
A Secure Fingerprint Matching Technique 
Shenglin Yang 
UCLA Dept. of EE 

Los Angeles, CA 90095 
+1-310-267-4940 

shengliny@ee.ucla.edu 

Ingrid M. Verbauwhede 
UCLA Dept. of EE 

Los Angeles, CA 90095 
+1-310-794-5209 

ingrid@ee.ucla.edu 
 
ABSTRACT 
In this paper, we propose a novel robust secure fingerprint 
matching technique, which is secure against side channel attacks. 
An algorithm based on the local structure of the minutiae is 
presented to match the fingerprints. The main contribution is the 
careful division of the fingerprint recognition system into two 
parts: a secure part and a non-secure part. Only the relative small 
secure part, which contains sensitive biometric template 
information, requires realization in specialized DPA-proof logic. 
The rest of the system is running on LEON, which is a regular 
embedded platform.   

Categories and Subject Descriptors 
I.5.5 [Pattern Recognition]: Implementation – Special 
architecture; C.3 [Special-purpose and Application-based 
Systems] – Real-time and embedded systems, Signal processing 
systems. 

General Terms 

Algorithms, Performance, Design, Security. 

Keywords 
Fingerprint Recognition, Secure Matching, DPA-proof, 
Embedded System.  

1. MOTIVATION 
Biometric recognition systems offer greater security and 
convenience than traditional methods of personal recognition. 
Along with the rapid growing of this emerging technology, the 
system performance, such as accuracy and speed, is continuously 
improved. At the same time, the security of the biometric system 
itself is becoming more and more important.  

One of the most significant disadvantages of the biometric 
recognition system is that they cannot be easily recalled. For 
example, if one of the fingers is used as a password, once it is 
compromised, it never can be used again since it is almost 
impossible that a fingerprint can be changed, which means it is 
compromised forever. Moreover, since one person only has a

 

limited number of fingers, different applications might use the 
same fingerprint. A person’s biometric stolen from one 
application could also be used in some other applications [12].  
Therefore the secure storage of the biometric template is 
becoming extremely important. In a traditional biometric 
recognition system, the biometric template, such as fingerprint, 
voice, etc., is usually stored on a central server during enrollment.  
The input biometric signal captured by the front-end sensor is sent 
to the server and the processing and matching steps are performed 
on the server. In this case the safety of the precious biometric 
information cannot be guaranteed because attacks might occur 
during transmission or on the server.  Embedded biometric 
recognition systems try to solve this problem by moving the signal 
processing and matching engines from the server to the embedded 
device. In these systems, the biometric signals are processed and 
matched on the embedded device and only the result is 
transmitted to the server. This approach can avoid the attacks on 
communication and server. It also avoids that the biometric data 
needs to be stored on multiple servers for multiple applications. 
However, it is very easy to compromise the plain-text storage of 
the template in the embedded device. To make the storage more 
secure, the biometric template is encrypted using a secret key 
before being stored. As soon as the input signal has come, the 
matcher decrypts the template and performs the comparison. 
However, some dedicated attacks can still extract the secure key, 
and in turn, the template. The reason for this is that the physical 
implementation of an algorithm provides attackers with some 
important information. Examples are variations in timing, power 
consumption and electromagnetic radiation, which can be used to 
link to the internal state, and hence to the secret data. These types 
of attacks are called Side Channel Attacks (SCA). Among the 
SCA, differential power Analysis (DPA) is the most powerful one. 
It relies on statistical analysis and error correction to extract 
information from the power consumption that is correlated to 
secret data [10]. 

