3 Let G be a 3-chromatic graph of order p obtained by adding a
chord to the cycle Cp. Let Γ be an extremal G-bad edge-coloring of Kn and let
D be a selective (Γ, Kn)-digraph. Then, either

i) gr(D) has no subgraph isomorphic to an element of C(G); or

ii) for every x ∈ V (Kn), ν(x, Γ, Kn) ≤ p − 2.

Sketch of the proof. Let suppose ν(x, Γ, Kn) ≥ p − 1. Let C(G) =
{Cp, Cq, Cr} and suppose there is a subdigraph H of D such that gr(H) is
isomorphic to Cr. For the case q ≥ 4, let x, y ∈ V (H) be two adjacent
vertices in H. Since every vertex x ∈ V (D) has out-degree at least p − 1,
there is not difficult to see that there are two vertex-disjoint directed paths
P1 = {x, x1, . . . , xl} and P2 = {y, y1, . . . , ys} in D, with l + s = q − 2, which
are also vertex-disjoint from V (H). Let M be the subdigraph of D induced
by the set of arcs A(H) ∪ A(P1) ∪ A(P2). Since sd+

M(xl) = sd+
M(ys) = 0, by

Lemma 1.1 the subgraph of Kn induced by gr(M) ∪ {xlys} is TMC, but this
graph is a copy of G, which is a contradiction. For q = 3, let x ∈ V (H)
and w, v ∈ V (H) be the neighbors of x in H. Since every vertex in D has
out-degree at least p−1, there is y ∈ V (D)\V (H) such that −→xy ∈ A(D). The
subgraph of Kn induced by E(gr(H)) ∪ {xy} is a TMC copy of G − e with
e = yw and e = yv. Therefore, the colors Γ({yw}) and Γ({yv}) most appear in
Γ[E(gr(H))∪{xy}] which, by definition of D, implies that Γ({yw}) = Γ({wx})
and Γ({yv}) = Γ({vx}. So sd+

H(x) = 0, sd+
H(w) ≥ 1 and sd+

H(v) ≥ 1. Since x

is an arbitrary vertex of H, this is not possible.

Finally, let suppose there is a subdigraph H of D such that gr(H) is



isomorphic to Cp. Let x, y ∈ V (H) such that the graph induced by E(gr(H))∪
{xy} is a copy of G. Thus, there is wv ∈ E(gr(H)) such that Γ({xy}) =
Γ({wv}) and, by definition of D, we can suppose that x = w. But then, the
digraph D′ obtained by deleting the arc −→xv and adding the arc −→xy is a selective
(Γ, Kn)-digraph such that gr(D′) contains a subgraph isomorphic to Cq or Cr,
which is not possible.

From Lemma 1.3 we see that in the case when G is a 3-chromatic graph
of order p obtained by adding a chord to the cycle Cp, the difference f(n +

1, G)−f(n, G) is bounded, either by p−2, or by δ+(Fn+1[
−→
C (G)]) where

−→
C (G)

is the set of orientations of the elements of C(G), and so, δ+(Fn+1[
−→
C (G)]) =

δ(Fn+1[C(G)]).

2 Main Results

Theorem 2.1 Let G be a 3-chromatic graph of order p obtained by adding a
chord to the cycle Cp. For each j ≥ p + 1 let h(j) = max{p − 2, 2ext(j,C(G))

j
}.

Then, for every n ≥ p,

ext(p, {G}) + 1 +
n∑

j=p+1

h(j) ≥ f(n, G) ≥ ext(n, C(G)) + 2.

Sketch of the proof. Since δ(Fm[C(G)]) ≤ 2ext(m,C(G))
m

, the upperbound
follows from Lemmas 1.2 and 1.3. For the lowerbound, consider an edge-
coloring of Kn obtained by a TMC copy of a graph M ∈ Fn[C(G)] with
ext(n, C(G)) edges, and all the remaining edges colored with one new color.
It is not hard to see that this is a G-bad edge-colouring of Kn.

Theorem 2.2 Let G be the diamond. Then for every n ≥ 4,

5 +
4(n − 1)

3

2 + 9(n − 1) + 2(n − 1)
1

2

6
≥ f(n,G) ≥ ext(n, {C3, C4}) + 2.

Sketch of the proof. Analogous as the proof of Theorem 2.1, but just
observe that δ(Fm[C(G)]) = δ(Fm[{C3, C4}]) ≤

√
m − 1.

Corollary 2.3 Let G be the diamond. Then

2

3
≥ sup lim

n→∝

f(n, G)

n
√

n
≥ inf lim

n→∝

f(n, G)

n
√

n
≥ 1

2
√

2
.



2.1 The conjecture

We conjecture that if G is a diamond, then for every n ≥ 4

f(n, G) = ext(n, {C3, C4}) + 2.

This comes from the following: It is possible to proof that given an extremal
G-bad edge-coloring Γ of Kn+1, if for some selective (Γ, Kn+1)-digraph D,
gr(D) has diameter at most 3, then Γ uses at most |E(gr(D)| + 1 colors and
so f(n + 1, G) ≤ ext(n + 1, {C3, C4}) + 2. In other case, gr(D) is not an
extremal graph of girth five, and therefore the number of colors appearing in
Kn+1 in the subgraph induced by E(gr(D)) is less than ext(n + 1, {C3, C4})
and ν∗(Γ, Kn+1), which bounds the difference between f(n+1, G) and f(n,G),
is at most that of the other case.
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Abstract

Chordal graphs were characterized as those graphs having a tree, called clique tree,
whose vertices are the cliques of the graph and for every vertex in the graph, the set
of cliques that contain it form a subtree of clique tree. In this work, we study the
relationship between the clique trees of a chordal graph and its subgraphs. We will
prove that clique trees can be described locally and all clique trees of a graph can
be obtained from clique trees of subgraphs. In particular, we study the leafage of
chordal graphs, that is the minimum number of leaves among the clique trees of the
graph. It is known that interval graphs are chordal graphs without 3-asteroidals.
We will prove a generalization of this result using the framework developed in the
present article. We prove that in a clique tree that realizes the leafage, for every
vertex of degree at least 3, and every choice of 3 branches incident to it, there is a
3−asteroidal in these branches.

1 Introduction

Chordal graphs form an important and well studied class of graphs. It is
known that for each chordal graph there is a tree, called clique tree, whose



vertices are the cliques of the graph and for every vertex in the graph, the set
of cliques that contain it form a subtree of clique tree.

Clique trees have many applications, for example it can be used to study
protein interactions [7]. Most cellular processes are carried out by multi-
proteins complexes, groups of proteins that bind together to perform a specific
task. A better understanding of this organization of proteins into overlap-
ping complexes is an important step to unveiling functional and evolutionary
mechanisms behind biological networks. This situation can be represented by
a graph where the vertices are proteins and two vertices are connected by an
edge if the corresponding proteins interact. Complex proteins can be seen
as cliques of this graph. Then, when the graph is chordal, a clique tree and
the family of subtrees representing the vertices provide a good framework for
following the activity of a protein in different complexes.

In this work we study the relationship between the clique trees of a chordal
graph and its subgraphs. We will prove that clique trees can be described
locally and all clique trees of a graph can be obtained from clique trees of
subgraphs. In particular we study the leafage of a chordal graph, that is the
minimum number of leaves among all the clique trees of the graph. It is clear
that connected interval graphs are exactly those chordal graphs with leafage 2.
In an historical work Lekkerkerker and Boland [3] proved that interval graphs
are the chordal graphs without 3-asteroidals, 3 vertices such that between
any two of them there is a path avoiding the neighborhood of the third. We
will prove a generalization of this result using the framework developed in the
present article. We prove that in a clique tree that realizes the leafage, for
every vertex of degree at least 3, and every choice of 3 branches incident to it,
there is a 3−asteroidal in these branches.

2 Preliminaries

We denote by G[V ] the induced subgraph of G whose set of vertices is V . If
G1 and G2 are graphs, G1∪G2 denotes the graph whose vertices and edges are
V (G1)∪V (G2) and E(G1)∪E(G2) respectively. A subset C of V is said to be
a clique of G if G[C] is a maximal complete subgraph of G. By C(G) we denote
the set of cliques of G, and for every v ∈ V we let Cv = {C ∈ C(G) : v ∈ C}.
The intersection graph of a finite family of sets F = (Fi)i∈I is a graph whose
vertices are the sets of the family, with Fi and Fj adjacent whenever Fi∩Fj 6= ∅.
The clique graph of a given graph G, denoted by K(G), is the intersection
graph of the family of cliques of G. We consider the clique graphs to be
weighted. That is, each edge CiCj of it has a weight equal to |Ci ∩ Cj|.



A graph G is said to be chordal if every cycle in G of length at least four
has a chord. Buneman [1], Gavril [2] and Walker [6] independently discovered
that a graph is chordal if and only if it is the intersection graph of a family of
subtrees of a tree, called host tree. It is easy to see that a family of subtrees
of a tree has the Helly property, that is every intersecting subfamily has a
common vertex. Hence by minimizing the number of vertices of the host tree,
preserving the intersection relationship in the family of subtrees, we obtain
a host whose set of vertices is C(G) and the family of subtrees is (Cv)v∈V (G).
This is the reason why such tree is called clique tree. McKee proved [5] that
those trees are exactly the maximum weight spanning trees of K(G).

Theorem 2.1 G is a chordal graph if and only if there is a maximal spanning
tree T of K(G) such that for each v vertex of G, Cv is a subtree of T. Moreover
if such tree exists, all maximal spanning trees of K(G) satisfy the condition.

A canonical representation of a chordal graph G is a pair (T, F ) where
T is a maximal spanning tree of K(G), usually called clique tree of G and
F = (Cv)v∈V (G). It is easy to prove that (Cv)v∈V (G) is a separating family, that
is the intersection of all members that contain an element x is {x}. Moreover,
this property characterizes the canonical representations.

Theorem 2.2 Let (T, F ) be a pair where T is a tree and F is a separating
family of subtrees of T . Then the intersection graph of F is a chordal graph
G, T is a maximal spanning tree of K(G), and F = (Cv)v∈V (G).

Therefore we can study chordal graphs through their canonical represen-
tations or clique trees.

3 Subgraphs of chordal graphs and their clique trees

Clearly, a subgraph G′ of a chordal graph G is also chordal. But a clique tree
of G′ is not necessarily a subtree of a clique tree of G. In Figure 1, there
is an example where G is a chordal graph, G′ is the subgraph of G induced
by the black colored vertices but K(G′) is not an induced subgraph of K(G).
Moreover, in the example, the clique tree of G′ that is a chain is not an induced
subtree of the only clique tree of G. However, there is a simples way of taking
induced subgraphs G′ of a chordal graph G such that each clique tree of G′ is
a subtree of some clique tree of G.

First we describe some properties of maximum spanning trees of a graph,
with weighted edges. Let T be a tree and T1 a subtree of T , such that E(T )−
E(T1) induces a subtree T c

1 in T . In this case, say that T c
1 is the complement
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of T1 in T . Clearly, T = T1 ∪ T c
1 . If G is a graph whose edges are valuated

by positive real numbers, the following theorem implies that the maximum
spanning trees can be viewed locally.

Theorem 3.1 Let T be a maximal spanning tree of G and T1 a subtree of T

that has complement T c
1 . Then w(T ) = w(T1) + w(T c

1 ) and T1 is a maximal
spanning tree of G[V (T1)]. Moreover, if T ′

1 is another maximal spanning tree
of G[V (T1)] then T ′

1 ∪ T c
1 is also a maximal spanning tree of G.

Therefore, we can obtain subgraphs of chordal graphs as above mentioned.
Let G be a chordal graph and T a clique tree of G. If T1 is a subtree of T ,
define V1 = {v ∈ V (G) : T1 ∩ Cv 6= ∅} and GT1

= G[V1].

Theorem 3.2 Let G be a chordal graph, T a clique tree of G and T1 a subtree
of T having complement. Then GT1

is a chordal graph and T1 is a clique tree
of GT1

.

The following result says that all clique trees can be obtained by cutting
and pasting clique trees.

Theorem 3.3 Let G be a chordal graph, T a clique tree of G, and T1 a subtree
of T having complement. If T ′

1 is a clique tree of GT1
then T ′

1 ∪ T c
1 is a clique

tree of G.

Observe that Theorems 3.1, 3.2, 3.3 can be generalized for subtrees with
no complements.

Corollary 3.4 Let G be a chordal graph, T a clique tree of G. If T1 is a
subtree of T then every clique tree of GT1

is a subtree of a clique tree of G.



4 Leafage of chordal graphs

For a tree T , denote by ln(T ) the number of leaves of T . If G is a chordal
graph, the leafage of G is l(G) = min{ln(T ), T a clique tree of G}. A clique
tree T is called l-optimal for G if ln(T ) = l(G). Clearly, (connected) chordal
graphs with leafage equal to 2 are exactly the (connected) interval graphs. On
the other hand, as we can see in the example of Figure 1, l(G′) = 2, l(G) = 4
but none of l-optimal clique trees of G′ is a subtree of the (unique) clique tree
of G. In this section we will prove that if T is l-optimal for G, some of its
subtrees are l-optimal for the corresponding subgraph.

Let T1 be a subtree of a tree T having complement and v ∈ V (T1)∩V (T c
1 ).

Hence ln(T ) = ln(T1) + ln(T c
1 ), if v is not a leaf of T1 or T c

1 ; ln(T ) = ln(T1) +
ln(T c

1 ) − 1, if v is leaf of only one of them; ln(T ) = ln(T1) + ln(T c
1 ) − 2, if v

is a leaf of both.

Theorem 4.1 Let G be a chordal graph and T a l-optimal clique tree for G.
If T1 is a subtree of T having complement, and v ∈ V (T1) ∩ V (T c

1 ) is not a
leaf of T1 then T1 is a l-optimal clique tree for GT1

.

5 3-asteroidals in chordal graphs

Let t be a vertex of a tree T . For each connected component B, obtained by
removing t of T , the subtree T [V (B) ∪ {t}] is a branch of T incident to t.

Recall that interval graphs are chordal graphs that have no 3-asteroidals.
We will generalize this result proving that for every vertex t of degree at least
3 in a clique tree with minimum number of leaves, there is a 3-asteroidal in
branches incident to t.

Theorem 5.1 Let G be a chordal graph, T a clique tree l-optimal for G, t

a vertex of T of degree at least 3 and R1, R2, R3 3 branches of T incident
to t. Then there is a 3-asteroidal set {x1, x2, x3} of G with xi ∈ Ri for all
i ∈ {1, 2, 3}.

Proof. By induction on l(G). If l(G) = 3 then G is not an interval graph
and G has at least a 3-asteroidal [3]. Since l(G) = 3, there is only one vertex
of degree 3 in T . It is easy to see that no pair of vertices of a 3-asteroidal can
be in the same branch of T incident to t. Hence the Theorem is true.

By the inductive hypothesis, the theorem holds if l(G) < k. Suppose
l(G) = k. Then, there is a tree T , such that ln(T ) = l(G). Let t be a
vertex of T of degree at least 3 and R1, R2, R3 3 branches incident to t. Let
T1 = R1 ∪R2 ∪R3. If T1 6= T by Theorem 3.2 it follows that GT1

is a chordal



graph and T1 a clique tree of it. Since t is not a leaf of T1 and T 6= T1, we
know that l(GT1

) < k. By the inductive hypothesis, since R1, R2, R3 are 3
branches in T1, there is a 3-asteroidal of GT1

, with a vertex in each Ri. Hence
there is a 3-asteroidal of G as required. In the case that T1 = T , then t has
degree 3. Since l(G) > 3, there is another vertex t′ in T of degree at least 3.
Suppose that t′ ∈ R3. Let R be a branch of T incident to t′, not containing t.
Now, we define T1 as Rc and T c

1 = R. Consequently, GT1
is a chordal graph

and T1 is a clique tree of it. Since t′ is not a leaf of T1, by Theorem 4.1,
l(GT1

) = ln(T1) < ln(T ) = k. By the inductive hypothesis, as t is a vertex
of degree 3 in T1 and R1, R2, R

′

3 = R3 ∩ T1 are three branches of T1 incident
to t. Then there is 3-asteroidal of GT1

in these branches. Hence there is a
3-asteroidal of G, as required. 2
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Abstract

We study the problem of, given two finite sequences x and y, finding a repetition-
free longest common subsequence of x and y. We show some algorithmic results,
a complexity result, and a preliminary experimental study based on the proposed
algorithms.

