
A Novel Ant Colony Optimization Based 
Algorithm for Identifying Gene Regulatory 

Elements 
 

Wei Liu 
Department of Computer Science and Engineering, Southeast University, Nanjing 210096, China  

Institute of Information Science and Technology, Yangzhou University , Yangzhou 225127, China 
Email: yzliuwei@126.com  

 
Hanwu Chen 

Department of Computer Science and Engineering, Southeast University, Nanjing 210096, China  
Email: hanwu_chen@163.com 

 
Ling Chen 

Institute of Information Science and Technology, Yangzhou University , Yangzhou 225127 , China 
National Key Lab of Novel Software Tech, Nanjing University, Nanjing 210093, China 

Email:lchen@yzcn.net
 

Yixin Chen 
Department of Computer Science, Washington University in St. Louis, St. Louis, MO 63130,USA 

 
 
 

Abstract—It is one of the most important tasks in 
bioinformatics to identify the regulatory elements in gene 
sequences.  Most of the current algorithms for identifying 
regulatory elements are easily to converge into a local 
optimum, and have high time complexity. Therefore, we 
propose a novel optimization algorithm named ACRI(ant-
colony-regulatory-identification) for identifying regulatory 
elements. Based on powerful optimization ability of ant-
colony algorithm, the algorithm ACRI can not only improve 
the quality of results, but also solve the problem at a very 
high speed.  Experimental results show that ACRI can 
obtain higher quality of solutions using less computational 
time than other traditional algorithms.  
 
Index Terms—Bioinformatics, Gene regulatory elements, 
Ant colony optimization 

Ⅰ. INTRODUCTION 

A biological system is mainly composed of static and 
dynamic components. The static components include all 
genes in the genome, which are the elementary 
constructional elements of a biological system. With the 
achievements in the genome sequencing and annotation, 
special interests have been paid on the gene regulatory 
elements, the dynamic component of the biological 
system. Genomic regulatory elements, which are also 
called DNA motifs, contain abundant biological 

information reflecting life characteristics, and play an 
important role in the gene function and structure 
construction. Now discovering and recognizing gene 
regulatory elements have become one of the most 
important approaches in analysis of genome sequences, 
and have drawn extensive attention in bioinformatics 
research. 

Gene regulatory element identification (also called 
motif identification) evolves two problems: how to 
extract motif from biological data or structures, and how 
to recognize the motif contained in object sequences or 
structures. Regulatory element identification is a major 
research area in the study of gene non-coding region. At 
the transcriptional and post-transcriptional level, gene 
expression is mainly controlled by some cis-regulatory 
elements which essentially are some shorter DNA 
sequences. These sequences are often in the upstream 
region of regulated genes, and are recognized by and 
combined with the specific DNA-binding protein 
(transcription factor) so as to regulate DNA metabolism 
and transcription. Otherwise they could probably be 
recognized by and combined with the RNA-binding 
protein, and their combination could influence the 
processes of RNA modification, localization, translation 
and degradation. Hence, transcriptional regulatory 
element analysis and identification is one of the most 
important tasks for genome behavior understanding and 
explanation. . 

In searching for a known regulatory element or 
predicting a new one, three problems must be solved: 1) 
how to describe the regulatory elements, namely, what 
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characteristic model would be constructed for regulatory 
elements? 2) how to define a measurement or scoring 
function about the probability for a  sequence segment 
being a regulatory element; 3) given the regulatory 
element model and scoring function, how to detect the 
regulatory element with the maximal score from 
sequences to be analyzed, which is just the problem of 
algorithm design.  

In the past two decades, more and more efforts have 
been dedicated to gene regulatory element identification 
in DNA sequences. There are mainly two categories of 
gene regulatory element identifying methods: 
experimental methods and computational methods.  Due 
to the high time and economic cost, the experimental 
methods are probably not able to obtain comprehensive 
results. Therefore, computational methods [1-3] have drawn 
much more attention because of its effectiveness and high 
efficiency. However, it is referred to three problems in 
computational methods: 1) given genome sequences, 
finding out all known regulatory elements; 2)find out 
unknown regulatory elements from the upstream of some 
co-expression or co-regulated genes; 3)find out the 
unknown gene regulated by a known transcriptional 
factor. We focus on the second problem which is called 
sequence-driven regulatory elements identifying. The 
sequence-driven methods are predicting methods[4] for 
detecting the common element on the co-regulated gene 
cluster.      

