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Chapter Nine: Music, Chords and Harmony 

 
If the stars and planets are the gears of the universe, revolving in intricate ways in the 

skies, then music came to be seen from ancient times as a subtle reflection of this 

machinery, connecting it to the emotions and to the soul. The link was through the 

strange integral relationships, which they exhibit. In the case of the sky, we have wheels 

turning, the cycle of the day, of the month (from one full moon to the next), the year (the 

time from one vernal equinox to the next, i.e. from one season to the one next year). 

Integers appear when the cycles are compared, thus there seem to be 29 days in the lunar 

month (time from one full moon to the next), 365 days in a year (time from one vernal 

equinox to another, i.e. from one season to the next). But when more careful observations 

are made, the relations are more complex: there are really 29 ½ days in the lunar month 

or better 29 days 12 ¾ hours or better …. Likewise the year, not really 365 days but 365 

¼ days in a year, or better 365 days, 6 hours less about 11 minutes or ….Gears indeed. 

 

What many early peoples noted was that when strings were plucked producing music, the 

sounds produced pleasing chords and tunes if the length of the strings had a proportion 

given by small integers, 2:1, 3:2, 4:3, 5:3, etc. Thus the quality of a tune made by 

plucking one or more strings was crucially affected by the ratio of the lengths of the 

string at the times plucked. The same went for blowing into or across holes in pipes and 

the pipe lengths. These relationships were apparently of great importance to Pythagoras 

(ca. 560-480 BCE), to the religious cult he started and to his later followers (though 

nothing really reliable is known about Pythagoras). The Pythagorean School divided up 

the areas of study into the quadrivium, the 4 subjects  

o arithmetic 

o geometry 

o music 

o astronomy 

all of which contained number, the essence of the regularities of nature, all of which 

displayed the beauty of the universe. Put simply, even from our modern jaded 

perspective, is it not startling that strings with simple arithmetic ratios are exactly those 

which produce beautiful chords? Fortunately or unfortunately, there is a pretty simple 

explanation, which this Chapter will explain. 

 

Moving ahead in history, this connection of integers with music was of great interest to 

Galileo also. He starts with 

 

Salviati: Impelled by your queries I may give you some of my ideas concerning 

certain problems in music, a splendid subject, upon which so many eminent men 

have written: among these is Aristotle himself who has discussed numerous 

interesting acoustical questions. Accordingly, if on the basis of some easy and 

tangible experiments, I shall explain some striking phenomena in the domain of 

sound, I trust my explanations shall meet your approval. 

Sagredo: I shall receive them not only gratefully but eagerly. For, although I take 

pleasure in every kind of musical instrument and have paid considerable attention 

to harmony, I have never been able to fully understand why some combinations of 
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musical tones are more pleasing than others, or why certain combinations not only 

fail to please but are even highly offensive. 

 

Galileo knew, of course, that all music was produced by rapid vibrations of strings, or air 

in pipes and sought to make analogies with other oscillating systems, especially his 

favorite, the pendulum.  

 

On the right, Salviati is 

discussing his ideas about 

music and how, since it 

consists in vibrations, 

musical sounds from one 

object can excite another  

object into vibration. He 

discusses a specific set up 

in which a glass is placed 

in a large vessel, which is 

then filled nearly to the 

brim of the glass: the 

purpose is be able to see 

the vibration as waves in 

the water. Then he gets to 

the key point: if the tone 

changes from one note to 

another an octave higher, 

suddenly you see twice as 

many water waves, i.e. the 

frequency has doubled. 

Then he goes on to what 

musicians call the fifth, the 

note produced by a string 

2/3
rd
’s the length of the 

original. But Sagredo is not 

convinced! 

 

 

 

 

Well, why not jump ahead in time and look at what the air actually does when music is 

heard? Edison learned how to pick up the vibrations of air on a flexible membrane and, 

by fixing a small piece of iron to the membrane, transform the air pressure vibrations into 

vibrating electrical signals. Then, of course, we can put them in a computer and analyze 

them anyway we want. I recorded the voice of a female singer singing the major scale, 

do, re, mi, fa, sol, la, ti, do and here is a small part of this recording, showing do and sol: 



 3

 

 
 

 

 

I have drawn the vibration of do as a solid blue line oscillating around 0; and I moved sol 

down making it a dashed red line oscillating around -.25 simply in order to separate the 

two curves. Several things are immediately apparent: first of all, these waves are not 

sinusoidal! They are complex and fairly close to being periodic but not exactly periodic 

either. However, the blue curve for do shows 9 periods with major peaks interspersed 

with minor peaks, while the red curve shows 13 peaks. Look at the points marked 

A,B,C,D and E. At each letter both curves have peaks but between each pair, there is one 

extra peak for do and two for sol. In other words, two periods of do match three periods 

of sol. This is the 3:2 correspondence, which was discovered empirically by prehistoric 

musicians.  

 

 

What we see is that the vibrations of the chord do-sol merge together into one shape that 

repeats itself every two periods of do and every three periods of sol. This is exactly what 

Galileo also claimed, as he describes on the next page, taken a few pages after the 

previous quote. Note that he guesses that the music consists in pulses of airwaves. I think 

he would have been thrilled to see the actual signals in the figure above. 
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So far we have discussed three notes do, sol and the next do, one octave higher, whose 

three frequencies are in the ratio 2:3:4. Pursuing nice sounding chords leads to the whole 

major scale. Thus, we can add the note mi which has a frequency 5/4
th
’s above the first do 

and this gives the ‘major triad’ do-mi-sol with frequency ratios 4:5:6. Then we can go 

backwards creating a triad just like this but starting at the high do. This gives two new 

notes called fa and la, so that the four notes do, fa, la, do have frequencies in the ratio 

3:4:5:6. Lastly we add a higher frequency triad, which starts at sol: this is sol, ti and re 

one higher octave. Before you get totally confused, we make a chart: 

 

NOTE FREQ 

do 1 

re 9/8 

mi 5/4 

fa 4/3 

sol 3/2 

la 5/3 

ti 15/8 

high do 2 

high re 9/4 

 

 

Check that do-mi-sol,  fa-la-high do and sol-ti-high re are all major triads. With 

numerology like this, no wonder Pythagoras thought numbers were magic. 
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In fact, Galileo only guessed half the story about why these chords sound nice. 