Keywords: Longest common subsequence, APX-hard, approximation algorithms.

1 Introduction

In the genome rearrangement domain, gene duplication is rarely considered as
it usually makes the problem at hand harder. Sankoff [6] proposed the so called
exemplar model, which consists in searching, for each family of duplicated
genes, an exemplar representative in each genome. In biological terms, the
exemplar gene may correspond to the original copy of the gene, which later
originated all other copies. Following the parsimony principle, the choices of
exemplars should be made so as to minimize the reversal distance between the
two simpler versions of both genomes, composed only by the exemplar genes.
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An alternative to the exemplar model is the multigene family model, which
consists in maximizing the number of paired genes among a family. Again, the
gene pairs should be chosen so as to minimize the reversal distance between
the genomes. Both exemplar and multigene models were proven to lead to
NP-hard problems [2,4].

To compare two sequences, we propose a similarity measure that takes
into account the concept of exemplar genes. The measure is the length of
a repetition-free longest common subsequence (LCS) of the two sequences.
The concept behind the exemplar model is captured by the repetition-free
requirement in the sense that at most one representative of each family of
duplicated genes is taken into account. The length of an LCS is a measure
of similarity between sequences, so the length of a repetition-free LCS can
be seen as the edit distance between two sequences where only deletions are
allowed and, furthermore, for each family with k duplicated genes, at least
k − 1 of them must be deleted.

The problem we are interested, denoted by rflcs, consists of the following:
given two sequences x and y, find a repetition-free LCS of x and y. We write
rflcs(x, y) when we refer to rflcs for a generic instance (x, y). We denote by
opt(rflcs(x, y)) the length of an optimal solution of rflcs(x, y).

Bonizzoni et al. [3] considered some variants of the rflcs, such as the case
where some symbols are required to appear in the sought LCS, possibly more
than once. They showed that these variants are APX-hard and that, in some
cases, it is NP-complete just to decide whether an instance of the variants is
feasible. This second complexity result makes these variants less tractable.

We present some algorithmic and some hardness results for the rflcs and
report on some computational experiments with the algorithms proposed.

2 Algorithmic results

We first mention some polynomially solvable cases of rflcs(x, y). If each
symbol appears at most once either in x or in y then the problem is easy: it
is enough to find an LCS of x and y. In this case, any LCS has no repetition
and is therefore a solution of rflcs(x, y). There are polynomial algorithms for
LCS, so this case is polynomially solvable.

For each symbol a and a sequence w, let n(w, a) be the number of appear-
ances of a in w. Let ma(x, y) = min{n(x, a), n(y, a)}. The case above is the
one in which ma(x, y) ≤ 1 for all a. Consider the slightly more general case
in which there is a constant bound k on the number of symbols a for which
ma(x, y) > 1. It is not hard to see that this case is also polynomially solvable.



Now we describe three simple approximation algorithms for the problem:
A1, A2, and A3. Algorithm A1 consists of the following: given x and y,
compute an LCS of x and y and remove all repeated symbols but one, in the
obtained LCS. Return the resulting sequence. Let m be the maximum value
of ma(x, y) taken over all a. It is not hard to see that Algorithm A1 is an
m-approximation for rflcs(x, y).

Algorithm A2 is probabilistic. It consists of the following: given x and y,
for each symbol a, if ma(x, y) = n(x, a), pick uniformly at random one of the
ma(x, y) occurrences of a in x, and delete all the others from x; if ma(x, y) 6=
n(x, a), pick uniformly at random one of the ma(x, y) occurrences of a in y,
and delete all the others from y. Let x′ and y′ be the resulting sequences after
this clean-up. Compute an LCS w′ of x′ and y′ and return w′.

Algorithm A3 is a variant of Algorithm A2 that uses less random bits.
Instead of choosing independently one of the occurrences of each symbol in
the sequences, A3 picks uniformly at random only one number in the interval
[0, 1] and uses it to decide which occurrence of each symbol will remain. The
same number is used to select each of the occurrences of all repeated symbols.
The rest of the algorithm is the same as in Algorithm A2.

Theorem 2.1 Algorithms A2 and A3 are m-approximations for rflcs(x, y),
where m is the maximum of ma(x, y), over all symbols a.

Sketch of the proof. Fix x, y, and a repetition-free LCS w of x and y.
Sequence w can be thought of as a specific subsequence of x and y. Roughly
speaking, each symbol in w has a chance of at least 1/m to be picked in
the random process of both algorithms. So the expected length of the LCS

between x′ and y′ is at least 1/m of |w|. 2

3 Hardness result

We show that rflcs is APX-hard, by presenting an L-reduction [5] to rflcs

from a particular APX-complete version of max 2-sat. Our result implies The-
orems 1 and 2 of Bonizzoni et al. [3], as there are no “mandatory” symbols.

The problem max 2,3-sat(V, C) consists of, given a set C of 2-clauses over a
set V of boolean variables, where each literal may appear in at most 3 clauses
in C, finding an assignment for V that maximizes the number of satisfied
clauses in C. This variant of max 2-sat is APX-complete [1,5]. Assume that, for
any v in V , no clause is of the form {v, v}. Denote by val(max 2,3-sat(V, C), a)
the number of clauses in C that are satisfied by an assignment a and let
opt(max 2,3-sat(V, C)) = max{val(max 2,3-sat(V, C), a) : a is an assignment}.



Theorem 3.1 The problem rflcs is APX-complete even when restricted to

instances (x, y) in which the number of occurrences of every symbol in both x
and y is bounded by two.

Sketch of the proof. Algorithm A1 implies that this case of rflcs(x, y) is in
APX and the following is an L-reduction (see [5]) from max 2,3-sat to rflcs.

For an instance (V, C) of max 2,3-sat, we describe an instance (x, y) of
rflcs. Let V = {v1, v2, . . . , vn} and C = {c1, c2, . . . , cm}. Let k = 6(n − 1)
and D = {d1, d2, . . . , dk} be such that D∩C = ∅. For each literal `, let s(`) be
a sequence composed by the clauses in which ` is present, taken in an arbitrary
order. Let x = s(v1)s(v1)d1 · · · d6s(v2)s(v2)d7 · · · d12s(v3)s(v3) · · · dks(vn)s(vn)
and y = s(v1)s(v1)d1 · · · d6s(v2)s(v2)d7 · · · d12s(v3)s(v3) · · · dks(vn)s(vn).

For each v in V and an assignment a for V , the sequence s(v) contains the
clauses of C that would be satisfied if a(v) = T, and s(v) contains the clauses
of C that would be satisfied if a(v) = F. Since there is no clause {v, v}, then
s(v) and s(v) have no common symbol. In addition, as each literal ` may
appear in at most three clauses of C, we have that |s(`)| ≤ 3. By definition,
C and D are disjoint and each symbol of D occurs once in both x and y. In
addition, as each clause c in C has two literals, and, for each literal `, the
corresponding sequence s(`) appears once in either x or y, it follows that each
symbol c occurs twice in x and also twice in y. 2

4 An IP based exact algorithm for the problem

We show in this section an IP formulation for rflcs(x, y). For each symbol a,
let Ea = {(i, j) : xi = yj = a} and let E =

⋃
a Ea. The set Ea represents all

possible alignments of the symbol a in x and y. We say (i, j) and (k, l) in E
cross if i < k and j > l. For each (i, j) in E, there is a binary variable zij and
linear restrictions on zij so that zij = 1 if and only if xi and yj are aligned in
a repetition-free LCS of x and y. The IP formulation is then as follows.

maximize
∑

(i,j)∈E zij

subject to
∑

(i,j)∈Ea

zij ≤ 1 for each symbol a,

zij + zkl ≤ 1 for each (i, j), (k, l) ∈ E that cross,

zij ∈ {0, 1} for each (i, j) in E.

(1)

Indeed, the first constraint assures that the set {i : zij = 1 for some j}
defines a repetition-free subsequence wx of x and {j : zij = 1 for some i}
defines a repetition-free subsequence wy of y. The second constraint assures



that the order of appearance of the symbols in wx and wy is the same, that
is, wx = wy and therefore we have a common subsequence. The objective
function maximizes the length of such a subsequence.

We used this IP formulation to solve some instances of rflcs, so that we
could evaluate empirically our approximation algorithms. Using a general pur-
pose IP solver, we were not able to solve instances of size over 250. However,
with a specific branch-and-cut algorithm that we implemented, we could solve
most of the instances to optimality.

5 Computational experiments

We tested the three approximation algorithms on two types of randomly gen-
erated instances. In the first type, we considered two parameters: the length
of the sequences and the alphabet size as a function of the length. Each posi-
tion of a randomly generated sequence is one of the symbols of the alphabet
chosen uniformly at random. In these sequences, most of the symbols have
approximately the same number of occurrences.

In the second type, we considered two parameters: the alphabet size and
the maximum number of repetitions of each symbol. For each symbol, we pick
uniformly at random the number of repetitions of this symbol in the sequence,
respecting the given maximum. There is a linear-time (shuffling) procedure
that produces, uniformly at random, a sequence with exactly this number of
repetitions of each symbol. Note that the expected length of the generated
sequence is half of the alphabet size times the maximum number of repetitions.

Owing to space limitation, we do not include the tables with the experi-
mental results, but just comment on them. A first observation is that Algo-
rithm A3 produces the worst results. Also, Algorithm A2 outperforms A1 for
small length (under 50) sequences. For larger sequences, in both experiments,
Algorithm A1 is the best. We also considered the algorithm that runs A1, A2
and A3 and outputs the best of their solutions. We refer to it as Max. It
is interesting to note that Max finds optimal solutions more often than A1,
which means that A2 and A3 complement sometimes the behavior of A1. In
terms of approximation, the ratio between the (average) optimal length and
the (average) length of the solution produced by Max was always no more
than 5/4 (for the instances where we had the optimal value).

We observe that instances with alphabet size between n/4 and 3n/8 seem
to become harder earlier (for shorter instances) in the sense that the approx-
imation algorithms do not find an optimal solution so often. Indeed, except
for these cases, in all other cases, the ratio above was no more than 11/10.



Similar comments hold for the second type instances. For those, the ratio
above is also always at most 5/4.

6 Final remarks

Despite of the not so good theoretical worst case ratio, the experimental results
indicate that the performance of the approximation algorithms is quite satis-
factory for the instance sizes tested. However, it would be nice to test their
performance on larger instances. For them, especially when the sequences have
many repetitions (small alphabet) we can obtain the solution of the approx-
imation algorithms very fast, but we are not always able to find the optimal
value. We are working on the branch and cut algorithm to solve larger in-
stances and hope to confirm the good performance of the approximation algo-
rithms. In any case, it would be interesting to find out whether there is a con-
stant approximation algorithm for rflcs. For the complete computational re-
sults and some proofs, see http://www.ime.usp.br/~cris/publ/rflcs.pdf.
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Abstract

We improve on an O(n5 log n) algorithm by Kats and Levner [3] for 2-cyclic robotic
scheduling. We provide in this work an O(n2 log n) algorithm for this problem.

Keywords: m-cyclic robotic scheduling, polynomial algorithm, automated
manufacturing process optimization.

1 Introduction

The problem considered in this paper stems from the automatized manufac-
turing industry, where robots handle parts from one machine to another. A
manufacturing plan is to be produced that will be repeated over and over
by the manufacturing line. In the problem that we are considering, at every
time at most two parts go through the production line simultaneously. Thus
manufacturing plans can be considered to output exactly two parts from the
line. The shorter this plan is, the greater the throughput of the manufactur-
ing line is. Thus the goal in this problem is to minimize the duration of this
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manufacturing plan. A practical problem of this kind arises in an automated
electroplating line for processing Printed Circuit Boards (PCBs), but similar
problems can be found in many manufacturing settings. We refer to [1] for a
general discussion of scheduling problems in a manufacturing context.

We follow the notation from [3]. A sequential manufacturing line is given,
which consists of machines M1, M2, ...,Mn and parts go through the line in
this order (always). All parts are assumed to be of the same kind. A robot
does the job of handling parts from one machine to the next. The processing
time of a part at machine i is given by pi and the time needed by the robot
to handle a part from machine i to machine i + 1 is denoted by di. An initial
stage M0 and a final stage Mn+1 are defined, so that the time needed by the
robot to input a part into machine M1 and to output it from machine Mn are
considered to be d0 and dn respectively.

The no-wait condition for this problem states that a part must be unloaded
from a machine and handled to the next machine (by the robot) inmediately
after being processed by this machine. This condition is implied by the fact
that no buffer is available at the machines. In Printed Circuit Boards (PCBs)
processing lines for instance a delay in handling a part can deteriorate the
quality of the product.

Thus, given a time Z0 at which a part enters the manufacturing line, it
will exit machine M1 at time Z1 = d0 + p1, it will exit machine M2 at time
Z2 = d0 + p1 + d1 + p2 and in general it will exit machine Mi at a time

Zi = Σi
j=1(dj−1 + pj), i = 1...n.

That is, the behaviour of any particular part, from a timing perspective,
is completely defined and we call this behaviour an elementary schedule. For
example, the following is an elementary schedule, where the di and the pi are
shown on the line.
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Fig. 1. An elementary schedule.

Thus, if only a single part was allowed to go through the manufacturing
line at all times, the general schedule would consist only in a repetition of
elementary schedules, over and over, separated by the time the robot needs to
return from stage Mn+1 to stage M0. But in the 2-cyclic robotic scheduling
problem two parts may go simultaneously through the manufacturing line,



at different machines at the same time (machines are assumed to be able to
process only one part at a time). Therefore, the robot needs to permanently
go back and forth, handling the parts. The time needed by the robot to go
from machine Mi to machine Mj is defined to be rij.

Given the fact that schedules for single parts are fixed, given by elementary
schedules, a schema for a solution to the 2-cyclic robotic scheduling problem
can be given by two parallel sequences of elementary schedules, as follows:

time

elementary schedule

elementary schedule

elementary schedule ...

elementary schedule ...

Fig. 2. A general schedule.

We call this schema a general schedule. The goal of the problem, as said
before, is to tighten as much as possible this general schedule or, equivalently,
to maximize the throughput of the whole manufacturing line. Notice that an
optimal general schedule is always a repetition of pairs (e1, e2) of elementary
schedules, whose length is equal to Zn + dn, where the overlapping between
e1 and e2 is given by τ1, the overlapping between e2 and the next elementary
schedule is given by τ2, both quantities satisfy

τ1 + τ2 + rn+1,0 ≤ Zn + dn,(1)

and both are constant. In fact, assuming a sequence of elementary schedules
that satisfies these conditions, the first appearence of a value τ ′

1 > τ1 for τ1

implies a non optimal general schedule, since τ ′

1 could be reduced to τ1. The
same analysis applies for τ2. For τ1 < τ ′

1, the analysis can be made the other
way around.

Previous studies on this problem can be found in [2,3], but in both cases
with O(n5 log n) algorithms.

2 Our solution

Since elementary schedules are feasible by themselves, the feasibility of the
general schedule is given by the feasibility of the different overlappings that
arise in time, between elementary schedules. We study the set of all possible
(not necessarily feasible) overlappings between two elementary schedules with
a graphic as shown in figure 3, next page. We drew the elementary schedule
from figure 1 at the top of the triangle and we projected this schedule down-
wards and diagonally downwards. Therefore any horizontal line across the
triangle represents a possible intersection between two elementary schedules,



whose length equals the length of the intersection between the horizontal line
and the big triangle.

