
Universität Augsburg

© Peter Höfner

How to find algebraic semantics
for temporal logics

Peter Höfner

Temporal Logics and Algebra

RelMiCS 2009

November 2009



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

Introduction

• aims
- short introduction to temporal logics like LTL, CTL, CTL* ... 
- derive algebraic semantics for CTL*
- short introduction to Neighbourhood Logic
- derive algebraic semantics for Neighbourhood Logic
- give a general scheme how to derive algebraic semantics

• this is a tutorial

• 45 minutes are far too short, continue on your own

2



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

Preliminaries

3

• knowledge of sets, union, intersection, complementation

• some basics of propositional logic

• basic knowledge about graphs



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

Motivation

why temporal logic
• temporal logic is everywhere

• describe temporal behaviour

• examples are: language, flow analysis, logics of programs, 
philosophy, etc.

4

At some day I will 
receive my PhD ...
after that I’ll marry



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

Motivation

why algebra
• simply and concise proofs

• cross reasoning possible (unification)
if logics are lifted to the same type of abstract algebra

• automated theorem proving with off-the-shelf software

5



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

A Crash Course in Temporal Logic

• temporal logics describe any system of rules for representing, and 
reasoning about, propositions qualified in terms of time 

• first studied in depth by Aristotle

• any logic which uses quantifier is a predicate logic;
any logic which uses time as a sequence of states is a temporal logic;

• temporal logic has found an important application in formal 
verification

• can reason about time

• concrete temporal logics
- linear temporal logic (LTL) [Pnueli Manna 1977]
- computation tree logic (CTL) [Clarke Emerson 1981]
- CTL* [Emerson Halpern 1986]
- neighbourhood logic [Zhou Hansen 1998]
- ...

6



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

Examples

• eventually, I will pass my PhD defense

• until I have passed my defense, I will be a grad student

• I’m always hungry

• after this and the next beer, I will only have two more beers

• as long as I stay in Doha I will not see my parents

• after program P has terminated, program Q is executed

• if each atomic program execution takes at most          ,
the whole program does not need more than        to terminate.

• if P terminates the next program to be executed will need 
variable 

7

10 s
5 ms

x



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

LTL - Linear Temporal Logic

• time is discrete and is characterised by points

• (computation) path is a (possible infinite) sequence of states

• future is not determined (consider several paths)

• base is a finite set of atomic propositions like
“I have a PhD”, “process 1253 is suspended”, 
“program P is executed”, etc.

8

. . .



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

LTL - Syntax

•    atomic proposition 

• the first three items should be known from propositional logic

•  as usual

• moreover

9

¬⇥ = ⇥ � ⇤ ⇥ ⌅ � = ¬(⇥ � ¬�) ⇥ ⇧ � = ¬⇥ � �

⇥ ::= ⇥ | � | ⇥� ⇥ | X⇥ | ⇥U⇥

F⇥ = ⇥U⇥ G⇥ = ¬F¬⇥ ⇥ R � = ¬(¬U¬�)

�



© Peter Höfner-     -

LTL formulas are evaluated on paths 

a state of a system satisfies an LTL formula if all paths from the given 
state satisfy it

Temporal Logics and Algebra

RelMiCS 2009

LTL - Semantics

10

neXt:    has to hold at the next state

Until:    has to hold (at least) until

Finally:    eventually has to hold

Globally:    has to hold on the entire subsequent path

Release: at first position in which     is true,    ceases to be 
true; it is required to be true until release occurs

w |= X�

w |= ⇥ U�

w |= F �

w |= G�

w |= ⇥ R� �

�

� �� �

�

�� � �

�

�

�

� �

�

proper definition can be found e.g. in [Emerson 1990]



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

LTL - Examples and Practical Patterns

11

• it is impossible to get to a state where started, but ready does 
not hold

• whenever I receive an email I will send an answer

• if program P is executed once, it is executed infinitely often

• I smoked until I was 22 
(assuming that the discrete states are years)

• an upwards travelling escalator at the third floor does not change 
the direction when its passengers want to go to the fifth floor



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

LTL - Examples and Practical Patterns

11

• it is impossible to get to a state where started, but ready does 
not hold

• whenever I receive an email I will send an answer

• if program P is executed once, it is executed infinitely often

• I smoked until I was 22 
(assuming that the discrete states are years)

• an upwards travelling escalator at the third floor does not change 
the direction when its passengers want to go to the fifth floor

G¬(started ⇥ ¬ready)



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

LTL - Examples and Practical Patterns

11

• it is impossible to get to a state where started, but ready does 
not hold

• whenever I receive an email I will send an answer

• if program P is executed once, it is executed infinitely often

• I smoked until I was 22 
(assuming that the discrete states are years)

• an upwards travelling escalator at the third floor does not change 
the direction when its passengers want to go to the fifth floor

G¬(started ⇥ ¬ready)

G(receive� F answer)