At present, existing algorithms for regulatory elements 
identifying include: (1) Counting algorithm. It is the most 
instinctive and simplest exhaustive search method.   Since 
its time complexity is proportional to the exponent of 
pattern length, this method is only suitable to identify 
short regulatory elements. (2) EM algorithm. The EM 
algorithm is an efficient iterative procedure to compute 
the Maximum Likelihood (ML) estimate in the presence 
of missing or hidden data. Each iteration of the EM 
algorithm consists of two steps: the E-step which 
determines the conditional expectation, and the M-step 
which maximizes the expectation. Efficiency of the 
algorithm greatly depends on the initial conditions. With 
the inappropriate initial setting of the parameters, it will 
converge to a local optimum instead of the global one. (3) 
MM(Mixture Model) algorithm. It is an improvement of 
EM algorithm. The basic idea of MM lies on the 
conservation of regulatory elements and their 
corresponding characteristic matrices. During the process 
of continual iterations, the log-likelihood will be maximal 
only when both of them are co-adapted. After conserved 
sequences, sensing matrices or characteristic models are 
obtained, they are evaluated by their statistical 
significances.  (4) Gibbs Sampling algorithm. It is a 
special MCMC (Markov Chain Monte Carlo) method to 
identify motifs of protein sequences proposed by 
Lawrence[5] et. al. Later Liu[6] et. al. adopted Gibbs 
sampler into Bayesian model. Their method is used to 
solve the problem of multiple sequence alignment and 
achieved admirable results. Now Gibbs Sampling and its 
improvements have sparked a major increase in the 
application of regulatory element identification. There is 

much mature software available on the Internet, such as 
AlignACE[7],BioProspector[8], Gibbs Motif Sampler[9] etc. 
The primary principle of Gibbs sampling is to optimize 
the object function through continually updating 
regulatory element model and its position in each 
sequence by a random sampling. The final regulatory 
element is obtained when the iteration is terminated under 
a certain condition. At present, some other pieces of 
popular software is developed such as 
Consensus[10],MEME[11],ANN-
Spec[12],PROJECTION[13],MDScan[14],and YMF[15], 
which is the most recent one. Recently, some 
optimization methods are also applied on regulatory 
element identification, such as statistical analysis, neural 
network, clustering prediction and word identification etc. 

Our study focuses on the problem of searching for 
the binding sites from co-expression gene sequences. 
The premise of using the computational method to 
solve the problem is assuming that the genes 
regulated by the same regulatory element possess the 
same or similar gene expression mode. The co-
expression genes can be obtained by clustering the 
gene chip data. Our goal is to detect all possible 
binding sites of transcription factor from the 
upstream of co-expression genes. Therefore the 
problem can be defined as an optimization process to 
search for the conserved sequence segments of 
certain length from a sequence set. Based on the ant 
colony optimization, we present a novel method 
named ACRI(ant-colony-regulatory-identification) 
for regulatory elements identification. Compared with 
the existing algorithms, our algorithm ACRI can 
avoid converging into local optimum and can not 
only improve the quality of results, but also solve the 
problem at a very high speed. Experimental results on 
two groups of standard test data show that our 
algorithm ACRI can obtain higher quality of 
solutions using less computational time than other 
traditional algorithms. 

Ⅱ.  CONCEPTS AND DEFINITIONS  

A.  Problem Definition 
For convenience in description of the problem, we 

assume that each regulatory element occurs only once in 
each sequence. Given the sequence set X={X1,X2,…,Xn}, 
where each sequence is composed of four nucleotides: 
A,T,C and G. The lengths of those sequences are denoted 
as 1 2 n, , ...,l l l respectively. Our goal is to find out the set 
of conserved sequence segments { }1 2, , ..., nM M M M=  
consisting of the motif with length w. Hereby, Mi is the 
substring of Xi with length w, and i iM XÌ , (i=1,2,…,n). 

