
High Performance Simulations of Kernel P Systems

Mehmet E. Bakir, Savas Konur, Marian Gheorghe
Department of Computer Science

University of Sheffield

Sheffield, UK

Email: mebakir1@sheffield.ac.uk

Ionut Niculescu, Florentin Ipate
Department of Computer Science

University of Bucharest

Bucharest, Romania

Email: ionutmihainiculescu@gmail.com

Abstract—The paper presents the use of a membrane com-
puting model for specifying a synthetic biology pulse generator
example and discusses some simulation results produced by the
tools associated with this model and compare their performances.
The results show the potential of the simulation approach over
the other analysis tools like model checkers.

I. INTRODUCTION

Nature inspired computing, including biological and chem-
ical (or molecular) computing, has become a very intensively
investigated research area, with a consistent body of theo-
retical research, and with many interesting applications and
challenging problems [1]. One of the most recently introduced
area of natural computing is membrane computing. This has
been conceived as a computational paradigm inspired by the
structure and behaviour of the living cell [2]. Many models
have been considered and studied, and substantial theoretical
results related to the computational power and complexity
aspects have been obtained [3]. These models are called
membrane systems or P systems. Interesting applications in
systems and synthetic biology have been provided, using a set
of methods and tools based on this computational model [4]. In
the last years there have been attempts to create more general
membrane computing models, which allow the specification of
various classes of problems defined with different membrane
computing models and providing mechanisms to analyse such
systems and simulate their behaviour. One such model, called
kernel P systems [5], [6], has been recently introduced and
some tools for the simulation and verification of the systems
specified with this formalism have been built.

In this paper, we present the use of kernel P systems
for specifying a synthetic biology pulse generator example
and discuss some simulation results produced by the tools
associated with this model and compare their performances.
The results show the potential of the simulation approach over
the other analysis tools like model checkers, which heavily
suffer from the well-known state explosion problem.

In Section II, we very briefly describe kernel P systems. In
Section III, we present the simulation frameworks, supporting
the simulation of kernel P system models. Section IV describes
the synthetic pulse generator, and presents the experimental
results. Section V draws some conclusions and provides some
future research directions.

II. KERNEL P SYSTEMS

Kernel P systems (kP systems for short) are multiset
transformation mechanisms consisting of compartments linked

by some communication channels; each compartment contains
multisets of objects and rewriting and communication rules
which transform the multisets of objects and send them to
neighbour compartments. The system evolves in steps and at
each step, in each compartment the rules are applied in accor-
dance with a certain execution strategy. For the example con-
sidered in this paper, in each compartment a rule is executed
per step, non-deterministically chosen from those applicable at
that moment. The system starts having in each compartment
some initial multiset of objects. A formal definition of these
models is available from [5], [6].

Kernel P systems are supported by a software framework,
called KPWORKBENCH [7], [8], which integrates a set of
tools enabling simulation and model checking of kP systems
(e.g. genetic Boolean gates [9]). The KPWORKBENCH tool
implements several translations that connect several target
specifications employed for kP system models. In [7], the
model checker SPIN is utilised in order to verify properties
of the kP system models. The KPWORKBENCH also consists
of a native simulator which allows the execution of the models
written with the kP system formalism. Recently a translator of
kP system models to FLAME has been produced, based on a
method that allows the expression of kP systems as a set of
communicating X-machines [10].

III. SIMULATION FRAMEWORKS FOR KP SYSTEMS

In [11] we have shown the benefits of using a model
checker for verifying various properties of the system and for
checking the validity of the model. However, we face the well-
known problem of state explosion for such approaches and
we can only model check very simple systems with very few
compartments. The simulation allows us to look at much larger
systems and check various results, either final or intermediary
ones.

Kernel P system models are specified and represented
by a simple and intuitive modelling language, called kP–
Lingua [12]. kP–Lingua provides for a kP system model a
representation into a machine readable format. It also has its
own syntax and specific ways of creating compartment types,
their instances and connections between them.

KPWORKBENCH integrates a simulation tool, KPWORK-
BENCH SIMULATOR, and provides mechanisms to translate
kP–Lingua specifications to FLAME.