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

LTL - Examples and Practical Patterns

11

• it is impossible to get to a state where started, but ready does 
not hold

• whenever I receive an email I will send an answer

• if program P is executed once, it is executed infinitely often

• I smoked until I was 22 
(assuming that the discrete states are years)

• an upwards travelling escalator at the third floor does not change 
the direction when its passengers want to go to the fifth floor

G¬(started ⇥ ¬ready)

G(¬P) ⇥ GF(P)

G(receive� F answer)



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

LTL - Examples and Practical Patterns

11

• it is impossible to get to a state where started, but ready does 
not hold

• whenever I receive an email I will send an answer

• if program P is executed once, it is executed infinitely often

• I smoked until I was 22 
(assuming that the discrete states are years)

• an upwards travelling escalator at the third floor does not change 
the direction when its passengers want to go to the fifth floor

G¬(started ⇥ ¬ready)

smokeU (age = 22 ⇥ ¬smoke)

G(¬P) ⇥ GF(P)

G(receive� F answer)



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

LTL - Examples and Practical Patterns

11

• it is impossible to get to a state where started, but ready does 
not hold

• whenever I receive an email I will send an answer

• if program P is executed once, it is executed infinitely often

• I smoked until I was 22 
(assuming that the discrete states are years)

• an upwards travelling escalator at the third floor does not change 
the direction when its passengers want to go to the fifth floor

G¬(started ⇥ ¬ready)

smokeU (age = 22 ⇥ ¬smoke)

G(¬P) ⇥ GF(P)

G(floor3 ⇥ buttonpresed5 ⇥ dirupwards� dirupwardsU floor5)

G(receive� F answer)



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

CTL - Branching Time Logic

• time is discrete

• LTL cannot express existential quantifiers 

• elements are now trees of states 

• future is not determined 
(consider several paths of a trees or even several trees)

• base is again a finite set of atomic propositions

12

. . .

. . .

. . .

. . .



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

CTL - Syntax

13

the syntax of quantifies an LTL formula

⇥ ::= ⇥ | � | ⇥� ⇥ | E(X⇥) | E(⇥U⇥)

•  the all quantifier is defined, as usual, via de Morgan

• formulas like                 are possible by the above relations   

A� = ¬E¬�

A(� U⇥)



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

CTL - Semantics

14

we only give examples, a proper definition is again in 
[Emerson 1990]

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

there is a path     that satisfies 

all paths    satisfy 

there is a path    that satisfies
˚

all paths    satisfy

. . .

. . .

. . .

. . .

t |= A(X red)

t |= E(X red)

t |= E(blackU red)

t |= A(blackU red)
w |= blackU red

w |= blackU red

w |= X red

w |= X red

w

w

w

w



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

CTL - Examples and Practical Patterns

15

• whenever I receive an email I will send an answer

• if a program executes f, it can always be terminated by the user

• all paths which have a    along them have also a � �



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

CTL - Examples and Practical Patterns

15

• whenever I receive an email I will send an answer

• if a program executes f, it can always be terminated by the user

• all paths which have a    along them have also a 

AG(receive� AFanswer)

� �



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

CTL - Examples and Practical Patterns

15

• whenever I receive an email I will send an answer

• if a program executes f, it can always be terminated by the user

• all paths which have a    along them have also a 

AG(receive� AFanswer)

AG(f� EX terminate)
� �



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

CTL*

• time is discrete

• base is again finite set of atomic propositions

• unifies paths and state formulas

• if we can derive an algebraic semantics of CTL* we have also 
one for CTL and LTL by restricting it to subsets

16

LTL

CTL*

CTL



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

CTL* - Minimal Syntax

• as in LTL and CTL we can define the operators 

• if we are able to give algebraic expressions for the minimal 
syntax we can determine the derived operators

17

⇥ ::= ⇥ | ⇤ | ⇥� ⇥ | E�,
� ::= ⇥ | �� � | X� | � U�.

⇥, ⇤,¬, A, G, F



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

Let’s Get Algebraic !

18



© Peter Höfner-     -RelMiCS 2009

Graphs, Matrices and Relations 

19

there is a close relationship between all these concepts

1 2

43 5

graph adjacency matrix

x x

x x

x x

1
2
3
4
5

1 2 3 4 6

relation

R = {(1, 2), (2, 4), (3, 1),
(3, 4), (4, 3), (4, 5)}

Temporal Logics and Algebra



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

From Relations to Paths

• relations present graphs

• composition corresponds to path fusion

• relation stores only the starting and the ending points

• the intermediate points are lost
for example there is no difference between the result of

20

1 2

43 5

(1, 2) ; (2, 4) and
(1, 2) ; (2, 4) ; (4, 3) ; (3, 4)



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

From Relations to Paths

• relations cannot express properties of paths or intermediate 
states

• use paths (sequences of nodes) and sets of paths instead

• paths con be composed if the last node of the first 
corresponds to the first one of the second

• as in the case of relations composition of paths can be lifted to 
sets of paths

• moreover two sets of paths can be composed using set union

• both relations and paths form the same algebraic structure, 
namely quantales
(a generalisation of relation relation algebra)