In the computational methods mentioned above, the 
first problem to be solved is how to denote these 
sequences, namely, to construct a proper feature model 
for the regulatory elements.  In this paper, we use the 
matrix model, which uses a characteristic matrix to 
describe the distribution of the regulatory elements.  
Hence firstly we have to define the characteristic matrix. 
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B.  Characteristic Matrix 
Definition1 Let the length of motif be w and alphabet 

be { }= , , ,A T C Gå . The characteristic matrix M is  a 
4*w matrix and its jth element at the ith row is notated 
as b

jP  , where b is the ith character in the alphabet, and b
jP  

denotes the possibility of the ith character appearing at the 
jth position of the motif. 

Example1  Assuming that there are 12 regulatory 
elements of length 6 shown as follows: 

X1= “ A C G C G T ” 

X2= “ A C G C G T ” 

X3= “ C C G C G T ” 

X4= “ T C G C G A ” 

X5= “ A C G C G T ” 

X6= “ A C G C G A ” 

X7= “ A C G C G T ” 

X8= “ A C G C G A ” 

X9= “ A C G C G T ” 

X10= “ A C G C G T ” 

X11= “ A C G C G T ” 

X12= “ A C G C G T ” 
 
Then we can construct the matrix model as TableⅠ: 

TABLE I.   

SIMPLE MATRIX 

 1 2 3 4 5 6 
A 10 0 0 0 0 3 
T 1 0 0 0 0 9 
G 0 0 12 0 12 0 
C 1 12 0 12 0 0 

 
Each element in TableⅠdenotes the number of the 

base appeared in this position. For example, the first 
element at the first row is 10, this means the base “A” 
appears 10 times in the first position of these regulatory 
elements. We can easily transform each element in Table
Ⅰ into the probability of the base appears in the position 
and get the characteristic matrix as shown in Table Ⅱ. 

TABLE II.   

THE CHARACTERISTIC MATRIX 

 1 2 3 4 5 6 
A 0.8333 0 0 0 0 0.25 
T 0.083 0 0 0 0 0.75 
G 0 0 1 0 1 0 
C 0.083 1 0 1 0 0 

 
If we list the characters which have the maximum 

probability in each column, we can get a sequence 
“ACGCGT”,  which is the most potential consensus 
sequence of the regulatory element. Enlightened by this 
fact, we use the characteristic matrix as the model 
reflecting the feature of the regulatory element. Moreover, 
it also can be used as a tool for regulatory element 
detecting. 

C.  Background Model  
Suppose the set of DNA sequence is X={X1,X2,…,Xn}, 

and the regulatory element appears once and only once in 
each sequence. Denote the area where the regulatory 
element located as M which is shown as the shadow part 
in Figure 1. All the other parts and non-motif areas are 
regarded as the background. 

Definition 2  The background pattern 
B= { }0 0 0 0, , ,A T C Gp p p p  denotes the probability of each base 
appearing in the background area of the sequences, 
where

0
bp is the probability of character b appearing in the 

background area. 
 
X1 B(background) M(motif) B(background) l1

 
X2 B(background) M(motif) B(background) l2

 
X3 B(background) M(motif) B(background) l3

…       … …

Xn B(background) M(motif) B(background) ln

Figure 1.  Motif and background 

D.  Problem Model 
Given the background pattern 

B= { }0,  ( , , , )i i A C G Tp = and the motif characteristic 

matrix M={ },  ( , , , , 1, 2, ..., )i
j i A C G T j wp = = , we can 

get the probability of the motif occurring at the kth 
position of ( )1 2, , ..., nX X X X=   using formula (1).  

( )
1 1

0 1 0
0

, ,
i

j j j
k k w

i j k
j j k j k w

lx x xP X K M B p p p
- + -

- +
= = = +

= 照 �        (1) 

However, in the formula(1), the characteristic matrix 
M is unknown and the start positions of each motif in 
each sequence are also unobserved, therefore the above 
model is actually a hidden model. That is to say, the 
elements of M and the start positions of the motif are all 
hidden variables which are just the unknowns we are 
going to compute. 