To solve this problem, one possible way is that instead of storing 
the original biometric template on the embedded device, the 
system could store its noninvertible transformed version, for 
instance, a hash, in the enroll phase. During recognition, the input 
biometric information is first encrypted using the same 
noninvertible transform. Then matching is performed in the 
transformed space. Different applications can use different 
noninvertible transforms or different parameters of the same 
transform. Thus a template would be usable only by the 
application that created it. If a hacker ever compromises such a  
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biometric template, the system can issue a new template using a 
different transform or a different parameter for the same 
transformation [12]. However, the implementation of this 
technique is very difficult since the noninvertible transforms are 
usually very weak in the information-theoretic sense. For 
example, the goal of a hash function is to convert the signal to a 
secure form whose change cannot reflect that of the original 
signal. This characteristic of hash function lowers the accuracy of 
the matcher or even makes it impossible because that the matcher 
requires strong relationship between the original signal and its 
transformed form. It cannot effectively deal with the biometric 
signal variations in this kind of transformed space. 

In this paper we propose a novel fingerprint matching technique 
to address this problem.  The basic idea is to construct the 
matching algorithm in two parts: a secure part and a non-secure 
part. The non-secure part is running on a regular embedded 
platform – LEON, which is a 32-bit highly configurable processor 
[5], and the secure part is designed to run on a DPA-proof 
platform. This paper is organized as following: section 2 briefly 
reviews some related work in fingerprint matching as well as the 
DPA proof technique, section 3 describes our proposed technique 
for secure fingerprint matching, section 4 presents the 
experimental results and the analysis of the proposed technique.  
Then, the conclusion is presented in section 5. 

2. RELATED WORK  
2.1 Fingerprint Matching 
There are two basic types of fingerprint matching techniques: 
graph based and minutiae based. For modern embedded 
fingerprint recognition systems, the minutiae-based matching is 
popular because, on the one hand, the minutiae of the fingerprint 
are widely believed the most discriminating and reliable features, 
and on the other hand, the template size of the biometric 
information based on minutiae is much smaller and the processing 
speed is higher than that of graph-based fingerprint matching. 
These characteristics are very important for saving memory and 
energy on the embedded devices. Lots of work has been done for 
minutiae-based fingerprint matching.  Some of them use the local 
structure of the minutiae to describe the characteristics of the 
minutiae set [7]. This approach has high processing speed and 
robustness to rotation and partial prints. However, the local 
structure usually has less distinct features because it only 
represents some parts of the whole minutiae set. Prints from 
different fingers may have quite a few similar local structures by 
coincidence while prints from the same finger may only have very 
few similar structures due to the presence of false minutiae and 
the absence of genuine minutiae. Alignment-based matching 
algorithms take use of the shape of the ridge connected to 
minutiae [8]. This might improve the system accuracy.  However, 
this approach results in a larger template size because the 
associated ridges for each minutia must be saved.  Some other 
researches combine the local and global structures [9].  The local 
structure is used to find the correspondence of two minutiae sets 
and increase the reliability of the global matching.  The global 
structure of minutiae reliably determines the uniqueness of a 
fingerprint.  The approach in [16] is similar to our work.  
However we propose a new definition of the local structure of a 
minutia, which is proven efficient for low quality input 
fingerprints and a low accurate minutiae extraction. 

2.2 DPA Proof Technique 
Along with the growing of the SCA techniques, countermeasures 
against Differential Power Analysis have been proposed at 
different levels of abstraction. Yet, advanced versions of DPA are 
able to greatly reduce their effects. For example, Random Process 
Interrupts [4] can be synchronized by integration techniques [3] 
and Modified DPA [11] can handle masking techniques [2]. 
Random power consuming operations on the other hand merely 
lower the side channel information and might be disabled through 
tampering.  

The former countermeasures attempt to conceal the power 
variations at the architectural or algorithmic level, while they 
originate at the logic level. Implementing the sensitive parts of a 
crypto processor in a logic style, whose power consumption is 
independent of the signal transitions, removes the foundation of 
DPA. One such logic style available is Sense Amplifier Based 
Logic (SABL) [13][14]. A logic gate in SABL charges a total 
capacitance with a constant value in every cycle. Hence SABL 
consumes the same constant energy independent of the input 
values and is an effective countermeasure against DPA. 