21

x.s ⇥� s.z = x.s.y



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

An Example for Paths

• as in relations      determines all path of length 

• it stores all intermediate states

• use paths of length   to restrict and test elements

22

1 2

43 5

T = {1.2, 2.4, 3.1,

3.4, 4.3, 4.5}

T 2 2

T 2 = {1.2.4, 2.4.3, 2.4.5, 3.1.2, 3.4.3, 3.4.5, 4.3.1, 4.3.4}
1

{1} ⇥� T 2 = {1.2.4}



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

From Finity to Infinity

• using the above approach one can model union and 
composition of finite paths

• but how to handle infinite paths?
(important for logics)

• if an infinite path is composed with an arbitrary one, the result 
is the infinite path

23



© Peter Höfner-     -

Temporal Logics and Algebra

Left Boolean Quantale

we now define the underlying algebra
• two operations: addition and composition

• addition: associative and commutative and idempotent with 
neutral element 0

• composition: associative, neutral element 1;

• annihilation: 

• composition distributes over arbitrary sums

• the structure is also Boolean, i.e., we can define a 
complement satisfying the de Morgan dualities and a meet 
operator

0 · a = 0



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

Left Boolean Quantale

• 0 is the least element and     denotes the greatest element
(union of all elements)

• finite iteration (Kleene star) is defined as the least fixpoint of                            
                        and denoted by

• infinite iteration is defined as the greatest fixedpoint of  
                 and denoted by

• an example for Boolean quantales are relation algebras

25

�

1 + a · x = x a�

a · x = x a�



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

The Boolean Left Quantale of Paths

• use sets of paths as elements

• addition is set union; 
the neutral element is the empty set

• composition is defined as above; 
the neutral element is the set of all states (paths of length 1)

•  finite iteration

•        usually contains infinite paths, however there maybe 
some finite paths in it