Fig. 3. A schema of all possible elementary schedule intersections.

Clearly a horizontal line that intersects a darkened parallelogram repre-
sents an unfeasible ovelapping between two elementary schedules, since this
would mean that at a particular moment of time the robot would be per-
forming two handling operations, and this is, by definition of the problem,
impossible. This analysis allows us to discard at once in figure 3 all horizontal
lines that intersect some darkened parallelogram, that is, everything that lies
between lines A and B, or between C and D, or E and F, or G and H, or I
and J, or K and L.

Now, with respect to line A, another analysis is needed: for each particular
machine Mi, the job consists in: (a) receiving a part from machine Mi−1, which
takes an amount of time equal to di−1, (b) processing it, which takes pi, and
(c) letting the part to be handled by the robot to the next machine, and this
takes di. Only afterwards can a new cycle begin, at least with respect to
machine Mi. From this observation, we have that no solution above line A is
feasible, since A is located at maxi=1..ndi−1 + pi + di.



Given the above considerations, feasible overlappings need to be searched
only between B and C, or D and E, and so on.

The last part of the analysis takes into account the rij, that is, the time
the robot needs to move between the machines. We do the analysis based on
figure 4. Basically the extra time the robot needs to go from one machine to
the other needs to be added to the darkened parallelograms.

d jr i+1,j

d i

r j+1,i

Fig. 4. Enlargened parallelograms.

They need to be enlarged upwards and downwards according to the rule
that the parallelogram made from di and dj is enlarged by ri+1,j upwards
and by rj+1,i downwards. Actually, they must be enlarged by the minimum
between these quantities and the distance that goes to the next darkened
parallelogram (going from one darkened parallelogram to the next implies a
change in the rij that needs to be considered).

With everything that has been said until now, we are ready to formulate
an algorithm for the considered problem:

(i) Compute A = maxi=1...ndi−1 + pi + di (this is clearly linear in n in time).

(ii) Generate the set of darkened, enlarged, parallelograms. This set has a
quadratic cardinality. Therefore this part of the algorithm is quadratic
in time.

(iii) Project this set onto the y-axis, thus producing a set of unfeasible inter-
vals for the ovelapping. Add to this set everything that is above A. We
have got all unfeasible overlappings between two elementary schedules.

(iv) Sort this set using an O(m log m) algorithm for that purpose with m = n2,
this step takes O(n2 log n2) = O(2n2 log n) = O(n2 log n) in time. From



this ordered set of intervals compute the set that is equal to its negation,
by going through it sequentially. Clearly the resulting set is also (at most)
quadratic in cardinality and represents the set of feasible overlappings.
Call it I.

(v) Find maxτ1∈[a1,b1],[a1,b1]∈I,τ2∈[a2,b2],[a2,b2]∈Iτ1 + τ2 subject to the restriction:
τ1 + τ2 + rn+1,0 ≤ Zn + dn (restriction (1)).

But this last problem is also O(n2 log n). For instance the following pro-
cedure can be used:

(i) For each interval [a, b] ∈ I:
(a) Search using a binary search, an interval in I that contains any ele-

ment in the interval [Zn +dn−rn+1,0− b, Zn +dn−rn+1,0−a]. If such
an interval is found then the best possible solution to the problem
has been found (exit the loop).

(b) Otherwise find, again using a binary search, the interval [c, d] ∈ I

with c > a closest to Zn + dn − rn+1,0 − a and output (c + a, a, b).

The maximum output for c + a is also the optimum for this problem, where
the optimal values for τ1, τ2 are precisely a and c. In fact, this pair (a, c)
maximizes τ1 + τ2, and c − (Zn + dn − rn+1,0 − a) being positive implies a
feasible solution.

3 Conclusions

We presented in this paper a solution to the 2-cyclic robotic schedule optimiza-
tion problem that runs in O(n2 log n) time. This improves previous solutions
to the problem, which are O(n5 log n). We conjecture that this method can be
generalized to O(nm log n) algorithms for the m−cyclic problem, that is, the
same problem where m parts go simultaneously through the production line.
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1 Introduction

The problem of finding a minimum cardinality set of vertices or arcs that
meets all the cycles of a graph (directed or undirected) is known as Feedback
Set problem. These problems are known to be NP-complete and appear in
Karp’s seminal paper [5]. There are many variants of this classical problem,
some of them consider weights on the vertices or on the arcs. Almost all of
them have been proved to be NP-complete (see [3] for a survey). In this paper,
we study the complexity of new variants: the Positive and Negative Feedback
Set problems.

Let G be a digraph with signs −1 or +1 on the arcs. A cycle of G is said to
be positive (resp. negative) if it has an even (resp. odd) number of negative
arcs. The Positive Feedback Vertex Set problem (PFVS) and Negative Feed-
back Vertex Set problem (NFVS) consist in finding a minimum cardinality
set of vertices that meets all the positive cycles and all the negative cycles,
respectively. Positive Feedback Arc Set problem (PFAS) and the Negative
Feedback Arc Set problem (NFAS) are similarly defined.

Feedback problems are fundamental in combinatorial optimization, having
many applications: circuit design, certain scheduling problems and cryptog-
raphy are some examples. For this reason, they have been extensively studied
[3]. PFVS was introduced in [1], where it was proved that the maximum num-
ber of steady states of a Regulatory Boolean Network (RBN) depends on the
cardinality of the minimum vertex set that meets all the positive cycles of the
connection digraph. The RBNs has been used to model regulatory biological
systems like genetic regulatory networks [1,2], where the steady states are as-
sociated to different cellular phenotypes. In this way, the solution of PFVS
would ease the construction of genetic regulatory networks, which has become
one of the major problems in Biology [6].

In this paper, we prove that PFVS and NFVS are both NP-complete by
the construction of a polynomial reduction from FVS to PFVS and NFVS,
respectively. We use these results to prove that PFAS and NFAS are also
NP-complete. However, the positive version of feedback problems appear to
be more difficult to solve than the negative one. In fact, the computational
complexity of the problem of determining whether a given signed digraph has
an even length cycle (which is equivalent to ask whether the digraph has a
positive cycle, as we will show) remained unknown for several decades. In 1989
Vazirani and Yannakakis [9] proved that Even Cycle is polynomially equivalent
to the problem of testing if a given bipartite graph has a Pfaffian orientation;
which was only proved to be polynomial in 1999 by Robertson, Seymour and



Thomas [8]. On the contrary, to determine whether a given signed digraph has
a negative cycle is easy to solve. This shows the difficulty of finding explicit
polynomial reductions between the positive and negative variants of feedback
set problems.

2 Definitions and notation

Let G = (V,E) be a digraph where V = V (G) and E = E(G) ⊆ V × V are
the vertex and arc set respectively. Let w : E −→ {−1,+1} be a sign function
on the arcs of G. The couple (G,w) is called signed digraph. A cycle in G is a
sequence of vertices v0, v1, . . . , vk in G that for each 0 ≤ i ≤ k− 1, (vi, vi+1) ∈
E, all the vertices are distinct except v0 = vk. A cycle C is called positive
(resp. negative) if the number of negative arcs in C is even (resp. odd). A
vertex (resp. arc) set U ⊆ V (resp. A ⊆ E) is a positive feedback vertex (resp.
arc) set if G−U (resp. G−A) has no positive cycles. Negative feedback vertex
(resp. arc) set is similarly defined. Thus, we define the following decision
problems:

PFVS (resp. NFVS). Given a signed digraph (G = (V,E), w) and k ∈ N.
Does a positive (resp. negative) feedback vertex set U exists such that
|U | ≤ k?.

PFAS (resp. NFAS). Given a signed digraph (G = (V,E), w) and k ∈ N.
Does a positive (resp. negative) feedback arc set A exists such that |A| ≤ k?.

Positive Cycle (resp. Negative). Given a signed digraph (G,w), deter-
mine if there exists a positive (resp. negative) cycle in G.

3 NP-Completeness results

Given a digraph G = (V,E) and a vertex (resp. arc) set U ⊆ V (resp. W ⊆ E)
we can verify if U (resp. W ) is a positive feedback vertex (resp. arc) set by
testing whether G − U (resp. G − W ) has or not positive cycles. Then if
Positive Cycle is polynomial, PFVS and PFAS are in NP.

Proposition 3.1 Positive Cycle is polynomially equivalent to Even Cycle.

Proof. In fact, let us define the reduction function as follows: given a signed
digraph (G = (V,E), w), we define ψ(G,w) = G̃, where G̃ is a digraph in
which each positive arc of G is replaced by a two length path. In this way, a
given cycle C of G is transformed into a longer cycle C̃ of G̃. The length of C̃



is equal to the number of negative arcs of C plus twice the number of positive
arcs of C. Then, if C is positive, C̃ has even length.

On the other hand, a cycle C̃ of G̃ corresponds to a unique cycle C of G
and C̃ has even length if and only if C is positive. In this way Positive Cycle
polinomially reduces to Even Cycle. The converse reduction is straightfor-
ward. 2

Theorem 3.2 PFVS and NFVS are NP-complete.

Proof. It is easy to see that FVS polynomially reduces to PFVS; it is enough
to define w as a constant sign function that assigns +1 to every arc. Let us
prove that FVS polynomially reduces to NFVS. Given a digraph G, we define
the signed digraph φ(G) = (G̃, w) where G̃ is a digraph in which we added, for
each arc of G, a two length path of negative sign, and we assigned +1 to all
the original arcs (see Figure 1). In this way, the digraph G̃ has both a positive

and a negative cycle for each cycle of G, and every cycle of G̃ corresponds to
a unique cycle of G.
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Fig. 1. For each cycle of G, the signed digraph (G̃, w) has both a negative and a
positive cycle.

If we have a negative feedback vertex set for φ(G), it can be composed

by vertices from G and some new vertices of G̃. But each new vertex can be
replaced by its unique incident vertex, which lies in the original vertex set,
obtaining, in this way, a set of the same or smaller size which is a feedback
vertex set of G. Conversely, if U meets the cycles of G, then it also meets the
negative cycles of φ(G), which ends the proof. 2

Theorem 3.3 PFAS and NFAS are NP-complete.

Proof. It is enough to show that PFVS and NFVS polynomially reduces to
PFAS and NFAS respectively. Let us define the following reduction function:
given a signed digraph (G = (V,E), w), we define θ(G,w) = (GST , w̃), where



GST is as follows: for each vertex v ∈ V , GST has two new vertices vs, vt and a
positive arc (vt, vs). For each arc (x, y) ∈ E(G), GST has the arc (xs, yt) with
the same sign that the arc (x, y) (see Figure 2). In this way, there is a one to
one relation between positive (resp. negative) cycles of G and positive (resp.
negative) cycles of GST . On the one hand, if S ⊆ V meets the positive (resp.
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Fig. 2. For each positive (resp. negative) cycle of (G, w), the signed digraph
(GST , w̃) has a positive (resp. negative) cycle and viceversa.

negative) cycles of (G,w), then S̃ = {(vit , vis) ∈ GST : vi ∈ S} meets the
positive (resp. negative) cycles of θ(G,w). On the other, if we have a positive
(resp. negative) feedback arc set for θ(G,w), it can be composed by arcs of
the form (xt, xs) or (xs, yt). In the first case, they correspond to vertices in
G; in the second case, all the positive (resp. negative) cycles that contain it,
also contain the arc (xt, xs). Then we can change each arc of the form (xs, yt)
by (xt, xs). The vertices x in G asociated with these arcs constitute a positive
(resp. negative) feedback vertex set for G. We have simultaneously proved
that the function θ is a polynomial reduction from PFVS to PFAS and from
NFVS to NFAS. 2

4 Concluding remarks

We have shown that Positive Cycle is polynomially equivalent to Even Cycle.
In a similar way we can prove that Negative Cycle is polynomially equivalent
to Odd Cycle [7]. In the case of undirected graphs, these equivalences are still
valid, and Even and Odd Cycle are proved to be polinomial too [4]. We can
also prove that FVS reduces to PFVS; then PFVS is also NP-complete for
this case.

We can also consider graphs with signs on the vertices. In this context,



the corresponding PFVS and NFVS problems are polynomially equivalent to
the problems studied in this paper.

Regarding the solution of these problems we developed a simple greedy
algorithm to solve PFVS. Of course, it is exponential in the worst case; but,
we test it with small signed digraphs and it worked fast. The algorithm is
based on the heuristic that the higher the degree of a vertex, the higher the
probability of participating in an optimal PFVS. This is not always true, but it
works in most of cases. Are the regulatory boolean networks simple instances
for PFVS? Can we define a family of graphs (characterizing the topology of
RBNs) for which PFVS is polinomial?
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Abstract

Reducible flow graphs were first defined by Hecht and Ullman in terms of intervals;
another definition, based on two flow graph transformations, was also presented. In
this paper, we extend the notion of reducibility to directed hypergraphs, proving
that the interval and the transformation approaches are still equivalent when applied
to this family.

1 Introduction

Reducible flow graphs were introduced by [4,5] to model the control flow of
computer programs. Although they were initially used in code optimization
algorithms, several theoretical and applied problems have been solved for that
class [9,11].

The first definition of reducible flow graphs is in terms of intervals [4].
The same authors presented, in [5] another definition, this time based on two
transformations over the flow graph. Tarjan [10] used the second one in order
to present an efficient algorithm for testing whether a flow graph is reducible.
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Directed hypergraphs [1] are a generalization of digraphs and they can
model binary relations among subsets of a given set. Such relationships ap-
pears in different areas such as expert systems [8], parallel programming [7]
and scheduling [6]. Structural properties of directed hypergraphs such as pla-
narity [3] and coloring [12] were also studied.

In this paper, we define flow hypergraphs and we extend the notion of re-
ducibility to this family. We define reducible flow hypergraphs by intervals and
we introduce two transformations, proving the equivalence of the definitions.

2 Basic Notions - Directed Hypergraphs

Basic concepts about directed hypergraphs were introduced by Gallo et al. [1]
and are reproduced here.

Definition 2.1 A directed hypergraph H = (V, A) is a pair, where V
is a non empty finite set of vertices and A is a collection of hyper-arcs. A
hyper-arc a = (X, Y ) ∈ A is an ordered pair where X and Y are non empty
subsets of V . Set X = Org(a) is called the origin and set Y = Dest(a) the
destination of a.

The notation Org and Dest can be extended to a collection A′ of hyper-
arcs. So, Org(A′) = ∪e∈A′Org(e) and Dest(A′) = ∪e∈A′Dest(e).

Definition 2.2 Let H = (V, A) be a directed hypergraph and v ∈ V . We
denote:

BS(v) = {e ∈ A | v ∈ Dest(e)}, the backward star set of v.

FS(v) = {e ∈ A | v ∈ Org(e)}, the forward star set of v.

Definition 2.3 Let H = (V, A) be a directed hypergraph and u and v be
vertices of H. A B-path of size k from u to v is a sequence of hyper-arcs
P = (ei1 , ei2 , ei3 , . . . , eik), such that for each hyper-arc eip of P , 1 ≤ p ≤ k, we
have:

Org(eip) ⊆ (Dest(ei1 , ei2 , . . . , eip−1
) ∪ {u}

Dest(eip) ∩ (Org(eip+1
, eip+2

, . . . , eik) ∪ {v}) 6= ∅.

Org(ei1) and Dest(eik) can be denoted by Org(P ) and Dest(P ), respec-
tively.

Based on the known concept of flow graphs and Def. 2.1 we can define
flow hypergraphs.



Definition 2.4 A flow hypergraph H = (V, A, s) is a triple, where (V, A)
is a directed hypergraph, s ∈ V is a distinguished source vertex, and there is
a B-path from s to every other vertex in V .