We can enumerate all the subsequences with length w 
in the sequences of set ( )1 2, , ..., nX X X X=  and denote 
the subsequence of length w which starts from the jth 
position in sequence Xi as ijX . Thus there are 

( 1)i iL l w= - +  subsequences in sequence Xi. Given the 
subsequence tuple { }1 21 2, , ...,

nj j njX X X , 
where 1, 2, ...,i ij L= , we can compute its characteristic 
matrix by Definition 1.  
    Through the analysis mentioned above, it is known that 

there are ( )
1

1
n

i

i

L w
=

- +Õ  subsequence tuples. Therefore, 

( )
1

1
n

i

i

L w
=

- +Õ  characteristic matrices can be obtained 

and we want to choose the best one as the motif 
characteristic matrix. 
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But which one is the “best”?  It is referred to the 
second important problem encountered in finding the 
binding sites using computing methods. We have to 
define a measurement to detect the possibility of the 
sequence segment as a regulatory element, namely, a 
scoring function is needed.  

At present, the most widely used scoring functions are 
as follows: (1)Z-score; (2)χ2 statistics; (3)Information 
Content; (4) Consensus Scoring; (5) The log-likelihood.   
Among the five scoring functions illustrated above, the 
first two calculate the scores based on the statistical 
importance of the motif occurrences; and the last three 
are designed based on the motif conservative. Therefore, 
the first two are usually applied to identify the regulatory 
elements based on statistics. And the methods on the 
basis of sequence alignment usually adopt the last three 
scoring functions. In our paper, we use information 
content as the standardized scoring function of the motifs. 

E.  Information Content 
This scoring function describes the pattern 

conservative, which is deduced from the theorem of 
information theory. Compared with stochastic sequences, 
the more the uncertainty of the pattern decreases the 
higher information content it will have. Therefore the 
conserved pattern has larger probability to be a regulatory 
element. 

Definition 3 Given a characteristic matrix b
jM p轾= 犏臌

, its 
information content is defined as: 

0
1

( ) * log
n

b b b
j j

j b

IC M p p p
= 五

轾= 犏臌邋                    (2) 

Information content is often used to measure the 
differences within the set of samples, namely, the 
conservative of the samples. A higher IC value indicates 
the less difference among the samples and the higher 
conservative in the set. 
     From formula (2) we can see that when the 
probability b

jp  of the base b occurring at the jth position 

is larger than the probability 0
bp of b at the background, 

their ratio will be higher and will make a greater 
contribution to the IC score. In the other words, the 
higher their ratio is, the more likely the base occurs at the 
jth position, and consequently the higher conservative it 
will have.   

Compared with other non-coding sequences, the 
regulatory elements are more conservative and have 
higher IC value. Therefore, from all the tuples of 
subsequences of length w, we must select the one with the 
highest IC score, and use its characteristic matrix as the 
model of the motif. Nevertheless, since there are 

( )
1

1
n

i

i

L w
=

- +Õ  subsequence tuples, it would cost large 

amount of time to enumerate them. Since it is an NP-hard 
problem, many optimization methods are used to solve it. 
This paper presents an algorithm based on ant-colony 
optimization to construct the characteristic matrix of the 
motif. 

III. ANT COLONY ALGORITHM OPTIMIZATION 

Metaheuristic algorithms such as genetic algorithm, 
evolutional algorithm, simulated annealing, ant colony 
optimization, tabu search etc. are algorithms which can 
solve many combinatorial optimization problems, and 
have been triumphantly applied to many practical 
problems[16-23]. Ant colony optimization (ACO) is a new 
evolution simulation algorithm proposed by Italian 
researcher M. Dorigo, V. Mahiezzo, A. Colorni etc. ACO 
has been proved effective in solving complex 
optimization, especially for the discrete NP-hard 
combinatorial optimization, such as TSP [17](Traveling 
Salesman Problem), JSP[18-19] (Job-shop Scheduling 
Problem), FSP [20-21](Flow shop Scheduling Problem), 
QAP(Quadratic Assignment Problem),SOP[22] (Sequential 
Ordering Problem), QOS multicast routing, Dynamic 
Vehicle Routing Problem [23]etc.    