26

A� =
�

i⇥0

Ai

A�



© Peter Höfner-     -

11

9

7

10

4

8

6

Temporal Logics and Algebra

RelMiCS 2009

From Temporal Logics to Algebra

27

1

3

76

2 5

4

8 9

10 11

1

10

22 3 5



© Peter Höfner-     -

11

9

7

10

4

8

6

Temporal Logics and Algebra

RelMiCS 2009

From Temporal Logics to Algebra

27

1

3

76

2 5

4

8 9

10 11

1

10

22

yel = { , , }
gre = { , , , }
red = { , , , }
blu = { , }

3 5



© Peter Höfner-     -

11

9

7

10

4

8

6

Temporal Logics and Algebra

RelMiCS 2009

From Temporal Logics to Algebra

27

1

3

76

2 5

4

8 9

10 11

1

10

22

yel = { , , }
gre = { , , , }
red = { , , , }
blu = { , }

3 5



© Peter Höfner-     -

11

9

7

10

4

8

6

Temporal Logics and Algebra

RelMiCS 2009

From Temporal Logics to Algebra

27

1

3

7

6

2 5

4

8 9

10 11

1

10

22

yel = { , , }
gre = { , , , }
red = { , , , }
blu = { , }

3 5



© Peter Höfner-     -

11

9

7

10

4

8

6

Temporal Logics and Algebra

RelMiCS 2009

From Temporal Logics to Algebra

27

1

3

7

6

2 5

4

8 9

10

11

1

10

22

yel = { , , }
gre = { , , , }
red = { , , , }
blu = { , }

3 5



© Peter Höfner-     -

11

9

7

10

4

8

6

Temporal Logics and Algebra

RelMiCS 2009

From Temporal Logics to Algebra

27

1

3

7

6

2 5

4 8

9

10

11

1

102

2

yel = { , , }
gre = { , , , }
red = { , , , }
blu = { , }

3 5



© Peter Höfner-     -

11

9

7

10

4

8

6

Temporal Logics and Algebra

RelMiCS 2009

From Temporal Logics to Algebra

27

1

3
7

6

2
5

4 8

9

10

11

1

102

2

yel = { , , }
gre = { , , , }
red = { , , , }
blu = { , }

3 5



© Peter Höfner-     -

11

9

7

10

4

8

6

Temporal Logics and Algebra

RelMiCS 2009

From Temporal Logics to Algebra

27

1
3

7

6

2

5

4 8

9

10

11

1

102

2

yel = { , , }
gre = { , , , }
red = { , , , }
blu = { , }

3 5



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

From Finite to Algebra

28

yel = {1, 6, 10}
gre = {2, 4, 8, 10}
red = {2, 7, 9, 11}
blu = {3, 5}

11

9

7

10

4

8

61

2 3 5



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

From Finite to Algebra

28

yel = {1, 6, 10}
gre = {2, 4, 8, 10}
red = {2, 7, 9, 11}
blu = {3, 5}

11

9

7

10

4

8

61

2 3 5

A = {1.2, 2.3, . . .}
adjacent matrix as set of paths



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

Towards Algebraic Semantics

29

now we can characterise temporal formulas paths
in the example

• all (sub)paths of the above graph that are red at the second 
state

• all (sub)paths that are yellow until they are green
�

j⇤0

(Aj ⇥� gre �
⇥

k⇥j

Ak ⇥� yel) ⇥� A�



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

Towards Algebraic Semantics

29

now we can characterise temporal formulas paths
in the example

• all (sub)paths of the above graph that are red at the second 
state

• all (sub)paths that are yellow until they are green

A ⇥� red ⇥� A�

�

j⇤0

(Aj ⇥� gre �
⇥

k⇥j

Ak ⇥� yel) ⇥� A�



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

Algebraic Semantics of CTL - Part I

30

[[⌅]] = 0,
[[p]] = p ·⇤,

[[⇥⇥ �]] = [[⇥]] + [[�]],
[[X⇥]] = a · [[⇥]],

[[⇥ U�]] =
�

j�0(a
j · [[�]] ⇧

�
k<ja

k · [[⇥]]),

let    be the representation of the transition system 
(requirements for   will be discussed later)
concrete semantics generalises 
to a function 

a
a

[[ ]]



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

The Existential Quantifier

31

to finish the algebraic semantics one has to find an algebraic 
expression for E
• E describes the existence of a path

• idea: determine all paths satisfying it; take the first element 
and continue it with an arbitrary path

. . .

. . .

. . .

. . .



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

Domain

• aim characterise the “first element” of an arbitrary element of 
an arbitrary Boolean quantale

• in relation algebra:

• in the algebra of paths:

• in general domain can be defined via a Galois connection

where    is an element of the maximal Boolean subset below

32

�R = {(t, t) | ⇥s : (t, s) � R}

�T = {(p | ⇥x � T.⇥s : p.s = t}

�a ⇥ p⇤ a ⇥ p ·⌅
1p



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

Algebraic Semantics of CTL - Part II

33

let    be the representation of the transition system 
(requirements for   will be discussed later)
concrete semantics generalises 
to a function 

a
a

[[ ]]

[[⌅]] = 0,
[[p]] = p ·⇤,

[[⇥⇥ �]] = [[⇥]] + [[�]],
[[X⇥]] = a · [[⇥]],

[[⇥ U�]] =
�

j�0(a
j · [[�]] ⇧

�
k<ja

k · [[⇥]]),

[[E⇥]] = �[[⇥]] ·⇤



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

Properties

34

• we can now determine the derived operators. e.g.,

• more properties and longer discussions can be found in 
[Möller Höfner Struth 06]

• since                      the underlying transition    has to satisfy 

• from that it is easy to derive semantics for CTL and LTL
(for more details see [Möller Höfner Struth 06])

[[F�]] = a� · [[�]]

X¬�� ¬X�

⇥b : a · b = a · b
a



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

An Advantage of Algebra

• use of off-the-shelf automated theorem provers

• problem: quantales are higher-order structures; at the moment 
theroem provers are only really good for first-order structures

• but one can use first-order logics to show parts of the 
properties

• today, Dang shows how to encode quantales for higher-order 
theorem provers

• Let’s do a toy example: Show that 

35

[[EXE�]] = [[EX�]]



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

How We Derived the Semantics

• instead of looking at single states and paths (trees), we 
worked with sets of states and paths 

• abstract from concrete operations like set union and set 
complement to abstract one

• most often there will be operations for choice, composition and  
(in)finite iteration

• if this is the case quantales seems to be one of the best 
abstract algebras 

36



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

Points versus Intervals
Discrete versus Continuous

37

• LTL, CTL and CTL* are based points in time 

• most temporal formalisms developed for program reasoning 
do so

• however often intervals seem to be more realistic; 
especially in the context of realtime systems

• if logics are point-based, time has to be discrete

• if logics are interval-based, time may be continuous



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

NL - Neighbourhood Logic

38

• a “universal” interval-based logic

• developed by Zhou and Hansen [Zhou Hansen 1996]

• subsumes at least 10 other interval logics such as
- interval temporal logic (ITL)

[Halpern Manna Moszkowski 1983]
- interval logic (IL) [Dutere 1995]
- Allen’s interval logic [Allen1983]
- Venema’s chopping logic [Venema 1991]
• interval-based; hence it allows continuous time

• used for the analysis of real-time and hybrid systems



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

From CTL to NL (informal)

39

. . .

. . .

. . .



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

From CTL to NL (informal)

40

. . .

. . .

. . .



