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Abstract: The study area is located in the northern part of Takab, West Azarbaijan Province, northwest of Iran. Since geochemical 

explorations, especially the drainage sediments, play a very important role in finding promising areas and providing conditions for 

more detailed exploration. Detection and separation of geochemical anomalies from the field is one of the most important and 

fundamental issues in geochemical exploration. In this study, using the classical statistcs methods, anomalous values were determined. 
Other methods used in this study is the concentration-area (C-A) fractal method. This method is a very successful method for 

separating anomalies from the field due to simultaneous consideration of the frequency and spatial variations of geochemical data. 

Multivariate statistical analysis including principal component analysis (PCA) was used to obtain anomaly values related to determine 

the anomaly values. Favorable results for the methods used for this region was presented. 
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1. INTRODUCTION 
The statistics are a vast array of maths that study ways to 

collect, summarize, and conclude data. This science applies to 

a wide range of academic sciences from physics and social 

sciences to anthropology, as well as business, government, 

and industry. Statistics is the science and practice of human 

development through the use of experimental data. Statistics 

are based on the theory of statistics, which is a branch of 

applied mathematics. In statistical theory, random events and 

uncertainty are modeled by probability theory. In this science, 

studying and judging on various subjects is done on the basis 

of a society and judgment about a particular person is not at 

all questionable [1] [2]. 

The geostatistics is the most important statistical theory based 

on the field concept of the place, is the theory of regional 

variables. The regional variable is defined as any environment 

property whose numerical values are distributed in one, two, 

or three-dimensional sampling space. The spatial variations of 

a regional variable have two structural and random 

components. One of the main goals of spatial statistics is to 

provide an appropriate model for describing the regional 

variable by taking into account the structural and random 

variability components. This section of spatial statistics is 

called geostatistics [3] [2]. 

Separation of anomalies from the background is one of the 

most important and key steps in geochemical exploration. 

There are several ways to identify and separate anomalous 

areas from the field [4]. Separation of geochemical anomalies 

from background has always been a major concern of 

exploration geochemistry[5]. The search for methods that can 

make this analysis quantitative and objective aims not only at 

the reduction of subjectiveness but also at providing an 

automatic routine in exploration, assisting the interpretation 

and production of geochemical maps [6].  

Geochemical explorations are the basis for the mineral 

processing studies. Therefore, in exploration, the economy 

and the processing capabilities should always be easy and 

cost-effective [7]. In determining the zones of alteration and 

mineralization in the area, remote sensing methods help a lot, 

in addition to giving us a large view of the mineralization 

process in the region. Therefore, if remote sensing and 

geochemical studies are combined, mineralization can be 

accurately determined [8] [9]. 

 

2. Methodology and Dataset 

2.1. Geolocation and Sampling 

The Zarshuran mineral zone is located in West Azarbaijan 

province of Iran and on geological sheet of Takht-e-Soleyman 

(on sclae 1:100,000). The Takht-e-Soleyman sheet covers 

parts of Zanjan, West Azarbaijan and East Azarbaijan 

provinces. The Takht-e-Soleyman sheet is part of the 1: 

250000 geological map of the Takab rectangle between the 

eastern longitude 47° 00'  and 47° 30'  and the north latitude 

36° 30'  'to 37° 00' . The quadrilateral coordinates of the 

studied area are presented in Table 1. Due to its location in the 

Takab metallurgical province and the location of the Alborz-

Azarbaijan, Iran Central and Sanandaj-Sirjan construction 

zones, this area has a lot of mineralization diversity. The most 

important mineralization in this area is the lead and zinc 

mineralization (Anguran, Alam Kandy and Arpachai) and 

gold mineralization (Zarshuran, Aghdare and Tozlar). The 

study area of this project is located between Zanjan and East 

Azarbaijan provinces around the Zarshuran gold mine. 

Geolocation of study area in Iran map is shown in figure 1. 
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Table 1. Geographical coordinates of study area 

p
o

in
ts

 

Geographical Coordinates 

Longitude (X) Latitude (Y) 

A 47° 08' 00'' 36°  40'  49'' 

B 47° 08' 00'' 36°  44' 06'' 

C 47° 12' 03'' 36°  44' 06'' 

D 47° 12' 03'' 36°  40'  49'' 

 

Figure 1. Geolocation of study area in Iran map 

In the study area, 72 geochemical samples were taken from 

the drainage sediments. The position map of the 72 drainage 

sediments samples taken from the study area is shown in 

Figure 2. 

