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Abstract

We survey the successful computational investigation of certain finitely generated,
infinitely presented groups. We show how their nilpotent quotients can be used
to analyze their Schur multipliers and their outer automorphism groups. As ap-
plication, we investigate the generalized Fabrykowski-Gupta groups Γp for some
small primes p and propose conjectures about their lower central series, their Schur
multipliers and their automorphism groups.

1 Introduction

The Burnside problem, posed by William Burnside in 1902, is one of the oldest
and most influential problems in group theory. It asks whether a finitely generated
group in which every element has finite order is finite. This general question was
answered negatively by Golod and Šafarevič in 1964. Among the first explicit
counter-examples to this problem are the Grigorchuk group [11] and the Gupta-
Sidki group [15].

Both groups can be realized as groups of automorphisms of certain infinite reg-
ular trees. Subgroups of the automorphism group of infinite regular trees have
subsequently proved to be a rich source for groups with interesting properties such
as infinite torsion groups and groups with an intermediate word growth. Most of
the currently known examples of such groups act on the infinite tree in a special
form: they are so-called self-similar groups. We refer to the book by Nekrashevych
[20] for further details.

For many self-similar groups there are presentations with finitely many gener-
ators and infinitely many relators known. In particular, Bartholdi [1] developed
a mechanism to determine such presentations for certain self-similar groups. The
infinitely many relators of these presentations can be described in a finite form
using an action of a finitely generated monoid of endomorphisms on a finite set of
relations. Group presentations with such relations are nowadays known as finite
L-presentations in honor of Lyseniok’s construction of such a presentation for the
Grigorchuk group [19].

Many computational problems are known to be undecidable in general for finitely
presented groups. Hence computations with finitely presented groups are rather
limited in general. Computations with infinitely presented groups are certainly not
easier. Nonetheless the finite L-presentations proved to be a computationally useful
tool in the investigation of various interesting examples of self-similar groups; see
for example [4] and [16].
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Our first aim here is to give a brief overview on the recently developed compu-
tational methods for investigating groups given by a finite L-presentation. This
includes the algorithm in [4] to determine the quotients of the lower central series
of such a group and the method of [16] to approximate its Schur multiplier if the
L-presentation is invariant; see Section 2 for a definition. Further, we discuss an
approach to approximate the automorphism group of a finitely L-presented group.
All our algorithms are implemented in the computer algebra system Gap [10] and
are or will be made available as part of the NQL-package [17].

As application, we show how to investigate an interesting family of self-similar
groups: the generalized Fabrykowski-Gupta groups Γp, for p an odd prime. These
have been defined in [13] and finite L-presentations for them are determined in [4].
The group Γ3 is the Fabrykowski-Gupta group: a group with an intermediate word
growth [8, 9]. For all other primes, the groups Γp are not very well investigated
so far, but they seem promising examples for groups with interesting properties.
Here, we exhibit our computational results on the shape of their lower central series
quotients extending the results of [4], their Schur multipliers as obtained in [16],
and, additionally, on their automorphism groups.

2 Finite L-presentations

Let F be a finitely generated free group over the alphabet X and suppose that
Q,R ⊂ F are finite subsets of the free group F and Φ ⊂ End(F ) is a finite set of
endomorphisms of F . Then the quadruple 〈X | Q | Φ | R〉 is a finite L-presentation.
It defines the finitely L-presented group

G =

〈

X

∣

∣

∣

∣

∣

∣

Q∪
⋃

ϕ∈Φ∗

Rϕ

〉

,

where Φ∗ denotes the free monoid generated by Φ; that is, the closure of Φ ∪ {id}
under composition. A finite L-presentation 〈X | Q | Φ | R〉 is invariant if every
endomorphism ϕ ∈ Φ induces an endomorphism of G; that is, if the normal closure
of Q ∪

⋃

ϕ∈Φ∗ Rϕ in F is ϕ-invariant. For example, every finite L-presentation of
the form 〈X | ∅ | Φ | R〉 is invariant.

Invariant finite L-presentations generalize finite presentations as every finite pre-
sentation 〈X | R〉 translates to the invariant finite L-presentation 〈X | ∅ | ∅ | R〉.
Further, many self-similar groups can be defined by finite invariant L-presentations.
A famous example is the Grigorchuk group; see [19]. The Gupta-Sidki group has a
finite L-presentation, but no invariant L-presentation is known at current.