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

NL - Syntax

41

• the syntax includes temporal, functional variables etc which 
we skip here for simplicity

• moreover we skip a detailed discussion of functions evaluating 
intervals

• the remaining language of NL formulas is defined by

• skipped details can be found in [Zhou Hansen 2004]

• from this minimal syntax one can again derive further 
operators like 

� ::= � ⇤ � | ¬� | (�x)� | �l� | �r�

(�x)� = ¬(⇥x)¬�, �l� = ¬ �l¬�, �r� = ¬ �r¬�



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

NL - Semantics

42

[y, z], in signs [y, z] |=J ,V ϕ, (see e.g., [42]):

[y, z] |=J ,V X iff XJ ([y, z]) = true

[y, z] |=J ,V Gn(θ1, . . . , θn) iff Gn(c1, . . . , cn) = true,

where ci = θJ ,V
i ([y, z]), i = 1 . . . n

[y, z] |=J ,V ¬ϕ iff [y, z] !|=J ,V ϕ,

[y, z] |=J ,V ϕ ∨ ψ iff [y, z] |=J ,V ϕ or [y, z] |=J ,V ψ,

[y, z] |=J ,V (∃x)ϕ iff [y, z] |=J ,V ′ ϕ for some V ′ that agrees with V
for all global variables u != x

[y, z] |=J ,V !lϕ iff ∃δ ≥ 0 : [y − δ, y] |=J ,V ϕ

[y, z] |=J ,V !rϕ iff ∃δ ≥ 0 : [z, z + δ] |=J ,V ϕ

Intuitively, !l and !r allow reasoning about left and right neighbourhoods
of a given interval.

︷ ︸︸ ︷︷ ︸︸ ︷
ϕ !lϕ

! ! ! !

u y z

︷ ︸︸ ︷︷ ︸︸ ︷
!rϕ ϕ

! !! !

y z v

where u = y − δ where v = z + δ

By definition !lϕ will hold for an interval that has an interval on the left where
ϕ holds. Symmetrically, !rϕ holds for an interval having a right neighbour
interval where ϕ holds.

One of the most interesting binary interval modality is the chop operator !

interpreted as the operation of “chopping” an interval into two parts. Its se-
mantics is given by

[y, z] |=J ,V ϕ!ψ iff ∃m ∈ [y, z] : [y, m] |=J ,V ϕ ∧ [m, z] |=J ,V ψ . (1)

The chop operator cannot be derived from the basic unary modalities in a
propositional logic like ITL [15]. But it is expressible in NL and therefore ITL
is subsumed [41]. More precisely,

ϕ!ψ ⇔ ∃x, y : ((% = x + y) ∧ !l !r((% = x) ∧ ϕ ∧ !r((% = y) ∧ ψ))) .

There are various kinds of interval temporal logics in the literature, both
propositional ([15,14,39]) and first-order ([8]). Most of these logics are covered
by NL (see e.g [42]).

So far, we have used real numbers as domain of time and values. It is known
that it is impossible to have a complete axiomatisation of real numbers. One
can develop different first order theories for real numbers, but none of them

5

[y, z], in signs [y, z] |=J ,V ϕ, (see e.g., [42]):

[y, z] |=J ,V X iff XJ ([y, z]) = true

[y, z] |=J ,V Gn(θ1, . . . , θn) iff Gn(c1, . . . , cn) = true,

where ci = θJ ,V
i ([y, z]), i = 1 . . . n

[y, z] |=J ,V ¬ϕ iff [y, z] !|=J ,V ϕ,

[y, z] |=J ,V ϕ ∨ ψ iff [y, z] |=J ,V ϕ or [y, z] |=J ,V ψ,

[y, z] |=J ,V (∃x)ϕ iff [y, z] |=J ,V ′ ϕ for some V ′ that agrees with V
for all global variables u != x

[y, z] |=J ,V !lϕ iff ∃δ ≥ 0 : [y − δ, y] |=J ,V ϕ

[y, z] |=J ,V !rϕ iff ∃δ ≥ 0 : [z, z + δ] |=J ,V ϕ

Intuitively, !l and !r allow reasoning about left and right neighbourhoods
of a given interval.

︷ ︸︸ ︷︷ ︸︸ ︷
ϕ !lϕ

! ! ! !

u y z

︷ ︸︸ ︷︷ ︸︸ ︷
!rϕ ϕ

! !! !

y z v

where u = y − δ where v = z + δ

By definition !lϕ will hold for an interval that has an interval on the left where
ϕ holds. Symmetrically, !rϕ holds for an interval having a right neighbour
interval where ϕ holds.

One of the most interesting binary interval modality is the chop operator !

interpreted as the operation of “chopping” an interval into two parts. Its se-
mantics is given by

[y, z] |=J ,V ϕ!ψ iff ∃m ∈ [y, z] : [y, m] |=J ,V ϕ ∧ [m, z] |=J ,V ψ . (1)

The chop operator cannot be derived from the basic unary modalities in a
propositional logic like ITL [15]. But it is expressible in NL and therefore ITL
is subsumed [41]. More precisely,

ϕ!ψ ⇔ ∃x, y : ((% = x + y) ∧ !l !r((% = x) ∧ ϕ ∧ !r((% = y) ∧ ψ))) .

There are various kinds of interval temporal logics in the literature, both
propositional ([15,14,39]) and first-order ([8]). Most of these logics are covered
by NL (see e.g [42]).

