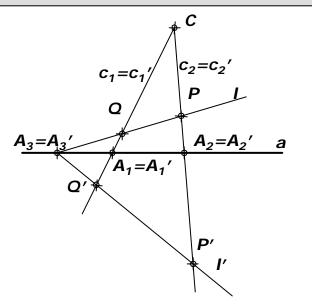
Central-axial Collineation

A *linear mapping* ? \Rightarrow ? ' of the plane onto itself is called *central-axial collineation* with center **C** and axis **a**, if it leaves invariant **C** and **a**. That also means, the lines passing through the center and the points lying in the axis are invariant.

The central-axial collineation is defined by means of the center, axis and a pair of points: {C, a, $P \rightarrow P'$ }.

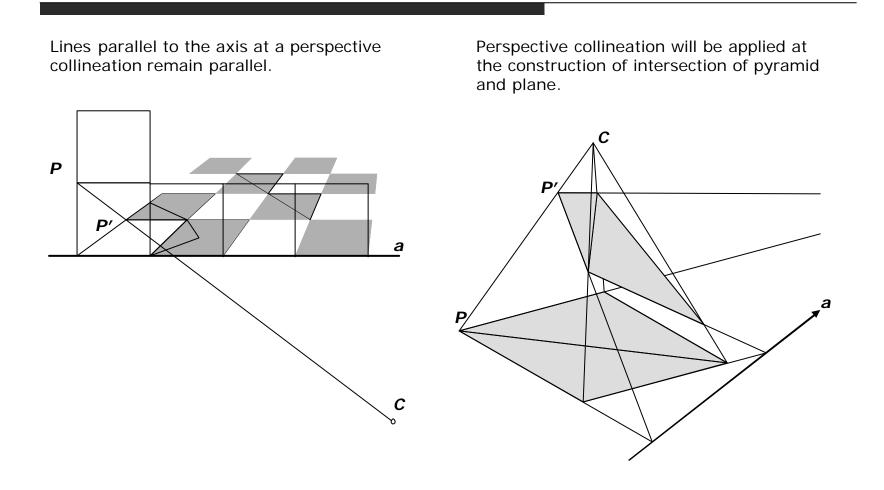
The statement can be proved by showing that for an arbitrary point Q the Q', for an arbitrary line I the line I' can be found.

The reverse mapping $\{C, a, P' \rightarrow P\}$ is also a central-axial collineation.



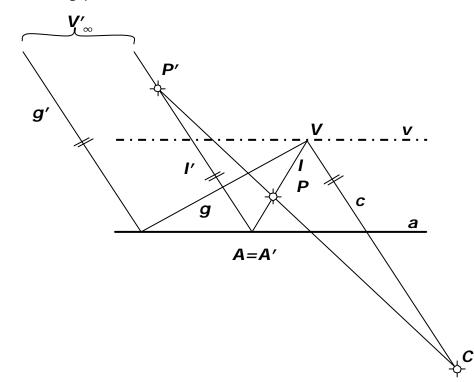
The central-axial collineation is also called perspective collineation.

Figures in Collineation



Vanishing Line

Point **V** is the point of intersection of **I** and the line **c** parallel to **I'** through **C**. The image of the point **V** will be V'_{∞} , a "point at infinity". If **g'** is parallel to **I** than **g** and **I** have the same vanishing point **V**.



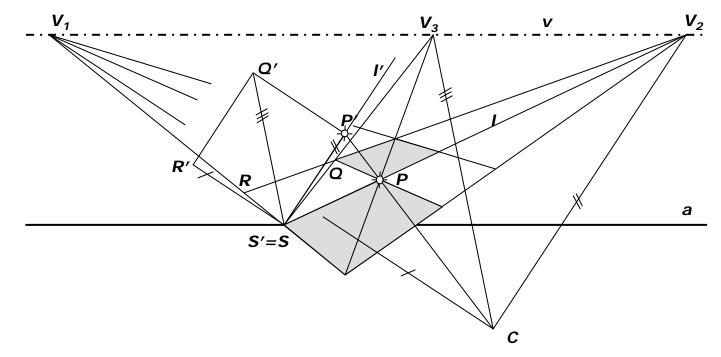
The set of vanishing points is a line **v** passing through **V**, parallel to the axis **a**.

The mapping $\mathbf{P} \Rightarrow \mathbf{P'}$ of the plane onto itself is complete if it is extended with the image of the line \mathbf{v} , an imaginary line i. e. the "line at infinity" $\mathbf{v'}_{\infty}$.

The line $\mathbf{v'}_{\infty}$ is also called "ideal line".

Construction by Means of the Vanishing Line

A perspective collineation is determined by the center *C*, axis *a* and the vanishing line *v*. (Hint: use an auxiliary line *I* passing through *P* and its image *I*' that contains the point *P*'.)



To the square P', Q', R', S'=S, we can find the quadrilateral **PQRS** at the $P' \rightarrow P$ reverse mapping.

Quadrilateral and Square

Let a convex quadrilateral {A, B, D, E} be given. Find a perspective collineation such that the image of the quadrilateral should be a square {A', B', D', E'}. (Hint: in a square, both the diagonals and the bimedians form right angles.) $V_1 = |AE| \cap |BD|$, $V_2 = |AB| \cap |DE|$ $V = |V_1 V_2|$ *a*? *v*, *E* ∈ *a*, *E*=*E*′ V₁ V_2 $O = |AD| \cap |BE|$, V $S = |OV_2| \cap a$, В $T = |OV_1| \cap a$, $X = |AD| \cap a$, Α D Ω Semicircles ① and ② X S **0′**= ① ∩ ② Ε Т а E' O'E': semi-diagonal A' of the square (2 Construction of *C*: C' $|V_1C|? |O'T|$ $|V_{2}C|$? |O'S|