Many real ant species deposit on the ground a 
substance called pheromone, as they travel to and from a 
food source. Other ants searching for food can sense the 
pheromone and have their movements influenced by the 
strength of the pheromone on the path. Hence the 
collective behavior actually constructs the positive 
feedback mechanism: the more ants travel through the 
path, the more likely the other ants would select it. The 
pheromone information will direct the future ants to 
travel on the shortest path. The essences of the 
optimization process are attributed to the follows: (1) 
selecting strategy: the path with more pheromone will 
have more chance to be selected ;(2)updating strategy: 
pheromone intensity on a path  will be reinforced along 
with the ants traveling through it and decreased over time 
if the path is not used; (3)coordination strategy: ants can 
communicate and collaborate with each other via 
pheromone on the paths.  Based on the optimization 
strategies mentioned above, ant colony algorithm has 
strong optimization ability and great potential in solving 
complex combinational optimization problems.  

IV. FRAMEWORK OF THE ALGORITHM 

At present nearly all regulatory elements identifying 
algorithms are based on an incomplete search and most of 
popular software uses local search strategy, such as 
greedy algorithm、 EM algorithm、Gibbs algorithm and 
so on. Thus these algorithms are easily to converge into a 
local optimum and get some results of little biological 
meaning. In this paper, we propose a novel optimization 
algorithm named ACRI (ant colony regulatory 
identification) for regulatory elements identification. 
Based on powerful optimization ability of ant-colony 
algorithm, the algorithm ACRI can solve the problem in a 
very high speed and get higher quality of solutions. 

A.  Coding the Solutions 
Suppose the set of the biosequence is 

( )1 2, , ..., nX X X X= . Here,  li denotes the length of the 
sequence Xi and w is the length of the conserved sequence 
fragment where the motif is located. We use an ant to 
denote a solution.  Assuming that each input sequence 
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contains just one motif, we code the object motif as an 
integer vector { }1 2, , ..., nJ j j j= , where 

[ ]1,  1i ij l w? +  denotes the start position of the 
binding sites in sequence iX , namely, the start position of 
the motif. A vector J indicates a tuple consisting n 
subsequence of length w. Then we can compute its 
characteristic matrix M(J) and get the information content 
value IC(M(J)). 

B.  The Digraph Which the Ant-colony Traverse on 
In the algorithm ACRI, the artificial ants traverse on a 

digraph shown in Figure 2. From Figure 2, we can notice 
that there are n+1 nodes denoted as 1 2 1, , ..., ,n nX X X X +  
respectively, where iX  represents the ith (i=1,2,…,n) 
sequence and 1nX + denotes the termination. There are 

1i iL l w= - + paths linking node from sequence iX  and 
1iX + . Denote the jth path as ijC which means the start 

position of the ith sequence is j. The pheromone on 
path ijC is denoted as ijτ . Each artificial ant starts from 
node 1X , passes through 2 3,X X ,…, and then arrives at 
the termination 1nX + . Let the trace of an ant be 

1 21 2, , ..., nj j njC C C  , then it forms a 
solution { }1 2, , ..., nJ j j j= . 

 
Figure 2.  The diagraph which the ant-colony traverse on 

C.  Probability for Ants’ Path Selecting 
The probability that ant at node iX   chooses the path 
ijC  linking with 1iX +  can be defined as: 

( )
( )[ ] ( )[ ]
( )[ ] ( )[ ]

1

Liij

k

ij ij
t

ik ij

t t
P

t t

ba

ba

ht
ht

=

=
å

             (3) 

Here, ( )ij tt is the pheromone on the edge ijC  at time 

t, ( )ij th is a heuristic function which is defined as the 

suitability for selecting the jth position of sequence iX  as 
the start point of the motif. It uses the current optimal 
motif obtained by the ant for reference.  