2.1 Example: The generalized Fabrykowski-Gupta groups

The generalized Fabrykowski-Gupta groups Γp are defined in [13] as groups of
automorphisms of the infinite p-ary tree. In [4] a finite invariant L-presentation
for Γp on two generators is determined. We denote the generators by a and r. Let
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si = rai
for 0 ≤ i < p and s = s1. Reading indices modulo p, we define

R =

{

ap,
[

srℓ
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∣

2 < j < p; 0 ≤ ℓ, m < p

}

.

Further, let ϕ be the endomorphism of the free group on {a, r} defined by ϕ(a) =
ra−1

and ϕ(r) = r. Then we define the generalized Fabrykowski-Gupta group by
the finite L-presentation

Γp = 〈{a, r} | ∅ | {ϕ} | R〉.

A slightly shorter presentation for Γp can be obtained from the FR-package [3] of
the computer algebra system Gap [10].

3 Computing nilpotent quotients

Let G be a group given by a finite L-presentation and c ∈ N. Then the algorithm
in [4] computes a consistent polycyclic presentation for the quotient G/γc+1G,
where γc+1G denotes the (c + 1)-st subgroup of the lower central series of G; that
is, γ1G = G and γi+1G = [γiG, G] for i ∈ N. The algorithm generalizes the
nilpotent quotient algorithm for finitely presented groups as described in [21]. It
uses induction on c. To describe the induction step, we assume that we have already
determined a consistent polycyclic presentation for G/γcG and we wish to extend
this to G/γc+1G.

As G is given by a finite L-presentation, we can consider G as G ∼= F/K for a
finitely generated free group F and a normal subgroup K which is generated as
normal subgroup by the (possibly infinitely many) relations of G. Then

G/γcG ∼= F/KγcF.

We define the covering group of G/γcG by

(G/γcG)∗ = F/[KγcF, F ].

This is a central extension of G/γcG and hence is a nilpotent group. It is also
finitely generated as quotient of the finitely generated group F . Hence (G/γcG)∗ is
polycyclic. The first step in the nilpotent quotient algorithm is to determine a con-
sistent polycyclic presentation for this covering group from a consistent polycyclic
presentation of G/γcG.

If the given L-presentation is invariant, then the finitely many relators in Q
and R translate to elements of (G/γcG)∗ and, similarly, the endomorphisms in
Φ translate. This yields an (infinite) generating set for the image U of K in the
covering group. As the covering group is polycyclic, it follows that ascending chains
of subgroups terminate. Hence we can use a spinning algorithm to determine a finite
generating set for U from the given infinite one. Now we apply general algorithmic
methods for polycyclic groups [18] to determine a consistent polycyclic presentation
for (G/γcG)∗/U ∼= F/Kγc+1F ∼= G/γc+1G.
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If the considered finite L-presentation F/K for G is not invariant, then we deter-
mine S ⊆ F and L ≤ F such that K = 〈S∪L〉F , S is a finite set and F/L is given by
an invariant L-presentation; For example, we can choose S = Q and L the normal
closure of ∪ϕ∈Φ∗Rϕ. Then we apply the algorithm for invariant L-presentations to
H ∼= F/L and obtain G/γc+1G as quotient of H/γc+1H.

3.1 Example: The generalized Fabrykowski-Gupta groups

Many self-similar groups exhibit periodic patterns in their lower central series sec-
tions. A prominent example is the Grigorchuk group whose lower central series
sections have been determined in [22] using theoretical means. As a result it is
known that this group has finite width.