Figure 1 shows an example of a flow hypergraph. Note that the sequence
(a, c, d) is a B-path from vertex 1 to vertex 6, but the sequence (a, b, g) is not
a B-path from vertex 1 to vertex 9.
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Fig. 1. An example of a flow hypergraph

3 Reducibility of Flow Hypergraphs

In this section, the notion of reducibility of flow hypergraphs is introduced,
based on the extension of the two already known approaches. We also show
their equivalence.

3.1 Interval Approach

Let H = (V, A, s) be a flow hypergraph. The interval I(v) with header v is
the maximum subset of V recursively defined as follows:

(i) v ∈ I(v)

(ii) Let a = (X, Y ) be a hyper-arc such that ∀y ∈ Y − {v}, Org(BS(y)) ⊆
I(v). If v = s or s /∈ Y then Y ⊆ I(v).

Let H = (V, A, s) be a flow hypergraph, I(s1), I(s2), . . . , I(sk) its maximal
intervals. The flow hypergraph I(H) = (V ′, A′, s), called interval hyper-

graph, is obtained by contracting each maximal interval of H by their head-
ers. The source vertex s is the same, since s is the header of some interval.



This operation can be applied several times, generating flow hypergraphs
H, I(H), I2(H), . . ., Ip(H), being p such that Ip+1(H) = Ip(H). This final
hypergraph is denoted I∗(H). If I∗(H) is a trivial hypergraph (it has only one
vertex and no hyper-arcs), then H is called reducible by intervals.
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Fig. 2. Sequence of interval hypergraphs

Figure 2 shows the sequence H, I(H), I2(H). Hypergraph H is reducible
by intervals, since I2(H) is a trivial hypergraph.

3.2 Transformation Approach

Given a flow hypergraph H, two transformations, T1 and T2, can be defined
on H. These transformations perform the contraction of a hyper-arc.

Let H = (V, E, s) be a flow hypergraph and a = ({x}, {x}) ∈ E be a
simple loop. Transformation T1 applied to a removes the hyper-arc a from H,
resulting in the flow hypergraph H − a.

Let H = (V, E, s) be a flow hypergraph and a = ({x}, Y ) ∈ E be a hyper-
arc with |Org(a)| = 1, such that ∀y ∈ Y − {x}, Org(BS(y)) = {x}; x = s or
s 6∈ Y ; and a is not a simple loop. Transformation T2 applied to a removes
from H the hyper-arc a and identifies vertices of Y with x.

There is a unique flow hypergraph T ∗(H) given by any sequence of appli-
cations of T1 and T2 in H in which T1 and T2 can not be applied. If T ∗(H)
is a flow hypergraph with just one vertex and no hyper-arcs, then H is called
reducible by transformations. See in Figure 3 an example of application
of this transformations.
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Fig. 3. Example of T1 and T2 applications in a flow hypergraph. First (a) T2 is
applied to hyper-arc c, then (b) T2 in hyper-arc d and (c) T1 in the resulting loop e

3.3 Equivalence

Hecht and Ullman proved that for reducible flow graphs both approaches are
equivalent. We extend this result to flow hypergraphs, as stated in Theo-
rem 3.1.

Theorem 3.1 A flow hypergraph is reducible by intervals if and only if it is

reducible by transformations.

The operation of contracting an interval I(v) used to construct I(H) can
be performed by applications of the transformations T1 and T2. There is at
least one hyper-arc in I(v), a = ({v}, Y ), such that T1 or T2 can be applied,
and by induction all the hyper-arcs are removed.

On the other hand, any sequence of applications of T1 and T2 can be
reordered resulting in the same hypergraph. So, the sequence of applications
of T1 and T2 that transforms H into T ∗(H) can be reordered to contract the
intervals.

Based on Theorem 3.1, we call a flow hypergraph which is reducible by
intervals or by transformations simply a reducible flow hypergraph.

4 Conclusion

Focusing on the concept of reducibility we are currently working on the iden-
tification of reducible flow hypergraph classes, and on the the establishment of
the complexity status for the reducible flow hypergraph recognition problem.
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Jesús Leaños

Gelasio Salazar

Instituto de F́ısica, Universidad Autónoma de San Luis Potośı, México

Abstract

For n ≤ 27 we present exact values for the maximum number h(n) of halving
lines and h̃(n) of halving pseudolines, determined by n points in the plane. For
this range of values of n we also present exact values of the rectilinear cr(Kn)
and the pseudolinear c̃r(Kn) crossing numbers of the complete graph Kn. h̃(n)
and c̃r(Kn) are new for n ∈ {14, 16, 18, 20, 22, 23, 24, 25, 26, 27}, h(n) is new for n ∈
{16, 18, 20, 22, 23, 24, 25, 26, 27}, and cr(Kn) is new for n ∈ {20, 22, 23, 24, 25, 26, 27}.

Keywords: Halving lines, rectilinear crossing number, complete graphs

1 Introduction

Let S be an n-point set in R
2 in general position. A k-set of S is a set P

of k points in S that can be separated from S\P using a straight line. The
so called “k-set problem” asks for the maximum number of k-sets that an



n-element set can have. In a similar fashion we say that a directed segment
−−→s1s2 in S is a k-edge if there are exactly k points in S to the right side of
s1s2. It is easy to see that there is a 1-to-1 correspondence between k-sets
and (k − 1)-edges, so an equivalent problem is to find the maximum number
of (k − 1)-edges determined by n points in the plane. When n is even and
k = (n − 2)/2 the k-edges are called halving lines, that is, lines through two
points in S leaving (n − 2)/2 points of S on each side. When n is odd the
halving lines leave (n − 3)/2 and (n − 1)/2 points of S on each side.

An important open problem in discrete geometry is to find the maximum
number h(n) of halving lines that can be determined by n points in the plane.
This was first raised by Erdős, Lovász, Simmons, and Straus [11], [14]. An-
other important and related problem was proposed by Erdős and Guy: find
the minimum number of convex quadrilaterals in a set of n points in general
position. Equivalently, determine cr(Kn), the rectilinear crossing number of
Kn [10], that is, the smallest number of crossings in a drawing of the com-
plete graph Kn, in which every edge is drawn as a straight segment. Further
references and related problems can be found in [8].

All these problems can be formulated in the more general setting of general-
ized configurations of points [13]. A generalized configuration or a pseudocon-

figuration consists of a set of points in the plane together with an arrangement

of pseudolines, such that every pair of points has exactly one pseudoline pass-
ing through them. A pseudoline is a curve in P

2, the projective plane, whose
removal does not disconnect P

2. An arrangement of pseudolines is a collection
of pseudolines with the property that every two of them intersect each other ex-
actly once. In this new setting we can define by analogy k-pseudoedges, halving

pseudolines, and pseudolinear crossing number c̃r(Kn) of Kn. We denote by

h̃(n) the maximum number of halving pseudolines spanned by generalized con-
figurations of n points in the plane. We also let Nk(n) and N≤k(n) denote the
maximum number of (k−1)-pseudoedges, ≤ (k−1)-pseudoedges respectively,
determined by pseudoconfigurations of n points. Trivially, c̃r(Kn) ≤ cr(Kn)

and h(n) ≤ h̃(n).

Here we report improved lower bounds for h̃(n). This improvement is
enough to match the geometric constructions that serve as upper bounds in
the range n ∈ {14, 16, 18, 20, 22, 23, 24, 25, 26, 27}. We also obtain new lower
bounds for N≤bn/2c−1 (n). As a consequence we determine the exact values

of c̃r(Kn), cr(Kn), h̃(n), and h(n) for the same range. The new values are
summarized in Table 1. It is important to note that all of these bounds are
shown to be tight thanks to the remarkable (indeed, as we show, optimal)



geometric constructions obtained by Aichholzer et al. [4].

n 14 16 18 20 22 23 24 25 26 27

h(n) = h̃(n) 22 27 33 38 44 75 51 85 57 96

N≤bn/2c−1 (n) 69 93 120 152 187 178 225 215 268 255

cr (n) = c̃r (n) 324 603 1029 1657 2528 3077 3699 4430 5250 6180

Table 1
New exact values for h(n), h̃(n), cr(Kn), and c̃r(Kn).

Here is the previous history about the quest for (small values of) h(n).
For 2 ≤ n ≤ 8 h(n) is easily obtained, and since all generalized configurations

of points with n ≤ 8 are stretchable [12], then h(n) = h̃ (n) in this range.
Eppstein [9] found point sets with even 10 ≤ n ≤ 18 and a large number
of halving lines. In particular he matched the upper bound found by Stöckl
[16] for h̃ (10). Andrzejak et al. [6] proved h(12) = 18. Later Beygelzimer

and Radziszowski [7] extended this to h̃ (12) = 18 and they also proved that
h(14) = 22. With respect to the odd values, Aichholzer et al. [5] found tight
upper bounds for h (n) with n odd, 11 ≤ n ≤ 21.

Previous to this work, the exact value of cr(Kn) was known for n ≤ 19
and for n = 21 ([5]). For these values of n, it was recently proved that
c̃r(Kn) = cr(Kn) [1]. For general lower and upper bounds see [5], [1], and [3].

2 The Central Bound

In what follows Π denotes a circular sequence on n elements, that is, a doubly
infinite sequence (..., π−1, π0, π1, ...) of permutations on n elements, such that
any two consecutive permutations πi and πi+1 differ by a transposition τi of
neighboring elements, and such that for every j, πj is the reversed permutation
of πj+(n

2
). Goodman and Pollack [13] established a one-to-one correspondence

between circular sequences and generalized configurations of points. Thus we
say that a circular sequence Π is associated to a set of n points S. When Π
corresponds to a geometric drawing of Kn (i.e., each pseudoline is a straight
line) we say that Π is stretchable. In this case S is a set of n points in general
position in the plane. Any subsequence of Π consisting of

(
n
2

)
consecutive

permutations is an n-halfperiod. If τj occurs between elements in positions i
and i+1 we say that τj is an i-transposition. If i ≤ n/2 then any i-transposition
or (n − i)-transposition is called i-critical. If Π is a finite subsequence of Π



then Nk (Π) and N≤k (Π) denote the number of k-critical and (≤ k)-critical
transpositions in Π respectively. A k-transposition corresponds to a (k − 1)-
pseudoedge which also coincides with a (k − 1)-edge if Π is stretchable.

We make use of two known results (A in [2] and [15], B in [5] and [1]):

(A) c̃r(Π) =

bn/2c∑

k=1

(n − 2k − 1)Nk(Π) − (3/4)
(

n
3

)
+ (1/8)(1 + (−1)n+1)

(
n
2

)
.

(B) N≤k(Π) ≥ 3
(

k+1
2

)
+ 3

(
k+1−bn/3c

2

)
− max{0, (k − bn/3c)(n − 3bn/3c)}.

Our main new tool is the following.

Theorem 2.1 Let Π be a circular sequence associated to a generalized con-

figuration of n points. Then

Nbn/2c (Π) ≤





⌊
1
2

(
n
2

)
− 1

2
N≤bn/2c−2 (Π)

⌋
, if n is even,

⌊
2
3

(
n
2

)
− 2

3
N≤bn/2c−2 (Π) + 1

3

⌋
, if n is odd.

Proof. For even n we prove that there must be at least one (n/2 − 1)-critical
transposition between any two consecutive n/2-transpositions τi and τj (i < j).
Suppose τi transposes a and b. Then before τj takes place, at least one element
a or b must leave the center (two middle positions, n/2 and n/2 + 1). This
corresponds to having at least one (n/2 − 1)-critical transposition between
τi and τj. In a given halfperiod the same holds for the last and first n/2-
transpositions. Thus Nn/2 (Π) ≤ Nn/2−1 (Π). Since N≤bn/2c (Π) =

(
n
2

)
then

2Nbn/2c (Π) ≤
(

n
2

)
−N≤bn/2c−2 (Π) and the result follows.

For odd n, let τ ′
1, τ

′
2, ..., τ

′
w with w = N(n−3)/2 (Π) be the (n − 3) /2-critical

transpositions of a halfperiod Π ordered by their occurrence within Π. As-
sume without loss of generality that the first transposition of Π is τ ′

1. Let
bi be the number of (n − 1) /2-critical transpositions that occur after τ ′

i and
before τ ′

i+1 (or the end of the halfperiod if i = w). Note that bi ≤ 3 since the
three elements in the center (that is, those elements in the middle three posi-
tions (n ± 1) /2 and (n + 3) /2) remain in the center between two consecutive
(n − 3) /2-critical transpositions. We prove that if bi = bj = 3 for some i < j
and no other b in between equals 3, then there is some l between i and j such
that bl ≤ 1. Thus either at most one bi = 3 or the average of b1, b2, ..., bw is
≤ 2. Thus N(n−1)/2 (Π) =

∑w
i=1 bi ≤ 2w + 1 = 2N(n−3)/2 (Π) + 1.

Now note that j 6= i + 1 since all three elements in the center were trans-
posed between τ ′

i and τ ′
i+1 and two of them remain in the center between τi+1

and τi+2 (or the end of Π). That is, bi+1 ≤ 2. Assume by way of contradiction



that bl = 2 for all i < l < j. One of the three transpositions after τ ′
j does

not involve the new element brought to the center by τ ′
j. Thus this trans-

position can take place right before τ ′
j without modifying N≤k (Π) (the other

two transpositions switched order). But now bj−1 = 3, i.e., the gap between
“threes” was reduced. We can do the same until bi+1 = 3 which is impossible.
Finally since N≤bn/2c (Π) =

(
n
2

)
then 3Nbn/2c (Π) ≤ 2

(
n
2

)
− 2N≤bn/2c−2 (Π) + 1

and the result follows. 2

3 New exact values of h(n), h̃(n), cr(Kn), c̃r(Kn)

Theorem 1 gives a new upper bound for h̃ (n) if we use the bound (B) for
N≤bn/2c−2 (Π). The numerical values of this bound in our range of interest
are shown in Table 1. From Theorem 1 and the fact that N≤bn/2c−1 (Π) =(

n
2

)
−Nbn/2c (Π) we obtain that N≤bn/2c−1 (Π) ≥

⌈
1
2

(
n
2

)
+ 1

2
N≤bn/2c−2 (Π)

⌉
if n

is even, and N≤bn/2c−1 (Π) ≥
⌈

1
3

(
n
2

)
+ 2

3
N≤bn/2c−2 (Π) − 1

3

⌉
if n is odd. Then,

by applying the bound in (B) for N≤bn/2c−2 (Π), we get for n ≥ 10

N≤bn/2c−1 (n) ≥





(
n
2

)
−

⌊
1
24

n(n + 30) − 3
⌋

if n is even,
(

n
2

)
−

⌊
1
18

(n − 3)(n + 45) + 1
9

⌋
if n is odd.

This lower bound is at least as good as (B) with k = bn/2c − 1 for all even
n ≥ 10 and all odd n ≥ 21. In Table 1 we show the bounds obtained for
our range of n values. We also calculate a new lower bound for c̃r(Kn) using
(A) with Nbn/2c (n) =

(
n
2

)
, the previous bound for N≤bn/2c−1 (n) , and (B) for

k ≤ bn/2c − 2. All the bounds shown in Table 1 are attained by Aichholzer’s
et al. constructions [4], and thus Table 1 actually shows the exact values of

h̃ (n), h (n), N≤bn/2c−1 (n), c̃r(Kn), and cr(Kn) for n in the specified range.
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[11] P. Erdős, L. Lóvasz, A. Simmons, E. G. Straus, Dissection graphs of planar
point sets. In: A survey of Combinatorial Theory, J. N. Srivastava et al., eds.,
North-Holland 1973, 139-149.

[12] J. E. Goodman, R. Pollack, Proof of Grünbaum’s conjecture on the
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Abstract

To any graph G we can associate a simplicial complex ∆(G) whose simplices are the
complete subgraphs of G, and thus we say that G is contractible whenever ∆(G) is
so. We study the relationship between contractibility and K-nullity of G, where G

is called K-null if some iterated clique graph of G is trivial. We show that there are
contractible graphs which are not K-null, and that any graph whose clique graph
is a cone is contractible.

