
Ascetic convolutional codes

Øyvind Ytrehus

University of Bergen, Department of Informatics,
Høyteknologisenteret, N-5020 Bergen, Norway

E-mail: oyvind@ii.uib.no
Supported by the Norwegian Research Council (NFR).

Acknowledgement

The “Applications” section of this paper presents an overview of research carried out at
the Department of Informatics at the University of Bergen. Kjell Jørgen Hole, Marianne
Fjelltveit Hole, and Rolf Erstad made significant contributions to this work.

Abstract

Ascetic convolutional codes contain fewer edge labels than other convolutional codes. This
is advantageous in several practical situations. Selecting an ascetic code over a non-ascetic
code carries no severe penalty, in terms of trade-off of minimum distance, code rate and
complexity.

1. Introduction

One day at the dawn of time, when convolutional codes were created, all the little
convolutional code children were assigned the following task: They were to assign binary
labels to their so far naked trellis edges, in order to achieve a Large Free Hamming Distance.

Every little (n = 8; k = 6; � = 1) convolutional code distributed vectors from all ofF n
2

over their trellis edges. Ah, well, not quite everyone. One little code only selected even-
weight labels. All the other little codes chided her, “How can youpossibly expect to achieve
a Large Free Hamming Distance when you don’t use more than half of the available edge
labels? Here, try (01111111)”. But she answered, stubbornly, “No. I need no odd-weight
vectors”.

She was anascetic convolutional code.

Judgement day arrived, and the little codes had to submit their (now edge labelled) trellis to
the Modified Viterbi Algorithm. Some clever codes had achieved Free Hamming Distances
of one or two or even three, some careless ones had constructed catastrophic trellises and
were forever doomed to Loss of Dimension or even to an existence as mere block codes.
“Was this the last one?”, asked the Modified Viterbi Algorithm, preparing to leave, (it had
been a long day). The little codes answered, “Well, there’s that little ascetic code, but she
only used half of the edge labels anyway”. As usual in this kind of story, the little ascetic
code still had a go with the Modified Viterbi Algorithm. What was her Free Hamming
Distance? The answer is postponed until Theorem 3.5.

(But she did live happily ever after).



2. Preliminaries

The notation introduced in this section is kept at a minimum. In particular, we shall neither
need nor define the concepts ofencoder, basic encoder, minimal encoder, or the procedure
for obtaining a minimal encoder from the parity check matrix. For a comprehensive treatment
of the theory of convolutional codes the reader is referred to [1], or to the pioneering work
in [2, 3, 4].

Let h = (h1; . . . ; ht)
T (for somet > 0) be a binary (column) vector. Thel-th shift of
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extending to infinity, in whichh can be found as the subvector starting in the (l + 1)-th
position and all other entries are zero.

Let similarlyH be a binary(�+1)�n matrix. Thel-th shift ofH is the matrixH
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columns and an infinite number of rows, in whichH can be found as the submatrix starting
in the (l + 1)-th row and all other entries are zero. Let further
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where fori � 1, the columnh�
i
=h

b(i�1)=nc
�!

((i�1) mod n)+1
is the b(i� 1)=nc-th shift of the (((i� 1)

mod n) + 1)-th column of H.

Let F be the set of infinite binary sequences u = (u1; u2; . . .) starting at time 1. H is a
parity-check matrix for a convolutional code C = fu 2 FjH�

u
T = h1u1 + h2u2 + . . . +

hiui + . . . = 0g. The elements of C are called code words.

(Remark. Strictly speaking, C should be defined as a vector space over the field of Laurent
series over F = GF (2) (see e. g. [1]). The current definition was chosen to enhance
simplicity and since in practice nonzero code words will start at or after some fixed time.)

C has block length n, dimension n � 1 and constraint length at most �. The constraint
length is equal to � if there exists no other parity check matrix H0 for the same code C with
smaller row dimension; in this case H is a minimal parity check matrix. In the following
we will assume that parity check matrices are minimal.

Let H, referred subsequently to as a combined matrix, be a collection of r matrices
H

(i); i = 1; . . . ; r, over F where H(i) has �i + 1 rows and n columns.

The n columns of H(i) are denoted h
(i)
j = (h

(i)
j;0; h

(i)
j;1; . . . ; h

(i)
j;�i

)T , j = 1; . . . ; n, where

the last row of H(i) has at least one nonzero entry. The binary column vector hj =

(h
(1)
j;0 ; . . . ; h

(1)
j;�1

; h
(2)
j;0 ; . . . ; h

(r)
j;0; . . . ; h

(r)
j;�r

)T 2 F �+r will be called the j-th combined column
of H. Thus H can be regarded as a binary

�Pr
i=1 (�i + 1)

�
� n matrix.