So far, we have used real numbers as domain of time and values. It is known
that it is impossible to have a complete axiomatisation of real numbers. One
can develop different first order theories for real numbers, but none of them

5



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

NL - Getting Algebraic

43

• as before we do not use single elements

• that means instead looking at a single interval satisfying
we look at a set  

• similar to paths we define operations on sets of intervals
- union as addition
- point-wise lifted interval composition as multiplication
- complement on sets
• this immedeately yields again a Boolean (left) quantale with 

• one may add a right-open intervals 

�

Lemma 2.3 If S is Boolean then

¬!a ≤ !a, hence ¬!a ≤ !a, and p ·" = ¬p ·" .

Proof. By Boolean algebra and additivity of domain, 1 = !" = !(a + a) =
!a + !a, and the first claim follows by shunting.

By Boolean algebra we only have to show that ¬p · " + p · " = " and
¬p ·"# p ·" = 0. The first equation follows by left-distributivity, the second
one by Boolean algebra and the law [27]

p · a # q · a = p · q · a (5)

that holds even in absence of a general meet operation. #$

3 Embedding Neighbourhood Logic into Semirings

In this section we present an embedding of Neighbourhood Logic into the
interval semiring INT. This yields manifold advantages:

• It can be shown that some axioms of NL can be dropped since they are
theorems in our setting.

• Using the algebra one can now use theorem provers to verify or falsify for-
mulas and therefore has a computer-aided framework.

• The algebra gives a unifying framework in which the theory of NL can be re-
used in other areas, and, vice versa, the theory of semirings can be applied
to NL.

3.1 Towards an Algebraic Characterisation

For the embedding we assume a fixed interpretation J and value assignment V
and abbreviate |=J ,V by just |=. Given a formula ϕ we define Iϕ as the set of
all intervals where ϕ holds:

Iϕ =df {[y, z] : [y, z] |= ϕ} .

The sets Iϕ of intervals will be the elements of our algebraic structure.

Obviously, temporal and global variables as well as propositional letters can
be used to construct such sets of intervals. For example, using the temporal
variable ", we can characterise all intervals of length x by I"=x. The embedding

9

�I = {[x, x] | ⇥y : [x, y] � I}
[x,�)



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

Algebraic Semantics for NL (a snapshot)

44

[y, z], in signs [y, z] |=J ,V ϕ, (see e.g., [42]):

[y, z] |=J ,V X iff XJ ([y, z]) = true

[y, z] |=J ,V Gn(θ1, . . . , θn) iff Gn(c1, . . . , cn) = true,

where ci = θJ ,V
i ([y, z]), i = 1 . . . n

[y, z] |=J ,V ¬ϕ iff [y, z] !|=J ,V ϕ,

[y, z] |=J ,V ϕ ∨ ψ iff [y, z] |=J ,V ϕ or [y, z] |=J ,V ψ,

[y, z] |=J ,V (∃x)ϕ iff [y, z] |=J ,V ′ ϕ for some V ′ that agrees with V
for all global variables u != x

[y, z] |=J ,V !lϕ iff ∃δ ≥ 0 : [y − δ, y] |=J ,V ϕ

[y, z] |=J ,V !rϕ iff ∃δ ≥ 0 : [z, z + δ] |=J ,V ϕ

Intuitively, !l and !r allow reasoning about left and right neighbourhoods
of a given interval.

︷ ︸︸ ︷︷ ︸︸ ︷
ϕ !lϕ

! ! ! !

u y z

︷ ︸︸ ︷︷ ︸︸ ︷
!rϕ ϕ

! !! !

y z v

where u = y − δ where v = z + δ

By definition !lϕ will hold for an interval that has an interval on the left where
ϕ holds. Symmetrically, !rϕ holds for an interval having a right neighbour
interval where ϕ holds.

One of the most interesting binary interval modality is the chop operator !

interpreted as the operation of “chopping” an interval into two parts. Its se-
mantics is given by

[y, z] |=J ,V ϕ!ψ iff ∃m ∈ [y, z] : [y, m] |=J ,V ϕ ∧ [m, z] |=J ,V ψ . (1)

The chop operator cannot be derived from the basic unary modalities in a
propositional logic like ITL [15]. But it is expressible in NL and therefore ITL
is subsumed [41]. More precisely,

ϕ!ψ ⇔ ∃x, y : ((% = x + y) ∧ !l !r((% = x) ∧ ϕ ∧ !r((% = y) ∧ ψ))) .

There are various kinds of interval temporal logics in the literature, both
propositional ([15,14,39]) and first-order ([8]). Most of these logics are covered
by NL (see e.g [42]).

So far, we have used real numbers as domain of time and values. It is known
that it is impossible to have a complete axiomatisation of real numbers. One
can develop different first order theories for real numbers, but none of them

5

where codomain    is defined symmetrically to domain �

[[ �l�]] = [[�]]⇥ ·⇥
[[ �r�]] = ⇥ · �[[�]]



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

Algebraic Semantics for NL (a snapshot)

45

Again we start with the pointwise characterisation of the boxes in INT.