Keywords: clique graphs, homotopy type, contractibility.



This extended abstract reports on a part of the paper [16], where more
results, details and proofs can be found.

Our graphs are simple, finite, connected and non-empty. Making a noun
out of an adjective, we often refer to complete subgraphs just as completes.
We identify induced subgraphs (hence completes) with their vertex sets. A
clique of a graph is a maximal complete. The clique graph of a graph G is the
intersection graph K(G) of the set of all cliques of G. Iterated clique graphs

Kn(G) are defined by K0(G) = G and Kn+1(G) = K(Kn(G)).

We say that G is K-null if Kn(G) is the trivial (i.e. one-vertex) graph
for some n ≥ 0; if n is minimal, it is called the (nullity) index of G. More
generally, if there are m, n with m 6= n such that Km(G) ∼= Kn(G), we say
that G is K-convergent. It is easy to see that if G is not K-convergent, then
the sequence of orders |Kn(G)| tends to infinity, and in this case we say that
G is K-divergent. The first examples of K-divergent graphs were given by
Neumann-Lara [18]: defining the n-th octahedron On as the complement of
the disjoint union of n copies of K2, then one has K(On) ∼= O2n−1 , and so On

is K-divergent for n ≥ 3.

Given a graph G, the complex of completes of G is the simplicial complex
∆(G) whose simplices (or faces) are the complete subgraphs of G. On the
other hand, we say that a simplicial complex ∆ is Whitney if ∆ = ∆(G) for
some graph G (note that the only candidate for G is the 1-skeleton of ∆).
Whitney complexes are also called flag complexes or clique complexes in the
literature. We can thus attach topological concepts to G via the geometric
realization |∆(G)| of its associated complex. For instance, we say that a graph
G is a disk (or a sphere) whenever |∆(G)| is so, in which case we can also
say that G is a Whitney triangulation of the disk (or a sphere). Again, G is
contractible when |∆(G)| is so and, more generally, we refer to the homotopy

type of G as that of |∆(G)|. For example, the homotopy type of On is that of
the sphere Sn−1.

The study of the clique operator under the topological viewpoint of the
complex of completes was initiated by Prisner in [19] and has been further
pursued in [10,11,12,13,15]. In this work, we explore the relation between K-
nullity and contractibility of graphs. For a long time, we thought that several
examples, results, problems and conjectures in the literature hinted at the
equivalence of these concepts. Let us just mention three of them: Trees, which
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are the easiest examples of contractible graphs, are known to be K-null since
the earliest result on iterated clique graphs: Hedetniemi and Slater proved in
[9] that if G is connected, triangleless and with at least three vertices, then
K2(G) is obtained from G by removing the vertices of degree one. Or take
the K-null graphs Fn, H

i

n
which were studied by Bornstein and Szwarcfiter in

[4]: they are Whitney triangulations of the disk, thus contractible. In fact, it
is conjectured in [14] that every Whitney triangulation of the disk is K-null,
and this has been proved in [13] for the particular case in which each interior
vertex has degree at least six.

We proved in this work that K-nullity and contractibility are not equiva-
lent, as there are contractible graphs which are K-divergent:

In fact, this example also disproves a related conjecture we upheld for
some time: this graph is contractible but its clique graph is not. By adapting
this example we can obtain a comparability graph which is contractible and
K-divergent. This gives a new answer to a problem in [8] and [22], and also
settles a question that remained unanswered in [14].

The remaining question of whether K-null graphs are always contractible
was also tackled. We believe that this is true, but it seems to be difficult to
prove and we give only partial results. The first non-trivial case (index 2) is
posed by clique-complete graphs (i.e. graphs G with K(G) complete) which
were previously studied by Lucchesi, de Mello and Szwarcfiter [17]. Using a
result that goes back to Prisner [19] one can see that all critical clique-complete
graphs are contractible: one uses the classification in [17] and the fact that
these graphs have always a dominated vertex whose removal leads to a graph
having a universal vertex. But not all clique-complete graphs can be shown
to be contractible by this kind of simple argument, as some of the non-critical
ones do not have dominated vertices. Thus, we need stronger techniques even
for clique-complete graphs.



It turns out that not only all clique-complete graphs are contractible, but
that also all clique-cone graphs (i.e. graphs G such that K(G) is a cone, that
is, has a universal vertex) are so. Clique-cone graphs are a large part of the
second (index 3) non-trivial case, but they are not all: a graph G has index 3
iff K2(G) is complete, but this does not imply that K(G) is a cone.

Our result on clique-cone graphs is obtained by first proving a result on
simplicial quotients which holds only for Whitney complexes and may be of
independent interest: If ∆ is a simplicial complex and ∼ is an equivalence
relation in V (∆), the simplicial quotient ∆/∼ has vertex set V (∆)/∼ and
faces { π(σ) : σ ∈ ∆ }, where π : V (∆) → V (∆/∼) is the natural projection.
It follows immediately that ∆/∼ is indeed a simplicial complex and that each
of its maximal faces is the image under π of a maximal face of ∆. We only use
simplicial quotients ∆/∼ where ∼ has just one non-singular equivalence class
and this class is a face C of ∆; in this case, we denote the quotient as ∆ /C
and say that it is obtained from ∆ by shrinking the face C. In general, ∆ /C
does not need to have the same homotopy type as ∆. However, for Whitney
complexes, shrinking a face does not alter the homotopy type. Indeed, we
have the following result, which is the strongest possible simplicial analogue
of the Contractible Subcomplex Lemma (see Lemma 10.2 of [3]):

Theorem 0.1 Let G be a graph and ∆ = ∆(G) its associated simplicial com-

plex. Let C be a complete subgraph of G and put ∆′ = ∆ /C. Then ∆′ ' ∆.
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Abstract

A generalized configuration is a set of n points and
(
n
2

)
pseudolines such that each

pseudoline passes through exactly two points, two pseudolines intersect exactly
once, and no three pseudolines are concurrent. Following the approach of allowable
sequences we prove a recursive inequality for the number of (≤ k)-sets for generalized
configurations. As a consequence we improve the previously best known lower bound
on the pseudolinear and rectilinear crossing numbers from 0.37968

(
n
4

)
+ Θ

(
n

3
)

to
0.379972

(
n
4

)
+ Θ

(
n

3
)
.

Keywords: k-sets, ≤ k-sets, rectilinear crossing number, pseudolinear crossing
number, complete graphs

1 Introduction

A pseudoline is a curve in the projective plane whose removal does not dis-
connect it, or alternatively, a simple curve in the plane that extends infinitely



on both directions. A generalized configuration consists of
(

n
2

)
pseudolines

and n points such that each pseudoline passes through exactly two points,
two pseudolines intersect exactly once, and no three pseudolines are concur-
rent. A simple allowable sequence on n points is a doubly infinite sequence
Π = (. . . , π−1, π0, π1, . . .) of permutations on n elements, such that any two
consecutive permutations differ by a transposition of neighboring elements,
and such that for every j, πj is the reversed permutation of πj+(n

2
). Then Π

is determined by π0, . . . , π(n

2
) and any given transposition occurs exactly once

on this interval.

Allowable sequences were introduced by Goodman and Pollack [8], who
proved a correspondence between the set of simple allowable sequences and
the set of generalized configuration of points. When all the pseudolines are
straight lines, the generalized configuration is completely determined by the
set of points. In [2] two well-known concepts for configurations of points in
general position in the plane were extended to generalized configurations: k-

sets and rectilinear crossing number of Kn (see [6] for more references and
related problems). Given an n-point set P and k ≤ n/2, a k-set is a subset
of k points in P that can be separated from the rest by a straight line. The
rectilinear crossing number of Kn, denoted cr(n), is the maximum number
of crossings determined by a complete geometric graph on n vertices. In the
more general setting, the k-sets of Π are the subsets of {1, 2, . . . , n} of size
k that occupy the first or last k positions in a permutation of Π. These
are determined by k-critical transpositions, that is, those that occur between
elements in positions k and k+1 or n−k and n−k+1. Denote by Nk (Π) the
number of k-critical transpositions of Π. Also let N≤k (Π) =

∑k
j=1 Nj (Π) and

N>k (Π) =
(

n
2

)
−N≤k (Π), called the number of (≤ k)-sets and (> k)-sets of Π,

respectively. Let c̃r(Π) denote the number of pseudoline crossings in Π. Then
the pseudolinear crossing number of Kn is defined as c̃r(n) = min|Π|=n c̃r(Π).
Clearly c̃r(n) ≤ cr(n). The next relationship between k-sets and crossing
numbers was proved in [2] and [9],

c̃r(Π) =

bn/2c∑

k=1

(n − 2k − 1)N≤k (Π) + Θ(n3). (1)

The problem of determining the rectilinear crossing number was proposed
by Erdős and Guy [7] and is equivalent to finding the minimum number of
convex quadrilaterals in a set of n points in general position. The best known
upper bound, c̃r(n) ≤ cr(n) ≤ 0.380548

(
n
4

)
+ Θ(n3), is attained by a recursive



construction in [3] using as a starting point a suitable 90-point set. On the
other hand, N≤k (Π) was bounded in [1] (and in [5] in the rectilinear case) by

N≤k (Π) ≥ 3
(

k+1
2

)
+ 3

(
k+1−bn/3c

2

)
− max {0, (k − bn/3c)(n − 3bn/3c)} . (2)

This in turn implies the previously best known lower bound [1]: cr(n) ≥
c̃r(n) ≥ 0.37968

(
n
4

)
+ Θ (n3).

In this work we first bound the (> k)-sets in terms of the k-sets in Theorem
2.1. Using this theorem with (1) and (2), we obtain cr(n) ≥ c̃r(n) ≥ 277

729

(
n
4

)
+

Θ (n3) > 0.379972
(

n
4

)
+ Θ (n3). It is important to note that this is the first

time that a lower bound on cr(n) and c̃r(n) follows from the central behavior

of a generalized configuration (a bound on the (> k)-sets, i.e., all k-sets with
k close to n/2) rather than on its boundary behavior (a lower bound on the
(≤ k)-sets, i.e. all k-sets with k far from n/2).

2 The Central Theorem

Given a permutation πj of Π and k ≤ n/2, we denote by C (k, πj), the set of
elements in the middle n − 2k positions of the permutation πj. Let

sk = min

{
|C (k, π0) ∩ C (k, πi)| : 0 ≤ i ≤

(
n

2

)}
.

Theorem 2.1 Let Π be a generalized configuration of n points. Then

N>k (Π) ≤ (n − 2k − 1)Nk (Π) − sk

2
(Nk (Π) − (n − 1)) .

In [4] we prove Theorem 2.1 for k = bn/2c−1. In fact, for such k we prove
N>k (Π) ≤ (n − 2k − 1)Nk (Π) which does not depend on sk but is not true

for all k. Intuitively, to bound the number of transpositions in the middle
n− 2k − 1 positions of Π it is important to know how many elements remain
in the middle positions at any given time. This is why we must involve sk.
Given Π, we first modify it in such a way that the transpositions within the
first or last k positions remain intact. This transformation also guarantees
that N>k (Π), Nk (Π), and sk do not change, and allows us to control the
(> k)-critical transpositions to count them depending on sk.

Because of the space limitations we cannot include the proof of the theorem
here. It will appear in the full version of this paper. We choose instead to
show the consequences of this result to the number of (≤ k)-sets and to the
pseudolinear and rectilinear crossing numbers.



3 New Lower Bound for N≤k (Π)

Let m = d(4n − 2)/9e. Define for every n the following recursive sequence:

um−1 = 3

(
m

2

)
+ 3

(
m − bn/3c

2

)
− 3

(
m − 1 −

⌊n

3

⌋)(n

3
−
⌊n

3

⌋)
and

uk =

⌈
1

n − 2k

((
n

2

)
+ (n − 2k − 1)uk−1

)⌉
for k ≥ m.

The next lemmas give useful estimates for the sequence uk and are needed
for the proofs of Theorem 3.3 and Corollary 3.4. They can be proved by
elementary inductive arguments.

Lemma 3.1 For any k, m − 1 ≤ k ≤ (n − 3)/2:

3

√
1 − 2k + 5/2

n
≤

(
n
2

)
− uk(

n
2

)
− um−1

≤ 3

√
1 − 2k

n
.

Lemma 3.2 For any k, m ≤ k ≤ (n − 3)/2:

3

√
1 − 2k + 5/2

n

((
n

2

)
− um−1

)
≥ (n − 1) (n − 2k − 1) .

This is the new lower bound that follows once Theorem 2.1 is established:

Theorem 3.3 For any generalized configuration Π and any k, m − 1 ≤ k ≤
(n − 2)/2 we have N≤k(Π) ≥ uk.

Proof of Theorem 3.3. We proceed by induction on k. If k = m − 1 the
result is true by the bound in (2). Assume k ≥ m and N≤k−1(Π) ≥ uk−1. From
Theorem 2.1, if s = 0 or Nk(Π) ≥ n − 1 then N>k(Π) ≤ (n − 2k − 1)Nk(Π).
Thus (

n

2

)
−N≤k(Π) ≤ (n − 2k − 1) (N≤k(Π) −N≤k−1(Π)) ,

and then by induction

N≤k(Π) ≥ 1

n − 2k

((
n

2

)
+ (n − 2k − 1)uk−1

)
.

This implies that N≤k(Π) ≥ uk by definition of the sequence uk.



Now assume sk > 0 and Nk(Π) < n − 1. It is easy to see that (c.f. [9])
Nk(Π) ≥ 2k + 1, thus k ≤ (n − 3)/2. From Theorem 2.1 we have that

N>k(Π) ≤ (n − 2k − 1 − sk

2
)Nk(Π) +

sk

2
(n − 1)

and since n − 2k − 1 − sk/2 > n − 2k − 1 − sk ≥ 0 and Nk(Π) < n − 1, then

N>k(Π) < (n − 2k − 1 − sk

2
)(n − 1) +

sk

2
(n − 1) = (n − 1) (n − 2k − 1) .

Therefore

N≤k(Π) >

(
n

2

)
− (n − 1) (n − 2k − 1) .

Then by Lemmas 3.1 and 3.2 we have that N≤k(Π) ≥ uk. 2

Corollary 3.4 For any generalized configuration Π and any k, m − 1 ≤ k ≤
(n − 2)/2 we have

N≤k(Π) ≥
(

n

2

)
− 1

9

√
1 − 2k

n

(
5n2 − 25n + 4

)
.

Proof. Follows directly from Theorem 3.3, Lemma 3.1, and the fact that
um−1 ≤ 3

(
m
2

)
+ 3
(

m−bn/3c
2

)
≤ 3
(
(4n+6)/9

2

)
+ 3
(
(n+10)/9

2

)
. 2

Corollary 3.5 cr(n) ≥ c̃r(n) ≥ 277
729

(
n
4

)
+ Θ(n3) > 0.379972

(
n
4

)
+ Θ(n3).

Proof. According to (1), if Π is a generalized configuration on n points then

c̃r(Π) =

(
n

4

)
24

bn/2c−1∑

k=1

1

n

(
1 − 2k

n

) N≤k (Π)

n2


+ Θ

(
n3
)
.

Now, using (2) we know that for 1 ≤ k ≤ m − 1,

N≤k (Π)

n2
≥ 3

2

(
k

n

)2

+
3

2
max

(
0,

k

n
− 1

3

)2

− Θ

(
1

n

)
.

Similarly, if m ≤ k ≤ (n − 2)/2 then by Corollary 3.4,

N≤k (Π)

n2
≥ 1

2
− 5

9

√
1 − 2k

n
+ Θ

(
1

n

)
.



