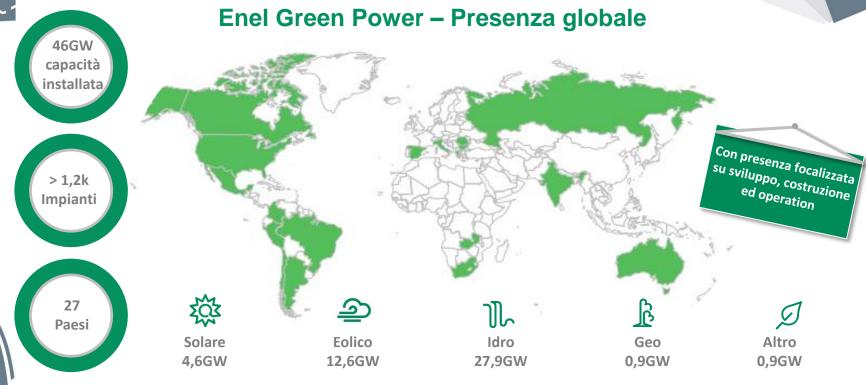
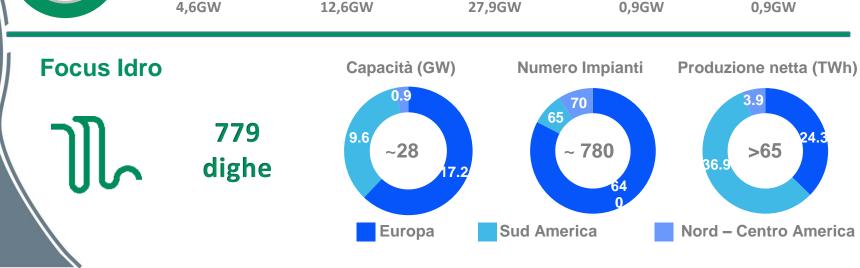
Rimozione in continuo dei sedimenti per bacini idroelettrici

Giuseppe Tomaselli

Head of Innovation Hydro

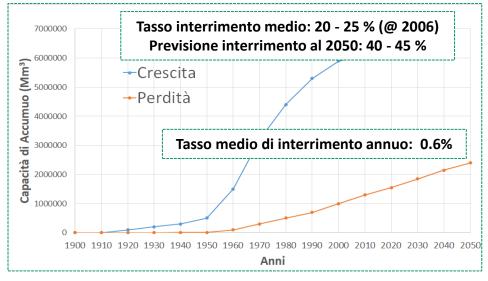

3rd November 2020



TAVOLO nazionale ERCSIONE COSTIERA

Gestione e riuso dei sedimenti in ambito costiero da fonti Litoranee, strutture portuali, bacini artificiali e corsi d'acqua, per una crescita blu sostenibile ECOMONDO
THE GREEN TECHNOLOGY EXPO

Rimini, 3 novembre 2020


Contesto Idroelettrico e Sedimentazione

Italia

- Fenomeni di insabbiamento in circa il 50% delle grandi dighe italiane presentano
- Perdita di produzione stimata in 300 M€

Enel Green Power

- Circa il 17% delle dighe presenta gravi problemi di sedimentazione
- I bacini idroelettrici al termine della concessione dovranno essere riconsegnati alla capacità di invaso originaria – DM 2004

(1) fonte: La gestione dell'interrimento dei serbatoi artificiali italiani - ITCOLD 2009

Effetti della Sedimentazione

- Riduzione del volume di invaso pari a 4 km³ che corrisponde al 30% della capacità totale con minore capacità di regolazione dei deflussi e di laminazione delle piene.
- Abrasione delle opere civili (sfioratori, gallerie) e dispositivi elettromeccanici (turbine e paratoie).
- Aumento della sollecitazione sulla diga e possibili erosioni localizzate al piede della stessa.

Sedimentazione ed impatti ambientali

Equilibrio sedimentario dei litorali

- L'alimentazione sedimentaria delle coste è dovuta principalmente al trasporto solido fluviale.
- La costruzione di sbarramenti sui fiumi può bloccare il deflusso sedimentario verso le coste.
- A livello mondiale in un anno circa il 66% dei sedimenti (24 Gt/anno) è trattenuto dagli sbarramenti.
- Per la conservazione dell'ambiente naturale è necessario garantire il corretto afflusso di sedimenti alle coste da parte dei fiumi.