 
Figure 2. Position of drainage sediments samples taken 

from the study area. 

2.2. Correlation Analysis 
Correlation is used to test relationships between quantitative 

variables or categorical variables. In other words, it’s a 

measure of how things are related. The study of how variables 

are correlated is called correlation analysis [10]. Correlations 

are useful because if you can find out what relationship 

variables have, you can make predictions about future 

behavior [11]. Correlation analysis in geochemical data is 

very important. One of the valuable results of the 

investigation of the correlation between chemical elements is 

the identification of the mineralization and geochemical 

behavior of the region [12] [2]. 

2.3. Hierarchical Clustering 

In data mining and statistics, hierarchical clustering (also 

called hierarchical cluster analysis or HCA) is a method of 

cluster analysis which seeks to build a hierarchy of clusters. 

Strategies for hierarchical clustering generally fall into two 

types [13]: 

 

Figure 3. hierarchical clustering strategies 

 Agglomerative Method: 

This is a "bottom up" approach: each observation 

starts in its own cluster, and pairs of clusters are 

merged as one moves up the hierarchy. 

 Divisive Method: 

This is a "top down" approach: all observations start 

in one cluster, and splits are performed recursively 
as one moves down the hierarchy (see figure 3). 

2.6. Principal Components Analysis (PCA) 
 

Principal component analysis (PCA) is a statistical procedure 

that uses an orthogonal transformation to convert a set of 

observations of possibly correlated variables into a set of 

values of linearly uncorrelated variables called principal 

components. Principal Component Analysis (PCA) is the 

general name for a technique which uses sophisticated 

underlying mathematical principles to transforms a number of 

possibly correlated variables into a smaller number of 

variables called principal components. The origins of PCA lie 

in multivariate data analysis, however, it has a wide range of 

other applications, as we will show in due course. PCA has 
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been called, ’one of the most important results from applied 

linear algebra and perhaps its most common use is as the first 

step in trying to analyse large data sets. Some of the other 

common applications include; de-noising signals, blind source 

separation, and data compression [14] [15].  

In general terms, PCA uses a vector space transform to reduce 

the dimensionality of large data sets. Using mathematical 

projection, the original data set, which may have involved 

many variables, can often be interpreted in just a few 

variables (the principal components). It is therefore often the 

case that an examination of the reduced dimension data set 

will allow the the user to spot trends, patterns and outliers in 

the data, far more easily than would have been possible 

without performing the principal component analysis. The aim 

of this essay is to explain the theoretical side of PCA, and to 

provide examples of its application. We will begin with a non-

rigorous motivational example from multivariate data analysis 

in which we will attempt to extract some meaning from a 17 

dimensional data set. After this motivational example, we 

shall discuss the PCA technique in terms of its linear algebra 

fundamentals. This will lead us to a method for implementing 

PCA for real-world data, and we will see that there is a close 

connection between PCA and the singular value 

decomposition (SVD) from numerical linear algebra. We will 

then look at two further examples of PCA in practice; Image 

Compression and Blind Source Separation [16] [17]. 
 

 

2.4. Concentration-Area (C-A) Fractal 

Ever since Mandelbrot (1974, 1972) introduced the concept 

offractals in the last century [18], fractal or multi-fractal 

analysis hasquickly developed into an important branch of 

non-linear scienceand has had significant impacts in many 

areas of natural sciencesto characterize self-similar or self-

affine measures  [19]. The C-A method serves to illustrate the 

relationship between theobtained results and the geological, 

geochemical and mineralogicalinformation. Its most useful 

features are the easy implementa-tion and the ability to 

compute quantitative anomalous thresholds. Cheng et al. 

(1994) proposed an element concentration–area (C–A) model, 

which may be used to define the geochemical backgroundand 

anomalies. The model has the general form of Eq. following 

[20] [21]:  

 

Where ( )A  denotes the area with concentration values 

greaterthan the contour value   ; v represents the threshold; 

and a1and a2are characteristic exponents. Using the fractal 

theory, Cheng et al.(1994) derived similar power–law 

relationships and equations inextended form. The two 

approaches which were used to calculate ( )A  by Cheng et al. 

(1994) were (1) the ( )A  is the area enclosedby contour level 

q on a geochemical contour map resulting frominterpolation 

of the original data using a weighted moving aver-age 

method, and (2) ( )A  are the values obtained by box-

countingof the original elemental concentration values. By 

box-counting,one superimposes a grid with cells on the study 

region. The area ( )A  for a given q is equal to the number of 

cells multiplied by thecell area with concentration values 

greater than   . Average concen-tration values are used for 

those boxes containing more than onesample. 