Therefore

c̃r(Π) ≥
(

n

4

)(
24

∫ 4/9

0

3

2
(1 − 2x)

(
x2 + max

(
0, x − 1

3

)2
)

dx

)

+

(
n

4

)(
24

∫ 1/2

4/9

(1 − 2x)

(
1

2
− 5

9

√
1 − 2x

)
dx

)
+ Θ(n3)

≥
(

n

4

)(
86

243
+

19

729

)
+ Θ(n3) =

277

729

(
n

4

)
+ Θ(n3).

2
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Abstract

A graph G has a nowhere-zero k-flow if there exists an orientation D of the edges
and an integer flow φ such that for all e ∈ D(G), 0 < |φ(e)| < k. A (1, 2)-factor is a
subset of the edges F ⊆ E(G) such that the degree of any vertex in the subgraph
induced by F is 1 or 2. It is known that cubic graphs having a nowhere-zero k-flow
with k = 3, 4 are characterized by properties of the cycles of the graph. We extend
these results by giving a characterization of cubic graphs having a nowhere-zero
5-flow based on the existence of a (1, 2)-factor of the graph such that the cycles of
the graph satisfies an algebraic property.

Keywords: nowhere-zero flow factor

1 Introduction

Let G = (V, E) be a simple directed graph without bridges. A flow in G is a
nowhere-zero k−flow if its values are in {−(k − 1), . . . , k − 1} \ {0}.

It is easy to see that if G has a nowhere-zero k−flow then every directed
graph obtained from G by reversing the orientations of some of its arcs also

1 Partially supported by CONICYT grant.



has a nowhere-zero k−flow. This shows that the existence of a nowhere-zero
k−flow of G is a property of the underlying undirected graph.

The concept of nowhere-zero k-flow was introduced by Tutte [6] as a re-
finement and a generalization for the face coloring problem in planar graphs.
In terms of the four-color Theorem it says that every bridgeless planar graph
has a nowhere-zero 4-flow. This result can not be extended to any bridgeless
graph since the Petersen graph has no a nowhere-zero 4-flow. However, in [7]
Tutte formulated his famous 5-flow conjecture which still is open:

Conjecture 1.1 Every bridgeless graph admits a nowhere-zero 5-flow

Work about Conjecture 1.1 have focused in properties of a minimal coun-
terexample (see [3],[2],[1]) and into the study of structural properties of graphs
having a nowhere-zero 5-flow (see [5]).

The best approximation for Conjecture 1.1 is a result of Seymour [4] where
he proved that every bridgeless graph has a nowhere-zero 6-flow.

The motivation for studying this conjecture in cubic graphs has two sources.
First, it is known that for the Conjecture 1.1 to be true, it is enough to prove
it for cubic graphs. Second, for cubic graphs there exist well known charac-
terizations of the existence of nowhere-zero k-flow for k = 3, 4. These char-
acterizations provide some intuition about the structural properties of cubic
graph admitting nowhere-zero k−flow.

On one hand, Tutte gave the following characterization.

Theorem 1.2 [6] Let G be a cubic graph. G admits a nowhere-zero 3-flow if
and only if G is bipartite

This result can be seen as a parity condition that must satisfy all cycles
of a cubic graph to admit a nowhere-zero 3−flow. The parity condition being
that each cycle has even length.

On the other hand, for nowhere-zero 4−flow we only need to check this
parity property in the complement of a perfect matching.

Theorem 1.3 Let G = (V, E) be a cubic graph. G has a nowhere-zero 4-flow
if and only if G has a perfect matching M such that all the cycles in G −M

have even length.

This condition can also be formulated in a more algebraic way: for each
cycle C of G, l(C)2|M∩E(C)| ≡ 0 modulo 2, where l(C) is the length of C and
E(C) is the set of edges of C. Notice that in this formulation the condition
depends on M and must be satisfied for all the cycles.

In Section 2 we state Theorem 2.2 which is our main result. It is somehow



similar to Theorem 1.3 since it characterizes the existence of nowhere-zero
5−flow in terms of an algebraic condition that must satisfy all cycles. In our
case, the algebraic condition is stated in terms of a subset of edges F such
that each vertex of G is incident with 1 or 2 edges of F . This kind of sets is
known as (1, 2)-factors. As a by product, we obtain in Section 3 a relation
between nowhere-zero 5-flow and 4-edge-colorings.

It is known by ([7]) that a graph admits a nowhere-zero k-flow if and only
if it admits a Γ-flow where Γ is an abelian group of cardinality k.

In the following, we will work with nowhere-zero Zk-flows instead of nowhere-
zero k-flows and we will consider only cubic graphs.

2 Nowhere-zero Z5-flow and (1, 2)−factors

In this section we give a new characterization of cubic graphs admitting a
nowhere-zero Z5-flow.

We note that in the group Z5 the flow equation for cubic graphs have the
following property:

Lemma 2.1 In the group Z5, x + y + z = 0 if and only if {x, y, z} ∈
{{1, 1, 3}, {4, 4, 2}, {2, 2, 1}, {3, 3, 4}}

In order to state our main result, we need some definitions.

Let us assume that G has a nowhere-zero Z5-flow φ. By Lemma 2.1, it is
easy to see that at each vertex at least one edge has flow 1 or 4 and at least
one edge has flow 2 or 3. Let us color the edges having flow 1 or 4 with color
red and the remaining edges with color blue. This splits the set of edges into
two (1, 2)−factors corresponding to the sets of edges with color red and the
set of edges with color blue, which we call the (1, 2)−factors induced by the
nowhere-zero Z5−flow φ.

Now let F be a (1, 2)−factor of the graph G = (V, E). We say that two
adjacent edges (sharing a vertex) are F−related if both belong to F or both
belong to E \ F . Let v be a vertex and let e, e′ and e′′ be its three incident
edges. The F−parity of the pair (e, e′), pF (e, e′), is 2 when e, e′ are F−related.
It is 1 when e and e′′ are F−related and it is 3 when e′ and e′′ are F−related.
Notice that the F−parity of (e′, e) is the inverse in Z4 of the F−parity of
(e, e′) (see Figure 1 where the continuous edges are in F ).

Let
−→
C = (e1, e2, . . . , en, e1) be a cycle of G. We define the F−parity of

−→
C as the sum of the F−parities of (ei, ei+1), for i = 1, . . . , n − 1, plus the

F−parity of (en, e0). Notice that the F -parity of
−→
C is the additive inverse in



e v e vv

pF (e, e′) = 2 pF (e, e′) = 3pF (e, e′) = 1

e′′ e′′

e
e′ e′ e′

e′′

Fig. 1.

Z4 of the F -parity of the
←−
C = (en, en−1, . . . e1, en), the cycle with the reverse

order. We say that C is F−null if its F−parity of
−→
C is zero in Z4.

Now we can state our main result which is a characterization of cubic
graphs admitting a nowhere-zero Z5−flow.

Theorem 2.2 Let G = (V, E) be an undirected cubic graph. G admits a
nowhere-zero Z5-flow if and only if there exists a (1, 2)-factor F such that
every cycle C of G is F -null

Proof (Sketch)

To proof the forward direction we define F as a (1, 2)−factor induced by
a nowhere-zero Z5−flow φ of G. It is not hard to see that the sum of the
F−parities over the vertices in a path P of G is zero modulo 4 if and only
if the sum of φ(e) over the edges not in P incident with the inner vertices of
P is zero modulo 5. In order to prove that each cycle is F−null we use the
fact that for each cycle C the sum of φ(e) over the cut defined by C is zero
modulo 5.

To prove the backward implication we take a spanning tree T ⊆ E of G

with root r and D(E) an orientation of G. We will define a nowhere-zero Z5-
flow such that an arc has value 1 or 4 if it is in F and value 2 or 3 if not. We note
that under the previous assumption and by Lemma 2.1, for any vertex v there
are only two possibles solutions for the flow equation of its incident arcs. Let
us call ϕv,i, with i = 1, 2 these solutions. We define a function π : V → {1, 2}
such that π(r) = 1 and for all arcs e = (u, v) in T, ϕu,π(u)(e) = ϕv,π(v)(e). If at
some arc f = (x, y) not in T, ϕx,π(x)(f) 6= ϕy,π(y)(f), it can be shown that the
cycle formed by f in T is not F−null. Since for all the arcs its endvertices
define the same solution, then the function ϕ : D(E) → Z5 such that for all
e = (u, v) ∈ D(E), ϕ(e) = ϕu,π(u)(e) is a nowhere-zero Z5-flow of G. 2

Note 1 We note that as we only need to check the property for the cycles
defined by edges not in T , given the (1, 2)−factor F we can check in polynomial
time whether it is induced by a nowhere-zero Z5−flow.



3 Nowhere-zero 5-flow and 4-edge coloring

In this section we show that Theorem 2.2 can be thought as a characterization
of 4−edge-colorings which defines nowhere-zero 5-flow.

On one hand, the following Theorem completely characterizes the existence
of nowhere-zero 4-flow in terms of edge-colorings.

Theorem 3.1 [7] Let G be a cubic graph. G has a nowhere-zero 4-flow if and
only if G is 3-edge coloreable.

On the other hand, the following result shows that if Conjecture 1.1 is true
then, for all cubic bridgeless graphs there exists a nowhere-zero 5-flow whose
values defines or induces a 4-edge-coloring, it means that for any vertex v the
values of the flow in the edges incident with v are all different. We say that a
vertex v is bad for a nowhere-zero Z5-flow (ϕ, D) if there exists two edge in its
incident edges with the same flow. A path of G is directed if all the interior
vertices of the path have one ingoing and one outgoing arc. A directed path is
(x,−x)-alternating with x ∈ Z5 if the value of the flow in its edges alternate
between x and −x.

Proposition 3.2 Let G = (V, E) be a cubic graph having a nowhere-zero
5-flow φ. Then there exists a nowhere-zero 5-flow φ′ that induces a 4-edge-
coloring of G.

Proof. Let (ϕ′, D′) be a nowhere zero 5-flow that minimize the number of
bad vertices. We assume that there exist a bad vertex u with two incidents
arcs with the same flow x. We note that both start in u or both finish in
u because the third arc can not be zero. In both cases, let e1 = (u, v) one
of them and let P = e1e2 . . . el the longest directed alternating (x,−x)-path
starting with e1. Note that all the interior vertex of P are not bad. Then for
all e ∈ P we define D′′(e) = −D′(e) and ϕ′′(e) = −x. Note that in Z5, x 6= −x

and the third arc can not be neither x or −x. For the rest of the arcs e we
define D′′(e) = D′(e) and ϕ′′(e) = ϕ′(e). Note that for all v ∈ V the flow
equation do not change. Then (ϕ′′, D′′) is a nowhere-zero 5-flow with less bad
vertices than (ϕ′, D′). This contradict the minimality of (ϕ′, D′), then no such
u can exist, so (ϕ′, D′) induce a 4-edge coloring. 2

Unfortunately, there are 4-edge-colorings not induced by a nowhere-zero
5-flow. In the Figure 2 we show a 4-edge coloring of the Petersen graph which
is not induced by a nowhere-zero Z5-flow.

Nevertheless, Theorem 2.2 gives a condition for 4−edge colorings so as they
are induced by nowhere-zero 5-flow. In fact, each 4−edge-coloring defines six



Fig. 2.

possibles (1, 2)−factors. If this 4−edge coloring is induced by a nowhere-zero
5-flow then, at least one of its associated (1, 2)−factors must satisfies the
condition stated in Theorem 2.2. Then by Note 1 we can check in polynomial
time if a 4-edge coloring is induced by a nowhere-zero 5-flow.
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Abstract

We found d1 = d1(n, p) and d2 = d2(n, p) such that almost every (random) graph
G ∈ G(n, p) has retractions to d-dimensional octahedra Od for every integer d

satisfying d1 < d < d2. This result has several important consequences: (the clique
complex of) the random graph has several non trivial homology/homotopy groups,
the random graph is not contractible, the random graph is not homotopy equivalent
to its clique graph and the random graph is clique divergent.
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For every fixed n and p, 0 < p < 1, G(n, p) is the probability space
over the set of graphs on the vertex set {1, . . . , n} with edge probability p:
Pr[{i, j} ∈ E(G)] = p. According to standard practice [4], we say that “Al-
most every graph G ∈ G(n, p) has property Q” whenever Pr[G(n, p) |= Q] → 1
as n → ∞, moreover, following Alon and Spencer [3], we shall also abuse no-
tation and say “The random graph has property Q”. For an extremely well
written introduction to the topic see [21].

A morphism of graphs f : G → H is a function between their vertex sets
f : V (G) → V (H) such that x ' y implies f(x) ' f(y). Note that it is
possible for adjacent vertices in G, x ∼ y to be mapped to the same vertex
f(x) = f(y) in H. As usual, a retraction is a morphism ρ : G → H such that
there is another morphism σ : H → G satisfying ρ ◦ σ = 1H .

We investigated the question of whether the random graph has retractions
to some other graph. Specially, we are interested in retractions from the
random graph to d-dimensional octahedra Od. By definition Od is the only
(2d − 2)−regular graph on 2d vertices. It should be clear that O3 is precisely
(the underlying graph of) the octahedron. More specifically, we are interested
in determining, for every constant p, the values of d = d(n, p) such that almost
every graph G ∈ G(n, p) has a retraction to Od. Our investigations yield the
following theorem:

Theorem 0.1 There are real numbers d1 = d1(n, p) and d2 = d2(n, p), such

that almost every graph G ∈ G(n, p) has retractions to d-dimensional octahedra

Od for every integer d satisfying d1 < d < d2. Moreover d1 and d2 are given

by:

d1 =
1

ln(1/p)
(ln n − ln ln n)

d2 =
1

ln(1/p)

(

ln n −
1

2
ln ln n

)

We mention here that Matthew Kahle [10] has independently investigated
the issue under a different approach: For a fixed d, which values of p =
p(n, d) guarantee a retraction from the random graph to Od. As far as we
know, there is no way for proving his results using ours or viceversa. We
also mention here that the retractions stated in the Theorem imply that the
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random graph has (maximal) cliques of small sizes d (indeed we need this
fact in the proof), compare to Bollobás’ result [4] that, for every ε > 0, only
guarantees the existence of cliques of sizes (1 + ε)1

2
r0 < d < (1 − ε)r0 for

1
2
r0 =

(

1
ln(1/p)

)

(ln n− ln ln n + Θ(1)) which was not enough for our purposes.

Now, the clique graph K(G) of G is the intersection graph of its (maximal)
cliques [8,19]. Iterated clique graphs [9], are defined recursively by K0(G) = G
and Km(G) = K(Km−1(G)). For extensive bibliography on the topic see
[15,22], recent work may be found in [1,2,5,6,12]. Iterated clique graphs have
also been used in Quantum Gravity to explain the quantum space-time as an
emergent property of an underlying, sub-Planck scale, discrete reality [16,17]
and to tackle renormalization problems in Quantum Gravity [18].

The discovery of clique divergent graphs (i.e. the sequence of iterated
clique graphs of G grows without bound) by Vı́ctor Neumann-Lara originally
reported by Escalante in [7] was soon followed by the celebrated Neumann-
Lara’s Retraction Theorem [13] which states that if ρ : G → H is a retrac-
tion and H is clique divergent, then so is G. The first known examples of
clique divergent graphs where precisely the d-dimensional octahedra (indeed
K(Od) ∼= O2d−1), hence, our Theorem yields immediately the following:

Corollary 0.2 The random graph is clique divergent.

There is also a natural way to assign topological properties to graphs G
using its clique complex ∆(G) which is the simplicial complex whose facets
are precisely the cliques of G [14,11] (we refer to [20] for undefined terms on
Algebraic Topology). Then we say, for instance, that G and H are homotopy
equivalent G ' H if the geometric realizations of their clique complexes are
homotopy equivalent |∆(G)| ' |∆(H)|. It is easily seen (since all the transfor-
mations involved are functors) that a retraction of graphs ρ : G → H induces
a retraction of simplicial complexes ρ̂ : ∆(G) → ∆(H), which then induces
a retraction of topological spaces ρ̄ : |∆(G)| → |∆(H)| which finally induces
a retraction of d-dimensional homology groups ρ̃ : Hd(|∆(G)|) → Hd(|∆(H)|).
Now, homology groups are always abelian and retractions between abelian
groups are the same as projections onto direct summands. Hence, we con-
clude that if ρ : G → H is a retraction and Hd(H) is non trivial, then Hd(G)
is also non trivial.