A. KPWORKBENCH SIMULATOR

KPWORKBENCH SIMULATOR is a custom simulation tool,
implemented in C# programming language.The tool requires a

2014 IEEE International Conference on High Performance Computing and Communications (HPCC), 2014 IEEE 6th International

Symposium on Cyberspace Safety and Security (CSS) and 2014 IEEE 11th International Conference on Embedded Software

and Systems (ICESS)

978-1-4799-6123-8/14 $31.00 © 2014 IEEE

DOI 10.1109/HPCC.2014.69

409

2014 IEEE International Conference on High Performance Computing and Communications (HPCC), 2014 IEEE 6th International

Symposium on Cyberspace Safety and Security (CSS) and 2014 IEEE 11th International Conference on Embedded Software

and Systems (ICESS)

978-1-4799-6123-8/14 $31.00 © 2014 IEEE

DOI 10.1109/HPCC.2014.69

409

2014 IEEE International Conference on High Performance Computing and Communications (HPCC), 2014 IEEE 6th International

Symposium on Cyberspace Safety and Security (CSS) and 2014 IEEE 11th International Conference on Embedded Software

and Systems (ICESS)

978-1-4799-6123-8/14 $31.00 © 2014 IEEE

DOI 10.1109/HPCC.2014.69

409

2014 IEEE International Conference on High Performance Computing and Communications (HPCC), 2014 IEEE 6th International

Symposium on Cyberspace Safety and Security (CSS) and 2014 IEEE 11th International Conference on Embedded Software

and Systems (ICESS)

978-1-4799-6123-8/14 $31.00 © 2014 IEEE

DOI 10.1109/HPCC.2014.69

409

(a) Sender cell. (b) Pulsing cell.

Fig. 1: Two cell types of the pulse generator system (taken from [11]).

kP system model specified in kP–Lingua as input and provides
traces of execution for a kP system model. This is translated
into an internal data structure, which allows to represent
compartments, containing multisets of objects and rules, and
their connections with other compartments. The execution
strategy in each compartment is interpreted step by step. The
simulator provides a command line user interface displaying
the current configuration (the content of each compartment) at
each step. The output can be printed on command prompt or
can be redirected to a file. Depending on the starting step and
the granularity of the output, the amount of the printing data
will change, which can significantly affect the execution time.
The tool is particularly useful for quickly running sanity check
on a kP system model, for checking the temporal evolution
of the system and for inferring useful information from the
simulation results.

B. FLAME

FLAME [13] is a general purpose agent based framework,
built on top of the X-machine formalism, a state based model
with transformation functions associated to the transitions of
the model. It represents the structure of the state machine
using an XML format and the transformation functions in
standard C. FLAME has become very popular and widely
used for numerous applications. The latest developments of
FLAME have been focussing on developing variants for high
performance computers [13].

The current translator from kP–Lingua maps kP systems
into FLAME agents with internal behaviour consisting of rule
rewriting and communication. The FLAME environment then
executes the model the requested number of steps, storing
intermediary results that can be afterwards analysed or inter-
preted.

A kP system is transformed into a communicating X-
machine system by constructing, for each membrane, a com-

municating X-machine [10] that simulates its behaviour. An
additional X-machine, that helps the synchronization of the
others, is also built. Each execution strategy of the membrane
corresponds to a transition in the communicating X-machine.
In FLAME, the communicating X-machines are transformed
into agents. Here, the additional X-machine is no longer
needed since the synchronization is achieved through message
passing.

IV. PERFORMANCE COMPARISON

In this section, we will evaluate the performances of two
simulators, integrated into the KPWORKBENCH platform. The
performances are very similar in small models. Thus, the
evaluation should be performed in large systems. We therefore
choose a model from synthetic biology, because synthetic
biology models can be very large and it will be a good test
case for the simulators. Here, we choose the synthetic pulse
generator.

A. Pulse Generator

The pulse generator [14] is a synthetically constructed
colony of bacteria, containing two types of cells: sender and
pulsing (see Figure 1). The sender cells synthesise a signalling
protein, transmitted through the pulsing cells. The pulsing
cells express the green fluorescent protein (GFP) triggered by
the signalling molecules, and propagate the excess signalling
molecules to the neighbouring cells. The biological process
illustrated in Figure 1 can be summarised as follows [11]:

“Sender cells contain the gene luxI from Vib-
rio fischeri. This gene codifies the enzyme LuxI
responsible for the synthesis of the molecular signal
3OC12HSL (AHL). The luxI gene is expressed
constitutively under the regulation of the promoter

410410410410

0 10 20 30 40 50 100 200 400 500 1000 10000
0

200

400

600

800

1000

Number of cells

T
im

e
(s

ec
)

Performance Comparison

KPWorkbench Simulator
FLAME

Fig. 2: The comparative simulation results for KPWORKBENCH and FLAME

PLtetO1 from the tetracycline resistance transpo-
son.”