Area  concentration [ ( )A  ] with element 

concentrationsgreater than    usually shows a power–law 

relation [22] [23]. The breaks betweenstraight-line segments 

on this plot and the corresponding values of _ have been used 

as cut-offs to separate geochemical values intodifferent 

components, representing different causal factors, suchas 

lithological differences and geochemical processes. Factors 

suchas mineralizing events, surface geochemical element 

concentra-tions, and surface weathering are of considerable 

importance [24]. The multi-fractal theory may be interpreted 

as a theo-retical framework that explains the power–law 

relations betweenareas enclosing concentrations below a 

given value and the actualconcentrations. 

 

3. Results and Discussion 

3.1. Correlation Analysis 

In Table 2, the correlation coefficients of elements are derived 

from the Spearman method. Therefore, in this project, the 

basis for interpreting the relations between different elements 

is Spearman's nonparametric correlation test. According to the 

two-variable Spearman test, the following results can be 

presented: 

 

 Pearson correlation coefficient between 0.230 and -

0.230 and Spearman between 0.231 and -0.231 at 

95% confidence level are invalid and meaningless. 

This value is at the confidence level of 99% for 

Pearson correlation coefficients and Spearman 

between 0.300 and -0.300. 

 Au with As, Cd, Sb and Zn correlations show a 

significant and moderate to high correlation. 

 Ag only has a significant and moderate correlation 

with Zn. 

 As, Cd, Cu, S, Sb and Zn have a positive and 

significant correlation with each other and can 

therefore be considered as a tracer or associated 

with mineralization. 

 There is a positive and significant correlation 

between elements such as Al, Ba, Be, Ca, Ce, Cu, 

K, La, Li, Mo, Na, P, Pb, Sr, Th, Ti, U, Y, Yb and 

Zr. There is a medium to large. This correlation is 

undoubtedly influenced by the surrounding stones. 

 

 There is a significant correlation between Au, Cr, 

Co, Fe, Mg, Mn, Ni, Sb and Zn. The group also 

describes the chemistry of the rocky outcrops of the 

region, which are considered to be mafic as 

compared to the elements of the preceding clause. 
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Table 2. Calculation of correlation coefficients of elements 

using Pearson method for normalized geochemical data 
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3.2. Hierarchical Clustering 

Figure 4 shows the Hierarchical Clustering chart for cluster 

analysis of normal data. According to this diagram, the 

following results can be obtained : 

 The resulting chart has two main clusters. Each of 

these clusters is divided into two sub-clusters. 

 The lower cluster is not explicitly exploratory, and 

due to the correlation of elements of this cluster, it 

is anticipated that these elements are related to the 

chemistry of surface rocks in the region. 

 The upper cluster itself is divided into two sub-

branches or branches, each of which in turn has 

smaller subdivisions. Meanwhile, confirmation of 

the correlation between the elements Ag, As, Au, 

Cd, Cu, Mn, Pb, S, Sb and Zn is the most important 

finding of this graph. 

 The three Bi, Sn, and W elements form a sub branch 

of the upper branch. These elements are notable in 

this exploratory area. However, the combination of 

these elements with elements of Ag, As, Au, Cd, 

Cu, Mn, Pb, S, Sb and Zn elements can be of great 

importance from the genetic point of view. 

 Another major branch of the upper branch is the Co, 

Cr, Fe, Mg and Ni elements. The existence of such a 

correlation was also detectable in a bivariate test. 

Therefore, it can be used in genetic topics. 

 Finally, according to the analyzes carried out at the 

earlier stages among all the elements, 14 important 

elements were detected that included Au, Ag, As, 

Cd, Co, Cr, Cu, Mn, Mo, Ni, Pb, Sb , W and Zn and 

were selected by main component analysis method 

(PCA). 

 

Figure 4. Logarithmic Dendrogram for Ward 

Method. 
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3.3. Principal Components Analysis (PCA) 
 

According to the Scree Plot chart (Figure 5), there are 14 total 

factors, of which only 3 first factors have been selected due to 

special values above 1 as effective factors. 

 

Figure 5. Scree plot derived from the results of the factor 

analysis of the 14 selected normal elements. 

 

The PCA results are characterized by three main components. 

According to Table 3, all three main components have special 

values greater than 1. The value of the variance for each 

component indicates the degree of variability of the data in 

that particular component. 