3. SECURE MATCHING TECHNIQUE 
3.1  Algorithm 
In this paper, the image processing stage to extract a minutiae set 
from the fingerprints is based on the NIST Fingerprint Image 
Software [15].  The architectural modifications to obtain a high-
speed and memory efficient implementation for an embedded 
platform are discussed in [17].  From the result of the minutiae 
detection step, information such as x, y co-ordinates and local 
ridge direction are available for each minutia.  Of course this 
minutiae information could be used directly to match the 
fingerprints.  However, to separate the secure part of the matching 
algorithm easily and lower the secure cost of the system, our 
newly proposed technique is based on a derived local structure.  A 
detailed discussion will be given in section 4. 

Generally, given one minutia M , the local structure of it is 
described as a feature vector: 

 

Where N is the number of neighbors taken into consideration 
during matching. Ψ  is the local ridge direction of minutia M . 

nd ( )Nn ,...2,1=  describes the distance between the selected 

minutia M and its thn  nearest neighbor, nϕ ( )Nn ,...2,1= is the 

related radial angle between M  and its thn nearest neighbor, and 

nϑ ( )Nn ,...2,1=  represents the related position angle of  the 

thn nearest neighbor.  One example with 2=N  is shown in 
figure 1. 

Figure 1 describes the local structure of a minutia with its two 
nearest neighbors.   All the elements in the local structure can be 
calculated from the information obtained from the minutiae 
extraction following equation (2). 
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The function ( )diff  calculates the difference of two angles and 

converts the result to range [ )π2,0 . 

The proposed matching algorithm calculates how similar the 
neighborhood of one minutia in the input fingerprint is to that of 
one in the stored template.  If it is similar enough, then these two 
minutiae are taken as a “matched” minutiae pair.  After each 
minutia in the input fingerprint is checked, the total number of 
“matched” minutiae pair is used to calculate the final matching 
score. 

The selection of the number of neighbors is very important for the 
system performance. In this paper, the neighborhood is defined as 
6 nearest neighbors for each minutia as shown in figure 2. The 
detailed selection methodology will be presented in section 4. 

 

 

 

 

 

 

 

 

 

 

When two minutiae are compared, the relative position and angles 
of their 6 nearest neighbor minutiae are investigated. We can 
rewrite equation (1) to obtain another form of the local feature 
vector. Assume one minutia M  in the input fingerprint: 

{ } { } { }{ }Ψ= ,,,,...,,,,,, 222111 NNNM dddL ϑϕϑϕϑϕ  (3) 

And one minutia M ′  in the stored template:  

{ }{ } { }{ }Ψ′′′′′′′′′′=′ ,,,,...,,,,,, 222111 NNNM dddL ϑϕϑϕϑϕ  
(4) 

To decide whether or not M  and M ′  are a matched minutiae 
pair, a small four-dimension range box is set for ( )Ψ,,, ϑϕd  

respectively: { }Ψ∆∆∆∆ ,,, ϑϕd . The first step is checking the 

local ridge directions of the two minutiae. If Ψ∆>Ψ′−Ψ , M  

and M ′  are not matched. Therefore the matcher searches for 
another minutiae pair. Otherwise, the matcher continues to 
investigate the neighbor minutiae according to the neighborhood 
condition described in (5): 
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If the conditions in (5) are all satisfied, the thi  neighbor of the 

input minutia M  and the thj  neighbor of the template minutia 

M ′  are considered “marked”. After a thorough check of all the 
neighbor minutiae of M  and M ′ , the number of marked 
neighbor pairs is accumulated as A . If this number is above some 
specific threshold ATH , the minutiae M  and M ′  are 

considered as a matched minutiae pair. The threshold is set 
according to experimental results, which we will discuss later.  
Following this procedure, a comparison of all the minutiae in the 
input and template fingerprints results in the total number of 
matched minutiae pairs, B . Assume that the number of the 
minutiae of input and template fingerprints are inputNUM  and 

tempNUM , respectively. Then the final matching score is 

calculated as: 

( )tempinput NUMNUM

B
Score

,max
=  

 

(6) 

 

Two fingerprints will be verified as from the same finger if their 
matching score is higher than a fix-set threshold. 