 

( )
( )( )

( )
, 1

, 1
0

, 1,..., , 1

1, 1,..., , 1 0

,
,

i j k

i j k

k
Swij i j i j w

ij X
kij i j i j w

P M tX X X pt
pP X X X M

h
+ -

+ -

+ + -

=+ + -
= = P

 

(4)

The algorithm records the optimal solution obtained so 
far in the iterations, which is named Mbest . We use Mbest 
as the approximation of the optimal motif so as to set the 
heuristic function ( )ij th . In formula (4), M(t) denotes the 

characteristic matrix of the historic optimal solution Mbest 
obtained by the ant. 

D.  Fitness Function 
For the solution { }1 2, , ..., nJ j j j= obtained by the ant, 

we can get the following subsequence tuple of length w: 
1 1 1

2 2 1

1

1 1

2 2

, ...,

, ...,
..........................

, ...,

w

w

n n w

j j

j j

nj nj

X X

X X

X X

+ -

+ -

+ -

 

By counting the occurrences of each character in each 
position, we can get the characteristic matrix M(J) and 
then compute its information content IC(M(J)) as the 
fitness of the solution. 

E.  Pheromone Update 
After each iteration, pheromone ijτ on each edge (i,j)  

should be updated as follows: 

( ) ( ) ( )
1

1 (1 ) ( )
m

kij ij ij
k

t t tr rt t t
=

+ = + - Då         (5) 

Here, (0,1)r Î represents the evaporation rate of 

pheromone, while ( )kijtD  is the increment of ijτ by the  
kth ant:  

( )( )
( )                

0                   
k ij

kij

IC if the kth ant passes edge in current tourM C
t

elset
ìïïïD = íïïïî

(6)  

where 
kM is the characteristic matrix of the solution 

get by the kth ant, ( )kIC M is the information content of 

kM  obtained by using formula (2). 

F.  Framework of the Algorithm 
As mentioned above, the framework of the algorithm 

ACRI is as follows: 
 

Algorithm ACRI（ant-colony-regulatory-identification） 
Input： 1 2, , ..., nX X X : the set of sequences ;  

maxnum:   maximum number of iterations;  
m:     number of the ants used； 

Output：Mbest:  the characteristic matrix regulating the motifs;  
{ }1 2best , , ..., nj j jJ = :  the start positions of the motifs; 

Begin 
1.  Initialization, randomly setting the initial characteristic matrix Mbest 

and computing the background pattern B. 
2.   for t=1 to maxnum do 
3.    for k=1 to m do 
4.       for i=1 to n do 
5.        ant k selects the edge ijC according to formula（3）； 
6.        local optimization for the start position j of Xi； 
7.       end for i 
8.  local optimization for the subsequence tuple and get the solution 

{ }1 2, , ..., nJ j j j= ； 

9.       Compute IC (M(J)) by formula (2)； 
10.      if  IC (M(J)) > IC (Mbest)  then 
11.        Mbest= M(J)； 
12.        Jbest=J ; 
13.      endif； 
14.   endfor k 
15.   Update the pheromone on each edge according to formula(5) and 

compute ( )+1ij th using the new Mbest； 

16.  end for t 
17.  Output Mbest,Jbest； 

End 
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G.  The Strategy of Local Optimization for Single 
Sequence 

Line 6 in the algorithm ACRI performs local 
optimization to adjust the start position j of Xi, that is, the 
ant will locally search for a better start position in the 
neighbor of j. Since this local optimization adjusts the 
start position j only in sequence Xi, we call it “local 
optimization for single sequence”. The detail of the 
strategy is as follows: 

Suppose the ith sequence is { }1 2 ,, , ...,
ii i i i lX x x x= , and 

the ant selects j as the starting position, [ ]1, 1ij l w? + , 
namely, subsequence , , 1 , 1, , ...,i j i j i j wx x x+ + - is considered 
as the motif. In the local optimization, we test the 
subsequences , 1 , , 2, , ...,i j i j i j wx x x- + - starting from j-1, and 

, 1 , 2 ,, , ...,i j i j i j wx x x+ + + starting from j+1, and compare them 
with the subsequence , , 1 , 1, , ...,i j i j i j wx x x+ + -  starting from 
position j.   