Example 1. Let

H =

0
BBBBBBBBBBBBBB@

1 1 1 1 1 1 1 1
� � � � � � � �
1 0 1 0 0 1 1 0
0 1 0 1 1 1 0 0

� � � � � � � �
0 1 1 0 0 1 0 1
1 0 0 1 0 1 0 1
� � � � � � � �

1 0 1 1 0 0 0 1
0 1 0 0 0 1 1 1

1
CCCCCCCCCCCCCCA

:

The code C1 defined by this matrix has length 8 and dimension 4.

(A more common notation would be to represent H in terms of its D-transform).

Example 1 (Cont.). The D-transform of H is

H =

0
BBBBBBBB@

1 1 1 1 1 1 1 1
� � � � � � � �

1 +D D 1 D D 1 +D 1 0
� � � � � � � �

D 1 1 D 0 1 +D 0 1 +D

� � � � � � � �
1 D 1 1 0 D D 1 +D

1
CCCCCCCCA
:

Each matrix H(r) is a parity-check matrix for some convolutional code C(i) of dimension
(n� 1). We call H the parity-check matrix for the convolutional code C = \r

i=1C
(i). C has

block length n, dimension at least n � r, and constraint length (or memory) � =
Pr

i=1 �i.
The free distance dfree = dfree(C) is the minimum Hamming weight of any nonzero code
word in C. C is said to be an (n; n � r; �; dfree) binary convolutional code. If we want to
emphasize the distribution of the �is, the code will be referred to as an (n; n � r; �; dfree)

code, where � = (�1; . . . ; �r) is the constraint length vector.

Example 1 (Cont.) The code C1 has constraint length vector (0,1,1,1) and constraint length
3. The free Hamming distance of C1 is, incidentally, 8. Thus, it is possible to find 8 columns
of the associated doubly semi-infinite matrix H� which are linearly dependent, but any 7 or
less columns of H� are linearly independent.

Assumption. Without loss of generality, we can assume that �1 � . . . � �r . For a particular
code, the parity check matrix is not unique, but the sequence �1; . . . ; �r is [1].

Definition. N(r; (�1; . . . ; �r); dfree) is the largest n such that there exists a convolutional
code of block length n, dimension n � r, constraint length vector (�1; . . . ; �r), and free
distance dfree. Similarly, N(r; �; dfree) = max(�1+...+�r=�)N(r; (�1; . . . ; �r); dfree). We
assume that dfree � 3; then N(r; �; dfree) is finite.

Definition. An (n; n� r; �; dfree) convolutional code C is ascetic if not all binary vectors
in F n

2 can be found as edge labels in the trellis for C. It is easy to see, and shown in [5],
that the set of edge labels is a vector space of dimension n� jfi; 1 � i � r : �i = 0gj. Thus,
in particular, ascetic codes have �1 = 0.



3. The Free Hamming distance of ascetic codes

In this section we discuss Hamming distance properties of ascetic codes, and compare
these codes to non-ascetic codes.

The best known upper bounds on N(r; �; dfree) were established by considering the block
codes obtained by truncation of the convolutional code. The following theorem is a slight
generalization ([6]) of a result appearing in [7].

Theorem 3.1 ([7]). Let C be an (n; n � r; �; dfree) binary convolutional code defined by the
combined parity check matrix H with combined columns hj; j = 1; . . . ; n. Let "j; 1 � j � n,

be defined by "j = maxfsjh
(i)
j;�i�l

= 0 for 1 � i � r; 0 � l � sg. Then

dfree � min

8<
:d(N;K) j N = mn+

nX
j=1

"j; 1 � K = N � (� + rm); m � 0

9=
;; (1)

where d(N;K) is the largest minimum Hamming distance of any linear binary block code of
block length N and dimension K . (Note: A table of bounds on d(N;K) can be found in [8]).

Lemma 3.2 ([6]) N(1; �; 4) = 2��1.

Similarly, we have the following lemma which applies to codes with r > 1:

Lemma 3.3. For r � 2, N(r; �; 4) � 2�+r�1 ([6]).

Simple Proof. If there existed a (2�+r�1+1; 2�+r�1+1� r; �; 4) code, it could be truncated
(as in the Heller bound) to a [2�+r�1 + 1; 2�+r�1 + 1 � (� + r); 4] block code, which in
turn could be shortened to a [2�+r�1; 2�+r�1 � (� + r); 3] block code. This contradicts the
Hamming bound.