Impatti ambientali

- Lo squilibrio tra l'input sedimentario dai fiumi e la capacità del mare di muovere i sedimenti lungo le coste è la principale cause della erosione dei litorali.
- L'erosione costiera è una delle minacce più rilevanti ai fini delle conservazione della biodiversità delle coste.

Sinergie di interessi

Riattivare il deflusso di sedimenti a valle degli sbarramenti idroelettrici:

- 1) Per evitare la riduzione del volume d'invaso utile ai fini di controllo delle piene, dell'approvvigionamento idrico o per lo sfruttamento idro-energetico
- 2) Per evitare la riduzione dell'input sedimentario verso le coste

Interesse pubblico per la tutela delle coste

EGP si propone di sviluppare in collaborazione con partner scientifici nuove tecnologie e metodologie di rimozione dei sedimenti dagli sbarramenti idroelettrici favorendo il naturale trasporto via fluviale

Tecniche tradizionali per la rimozione dei sedimenti

Fluitazione controllata

Fluitazione in coda di piena

Dragaggio meccanico

Svantaggi

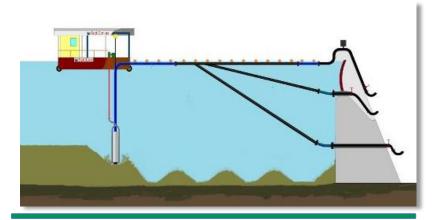
- Rimozione solo di poche quantità di sedimenti
- Svuotamento del serbatoio per lunghi periodi → Elevata mancata produzione
- Problemi ambientali legati alla natura chimica dei sedimenti
- Alti costi operativi
- Alti rischi per la sicurezza
- Nessuna riattivazione del trasporto di sedimenti verso le coste

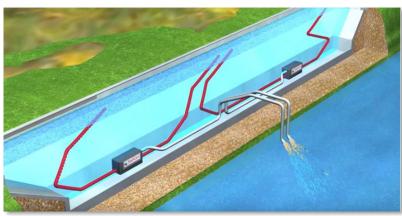
Enel Green Power: Progetto Rimozione in Continuo dei Sedimenti

Obiettivo -> Dimostrare in 3 casi studio la sostenibilità economica ed ambientale di un nuovo approccio alla rimozione dei sedimenti basato sulla tecnologia della rimozione in continuo finalizzato a:

- Rimuovere sedimenti in tutto il serbatoio, anche a grande distanza dalla diga (fino a 2 km).
- Trasferire significative quantità di solido in piccolo dosi e in modo controllato ed automatizzato.
- Ripristinare e monitorare il naturale corso dei sedimenti dal monte al mare.

Razionale del progetto:


- Riduzione dei costi O&M rispetto ai sistemi tradizionali (da 20-30 €/m3 a 5-8 €/m3).
- Ridurre le perdite di mancata produzione
- Riduzione del rischio ambientale
- Applicazione alla flotta Enel di una tecnologia innovativa, ambientalmente sostenibile, rispetto ai metodi tradizionali di rimozione dei sedimenti
- Aumentare la sicurezza nelle operazioni di rimozione dei sedimenti
- Collaborare con la natura ripristinando il trasporto in alveo dei sedimenti


Enel Green Power: Progetto Rimozione in Continuo dei Sedimenti

Tecnologia dell'Idrosuzione

- Rimuove tutte le tipologie di sedimenti: argilla coesa, sabbia e ghiaia (fino a 60 mm)
- Assicura elevata flessibilità operativa e non interferisce con le operazioni di gestione dell'impianto
- Concentrazione dei sedimenti controllata
- Sistema completamente automatizzato (unmanned)

Tecnologia della Sluicer

- Adatto a mitigare il deposito di sedimenti
- E' guidato dalla gravità (limitato consumo di energia)
- Non interferisce con la gestione dell'impianto
- Rimozione è estremamente semplice adatta a piccoli invasi (i.e. vasche di carico)