Here we extend our computations from [4] of the lower central series quotients
of the groups Γp. Note that the lower central series quotients of Γ3 have been
determined in [2] and our computations support that result. We summarize our
experimental evidence in the following table. All determined sections γcΓp/γc+1Γp

are elementary abelian p-groups. Hence their isomorphism type is determined by
their rank. We list the sequences of their ranks in the following table writing n[m]

if the rank n appears in m consecutive places in the sequence. The last column of
the table exhibits the maximal class c for which we determined Γp/γc+1Γp.

p rkp(γcΓp/γc+1Γp) class

3 2, 1[1], 2[1], 1[1], 2[3], 1[3], 2[9], 1[9], 2[27], 1[27], 2[65] 147

5 2, 1[3], 2[1], 1[13], 2[5], 1[65], 2[25], 1[26] 139

7 2, 1[5], 2[1], 1[33], 2[7], 1[68] 115

11 2, 1[9], 2[1], 1[89] 100

Let fp(ℓ) = p + (p2 − 2p − 1)(pℓ+1 − 1)/(p − 1) and gp(ℓ) = fp(ℓ) + pℓ+1. Then
the above table suggests that

rkp(γcΓp/γc+1Γp) =

{

2, if c ∈ {1, p} or fp(ℓ) ≤ c < gp(ℓ) for some ℓ ∈ N0,
1, otherwise.

Our computational evidence also strongly supports the conjecture from [4] that the
Fabrykowski-Gupta groups Γp have width 2 for all odd primes p.

4 Investigating Schur multipliers

The Schur multiplier M(G) of a group G is an invariant of the group which can
be defined as the second homology group H2(G, Z). It is of central interest in the
area of self-similar groups. One reason is that finitely presented groups have a
finitely generated Schur multiplier. Hence proving that a Schur multiplier is not
finitely generated also proves that the considered group is not finitely presented.
This strategy has been applied successfully in [12] to show that the Grigorchuk
group is not finitely presented.

In [16] an approach for investigating the Schur multiplier of a group G given
by an invariant L-presentation is described. The main aim of this approach is
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to collect computational evidence towards proving that the Schur multiplier of
the considered group is not finitely generated. We recall the main ideas of this
algorithm here briefly.

Let F be a finitely generated free group and K be a normal subgroup of F
so that G ∼= F/K. Then the Hopf formula yields that M(G) is isomorphic to
(K ∩ F ′)/[K, F ]. Additionally, as G/γcG ∼= F/KγcF , we obtain that M(G/γcG)
is isomorphic to (KγcF ∩ F ′)/[KγcF, F ]. These isomorphisms induce

ϕc: M(G) → M(G/γcG), g[K, F ] 7→ g[KγcF, F ].

The map ϕc is a homomorphism of abelian groups. It yields a sequence of subgroups

M(G) ≥ ker ϕ1 ≥ ker ϕ2 ≥ . . . .

The homomorphism ϕc and the quotient Mc(G) = M(G)/ ker ϕc can be com-
puted with the method in [16] for fixed c. We consider the isomorphism types of
these quotients as a sequence in c. As shown in [16], this approach often yields
periodic structures in the resulting sequence of quotients of M(G).

4.1 Example: The generalized Fabrykowski-Gupta groups

All computed quotients Mc(Γp) are elementary abelian p-groups. We exhibit their
ranks in the following table using the notation of Section 3.1.

p rkp(Mc(Γp))

3 0[2], 1[3], 2[0], 3[9], 4[1], 5[26], 6[4], 7[77], 8[13], 9[12]

5 0[1], 1[4], 2[2], 3[20], 4[10], 5[100], 6[1]

7 0[1], 1[2], 2[6], 3[2], 4[14], 5[42], 6[14], 7[34]

11 0[1], 1[2], 2[2], 3[2], 4[10], 5[2], 6[22], 7[22], 8[22], 9[13]

These computational results suggest that the groups Γp have an infinitely gen-
erated Schur multiplier and thus are not finitely presentable.

5 Investigating automorphism groups

The full automorphism group of the underlying infinite regular tree induces auto-
morphisms of a self-similar group. The resulting group is often the full automor-
phism group [5]. Explicit descriptions of automorphism groups of various promi-
nent self-similar groups have also been obtained: in [14] it is proved that the outer
automorphism group of the Grigorchuk group is an elementary abelian 2-group of
infinite rank and the outer automorphism group of the Gupta-Sidki group is a split
extension of an elementary abelian 3-group of infinite rank with the Klein four
group.