�

We observe that if a combined matrix contains a combined column h as well as some shift
h

l

! of h, then the corresponding convolutional code will have minimum distance at most two.
We will therefore avoid the use of combined columns h = (h

(1)
0 ; . . . ; h

(1)
�1 ; . . . ; h

(r)
0 ; . . . ; h

(r)
�r

)T

such that

h
(i)
0 = 0; 8i 2 f1; . . . ; rg: (2)

Theorem 3.4. For � � 1 and r � 1, N(r; �; 3) = (2r � 1)2� .

Proof. Wyner and Ash [9] noted that an (n; n�1; �; 3) code can be constructed by selecting
the parity check matrix H as the matrix consisting of all distinct (�+1)-dimensional vectors
h = (h0; . . . ; h�)

T that have first entry h0 = 1.
For r > 1, we can similarly choose H as the matrix in which the set of combined columns
consists of all distinct (� + r)-dimensional vectors h = (h

(1)
0 ; . . . ; h

(1)
�1 ; . . . ; h

(r)
0 ; . . . ; h

(r)
�r )

except those on the form (2). The number of such vectors is 2�+r � 2� .
�

Note that there is no restriction in this construction on the distribution of the �is. In
particular, optimal codes of distance 3 can be constructed as “very ascetic” , i. e., �1 = � � � =

�r�1 = 0; �r = �.

Theorem 3.5. For � � 1 and r > 1, N(r; �; 4) = 2�+r�1.



Proof. “�” was shown in Lemma 3.3.
“�:” A (n; n � r; �; 4) code can be constructed as follows. Let the first element �1 of the
constraint length vector be zero, the remainder of the constraint length vector can be chosen
arbitrarily subject to

Pr
j=2 �j = �. Select the combined parity check matrix H such that

it consists of all distinct combined columns h that have “1” as their first entry. Since the
columns are distinct the free distance is at least 3, and since the first row of H is the all-one
vector and �1 = 0, each code word has even Hamming weight in each block.

�

We note that the codes described in Theorems 3.4 and 3.5 can be thought of as the
convolutional code counterpart to the Hamming codes and its even weight subcodes.

Theorem 3.6 For � � 1 and r > 1, non-ascetic codes of free Hamming distance 4 have
length n < 2�+r�1.

Alternative Proof of Lemma 3.3 ([6]). Let H define an (n;n� r; �; 4) binary convolutional
code. Let Xi; i = 1; . . . ; 2r � 1 be the set of combined columns hj in H such that

(h
(1)
j;0 ; . . . ; h

(r)
0 ) is the binary expansion of i, and let xi = jXij. W. l. o. g., we can assume

that 2� � x1 � xi; 2 � i � 2r � 1. We first show that

8i : 1 � i � 2r�1 � 1 : x2i + x2i+1 � 2�: (3)

If x2i = 0, there is nothing to prove, so assume that x2i > 0. Since the free distance is
more than three, it follows that if a 2 X1 and b 2 X2i, then (a + b) 62 X2i+1. There are
x1 choices for a, hence x2i+1 � 2� � x1 implying (3). So

n =
2r�1X

j=1

xj = x1 +
2r�1�1X

i=1

(x2i + x2i+1) � x1 +
�
2r�1 � 1

�
2� � 2�+r�1:

�

Proof of Theorem 3.6 From the alternative proof of Lemma 3.3, it follows that if the block
length of the code is n < 2�+r�1, then x1 = 2� . Hence, the combined parity check matrix
contains combined columns x = (1; 0; 0; 0; . . . ; 0)T and y = (1; 1; 0; 0; . . . ; 0)T . If �1 > 0,

then x+ y + x
1

!

0 = 0, thus the minimum distance is at most 3.
�

3.1. Computer search results

It is harder to construct convolutional codes of free Hamming distance larger than 4. This
applies to ascetic as well as non-ascetic codes.

A computer search (described in [6]) has been used to find lower bounds (non-exhaustive
“ tabu” search) and exact values (exhaustive search) on N(r; �; dfree) and N(r; �; dfree) for
r � 4 and moderate values of � and dfree. Some results were presented in [10, 11]. As a gen-
eral empirical observation, NA(r; �; dfree) = max(�1=0;�2+...+�r=�)N(r; (�1; . . . ; �r); dfree) is
usually close to or equal to N(r; �; dfree).

Sometimes surprisingly good “very ascetic” codes can be found.