3.2 Secure Partitioning  
The above section describes the overall algorithm for our secure 
fingerprint matching technique. Recall that, even if the encrypted 
template is stored in the embedded device, due to the leakage of 
side channel information, there are still security holes. Any 
handling of the template will result in a specific power 
consumption pattern, which can be detected and analyzed with a 
Differential Power Analysis. 

To address this problem, we introduce Sense Amplifier Based 
Logic into our system to provide the secure storage and handling 
of the biometrics template. A design in SABL has a constant 
power consumption and does not emit side channel information 
[14]. 

Before implementation of the DPA-proof technique, the whole 
system needs to be partitioned into secure part and non-secure 
part.  The secure part is defined as the part of algorithm, which is 
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Figure 1. Local structure of the minutia (N=2). 
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Figure 2. Neighborhood of a minutia. 
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related to the sensitive biometric template. It includes the 
accessing of the template data as well as the computation related 
to those values.  Figure 3 shows the overall flowchart of the whole 
system. From a security aspect, the biometric template is the 
sensitive data part of this algorithm. Therefore, the comparators 
with one or more sensitive operands also need to be protected. 
Thus, In Figure 3, the area in shade needs to be implemented into 
the DPA-proof logic. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this paper, we build a DPA-proof block, an Oracle, into which 
the secure part is put. Of course, the easiest and safest way to 
implement the matching algorithm is porting the whole system in 
the Oracle. However, the DPA-proof logic costs around two times 
more area and power than a regular implementation. Therefore, a 
careful partitioning of the matching algorithm is important to 
minimize the cost of the system. 

Also, we need to decide the format of the template stored in the 
Oracle. In traditional minutiae-based fingerprint recognition 
systems, the stored information for each minutia is the x,y-
coordinate, the local ridge direction, etc. When the matching 
engine starts, this information is converted to a more useful 
format, for example, the distance between the minutia and its 
neighbor, the related angle between two neighboring minutiae, 
and so on. However, in the proposed system, data stored inside of 
the Oracle cannot be accessed from outside, which means that all 
the calculations related to the stored data need to performed 
within the Oracle. A further study of the algorithm shows that 
some complex mathematic calculations, such as atan, sqrt, etc., 
are needed in the template convertion. This will increase the area 
as well as the design complexity of the Oracle. Therefore a 
preprocessing step is performed before the template storage. 
According to equation (2), the preprocessed minutiae information 
is calculated and stored as template in our system, shown in figure 
4. 

1d  1ϕ  1ϑ  

2d  2ϕ  2ϑ  

3d  3ϕ  3ϑ  

. 

. 

. 

. 

. 

. 

. 

. 

. 

Nd  Nϕ  Nϑ  

 
 
 

Ψ  

 
 

4. ALGORITHM ANALYSIS 
In this section, we will first discuss the experimental results of the 
proposed matching algorithm. Then a security analysis is 
presented. 

4.1 Experimental Results 
An Authentec AF-2 CMOS imaging sensor is used to collect 
fingerprint samples. The sensor has an accuracy of 8bits/sample. 
However, to save energy and time of the embedded device, we 
adopt a 3bits/sample rate in our system. This will result in 
relatively low quality input image. Moreover, porting the minutiae 
extraction processing to the embedded device introduces some 
extra error due to the time constraints and finite word length 
limitations [17]. All these embedded device constraints require a 
robust matching algorithm. 