“Pulsing cells contain the luxR gene from Vibrio
fischeri that codifies the 3OC12HSL receptor protein
LuxR. This gene is under the constitutive expression
of the promoter PluxL. It also contains the gene
cI from lambda phage codifying the repressor CI
under the regulation of the promoter PluxR that
is activated upon binding of the transcription factor
LuxR_3OC12. Finally, this bacterial strain carries
the gene gfp that codifies the green fluorescent pro-
tein under the regulation of the synthetic promoter
PluxPR combining the Plux promoter (activated
by the transcription factor LuxR_3OC12) and the
PR promoter from lambda phage (repressed by the
transcription factor CI).”

The bacterial strains above are distributed in a specific
spatial distribution as a lattice with n rows and m columns.
The first two columns consist of sender cells, whereas the
rest are pulsing cells. The behaviour of each sender cell is
described by 7 rewriting and 1 communication rules and that
of the pulsing cell by 34 rewriting and 1 communication rules.
The entire model is described in [11] where different properties
of the system, both quantitative and qualitative, are verified for
small size lattices. Here we consider these two cell types, with
the above mentioned rules, but with various lattices which are
described in the next section.

The pulse generator is a challenging example, as it is
compartmental by design and the dynamic behaviour of each
bacterial strain is governed by a large number of kinetic rules.
When the number of compartments are increased, the size of
the model grows very sharply and the execution of simulations
becomes demanding. This makes the pulse generator a good
test case for our simulators.

B. Experiments

We will consider a simpler lattice with only a sender and
a pulsing cell, but this system will be multiplied by 10, 20,
30, 40, 50, 100, 200, 400, 500, 1000, and 10000 times. For
the purpose of these experiments these systems are equivalent
to lattices with sizes in the range 10 .. 10000, which are
significantly more complex than those described in [11]. Each
case will be executed 5 times and the average time calculated.
These will be executed with the native KPWORKBENCH

simulator and with the FLAME simulator. We note that the
system model is described as a kP system model, which
is automatically translated into the FLAME simulator. Also,
the KPWORKBENCH simulator accepts kP system models, as
input.

The results of the simulations on both the KPWORKBENCH

simulator and FLAME are comparatively presented in Figure 2.
The x axis gives the number of send-pulse pairs of cells, while
the y axis indicates the time in seconds. The experiments were
performed on a PC with the following configuration: Intel(R)
Core(TM)2 Quad CPU - Q6600 2,4Ghz, 4GB RAM. In what
follows we explain the performance difference between the
two simulators.

In the KPWORKBENCH SIMULATOR, each membrane of
the kP system is represented by an instance of a class, trans-
formed from the kP–Lingua language. This approach makes
the simulation to be performed in a single memory space,
that scales according to the number of membranes used in
the model and the number of objects resulting from applying
the rules in each simulation step.

In FLAME each agent is represented by an acyclic X-
machine (no loops are allowed in order to ensure the com-
pletion of the execution of the agent). The agent is executed
by passing from one state to another in the X-machine and
processing data using functions that are attached to the tran-
sitions. When the X-machine reaches the final state, the data

411411411411

is written to the hard disk and it is then used as input for the
next iteration. An important characteristic of FLAME is that it
first reads the input data, stored in XML format files, from the
hard drive and writes it back at the end of each iteration.

In FLAME, each membrane of the kP system is represented
by an agent. The rules are stored together with the membrane
multiset as agent data. For each type of membrane from
the kP system, a type of agent is defined, and for each
execution strategy of the membrane, states are created in the
X-machine. Transitions between the two states are represented
by C functions that are executed in FLAME when passing from
one state to another. Each type of strategy defines a specific
function that applies the rules according to the execution
strategy.

Given the way the agents for simulating a kP system in
FLAME are defined, the volume of data increases with the
number of types of membranes, the number of their instances
and the size of their multisets. (Note that, since there are
no structural rules in our model, the number and structure
of membranes remain unchanged throughout the simulation,
so the execution time will depend only on the size of the
processed multisets.) Consequently, the more data we have,
the more time for reading and writing data from or to the hard
disk is required. This explains the higher execution time in
the case of the FLAME simulator than for the KPWORKBENCH

SIMULATOR. It is expected that at least for systems of the same
type, i.e., using one single rule per step, the behaviour of the
two platforms will be similar. A better correlation between the
type of the system, the number of compartments and number of
rules, and the behaviour of these platforms will be investigated
in a forthcoming paper.

On the other hand, the distributed architecture of Flame
allows the simulation to be run on parallel supercomputers with
great performance improvements [13]. (For the moment, the
implementation of kP Workbench is not suitable for running on
parallel computers, but this issue may be considered at a later
stage.) Significant performance gains could also be obtained
by using solid-state drives (SSDs) for data storage, with lower
access time than traditional HDDs, but this is beyond the scope
of this paper.