 

Table 3. The results of the main components analysis 

(PCA) for the 14 selected elements. 

Elements PC1 PC2 PC3 

 Au 0.450 0.094 0.524 

 Ag 0.052 0.016 0.533 

 As 0.149 -0.091 0.820 

 Cd 0.000 0.819 0.475 

 Co 0.960 -0.162 0.049 

 Cr 0.944 0.098 0.175 

 Cu -0.157 0.505 0.521 

 Mn 0.181 0.923 0.007 

 Mo -0.723 0.317 0.367 

 Ni 0.958 0.175 0.110 

 Pb -0.103 0.316 0.754 

 Sb -0.037 0.550 0.642 

 W -0.104 0.955 -0.212 

 Zn 0.188 -0.532 0.776 

Var. 

Cum. Var. 

26.03 

26.03 

25.43 

51.46 

25.25 

76.72 
 

3.4. Distribution of elements concentration  

At this stage, the values of the 8 selected elements of 

importance identified in the previous sections were used to 

represent the distribution of various elements in the study 

area. They were interpolated using the IDW method 

(weighted by inverted distance) in the Arc GIS 10.2 

environment. 

To map geochemical information in the software 

environment, an appropriate size is chosen for the size of the 

pixels for interpolation . In this step, in order to find the 

appropriate size for the size of the pixels for interpolation, 

according to Hengl [25] the following formula is used: 

𝑥 =  
𝐴

𝑛
 × 0.05 

 

 

In this formula, x is the appropriate cell size, A is the area of 

the study area in m2, and n is the number of samples taken 

from the range. Here, A = 6 * 6 and n = 72, which after 

reaching the formula above is x = 0.03 m2, after which all 

interpolations made with cell size will be 0.03 square meters. 

Subsequently, using the inverse distance weighing method 

(IDW), 8 elements including Ag, As, Au, Cd, Cu, Pb, Sb and 

Zn were continuously interpolated and the distribution maps 

of the geochemical anomalies related to these elements in 

figure 6 to 13 are visible. According to the studies carried out 

in the previous section, according to the main components 

analysis method, based on the points allocated to each of the 

samples under the third component (PC3), the final map of the 

geochemical anomaly is also drawn (Figure 4- 14). 

 

 

 
Figure 6. Distribution map of geochemical anomalies for 

Ag element. 

 

 

 

 
Figure 7. Distribution map of geochemical anomalies for 

As element. 
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Figure 8. Distribution map of geochemical anomalies for 

Au element. 

 

 
Figure 9. Distribution map of geochemical anomalies for 

Cd element. 

 

 
Figure 10. Distribution map of geochemical anomalies for 

Cu element. 

 

 
Figure 11. Distribution map of geochemical anomalies for 

Pb element. 

 
Figure 12. Distribution map of geochemical anomalies for 

Sb element. 

 

 
Figure 13. Distribution map of geochemical anomalies for 

Zn element. 

 

 
Figure 14. Distribution Map of Geochemical Anomalies 

for the Scores derived from the Third Component 

Analysis of Principal Components. 

 

 

3.5. Estimated threshold 

Firstly, eight elements were selected first for single-element 

geochemical data fractal modeling. For the fractal modeling 

by concentration-area method, the distribution of the 8 

elements of the above mentioned elements, as described in the 

previous sections, was first normalized using logarithmic 

transformation, then ArcGIS 10.2 software was interpolated 

using the IDW method and mapped. Then, using the initial 

maps, the cumulative area of the pixels was calculated for 

definite grades, and the graphs plotted against the area were 

plotted in full logarithm. In order to determine the different 
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communities, direct lines were fitted on the points of the 

diagram based on the least squares law, and on the basis of 

which the thresholds and the number of different geochemical 

communities were determined. 

It should be noted that the number of thresholds from the 

number of geochemical communities is always one unit less. 

In Figure 15, the Fractal Characteristics of the Gradient-Area 

Fractures for the 8 elements, As, Au, Cd, Cu, Pb, Sb and Zn 

are shown with the threshold lines. 

 

 

Figure 15. full-logarithmic graphs of concentration-area 

for the elements 

 

After plotting full-logarithmic graphs for the elements studied 

and determining the thresholds and different geochemical 

communities, using the thresholds obtained from the diagram, 

from the existing data set, the value of the equivalent of each 

threshold limit (Table 4) and the final anomaly map classified 

using a full-gravity fractal method. 