Our aim in this section is to approximate the outer automorphism group of a
finitely L-presented group using nilpotent quotients. We show that the applica-
tion of the Fabrykowski-Gupta groups of our approach allows to guess the broad
structure of their outer automorphism groups.
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For every group G, the lower central series term γcG is a fully invariant subgroup
of G. Thus every α ∈ Aut(G) induces an automorphism αc of G/γcG and we
obtain a homomorphism ϕc: Aut(G) → Aut(G/γcG), α 7→ αc. The homomorphism
ϕc maps the inner automorphisms Inn(G) onto Inn(G/γcG). Hence ϕc induces a
homomorphism

νc: Out(G) → Out(G/γcG)

for every positive integer c. We define Ic := im(νc) and obtain

Out(G)/ ker(νc) ∼= Ic ≤ Out(G/γcG).

The same argument as above shows that for every d ≤ c there is a natural
homomorphism

µc,d: Out(G/γcG) → Out(G/γdG).

We define Jc,d := im(µc,d). As νd = νc ◦ µc,d, it follows that Id ≤ Jc,d for every
c ≥ d. Hence we obtain a sequence of subgroups

Id ≤ . . . ≤ Jc,d ≤ Jc−1,d ≤ . . . ≤ Jd,d = Out(G/γdG).

In our applications we fix a possibly large c and compute Jc,d for 1 ≤ d ≤ c. If c
is large with respect to d, then Jc,d yields a useful approximation of the image Id.

5.1 Example: The generalized Fabrykowski-Gupta groups

The lower central series quotients of Γp for small p are all finite p-groups and thus
we can use the algorithm of [6] to determine Aut(G/γcG). This automorphism
group is soluble for almost all c; in this case we determine a polycyclic presentation
for it using a method implemented in [7]. This allows to compute a polycyclic
presentation for its quotient modulo the inner automorphism group Out(G/γcG).
We can now determine Jc,d for various values on d as subgroup of Out(G/γcG).

5.1.1 The group Γ3

We consider c = 51 and determine Jc,d for 1 ≤ d ≤ 41. We obtain that Jc,d is an
elementary abelian 3-group of rank

rk3(Jc,d) =







































0, if d ∈ {1, 2}
1, if d ∈ {3, 4}
2, if d ∈ {5, . . . , 10}
3, if d ∈ {11, . . . , 28}
4, if d ∈ {29, . . . , 32}
5, if d ∈ {33, . . . , 35}
6, if d ∈ {36, . . . , 41}.

This induces the conjecture that the outer automorphism group of Γ3 is an
elementary abelian 3-group of infinite rank.
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5.1.2 The group Γ5

We consider c = 79 and determine Jc,d for 1 ≤ d ≤ 70. We obtain that Jc,d is an
elementary abelian 5-group of rank

rk5(Jc,d) =























0, if d ∈ {1, . . . , 4}
1, if d ∈ {5, . . . , 18}
2, if d ∈ {19, . . . , 50}
3, if d ∈ {51, . . . , 55}
4, if d ∈ {56, . . . , 70}.

This induces the conjecture that the outer automorphism group of Γ5 is an
elementary abelian 5-group of infinite rank.

5.1.3 The group Γ7

We consider c = 77 and determine Jc,d for 1 ≤ d ≤ 63. Let Cm
n denote the direct

product of m copies of the cyclic group of order n and by D2n the dihedral group
with 2n elements. Then

Jc,d
∼=























C2, if d ∈ {1, . . . , 6}
D14 if d ∈ {7, . . . , 40}

C7 × D14 if d ∈ {41}
C2

7 × D14 if d ∈ {42, . . . , 56}
C3

7 × D14 if d ∈ {57, . . . , 63}.

This induces the conjecture that Out(Γ7) is a direct product of an elementary
abelian 7-group of infinite rank by the dihedral group D14.

5.1.4 The group Γ11

We consider c = 85 and determine Jc,d for 1 ≤ d ≤ 66. Then

Jc,d
∼=































C10 if d ∈ {1, . . . , 10}
C11 ⋊ C10 if d ∈ {11, . . . , 22}
C2

11 ⋊ C10 if d ∈ {23, . . . , 33}
C3

11 ⋊ C10 if d ∈ {34, . . . , 44}
C4

11 ⋊ C10 if d ∈ {45, . . . , 55}
C5

11 ⋊ C10 if d ∈ {56, . . . , 66}.

This induces the conjecture that Out(Γ11) is a split extension of an elementary
abelian 11-group of infinite rank by the cyclic group C10. Further, the cyclic group
C10 acts diagonally on Cm

11.
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