Since !{[y, z]} = {[y, y]} is a singleton set,

[y, z] |= "lϕ ⇔ [y, z] |= ¬ "l¬ϕ

⇔ !{[y, z]} "⊆ (I¬ϕ)#

⇔ !{[y, z]} ⊆ ¬(I¬ϕ)#

⇔ (I¬ϕ)# ; !{[y, z]} ⊆ ∅ .

Note that the symbol ¬ is overloaded and used in two different contexts; on
the one hand it is the logical negation of NL and on the other hand it denotes
the complement of tests.

Since I¬ϕ characterises the set of all intervals where ϕ does not hold, it is the
same as Iϕ using the complement function of Boolean semirings. Using the
same generalisation as above we get, for A ⊆ I,

A |= "lϕ ⇔ (I¬ϕ)# ; !A ⊆ ∅ , (8)

A |= "rϕ ⇔ A# ; !(I¬ϕ) ⊆ ∅ . (9)

In [42] the authors introduce additional neighbourhood modalities for NL
which are given by composing the basic modalities "l and "r. In the re-
maining section we show that they are again diamonds closely related to "l

and "r. First we want to illustrate the meaning of "r "lϕ.

︷ ︸︸ ︷

︸ ︷︷ ︸

"r "lϕ
! ! ! !

y u z

ϕ
︸ ︷︷ ︸

︷ ︸︸ ︷
"r "lϕ

! !! !

u y z

ϕ

with u = z − δ. Therefore in this case, [u, z] is either a postfix of [u, z], or
[u, z] is a postfix of [u, z].

In contrast to the simple neighbourhood operators where some starting points
have to be equal to some end points of sets of intervals, here only end points
occur. The end points of "r "lϕ have to form a subset of the ones of ϕ. Using
the (co)domain interpretation of (6) and (7),

[y, z] |= "r "lϕ ⇔ {[y, z]}# ⊆
!
(

I
"lϕ

)

⇔ {[y, z]}# ⊆ !{[u, v] : !{[u, v]} ⊆ Iϕ#}

⇔ {[y, z]}# ⊆ {[u, u] : [u, u] ∈ Iϕ#}

⇔ {[y, z]}# ⊆ Iϕ# .

We can derive a similar expression for "l "rϕ as !x ≤ !Iϕ. We see in our
setting the characterisation of "r "lϕ and "l "rϕ is no more complicated

11

[[ �r �l�]] = ⇥ · [[�]]⇥
[[ �l �r�]] = �[[�]] ·⇥

(the full algebraic semantics as well as a lot of properties can 
be found in [Höfner Möller 2008])



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

Algebraic Semantics for NL (a snapshot)

45

Again we start with the pointwise characterisation of the boxes in INT.

Since !{[y, z]} = {[y, y]} is a singleton set,

[y, z] |= "lϕ ⇔ [y, z] |= ¬ "l¬ϕ

⇔ !{[y, z]} "⊆ (I¬ϕ)#

⇔ !{[y, z]} ⊆ ¬(I¬ϕ)#

⇔ (I¬ϕ)# ; !{[y, z]} ⊆ ∅ .

Note that the symbol ¬ is overloaded and used in two different contexts; on
the one hand it is the logical negation of NL and on the other hand it denotes
the complement of tests.

Since I¬ϕ characterises the set of all intervals where ϕ does not hold, it is the
same as Iϕ using the complement function of Boolean semirings. Using the
same generalisation as above we get, for A ⊆ I,

A |= "lϕ ⇔ (I¬ϕ)# ; !A ⊆ ∅ , (8)

A |= "rϕ ⇔ A# ; !(I¬ϕ) ⊆ ∅ . (9)

In [42] the authors introduce additional neighbourhood modalities for NL
which are given by composing the basic modalities "l and "r. In the re-
maining section we show that they are again diamonds closely related to "l

and "r. First we want to illustrate the meaning of "r "lϕ.

︷ ︸︸ ︷

︸ ︷︷ ︸

"r "lϕ
! ! ! !

y u z

ϕ
︸ ︷︷ ︸

︷ ︸︸ ︷
"r "lϕ

! !! !

u y z

ϕ

with u = z − δ. Therefore in this case, [u, z] is either a postfix of [u, z], or
[u, z] is a postfix of [u, z].

In contrast to the simple neighbourhood operators where some starting points
have to be equal to some end points of sets of intervals, here only end points
occur. The end points of "r "lϕ have to form a subset of the ones of ϕ. Using
the (co)domain interpretation of (6) and (7),

[y, z] |= "r "lϕ ⇔ {[y, z]}# ⊆
!
(

I
"lϕ

)

⇔ {[y, z]}# ⊆ !{[u, v] : !{[u, v]} ⊆ Iϕ#}

⇔ {[y, z]}# ⊆ {[u, u] : [u, u] ∈ Iϕ#}

⇔ {[y, z]}# ⊆ Iϕ# .