Example 2. The code C1 in Example 1 is ascetic and known to be optimal, in the sense that
its block length is equal to N(4; 3; 8). However, a more ascetic code exists. Let

H
0

=

0
BBBBBBBBBBBBBB@

1 1 1 1 1 1 1 1

� � � � � � � �

0 1 0 1 0 0 1 1
� � � � � � � �

1 0 1 0 0 0 1 1

� � � � � � � �

0 1 1 0 0 1 0 1
0 0 1 0 0 1 0 0
0 1 1 0 0 0 0 0

0 1 1 0 0 1 1 0

1
CCCCCCCCCCCCCCA

define the code C2. C2 is an (8,4,(0,0,0,3),8) code.

4. Applications

This section contains some applications of ascetic codes.

4.1. Zero-run lengths [12, 11]
In many communication and recording systems, the receiver derives symbol synchroniza-

tion information from the transmitted or recorded sequence. If the symbol “zero” is repre-
sented as “absence of signal” , a long zero-run (sequence of consecutive zeros) may cause
the receiver to lose synchronization, and should be avoided. Hence, the maximum zero-run
length, Lmax, of a code is a design parameter which should be as small as possible.

Using a result by D. Forney, Hole [12] showed that for any coset of any convolutional
code, Lmax � �1. Also, for any convolutional code there is at least one coset for which
Lmax � (�1 + 2)n � 2 � �, where � is a nonnegative integer depending on the code. Thus
ascetic codes are preferable for these purposes, since �1 = 0 and, thus, Lmax � 2n� 2 � �.
Note that this upper bound is independent on the constraint length �. Further results on this
problem was recently presented by Hole and Ytrehus [11].

4.2. Codes for precoded partial-response channels [5, 13, 14]
Wolf and Ungerboeck [15] suggested the use of cosets of convolutional code cosets

for coding on precoded 1 � D partial response channels. In the absence of noise, on a
precoded 1 � D channel, a binary zero input results in a zero output, while a “1” input
results in a “+1” or a “ -1” output, where the signs alternate. When Gaussian noise is
added at the channel output, the relevant distance measure is the Euclidean squared distance,
defined as d2(u;v) =

P
i

(ui � vi)
2, where u = (u0; u1; . . .) and v = (v0; v1; . . .) are output

sequences. Wolf and Ungerboeck noted that the free squared Euclidean distance of a code
is lower bounded by its Hamming distance. They gave examples of codes, using (n; n� 1)
convolutional codes with large free Hamming distance. However they were unable to provide
examples with Euclidean distance larger than the lower bound.

The reason for this is that cosets of non-ascetic codes contain long zero-runs. It is easy
to see that the Euclidean squared distance between output sequences u = (u0; u1; . . .) and



0 = (0; 0; . . .) is equal to d2(u;0) =
P
i

(ui)
2 =

P
i

juij = the Hamming distance between

u and 0. On the other hand, many ascetic code cosets provide a free Euclidean squared
distance which is much larger than the free Hamming distance of their corresponding codes.

Example 3.Consider the code C3 defined by the parity check matrix

H =

0
BB@
0 1 0

� � �

1 0 1
1 0 0

1
CCA:

The trellis of C3 is shown in Figure 1. The code is poor with respect to free Hamming distance.

Figure 1. Trellis of C3
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However, one of its cosets on the precoded 1�D partial response channel can be described
by the trellis in Figure 2. This code has free Euclidean squared distance of 14.

Figure 2. Trellis of C3 + (010) on precoded partial response channel
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More codes and details can be found in [5, 13, 14].



4.3. Simplified decoding [10, 16]
Hole and Ytrehus [10] presented a decoding algorithm for “complex” convolutional codes,

such as PUM codes. For many codes, the number of operations required by an ordinary
Viterbi decoder is dominated by calculating the branch metrics of the best edges between the
states of the convolutional code trellis. The basic idea of the new algorithm is to decode in
two steps: In step 1, all the edges are efficiently calculated by a special coset trellis. In step
2, the decoding results of step 1 are applied to a simplified convolutional code trellis.

McEliece and Lin [17] recently described a decoding algorithm. As a particular example
they showed that decoding of the code C1 in Example 1 can be carried out with a total of
104 additions per information bit.

Ascetic codes are particularly suited for the decoding algorithm in [10]. The reason is that
since few edge labels are used, each label is used more often. The code C1 can be decoded
with 141 operations (112 additions and 29) comparisons per decoded bit. However, decoding
of the more ascetic code C2 requires only 64 operations (44 additions and 22 comparisons)
per decoded information bit.

Hole and Hole [16] recently described the application of this decoding algorithm on the
precoded 1 � D partial-response channel.

5. Conclusion

Ascetic codes have been presented. These codes are attractive for several applications. For
many sets of parameters, these codes also have excellent Hamming or Euclidean distance
properties.
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