Our proposed method is based on the local structure of the 
minutiae. One of the important parameters is the number of 
neighbors taken as the local structure for each minutia. If the 
number is too small, which means that the matching condition is 
quite loose, some un-matched minutiae pairs are very likely to 
satisfy the matching condition, which may lead to a high FAR 
(False Accept Rate). On the other hand, if the number is too large, 
the matching condition becomes too strict. Many matched pairs 
may fail because the fingerprint image is sometimes uncompleted 
and the minutiae detection is not very precise. This may result in a 
high FRR (False Reject Rate). To select the proper number of 
neighbors taken as local feature, experiments are done for a local 
structure of 4,5,6 and 7 neighbors. For each case, different marked 
neighbor pair thresholds are investigated. Since the baseline 
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Figure 3. Flowchart of the matching system. 

Figure 4. Stored template for fingerprint. 



accuracy needed for modern biometric systems is 1% FRR and 
0.01% FAR [1], table 1 presents whether or not the selection can 
reach this standard. The image set consists of 10 fingerprints per 
finger from 10 different fingers for a total 100 fingerprint images. 

 

Table 1. Possibility to achieve baseline accuracy for different 
local structure definition and threshold. 

         
 

4 

 

5 

 

6 

 

7 

2 No No No No 

3 No Yes Yes No 

4  No No No 

5   No No 

6    No 

 

Figure 5 shows the result from two different local structure 
definitions, which both can achieve the baseline accuracy. The X-
axis is the FRR and the Y-axis shows the FAR.  

After analyzing the above result, we define the number of 
neighbors as 6 and the marked neighbor pair threshold ATH  is 

set to 3.  By doing this, we obtain a FRR of 1% and a FAR of less 
than 0.1 FAR∗. 

4.2 Security Partitioning Analysis  
As mentioned in section 3, due to the high area cost of the DPA-
proof technique, a careful partitioning needs to be done for the 
matching algorithm. From the system point of view, we have 
several ways to separate the algorithm into the LEON and the 
Oracle. The most straightforward way is to port the whole system, 
including the LEON processor into the Oracle (see Figure 6(a)). 
This will make the whole recognition system protected. However, 
obviously, the disadvantage of this implementation is that the area 
cost of the whole system increases by at least a factor of 2. 

                                                                 
∗ In the simulation of our database, there is no False Accept Error. 

Another solution for this problem is to store the biometric 
template in the Oracle. The input signal from the sensor is 
converted into the template-like feature vector and sent to the 
Oracle (see Figure 6(b)). The matching engine runs inside the 
Oracle and gives out the final matching result. This division is 
quite clear but the matching algorithm in the Oracle requires a 
large computation capability. This also would make the size of the 
Oracle too big. 

To lower the system cost, the Oracle block needs to be made as 
small as possible. In Figure 6(c), the template is stored in the 
Oracle and the matching engine is divided into two parts. Only the 
sensitive part is running on the Oracle. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this paper, we adopt the last partitioning of the system. As 
shown in the flowchart in Figure 3, the shaded part of the 
algorithm only consists of comparators and adders. The rest of 
computations are performed on the LEON embedded processor. 
By doing this, only the sensitive part of the algorithm is protected. 
Therefore, only a relative small part of algorithm needs to be 
implemented in special hardware. This will lower the overall 
system design complexity and make the Oracle block smaller. 

The Oracle is a black box to the LEON. Whenever there is a need 
of a comparison against template values, the LEON processor 
sends the input values and the address of the requested template 
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Figure 6. System level partitioning of fingerprint 
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minutia to the Oracle. The result of the comparison is sent back to 
the LEON processor in a simply Yes/No format. Based on this 
result, LEON makes a decision what to do next and what is the 
final matching score. 

5. CONCLUSION 
In this paper, we present a novel secure fingerprint recognition 
system, in which the minutiae-based matching algorithm is robust 
against relative low quality of input fingerprint images and 
minutiae detection. Secure partitioning is performed to guarantee 
low system cost as well as the safety of the precious biometric 
template by storing them into a DPA-proof block, an Oracle. By 
properly defining the local structure of the minutiae, we achieve 
1% FRR and  less than 0.01% FAR∗. 
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