We can derive a similar expression for "l "rϕ as !x ≤ !Iϕ. We see in our
setting the characterisation of "r "lϕ and "l "rϕ is no more complicated

11

[[ �r �l�]] = ⇥ · [[�]]⇥
[[ �l �r�]] = �[[�]] ·⇥

from an algebraic point of view this corresponds to [[E�]]

(the full algebraic semantics as well as a lot of properties can 
be found in [Höfner Möller 2008])



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

CTL* vs. NL

46

• all presented logics can be algebraically characterised by 
quantales

• the resulting formulas coincide to some extent

• this shows a close relationship between the logics and allows 
cross-reasoning

• this was not known before the algebraization



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009 47

• instead of looking at single elements, work with sets 
• abstract from concrete operations like set union and set 

complement to abstract one

• most often there will be operations for choice, composition and  
(in)finite iteration

• if this is the case quantales seems to be one of the best 
abstract algebras 

How to find algebraic semantics
for temporal logics



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

Modal Logics

48

• like for temporal logics there are ways for modal logics

• Möller started to look at these logics [Möller 2008]

• there seem to be the same schemata lying behind

• there is a lot of more work to do



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

References and Further Reading 

computation tree logic (CTL*)
[Huth Ryan 2004] Logic in Computer Science - Modelling about Systems. Cambridge 
University Press
[Emerson 1990] Temporal and Modal Logic. In J. van Leeuwen (ed.), Handbook of Theoretical 
Computer Science
[Gabbay Hodkinson Reynolds 1994] Temporal Logic (Volume 1): Mathematical Foundations 
and Computational Aspects. Oxford University Press
[Clark Grumberg Peled 1999] Model Checking. MIT Press
[Emerson Halpern 1985] Decision procedures and expressiveness in the temporal logic of 
branching time. Journal of Computer and System Sciences 30 (1): 1–24

neighbourhood logic (NL)
[Zhou Hansen 1998] An Adequate First Order Interval Logic. In W. de Roever, H. Langmaack 
and A. Pnueli (eds.), Compositionality: The Significant Difference International Symposium, 
LNCS 1536, pages 584-608, Springer
[Roy Zhou 1997] Notes on Neighbourhood Logic. Technical report 97, The United Nations 
University UNU/IIST
[Zhou VanHung Xiaoshan 1995] A Duration Calculus with Infinite Intervals. In Fundamentals 
of Computation Theory, 16-41, Springer
[Zhou Hansen 2004] Duration Calculus: A Formal Approach to Real-Time Systems, Springer

49



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

References and Further Reading 

more logics
[Halpern Manna Moszkowski 1983] A Hardware Semantics Based on Temporal Logics. In J. 
Diaz (ed.), Automata, Languages and Programming, LNCS 154, pages 278-291, Springer
[Dutere 1995] Complete Proof System for First-order Interval Temporal Logic. Symposium on 
Ligic in Computer Science, pages 36-42, IEEE
[Allen 1983] Maintaining Knowledge about Temporal Intrvals.
[Venema 1991] A Modal Logic for Chopping Intervals. Logic and Computation 1(4), pages 
453-547.

temporal logics and algebraic semantics 
[Möller Höfner Struth] Quantales and Temporal Logics. In M. Johnson, V. Vene (eds.), 
Algebraic Methodology and Software Technology, LNCS 4019, pages 263-277, Springer
[Höfner Möller 2008] Algebraic Neighbourhood Logic. Algebraic and Logic Programming 76, 
pages 35-59
[Möller2009] Knowledge and Games in Modal Semirings. In R. Berghammer, B. Möller, G. 
Struth (eds.) Relations and Kleene Algebra in Computer Science, LNCS 4988, pages 320-336, 
Springer

50



© Peter Höfner-     -

Temporal Logics and Algebra

RelMiCS 2009

References and Further Reading 

semirings and quantales
[Hebisch Weinert 1998] Semirings - Algebraic Theory and Applications in Computer Science. 
World Scientific
[Möller 2007] Kleene getting lazy. Science of Computer Programming 65, pages 195-214.
[Höfner 2009] Algebraic Calculi of Hybrid Systems, PhD Thesis. University of Augsburg

algebraic domain
[Desharnais Möller Struth 2006] Kleene Algebra with Domain. ACM Transaction on 
Computational  Logic 7(4), pages 798-833
[Desharnais Jipsen Struth 2009] Domain and Antidomain Semigroups. In R. Berghammer, A. 
Jaoua, B. Möller (eds.) Relations and Kleene Algebra in Computer Science, LNCS 5827, pages 
73-87, Springer

automation in algebra
[Höfner Struth 2007] Automated Reasoning in Kleene Algebra. In F. Pfennig (ed.), Automated 
Deduction, LNAI 4603, pages 279-294, Springer
[Höfner Struth 2008] On Automating the Calculaus of Relations. In A. Armando, P. 
Baumgartner, G. Dowak (eds.) Automated Reasoning, LNAI 5159, pages 50-66, Springer
[Dang 2009] Automated Higher-Order Reasoning in Quantales. PhDProgramme, RelMiCS
[Höfner 2006] Database for Automated Proofs. http://www.kleenealgebra.de

51

http://www.kleenealgebra.de
http://www.kleenealgebra.de