V. CONCLUSION

In this paper we have presented the simulation results of
a synthetic biology model coded as a kernel P system, a
nature inspired computational paradigm, executed under two
different simulation environments. The results presented show
the capability of the simulation environments to deal with
large scale models - up to 10000 components, each with
more than 30 transitions - and consequently with the benefits
of a complementary approach to model verification methods,
already used for such systems.

The experiments performed show some expected be-
haviour, whereby a specialised simulation tool, KPWORK-
BENCH SIMULATOR, provides better results, in terms of ex-
ecution time, then a general purpose simulation environment,
namely FLAME. Both tools produce the same behaviour start-
ing from the same specification, kP–Lingua description, and
the translation process is obtained in an automatic way.

In the long term, we aim to show the way the results of the
simulation and those of formal verification complement each
other for a better understanding of the system behaviour.

ACKNOWLEDGMENT

IN, FI and MG are supported by a grant of the Ro-
manian National Authority for Scientific Research, CNCS-
UEFISCDI (project number: PN-II-ID-PCE-2011-3-0688). SK
and MG acknowledge the support provided for the synthetic
biology research by EPSRC ROADBLOCK (project number:
EP/I031812/1). MB is supported by a PhD studentship pro-
vided by the Turkey Ministry of Education.

REFERENCES

[1] G. Rozenberg, T. Bäck, and J. N. Kok, Eds., Handbook of Natural
Computing. Springer, 2012.

[2] G. Păun, “Computing with membranes,” Journal of Computer and
System Sciences, vol. 61, no. 1, pp. 108–143, 2000.

[3] G. Păun, G. Rozenberg, and A. Salomaa, Eds., The Oxford Handbook
of Membrane Computing. Oxford University Press, 2010.

[4] P. Frisco, M. Gheorghe, and M. J. Pérez-Jiménez, Eds., Applications
of Membrane Computing in Systems and Synthetic Biology. Springer,
2014.

[5] M. Gheorghe, F. Ipate, and C. Dragomir, “Kernel P systems,” pp. 153–
170, 2012.

[6] M. Gheorghe, F. Ipate, C. Dragomir, L. Mierlă, L. Valencia-Cabrera,
M. Garcı́a-Quismondo, and M. J. Pérez-Jiménez, “Kernel P systems -
Version 1,” pp. 97–124, 2013.

[7] C. Dragomir, F. Ipate, S. Konur, R. Lefticaru, and L. Mierlă, “Model
checking kernel P systems,” in Proc. 14th Conference on Membrane
Computing, ser. LNCS, vol. 8340. Springer, 2014, pp. 151–172.

[8] M. E. Bakir, F. Ipate, S. Konur, L. Mierlă, and I. Niculescu, “Extended
simulation and verification platform for kernel p systems,” in 15th
International Conference on Membrane Computing, 2014, p. To Appear.

[9] S. Konur, M. Gheorghe, C. Dragomir, F. Ipate, and N. Krasnogor,
“Conventional verification for unconventional computing: a genetic
XOR gate example,” Fundamenta Informaticae, p. To Appear, 2014.

[10] I. Niculescu, F. I. M. Gheorghe, and A. Stefanescu, “From kernel P
systems to X-machines and FLAME,” Journal of Automata, Languages
and Combinatorics, to appear.

[11] J. Blakes, J. Twycross, S. Konur, F. Romero-Campero, N. Krasnogor,
and M. Gheorghe, “Infobiotics workbench: A P systems based tool for
systems and synthetic biology,” in Applications of Membrane Comput-
ing in Systems and Synthetic Biology, ser. Emergence, Complexity and
Computation. Springer International Publishing, 2014, vol. 7, pp. 1–41.

[12] M. Gheorghe, F. Ipate, C. Dragomir, L. Mierla, L. Valencia-Cabrera,
M. Garcı́a-Quismondo, and M. J. Pérez-Jiménez, “Kernel P systems,”
Eleventh Brainstorming Week on Membrane Computing, pp. 97–124,
2013.

[13] S. Coakley, M. Gheorghe, M. Holcombe, S. Chin, D. Worth, and
C. Greenough, “Exploitation of high performance computing in the
flame agent-based simulation framework,” in High Performance Com-
puting and Communication 2012 IEEE 9th International Conference
on Embedded Software and Systems (HPCC-ICESS), 2012 IEEE 14th
International Conference on, June 2012, pp. 538–545.

[14] S. Basu, R. Mehreja, S. Thiberge, M.-T. Chen, and R. Weiss, “Spa-
tiotemporal control of gene expression with pulse-generating networks,”
PNAS, vol. 101, no. 17, pp. 6355–6360, 2004.

412412412412