We mentioned above that the curves showing the air vibration were nowhere near 

sinusoidal curves. However, there is a very real sense in which they are made up of a 

combination of basic sinusoidal curves, added together. The components are (i) the 

sinusoid with the same period that approximates the curve best plus (ii) a sinusoid of 

double the frequency, i.e. half the period, that makes the best correction, then (iii) a 

sinusoid of triple the frequency or 1/3 the period which approximates what’s left, etc. , 

continuing with higher and higher frequencies. These corrections are called the higher 

harmonics of the sound. Here’s how this works: 

 
 

 

On the top, you have the same voice as above singing sol, six periods being shown. Note 

that although the function has a basic period and looks like it repeats six times, there are 

small variations between periods. (This is less marked with a musical instrument.) On the 

second line, we show four examples of single periods of the voice and, in red, the average 

period. The average is much smoother because little tremolos in the voice have cancelled 

out. Then in the third line a single sinusoid has been matched to the average voice. The 
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dashed line shows, however, the difference between the voice and its sinusoidal 

approximation. Remarkably, it seems to have twice the frequency. In the last graph, this 

residue has been approximated by a sinusoid of twice the frequency and the residue after 

subtracting that has been shown. The residue is very close to a sinusoid of triple the 

frequency. In this case, three harmonics suffice to reconstruct the voice almost exactly. 

Often still higher harmonics are needed. 

 

Let’s put this in formulas. Let P(t) be the air pressure as a function of time. Then we 

model this by an exactly periodic function Q(t), i.e. there is a period p such that 

( ) ( )Q t p Q t+ º , all t.  P and Q will be very close to each other. We write Q as a sum of 

sinusoids like this: 

 

0 1 1 2 2 3 3( ) sin(2 ) sin(4 ) sin(6 )Q t C C ft D C ft D C ft Dp p p= + + + + + + + L

 

This is a very important formula, so we have made it big and put it in a box. The C’s and 

D’s are constants. The frequency of the whole periodic signal Q is f and the sum is made 

up of terms sin(2 )C nft Dp +  with frequencies nf, known as the n
th
  harmonic of Q.  P(t) 

will be given by such a formula too, but, because the human voice is complicated, you 

have to let the C’s and D’s vary a bit with time. For example, in the first figure above 

showing do and sol, you see a slow undulation superimposed on the periodic signal: this 

comes from C0 changing slowly. And if you look over longer periods of time, you find 

that even the shape of the signal changes slowly: this is caused by the relative phases 

1 2D D- and 1 3D D-  changing slowly. Another effect is vibrato, where the frequency 

oscillates around a mean; this is modeled by having D1 oscillate slowly. But for the 

female voice used in the last figure, the change isn’t too great (see second plot in the 

figure) and we picked a musical note for which the above three terms are already a very 

good approximation of the full signal P(t).  

 

Another way to say it is that hidden in the sound of sol is already the note sol one octave 

higher (twice the frequency) and the note re two octaves higher. Why re? From the table 

above, its frequency is 9/8
th
’s the frequency of do, so two octaves higher, it is 9/2

th
’s the 

frequency and 9/2 = 3 x 3/2, triple the frequency of sol! So why do chords sound well 

together: their harmonics overlap and they are actually sharing these hidden parts of 

themselves. 

 

Maybe you didn’t want to take a course in music theory but it’s hard to resist describing 

the next wrinkle, namely the black keys on the piano keyboard. The major scale is the 

white keys and they give do a special place, making it a kind of home base. But 

composers want to play with ‘changing the key’ in the middle of a piece, taking another 

note as home and making all the triads etc on top of this. The fractions now get to be 

quite messy and a remarkable discovery was made: if the frequencies of the major scale 

are fudged a bit and 5 new notes are added (the black keys), then you get a scale in which 

the frequency of each note has the same ratio to the frequency of the next note, namely 
1 122 1.06» .  Why does this work? The key piece of number magic is that 7 122 1.498= L  
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so a note, which is indistinguishable from sol, occurs. In fact, here are all the notes in the 

so-called ‘tempered scale’ with their frequency ratios to compared to the ‘true’ scale: 

 

 

 

 

Note tempered freq. ratio true freq. ratio error 

C (or do) 1.000 1 0% 

C sharp (D flat) 1.059   

D (or re) 1.122 9/8 = 1.125 0.2% 

D sharp (or E flat) 1.189   

E (or mi) 1.260 5/4 = 1.25 0.8% 

F (or fa) 1.335 4/3 = 1.333 0.1% 

F sharp (or G flat) 1.414= 2  (With C, Galileo’s Ex 

of a harsh dissonance) 

 

G (or sol) 1.498 3/2 = 1.5 0.1% 

G sharp (or A flat) 1.587   

A (or la) 1.682 5/3 = 1.667 0.9% 

A sharp (or B flat) 1.782   

B (or ti) 1.888 15/8 = 1.875 0.7% 

C (one octave higher) 2.000 2 0% 

  

  

 