Using the historic optimal solution Mbest , we compute 
( , , ), ( 1, , ), ( 1, , )i best i best iP X j M B P X j M B P X j M B- +   

by formula (1), which respectively denotes the 
probabilities of the motif appears at position j , j-1 and 
j+1 in sequence Xi.  We choose the one with the highest 
probability as the start position in Xi. 

H.  The Strategy of Local Optimization for Subsequence 
Tuple 

Line 8 in the algorithm ACRI performs local 
optimization on the solution { }1 2, , ..., nJ j j j=  obtained 
in current iteration. Since this local optimization adjusts 
the start positions on the sequences in the tuple by 
searching in the neighbor of the solution, we call it “local 
optimization for subsequence tuple”. The detail of the 
strategy is as follows: 

For the solution { }1 2, , ..., nJ j j j= , we compute and 
compare the information content values of another two 
solutions { }1 2-1, -1, ..., -1nj j jJ - =  and 

{ }+
1 2+ 1, + 1, ..., + 1nj j jJ = respectively. We select the 

one of the highest IC among J、J -、J + as the solution 
obtained by ant k in current iteration. 

We can compute ( )( )IC M J -  and ( )( )IC M J +  on 

the basis of ( )( )IC M J . It’s not necessary recalculate 
them by the formula (2). Actually from (2) we can see 
that: 

( ) ( )( )0
1 1

( ) * log =
n n

b b b
j j j

j b j

IC M J IC Mp p p J
= 五 =

轾= 犏臌邋 �  

Here, ( )( )jIC M J is the information content of the 

element on the jth column of M（J）, namely: 

( ) 0* logb b b
j jj

b

IC M p p pJ
五

轾轾 = 犏犏臌 臌å  

It is obvious that ( )( )IC M J is just the summation of 
all the IC values of its columns and the IC value of each 
column can be calculated independently.  

For the solution { }1 2, , ..., nJ j j j= , it contains a group 
of subsequences as follows: 

1 1 1 1 1

2 2 2 1 2

1

1, 1, 1 1, 2 1, 2 1, 1

2, 2, 1 2, 2 1, 2 2, 1

, , 1 , 2 1, 2 , 1

...

...
... ... ... ... ... ...
... ... ... ... ... ...

...
n n n n

j j j j w j w

j j j j w j w

n j n j n j j w n j w

x x x x x
x x x x x

x x x x x

+ + + - + -

+ + + - + -

+ + + - + -

 

Denote the jth column vector in J as Jj, and 

1 20 1, 1 2, 1 , 1( , , ..., )
n

T
j j n jJ x x x- - -= , 

( )1 21, 2, ,,  ,  .......,  n
T

j w j w n j wnJ X X X+ + += .  

Because ( )[ ] ( )( )
1

n

j
j

IC M J IC M J
=

= å , we have: 

( )( ) ( )( ) ( )( ) ( )( ) ( )( )
1

0
0

w

j w
j

IC M IC M J IC M J IC M IC MJ J J
-

-

=

= = + -å  

( )( ) ( )( ) ( )( ) ( )( ) ( )( )
1

1 1
2

w

j w
j

IC M IC M J IC M J IC M IC MJ J J
+

+
+

=

= = + -å  

Therefore, we just need to select the highest one 
among ( )( ) ( )( )0 wIC M IC MJ J- , 0 and 

( )( ) ( )( )1 1wIC M IC MJ J+ - . 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

We test our algorithm ACRI by a set of experiments to 
evaluate its efficiency. All the experiments were 
conducted on a 3.0GHzPentium4 with 1GB memory. All 
codes were complied using Microsoft Visual C++ 6.0. 

In the experiments, all test data are from the standard 
databases. These test data include five transcriptional 
factors of Saccharomyces cerevisiae, and 18 gene 
sequences contain E. coli transcription factor binding 
sites. Both of them are used as the standard test data to 
evaluate the performance of the algorithm. 