Figure 16 illustrates anomaly maps classified for the eight 

elements using the full-size fractal method. As is clear from 

the figure, geochemical communities are distinguished for 

different elements and can be used for more detailed studies 

on the region and for the discovery of new anomalies and for 

finding promising areas. 

 

3.6. C-A fractal modeling of the values of 

PCA Values  

The PC3 privileges were logged into Arc GIS 10.2 software 

and were internalized by the IDW method. Then all 

logarithmic graphs of values were plotted against the area 

occupied by those values (Figure 17). According to the entire 

logarithmic diagram of the concentration-area, four 

geochemical societies are identified and segregated based on 

the lines fitted on the chart based on the least squares method. 

These societies are composed of fields, low anomalies, 

moderate anomalies and strong anomalies, respectively. 

Then, the estimated thresholds were entered into the software 

and the final map of the geochemical anomaly modeling for 

gold mineralization in Zarshuran range was obtained by the 

concentration-area fractal method, which provided low, 

medium and strong anomaly values for exploration and 

investigation More precise in the studied area can be used. 
The community with a moderate anomaly in identifying 

promising areas can be a good exploratory guide, and 

communities with strong anomaly values can also be used in 

more detailed exploration areas (Figure 18). 

 

 

 

Table 4. The thresholds obtained for each selected element 

Element Population Thresholds (ppm) 

 

Ag 

1 0.13 0.20 

2 0.20 0.27 

3 0.27 0.66 

4 0.66 0.80     

 

As 

1 1.90 107.13 

2 107.13 578.36 

3 578.36 4713.75 

4 4713.75 6576.82     

 

Au (ppb) 

 

1 4 40.2 

2 40.2 146.7 

3 146.7 174.9     

 

 

Cd 

1 0.23 1.45 

2 1.45 5.66 

3 5.66 71.80 

4 71.80 951.71 

5 951.71 3588.23     

 

 

Cu 

1 5 24.96 

2 24.96 31.15 

3 31.15 41.54 

4 41.54 78.90 

5 78.90 85.97     

 

 

Pb 

1 11.03 66.24 

2 66.24 128.35 

3 128.35 178.26 

4 178.26 191.89     

 

Sb 

1 0.82 2.61 

2 2.61 10.02 

3 10.02 15.39     

 

 

Zn 

 

 

 

1 0.50 178.34 

2 178.34 373.96 

3 373.96 750.97 

4 750.97 946.29 

5 964.29 1038.28 
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Figure 16. Distribution maps of geochemical communities 

using concentration-area fractal method for elements. 

 
Figure 17: Full-logarithmic plot of concentration-area 

fractals for values obtained from PC3. 

 
Figure 18. Final map of distribution of geochemical 

communities for PC3 values using concentration-area 

fractal method. 

4. Conclusion 

 To study the potential of gold mineralization in the 

Zarshuran area, field separation from anomalies 

such as fractal-geometric methods including 

concentration-area was used to separate the 

anomalous areas from the field and identify the 

geochemical promising areas. 

 

 In this study, all 38 elements were first studied as 

monovalent and each geochemical pattern was 

detected. Then, based on the two-variable analysis 

of geochemical elements, using the coefficients of 

correlation and principal components analysis, the 

main values of the third component, as well as the 8 

elements including Ag, As, Au, Cd, Cu, Pb, Sb and 

Zn, which are most related to mineral The gold 

mining of the Zarshuran range was selected and 

used to identify and isolate geochemical patterns. 

 

 In the next step, 8 elements of the method based on 

the concentration-area fractal geometry were used to 

separate the anomal area from the background. 

Based on full logarithmic diagrams, concentration-

area fractal method, 4 enrichment steps for Ag, As 

and Pb elements, 5 enrichment steps for Cu and Cd 

elements, 3 enrichment steps for Au and Sb 

elements were obtained. As in the geochemical 

anomaly maps derived from full-gravity fractal 

methods, the elements in the central, northeastern 

and northwest of the Zarshuran range have high-

level anomalies. 

 

 In the next step, by using the principal component 

analysis method, in the form of a multi-element 

geochemical map for the identification of gold 

mineralization, they are combined and for 

separating the anomaly of the communities from the 

field for continuous quantities obtained from the 

method of analysis of the main components of the 

concentration fractal method -The area was used. 

 

 Based on the full logarithmic graphs of the 

concentration-area fractal method, 4 different 

geochemical societies including background, weak 

anomalies, modal anomalies and strong anomalies 

were obtained, which shows the high resolution of 

these methods for identifying areas with potential 

potential for exploration in this area. 
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