Since |∆(Om)| is (homeomorphic to) the (m − 1)-sphere, we know that
Hm−1(Om) = Z 6= 0. On the other hand, the fact that almost every graph
G ∈ G(n, p) has a retraction to Od, together with Neumann-Lara’s Re-
traction Lemma [13] imply that K(G) has a retraction to K(Od) ∼= O2d−1



which then implies that H2d−1
−1(K(G)) 6= 0. Since the random graph does

not have cliques of sizes greater than 2
ln(1/p)

ln n [4] it follows that whenever

m > 2
ln(1/p)

ln n, Hm(G) = 0 for almost every graph G ∈ G(n, p). In particular

H2d−1
−1(G) = 0. Hence:

Corollary 0.3 The random graph is not homotopy equivalent to its clique

graph. That is, for almost every G ∈ G(n, p), we have |∆(G)| 6' |∆(K(G))|.

Matthew Kahle started the study of random topological spaces [10] by
converting the standard probability spaces of random graphs G(n, p) into the
probability spaces of simplicial complexes ∆(n, p) which are naturally induced
by the mapping G 7→ ∆(G). The fact that the barycentric subdivision of any
simplicial complex is a clique complex, tells us that every simplicial complex
has a representative (up to homeomorphism) in ∆(n, p). In this setting, our
Theorem has the following immediate consequences:

Corollary 0.4 The random complex ∆(n, p) have non vanishing homology

groups in several dimensions. In particular, ∆(n, p) is not contractible.
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1 Introduction

The problem of partitioning the vertex set of a graph subject to a given set
of constraints on adjacencies between vertices in two distinct parts, or among
vertices within a part, is a fundamental problem in algorithmic graph theory.
For example, k-colorability and finding a skew partition, clique or stable cut-
set, or homogeneous set. A partition decision problem asks if a given graph
admits a specific partition.

For a given symmetric k×k matrix M over {0, 1, ∗}, an M-partition [7] is a
partition of the vertex set of a graph into k parts (empty parts are permitted),
corresponding to the rows and columns of M , such that: for i 6= j, if M [i, j] =
0 (resp., 1, ?), then ‘no edges’ (resp., ‘all edges’, ‘no restriction’) are required
between vertices in part i and vertices in part j; if M [i, i] = 0 (resp., 1, ?),
then part i is required to induce a stable set (resp., clique, arbitrary subgraph).
Thus, for any specific matrix M , we have an M -partition decision problem.
In a list M -partition problem, in addition, the input includes for each vertex
v a nonempty list L(v) ⊆ {1, 2, . . . , k}. The problem asks: “Does G admit
an M -partition in which each vertex v is assigned to a part in L(v)?”. For
a given matrix M , a polynomial-time algorithm for list M -partition implies
a polynomial-time algorithm for M -partition with the additional constraint
that all parts be nonempty, via solving O(n4) instances of list M -partition.

A 2K2-partition is a partition of the vertex set of graph into four nonempty
parts A, B, C, D such that each vertex of A is adjacent to each vertex of B,
and each vertex of C is adjacent to each vertex of D. The 2K2-partition

problem can be formulated as an M -partition problem with the additional
requirement that all parts be nonempty.

Every list M -partition problem with M of dimension 4 was classified by
Feder et al. [7] as either solvable in quasi-polynomial time or NP -complete.
In particular, list M -partition, where M is the 2K2-partition matrix, was
classified as NP -complete [4]. Later, Cameron et al. [1] showed that all the
quasi-polynomial-time cases, except one problem and its complement, of the
Feder et al. [7] quasi-dichotomy result are actually polynomial-time solvable.

Dantas et al. [3] studied H-partitions, where the matrix M has dimension
4 and only ∗s on the main diagonal (i.e., no internal constraints are imposed),
and all parts must be nonempty. All the H-partition problems have been
shown to be polynomial-time solvable [1,3,9,7], except 2K2-partition.

The nonempty-part list 2K2-partition problem takes as input a graph
G and four vertices xa, xb, xc, xd ∈ V (G), and asks whether G admits a
2K2-partition such that xa ∈ A, xb ∈ B, xc ∈ C and xd ∈ D. Campos et



al. [2] proved that this case of list M -partition, where M is the 2K2-partition
matrix, and in which input lists have restricted form remains NP -complete.
Therefore, a polynomial-time algorithm for 2K2-partition is not immediately
obtained by solving O(n4) instances of list M -partition.

Feder et al. [6] have shown that all list M -partition problems on cographs
admit polynomial-time algorithms. Further recent work on list M -partitions
of chordal graphs [8] and perfect graphs [5] leaves the complexity of list M -

partition, where M is the 2K2-partition matrix, open for these special classes.

We solve 2K2-partition efficiently for the graph classes: C4-free, spiders
(which can have arbitrary induced subgraphs), P4-sparse (which properly con-
tain cographs), circular-arc, and bipartite.

2 Universal pairs

Let G = (V, E) be a simple graph. An edge universal vertex u is such that
every edge in E is incident to u. A graph is not 2K2-partitionable if it contains
an edge universal vertex. Also, a graph with isolated vertices, |V | ≤ 3, or
|E| ≤ 1 is not 2K2-partitionable. So, we assume that none of these cases hold.

A universal pair is pair of vertices u and v such that N(u) ∪ N(v) ⊇
V \ {u, v} and there exists distinct vertices u′ and v′ in V \ {u, v} such that u

is adjacent to u′ and v is adjacent to v′. Here, N(u) = {w ∈ V |uw ∈ E}.

Lemma 2.1 Let G be a graph. If G has a universal pair of vertices, then G

is 2K2-partitionable.

Indeed, the existence of a universal pair is a special case of the definition
of 2K2-partitionable in which two parts are singleton sets. In the sequel, we
identify several classes of graphs (C4-free, circular-arc, spiders, connected P4-
sparse) for which the Yes answer to 2K2-partition is equivalent to the existence
of a universal pair. Consequently, 2K2-partition is polynomial-time solvable
for these classes of graphs. In addition, we establish the polynomial-time
solvability of 2K2-partition for bipartite graphs, for which this equivalency
does not hold.

3 C4-free graphs and circular-arc graphs

Theorem 3.1 Let G be a C4-free graph. G is 2K2-partitionable if and only
if G has a universal pair of vertices.

Proof. For any 2K2-partition of G one part of each pair {A, B} and {C, D}
is a clique. Thus, G has a universal pair. 2



A graph G is a proper circular-arc graph if G is a circular-arc graph and
G has a circular-arc model where no arc properly contains another arc.

Theorem 3.2 Let G be a circular-arc graph. G is 2K2-partitionable if and
only if G has a universal pair.

Proof. We shall prove by induction that if G is a 2K2-partitionable circular-
arc graph, then G has a universal pair. Let G be a circular-arc graph, and
assume a fixed 2K2-partition P of G. We have the following base cases:

Case 1. G is a proper circular-arc graph and C4-free.
In this case, G has a universal pair by Theorem 3.1.
Case 2. G is a proper circular-arc graph and not C4-free.
Consider a proper arc model for G. It is easy to see that any pair of nonad-
jacent vertices in a C4 of G form a universal pair.
Case 3. The 2K2-partition P of G has a singleton part.
This is the case for any graph with 4 ≤ |V | ≤ 7. Suppose part A = {v}. If
part C or D is a clique, then G has a universal pair. If neither C nor D is a
clique, then G has a C4 with 2 vertices in D and 2 vertices in C. One vertex
w of this C4 must see v; place w in part B. Repeat until either C or D is a
clique. Then, G has a universal pair.

Now suppose |V | ≥ 8 and none of Cases 1, 2, and 3 apply to G and the
given 2K2-partition P . In this case, in any circular-arc model for G there is
an arc v that properly contains an arc u. The graph G−v has a 2K2-partition
formed by removing v from P . Thus, by the induction hypothesis, G − v has
a universal pair, and this pair is a universal pair in G as well. 2

4 Spiders and P4-sparse graphs

A graph is P4-sparse if every set of five vertices induces at most one P4 [10].
This class strictly contains the class of cographs, graphs that do not contain
a P4. A graph G is a spider if the vertex set V admits a partition into sets
S, K and R such that: S is a stable set, K is a clique and |S| = |K| ≥ 2;
and each vertex in R is adjacent to each vertex in K and nonadjacent to each
vertex in S. In addition, in a thin spider every vertex of K has exactly one
private (with respect to K) neighbor in S, and in a thick spider every vertex
of K has exactly one private (with respect to K) non-neighbor in S. A spider
with |S| = |K| = 2, is considered to be thick. Every spider contains a special
P4 with endpoints in S and midpoints in K.

Theorem 4.1 [11] A graph G is P4-sparse if and only if for every induced
subgraph H of G with at least two vertices, exactly one of the following con-



ditions is satisfied: H is disconnected, H is disconnected, or H is isomorphic
to a spider.

Theorem 4.2 Let G be a disconnected graph. G is 2K2-partitionable if and
only if G has exactly two connected components and each component of G is
complement disconnected.

Note in this case, it is possible that G is 2K2-partitionable and there is no
universal pair; for example, take each connected component of G to be a C4.

Theorem 4.3 Let G be a complement disconnected graph. G is
2K2-partitionable if and only if G has a universal pair.

Theorem 4.4 Let G be a spider. G is 2K2-partitionable if and only if G is
a thick spider.

Proof. If G is a thick spider, any two vertices in K form a universal pair.
Suppose G is a thin spider. Consider all the possible ways of placing the
vertices of a special P4 with endpoints in S and midpoints in K. In every
case, a 2K2-partition cannot be completed. 2

Corollary 4.5 Let G be a spider. G is 2K2-partitionable if and only if G has
a universal pair.

It is easy to distinguish thin and thick spiders and find K in a thick spider
by examining vertex degrees.

Corollary 4.6 Given a P4-sparse graph G, it can be decided in polynomial
time whether G has a 2K2-partition. If the answer is Yes, the partition can
also be found in polynomial time.

Proof. Consider the three possible conditions given by Theorem 4.1 for G.2

5 Bipartite graphs

Two edges of a graph G are separable if they induce a 2K2 in G.

Theorem 5.1 Given a bipartite graph G = (X, Y, E), it can be decided in
polynomial time whether G has a 2K2-partition. If the answer is Yes, the
partition can also be found in polynomial time.

Proof. When G is disconnected we refer to Theorem 4.2. |X| ≥ 2 and
|Y | ≥ 2, else G is not 2K2-partitionable.
Case 1. G contains a separable pair of edges xy, x′y′.



Place x in part A and x′ in part D, y in part B and y′ in part C. Now the
problem reduces to an instance of 2-SAT.
Case 2. G does not contain a separable pair of edges.
In this case, for any pair of vertices xi, xj, N(xi) ⊆ N(xj) or N(xj) ⊆
N(xi). Order the vertices of X by |N(xi)| from largest to smallest: |N(x1)| ≥
|N(x2)| ≥ . . . ≥ |N(xs)|. If G is complete bipartite, G is 2K2-partitionable.
Otherwise, note that N(xs) 6= Y , and a 2K2-partition is obtained by setting:
A = {x1}, B = Y \ N(xs), C = N(xs), D = X \ {x1}. 2

Note a bipartite graph G may be 2K2-partitionable and there is no uni-
versal pair; for example, the case where G is two C4s joined by a single edge.
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Abstract

Mine planning models have proved to be very effective in supporting decisions
on sequencing the extraction of material in copper mines. These models have been
developed for CODELCO, the Chilean state copper mine and used successfully.
Here, we wish to develop a corporate model, including all mines of CODELCO.
The original models are extremely large MIPs. In order to run a global model,
the original models need to be reduced significantly. We develop an approach to
aggregate the models. The aggregation is done both on the original data of the
mine as well as on the MIP original models. The aggregation is based on clustering
analysis. Promising results were obtained with data of a large underground mine.
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1 Introduction

Models have been developed for planning in copper mines for CODELCO,
the state owned mine corporation, one of the main world producers of cop-
per. CODELCO owns seven mines, both open pit and underground. In the
planning process, detailed models are used. Consider the largest underground
mine, El Teniente. The mine is divided into sectors and sub-sectors. Each
sector is divided into columns of extraction points, we call PEXTs. These
columns are composed of blocks, usually of 20 by 20 by 20 meters, called
UBCs, which are the basic units of extraction. The planning process consid-
ers a 25 year horizon, and the sequence to follow points of extraction is given.
The decisions to be made are the period (yearly) in which each PEXT (or
column) is started, and how many UBCs will be extracted. Typically the %
of copper decreases as the extraction goes up the column, so it often is more
convenient to leave some UBCs not extracted and move to the next PEXT.
The extraction is carried out through gravity, using explosives to loosen the
material, which is then carried through a transportation system to down-
stream plants. In each PEXT then, the lower UBC is extracted first and the
extraction follows upward. A MIP model was developed to support decisions
for planning extraction of UBCs, and leads to decisions of exact timing for
each UBC. Using the model to support decisions increased the value of the
mine over 100 million dollars. Similar models have been developed for open
pit mines, mostly in northern Chile. Again, these are large scale MIP models
(Epstein et al. 2003 [3], Caro et al. 2007 [2]).

We are interested in developing a model which integrates all mines for
corporate decisions, to determine extraction from each sector, in each mine,
each period. In particular, given price uncertainties the corporation might
want to develop a stochastic model to incorporate these uncertainties. In this
case, we will consider a 5 year horizon model.

The original models are too large, too slow to run to include them directly
in such a corporate model. Also, at corporate level there is no need to define in
such detail the decisions. While at one level, planning for each mine is carried
out in detail, and given the very large amounts involved, this planning is a vital
issue by itself, there is also need to consider the whole enterprise. CODELCO
owns seven mines, between underground and open pit. Some, very large like
the one we are presenting in this study. At the corporation level there are
global constraints that are not present at mine level. CODELCO produces
a significant percentage of the world copper, thus its actions influence the
market. So, the corporation will need a strategy on how much copper it



wants to produce as a sum of all its mines. It is also important that the
model corresponding to each mine runs fast. We are considering developing an
approach to incorporate prize uncertainty into the decision process. We want
to develop approaches, like robust programming (Berktsekas et al. 2003 [1]) or
coordinated branching (Alonso et al. 2003 [4]) to incorporate prize uncertainty.
Any of these approaches requires running each of the mine problems multiple
times, hence the need for fast solutions.

For this reason it is convenient to consider aggregate models. We will use
cluster analysis to do the aggregation. The advantage of rigorous aggregation
processes is in the preservation of feasibility once the aggregate solution is
disaggregated to detailed level. Two types of aggregations will be considered.
One, a priori, which will aggregate the UBCs, and a posteriori, which will
aggregate columns of the original model.

2 The A Priori Aggregation

We consider first the a priori aggregation. We need to aggregate UBCs that
are connected to each other and in such a way that it is possible to extract
each cluster independently from the others. In this way we can assign one
extraction variable to each cluster. We need to group the UBCs according to
similarities. We chose basic characteristics that describe UBCs to establish
a way to measure the dissimilarity between two UBCs. These are Tonnage,
Percentage of Copper, Percentage of Molybdenum and Speed of Extraction,
which best describe a UBC. Each characteristic has a different importance, so
a set of weights associated to the characteristics was defined. This was done
with support of a knowledgeable source.

The dissimilarity measurement between two UBCs is defined as the sum
of the difference between the numerical values of the characteristics of both
UBCs divided by the average value taken by the characteristic through all
UBCs, multiplied by the weight of each characteristic. Then, the dissimilarity
measurement of a cluster is defined as the sum of the dissimilarity measure
between every pair of UBCs in the same cluster.