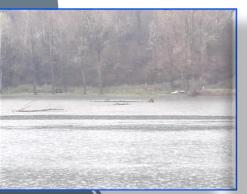
Enel Green Power: Progetto Rimozione in Continuo dei Sedimenti

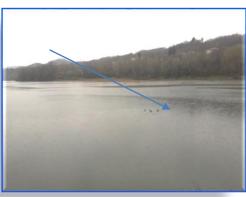
Località: Toscana, Pieve Fosciana (Lucca)

Anno di costruzione: 1924

Caratteristiche dell'invaso

• Volume totale: 3.0 Mm³ (@1924)


Volume effettivo attuale: 0.9 Mm³


Sedimenti nel serbatoio: 2.1 Mm³

Sedimenti nel volume utile: 0.6 Mm³

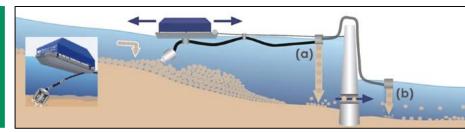
Grado di Interrimento: 70%

Annual sediments flowrate: ca. 20000 m³/anno

Criticità esistenti

- Ridotta flessibilità nella capacità di regolazione
- Significativi problemi ambientali nella zona apicale del lago (zona Turistica).
- Perdite di produzione (fino 5 GWh/anno)

Enel Green Power: Progetto Rimozione in Continuo dei Sedimenti

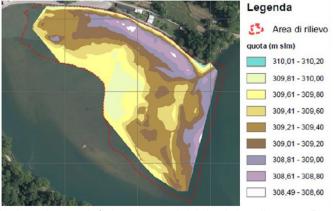

Ipotesi di progetto:

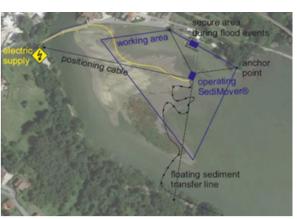
Obiettivo sedimenti da rimuovere: 40000 m³

Concentrazione di sedimenti: 2 g/l Durata prevista attività: 5 mesi

Sistema utilizzato: tecnologie di idro-suzione

Profondità acqua: >0.5m


 Strati superficiali di deposito caratterizzati da un alto contenuto di acqua e da inclusioni di gas 30% 9

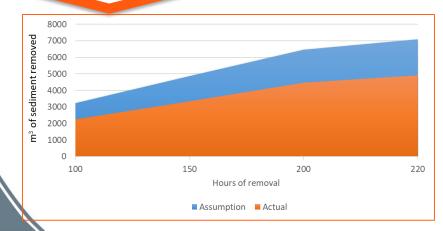

30% solido + 70% acqua

 Sedimenti situati più in profondità hanno una composizione più compatta con una maggiore densità di deposito senza inclusioni di gas

40% solido + 60% acqua

Batimetria per definire lo stato iniziale dei sediment a Pontecosi e configurazione della linea di trasferimento

Enel Green Power: Progetto Rimozione in Continuo dei Sedimenti


Status del progetto:

Inizio attività: Gennaio 2020 Durata attività: ~ 2 mesi (stop per Covid 19) Sedimenti rimossi: 5000 m3

Durante l'esercizio condizioni idro-meteorologiche e problemi funzionali della soluzione hanno limitato l'efficacia di rimozione

Confronto tra le quantità di sedimenti effettivamente rimossi ed I valori ipotizzati

Per migliorare l'efficienza nel tasso di rimozione e trasferimento dei sistema:

- Sostituzione pompa booster con una soluzione più adatta al tipo di sedimenti
- Miglioramento del Sistema di idrosuzione per movimentazione sedimenti

Conclusioni

- Per mitigare gli effetti degli sbarramenti EGP sta testando i migliori approcci innovativi per la rimozione dei sedimenti per via fluviale con elevata sostenibilità ambientale.
- ➤ La prima applicazione sul sito di Pontecosi ha mostrato risultati promettenti in termini di efficacia della soluzione tecnologica testata che allo stesso tempo necessita di alcuni miglioramenti per incrementarne l'affidabilità.
- ➤ EGP si propone di sviluppare in collaborazione con partner scientifici nuove tecnologie e metodologie di rimozione dei sedimenti dagli sbarramenti idroelettrici favorendo il naturale trasporto via fluviale.