Central-axial Collineation

A linear mapping ? \Rightarrow ? ' of the plane onto itself is called central-axial collineation with center \mathbf{C} and axis a, if it leaves invariant \mathbf{C} and \mathbf{a}. That also means, the lines passing through the center and the points lying in the axis are invariant.

The central-axial collineation is defined by means of the center, axis and a pair of points: $\left\{\mathbf{C}, \mathrm{a}, \mathrm{P} \rightarrow \mathrm{P}^{\prime}\right\}$.

The statement can be proved by showing that for an arbitrary point Q the Q^{\prime}, for an arbitrary line I the line I' can be found.

The reverse mapping $\left\{C, a, P^{\prime} \rightarrow P\right\}$ is also a centraraxial collineation.

The central-axial collineation is also called perspective collineation.

Figures in Collineation

Lines parallel to the axis at a perspective collineation remain parallel.

Perspective collineation will be applied at the construction of intersection of pyramid and plane.

Vanishing Line

Point \mathbf{V} is the point of intersection of \mathbf{I} and the line \mathbf{c} parallel to \mathbf{I} through \mathbf{C}. The image of the point \mathbf{V} will be \mathbf{V}_{∞}, a "point at infinity". If \mathbf{g} ' is parallel to \mathbf{I} ' than \mathbf{g} and \mathbf{I} have the same vanishing point \mathbf{V}.

The set of vanishing points is a line \mathbf{v} passing through \mathbf{V}, parallel to the axis a.

The mapping $\mathbf{P} \Rightarrow \mathbf{P}^{\prime}$ of the plane onto itself is complete if it is extended with the image of the line \mathbf{v}, an imaginary line i. e. the "line at infinity" $\mathbf{v}_{\infty}{ }^{\prime}$.

The line \mathbf{v}_{∞} is also called "ideal line".

Construction by Means of the Vanishing Line

A perspective collineation is determined by the center \mathbf{C}, axis a and the vanishing line \mathbf{v}.
(Hint: use an auxiliary line I passing through \mathbf{P} and its image \mathbf{I}^{\prime} that contains the point \mathbf{P}^{\prime}.)

To the square $\mathbf{P}^{\prime}, \mathbf{Q}^{\prime}, \mathbf{R}^{\prime}, \mathbf{S}^{\prime}=\mathbf{S}$, we can find the quadrilateral $\mathbf{P Q R S}$ at the $\mathbf{P}^{\mathbf{\prime}} \Rightarrow \mathbf{P}$ reverse mapping.

Quadrilateral and Square

[^0]
[^0]: Budapest University of Technology and Economics? Faculty of Architecture ? Department of Architectural Representation