In order to group UBCs into clusters we developed a K-means type algo-
rithm. To use this type of algorithm an initial partition was created, based
on a greedy selection of clusters according to similarities and spatial loca-
tion. Note the importance of the spatial location, as clusters defined must be
feasible to be extracted independently.

As an output a parameter, delta, is given, corresponding to the total dis-
similarity of the partition. This is the sum of the total dissimilarity of each



cluster.

After the initial step a the K-means algorithm is applied. It is based
on exchanging UBCs between clusters in order to reduce the value of delta.
Combinations of exchanges are tested to find those that reduce the value of
delta. If no improving exchange is found, the algorithm stops.

Note that only exchanges that create feasible clusters are considered.

The value of each characteristic in every cluster . These are calculated as
a weighted average proportional to the tonnage of each UBC.

Once the clusterization process was finished, the aggregate model was cre-
ated.

The main variables relate to extraction of clusters from subsectors in given
time periods (0-1) and the tonnages of copper and molybdenum extracted
from each sector and period.

The constraints that need to be satisfied are: Each cluster can be extracted
only once, satisfy the defined sequence of extractions, the allowable speed and
capacity of extraction, as well as conservation of flows and logical relationships
between variables. The objective function is to maximize the profit. The
costs are those of extraction, activation of a PEXT, the cost due to increase
or decrease of production between periods, and the transportation costs. The
benefits are related to sales of copper and molybdenum.

We then solved the aggregate model. The solution was fed into the original
model by indicating productions by sector, so we could compare the solution
of the original model with the solution of the detailed model where produc-
tions by sector and period follow the aggregated model solution. This was
implemented in the underground mine of El Teniente. A five year model was
created, that considered the eleven sectors that could be extracted in the next
5 years.

When comparing the original model with the disaggregation of the aggre-
gate model, the percentage error in the value of the objective function was
3,62%. The reduction of execution time was of 73,68%. The model dimension
was reduced by 90%.

So the solutions found are coherent with the original model and the re-
duction of time is significant. The reduction of time will be more significant
when the model is larger (more periods). Note that when the number of peri-
ods goes to 25 years, as in the case of the models presently used, solving the
original model takes two hours of CPU.



3 The A Posteriori Approach

This approach consists in aggregating the original mine planning model through
clustering techniques.

In order to develop this aggregated model we use a posteriori aggregation.
This type of aggregation procedures is based on the original standard linear
problem expressed in matrix form Max{Z = cx : Ax ≤ b, x ≥ 0}, where A is
a m × n matrix; c, x ∈ <n, and b ∈ <m.

Again cluster analysis is used for the aggregation process based on simi-
larities. Each column is associated to a variable of the problem. We used a
column aggregation procedure proposed by Zipkin, 1980 [6]:

• We consider a partition in subsets of K columns. Therefore σ = {Sk : k =
1, 2, ..., K}, is a partition of {1, 2, 3, ..., n} where Sk has nk elements.

• To obtain the model parameters we use a method called fixed-weight combi-
nation. It involves a convex weighting of a cluster of elements of cardinality
nk by an nk-vector gk, whose components are nonnegative and sum to unity.

• Let A′
k = Akgk, c′k = ckgk, x′

k = xkgk, k = 1, ..., K

c′ = (c′
1
, c′

2
, ..., c′k), A′ = (A′

1
, A′

2
, ..., A′

k), and x′ = (x′
1
, x′

2
, ..., x′

k).

Then, the aggregate problem AP is Max{Z ′ = c′x′ : A′x′ ≤ b, x′ ≥ 0}.

In order to give the same importance to the values of the columns these
were normalized and then components were normalized again within columns,
to give an adequate importance to its values, for example, the component of
the speed of extraction constraint is less important for the aggregation criteria
than the X position of the UBC.

The similarity criteria defined was: 1− cosin(B, C), where B y C are two
modified vectors of the A matrix corresponding to the extraction variables
and cosin(X,Y ) = 〈X,Y 〉

‖X‖·‖Y ‖
.

The clustering method used was a modification of the Hartigan’s Leader
Type Method [5]:. This procedure was chosen due to the low computational
effort required and reasonable quality of solution.

After the aggregation process is carried out, we can solve the smaller ag-
gregate problem, using a commercial code.

This type of aggregation is highly sensitive to the weights gk used. The ag-
gregation and weights used considered the spatial characteristics of the UBCs
to insure feasible solutions to the aggregate problem.

The disaggregation process uses the vector gk to obtain results of the disag-



gregate problem, using the fixed weights. Feasibility is assured by this process

Finally, Zipkin provides for this method an a posteriori error bound for
the objective function using data from the original problem and the solution
of the aggregate problem [6], but does not need information from the solution
of the original problem so, once the aggregate problem is solved, it is easy to
obtain an a posteriori bound. Results show that the amount of variables was
reduced to around 15% of the number of variables of the original problem.
The model was solved in 27 seconds, a 88% solve time reduction.

The error bound obtained was 3% which is very similar to the real error
of 2.93%.

This aggregation procedure had difficulties in defining aggregations and
weights that insured feasible solutions, but finally led to reasonable good so-
lutions.

In conclusion, it appears that the proposed cluster analysis approach , in
the a priori and a posteriori cases, can lead to reduced corporate models, which
approximate reasonably well the original large scale, detailed models. In this
form, we can determine smaller models, which run in reduced CPU times, as
needed for corporate models, where each mine model needs to be run several
times. Further research is needed to integrate both types of aggregation.
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Abstract

The concept of flexibility—originated in the context of heat exchanger networks—
is associated with a substructure which guarantees the performance of the original
structure, in a given range of possible states. We extend this concept to combinato-
rial optimization problems, and prove several computational complexity results in
this new framework.

Under some monotonicity conditions, we prove that a combinatorial optimization
problem polynomially transforms to its associated flexibility problem, but that the
converse need not be true.

In order to obtain polynomial flexibility problems, we have to restrict ourselves
to combinatorial optimization problems on matroids. We also prove that, when
relaxing in different ways the matroid structure, the flexibility problems become
NP -complete. This fact is shown by proving the NP -completeness of the flexibility
problems associated with the Shortest Path, Minimum Cut and Weighted Matching
problems.

Keywords: combinatorial problems, flexibility, computational complexity



1 Flexibility and combinatorial optimization problems

The concept of flexibility arose from chemical engineering problems in the
design of heat exchanger networks (see, for example [2]). This concept is
associated with a substructure which guarantees the performance of the orig-
inal structure in a given range of possible states. In the context of heat
exchanger networks, this performance is defined by the value of a Maximum
Flow-Minimum Cut. This problem motivated us to extend the flexibility con-
cept to general combinatorial optimization problems.

Following [5], in a combinatorial optimization problem we deal with a finite
set A, a vector of costs c ∈ R

A and a family F(A) of subsets of A. The cost
of F ⊆ A will be indicated by c (F ) =

∑

a∈F ca, and the optimal value by

ξFA (c) = min(max) {c(F ) : F ∈ F(A)} .

If F(A) = ∅, we set ξFA (c) = +∞ and ξFA (c) = −∞, respectively. We say that
F ∈ F(A) is c-optimal if c(F ) = ξFA (c).

We will identify a particular combinatorial optimization problem by the
oracle algorithm F which decides, in constant time, whether a given subset of
A belongs to the family F(A).

Working on flexibility problems, we consider a family of instances de-
termined by a given set A and vectors c−, c+ ∈ Z

A
+, defining the state set

S =
{

c ∈ R
A : c− ≤ c ≤ c+

}

. We also consider a substructure given by
B ⊆ A. For simplicity we will indicate by ξFB (c), the optimal value corre-
sponding to the restriction of c to R

B.

Given a state set S and W ⊆ S, we will say that B is F -flexible in W if
ξFB (c) = ξFA (c), for all c ∈ W . When W = S, we just say that B is F -flexible.

The F-flexibility problem (F -flex) is formulated as follows:

INSTANCE: A finite set A; B ⊆ A; c+, c− ∈ Z
A
+.

QUESTION: Is there c with c− ≤ c ≤ c+ and ξFA (c) 6= ξFB (c)?

Notice that F -flex consists of answering whether B is not F -flexible.

From now on, we restrict ourselves to combinatorial optimization problems
verifying some kind of monotonicity under inclusion on the optimal value. We
say that F is monotone increasing (decreasing) if for all c ∈ R

A and B ⊆ A
we have ξFB (c) ≤ ξFA (c) (ξFB (c) ≥ ξFA (c)).

In fact, most of the combinatorial optimization problems of interest are
monotone. In particular, between the problems considered here, the Weighted

1 Partially supported by grants of CONICET-PIP 5810 and ANPCyT-PICT2005 38036
2 Email: valeoni@fceia.unr.edu.ar



Matching problem and the Maximum Weight Forest problem are monotone
increasing maximization problems, whereas the Shortest Path problem is a
monotone increasing minimization problem and the Minimum Cut problem is
monotone decreasing.

The monotonicity imposed on the optimal value leads us to prove that
solving F -flex is equivalent to asking whether a given element a ∈ A is use-
ful for S, following the terminology introduced in [1] in the context of the
Maximum Flow problem. Formally, we prove:

Lemma 1.1 F-flex may be reduced to the family of instances given by B =
A \ {a}, for a ∈ A.

The key of the proof is the fact that the answer corresponding to an in-
stance of F -flex given by (A, B, c+, c−) is YES if and only if, for any B′ with
B ⊆ B′ ⊆ A, at least one of the instances (A, B′, c+, c−) and (B′, B, c+, c−)
has also an affirmative answer.

In the next section we show that solving F -flex is always at least as hard as
solving F , and try to find families of optimization problems with polynomial
complexity associated flexibility problems.

The proofs of all computational complexity results are strongly based on
the fact that, when checking flexibility, it is enough to do so on a finite subset
of states, called test set. In particular, for F ⊆ A we define the F -state
cF ∈ Z

A
+ by:

• if F is a minimization problem, cF
a = c−a if a ∈ F and cF

a = c+
a if a /∈ F ;

• if F is a maximization problem, cF
a = c+

a if a ∈ F and cF
a = c−a if a /∈ F .

We prove that, for a given F ∈ F(A), the F -state is that state for which
F has the greatest possibility of being optimal in the sense that, if F is a
c-optimal element for some c ∈ S, then F is cF -optimal.

Moreover:

Lemma 1.2 Let A, B ⊆ A, c− and c+ defining an instance of F-flex. If
F is a monotone increasing minimization problem or a monotone decreasing
maximization problem, then {cF : F ∈ F(A)} is a test set. If F is a mono-
tone increasing maximization problem or a monotone decreasing minimization
problem, then {cF : F ∈ F(B)} is a test set.

Let us point out that, for a general combinatorial optimization problem
F , the cardinalities of the test sets given by Lemma 1.2 are non polynomial
in the size of A.



2 Looking for polynomial flexibility problems

In order to compare the computational complexities of F and F -flex, we need
to take into account the relationship between F(B) and F(A), when B ⊆ A.
Let us impose the following monotonicity conditions on the set of feasible
solutions

(P1) for every E ∈ F(B), there exists F ∈ F(A) such that E ⊆ F ,

(P2) if E ∈ F(A) and E ⊆ B then E ∈ F(B).

Under these conditions we can prove:

Theorem 2.1 F may be polynomially reduced to its corresponding flexibility
problem, F-flex.

Let us observe that, for the Weighted Matching, the Maximum Weight
Forest and the Shortest Path problems, it holds that

(P3) F(B) = {F ∈ F(A) : F ⊆ B},

whereas, for the Minimum Cut problem it holds that

(P4) F(B) = {F ∩ B : F ∈ F(A)}.

Each of the properties (P3) and (P4) imply (P1) and (P2). Conditions
(P1) and (P2) are the weakest we may impose for proving Theorem 2.1. In
fact, when finding the optimal value of F we just use (P1), and then (P2) is
necessary in order to find an optimal element.

From Theorem 2.1, if we want to find polynomial flexibility problems, we
should reduce our search to the family of polynomial optimization problems.

An exchanger network is a digraph D = (V1 ∪ V2, E) with V1 ∩ V2 = ∅,
E ⊆ V1 × V2 and a vector c ∈ R

V1∪V2 (for i ∈ V1, ci is the supply of i and
for j ∈ V2, cj is the demand of j). The maximum exchange in this class of
networks can be modeled as a Maximum Flow-Minimum Cut problem in a
certain st-network.

In [1] and [4] we may find two independent proofs of the NP -completeness
of the Minimum Cut flexibility problem (FF ), even on instances with c− =
0. However, considering those instances of FF corresponding to exchanger
networks (FT ), the problem becomes polynomial when c− = 0.

Nevertheless,

Theorem 2.2 FT is NP-complete.

The proof is based on the reduction of the Balanced Complete Bipartite
Graph problem (BCBG). BCBG consists in deciding whether there is a com-



plete bipartite balanced subgraph of certain size in a given bipartite graph.
The proof of its NP -completeness may be found for example in [3, p. 196].

We wonder if tightening conditions (P1) and (P2)—imposing, for example
(P3)—we may establish the converse of Theorem 2.1. However, we prove:

Theorem 2.3 The Shortest Path flexibility problem (FP) is NP-complete.

In this case, we reduce DVDP2 to the Shortest Path problem. Given a
digraph G and nodes s, r, t, w of G, DVDP2 consists in deciding whether there
exist vertex disjoint st- and rw-paths.

A combinatorial optimization problem F is hereditary if for all A, F ∈
F(A) and F ′ ⊆ F it holds that F ′ ∈ F(A). Since we deal with non negative
states, hereditary combinatorial optimization problems become relevant when
they are maximization problems.

Once again, instances with c− = 0 lead us to guess that hereditary opti-
mization problems could have “easy” associated flexibility problems.

Lemma 2.4 Let F be a hereditary problem satisfying condition (P2), c− = 0

and c+ with c+
a > 0 for some a ∈ A. Then, deciding if a is useful can be done

in constant time.

The key of the proof is to show that a ∈ A is useful if and only if {a} ⊆
F(A).

We now consider the Weighted Matching problem, which satisfies (P3) and
is also hereditary :

Theorem 2.5 The Weighted Matching flexibility problem (FBM) is NP-complete,
even on instances corresponding to bipartite graphs.

The proof is based on the reduction of FP to FBM by using some known
transformation between shortest paths and maximum weighted matchings in
bipartite graphs.

Finally, hereditary optimization problems defined on matroids seem to
be the “best candidates” when looking for polynomial flexibility problems,
because of the characterization of matroids through greedy algorithms. In
this case, this assertion can be confirmed by the following result:

Theorem 2.6 The Maximum Independent Set (in a matroid) flexibility prob-
lem is polynomial.

For the proof we use some previous results which allow us to show that,
for an instance given by a matroid A, {c{a} : a ∈ A} is a test set.



Finally, let us observe that the family of matchings in a bipartite graph is
the intersection of two matroids. Hence, Theorem 2.5 implies that:

Theorem 2.7 The Two Matroid Intersection flexibility problem is NP-complete.

This last result leads us to guess that a “matroid structure” is the “weak-
est” from which we can obtain polynomial flexibility problems.
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[2] Cerdá, J., M. R. Galli, N. Camussi and M. A. Isla, Synthesis of Flexible Heat
Exchanger Networks-I. Convex Networks, Comp. Chem. Engng. 14 (1990), 197–
211.

[3] Garey, M. R. and D. Johnson, “Computers and Intractability: A Guide to the
Theory of NP -Completeness”, W. H. Freeman & Co., 1979.

[4] Nasini, G. L., “Sobre la Flexibilidad en Problemas de Optimización”, Tesis
Doctoral, Universidad Nacional de Rosario, Argentina, 1997.

[5] Nemhauser G. and L. Wolsey, “Integer and Combinatorial Optimization”,
Wiley, 1988.