A.  Analysis  on  the Quality of the Results  
1) Analysis for transcription factor binding sites of 

Saccharomyces cerevisiae 
In the experiments, we test our algorithm using 

Saccharomyces cerevisiae from the uniform database 
SCPD[24] （http://rulai.cshl.edu/SCPD/）. The database 
contains more plentiful information about regulatory 
elements and transcriptional factors compared with other 
congener databases such as TRANSFAC etc. We select 
five groups of transcription factor binding sites as tested 
data shown in tableⅢ . We download some promoter 
sequences of length 550, each of which contains the 
transcription factor binding site from SCPD. 

TABLE III.   

THE FIVE TRANSCRIPTIONAL FACTORS OF SACCHAROMYCES CEREVISIAE 
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We use logo creation model to visualize the 
experimental results. In the model, each logo consists of 
stacks of symbols, one stack for each position in the 
sequence. The overall height of the stack indicates the 
sequence conservation at that position, while the height of 
symbols within the stack indicates the relative frequency 
of each amino or nucleic acid at that position. In general, 
a sequence logo provides a richer and more precise 
description of, for example, a binding site, than a 
consensus sequence. We test these data with our 
algorithm ACRI and create sequences logos for our 
results through the weblogo 
(http://weblogo.berkeley.edu/logo.cgi)  as shown in 
Figure 3-7. All the results are identical to the results by 
DNA footprinting method. This indicates that our 
algorithm is effective. 

 

 
Figure 3.  The running results about GAL4 through algorithm ACRI 

 

 
Figure 4.  The running results about RAP1 through algorithm ACRI 

 

 
Figure 5.  The running results about REB1 through algorithm ACRI 

 

 
Figure 6.  The running results about MCB through algorithm ACRI 

 

 
Figure 7.  The running results about PDR3 through algorithm ACRI 

2) Analysis for CRP binding sites of Escherichia coli 
Most of the existing software for identifying the 

regulatory elements uses the CRP binding sites[25] of 

Escherichia coli as test data. This data set consists of 18 
sequences of length 105. Twenty-three of those CRP 
binding sites have been recognized by DNA footprinting 
method. Usually, the binding sites detected coincide with 
half of the sequence in the true motif model, the binding 
sites identification can be considered as a successful one.  
The 18 sequences of the CRP binding sites for 
escherichia coli are shown in Table Ⅳ. Generally, most 
of the popular computing methods set the length of the 
CRP binding sites as 18 to 25, so our algorithm sets it as 
22. We consider that the binding site detecting is 
successful if and only if the difference between the 
obtained CRP binding sites and the known ones is less 
than 10. 

TABLE IV.  THE 18 SEQUENCES OF THE CAP BINDING SITES FOR 
ESCHERICHIA COLI 

Name Sequence 

CE1CG TAATGTTTGTGCTGGTTTTTGTGGCATCGGGCGAGAATAGCGCGTGGTGTGAA 
AGACTGTTTTTTTGATCGTTTTCACAAAAATGGAAGTCCACAGTCTTGACAG 

ECOARABOP GACAAAAACGCGTAACAAAAGTGTCTATAATCACGGCAGAAAAGTCCACATTG 
ATTATTTGCACGGCGTCACACTTTGCTATGCCATAGCATTTTTATCCATAAG 

ECOBGLR1 ACAAATCCCAATAACTTAATTATTGGGATTTGTTATATATAACTTTATAAATT 
CCTAAAATTACACAAAGTTAATAACTGTGAGCATGGTCATATTTTTATCAAT 

ECOCRP CACAAAGCGAAAGCTATGCTAAAACAGTCAGGATGCTACAGTAATACATTGAT 
GTACTGCATGTATGCAAAGGACGTCACATTACCGTGCAGTACAGTTGATAGC 

ECOCYA ACGGTGCTACACTTGTATGTAGCGCATCTTTCTTTACGGTCAATCAGCAAGGT 
GTTAAATTGATCACGTTTTAGACCATTTTTTCGTCGTGAAACTAAAAAAACC 

ECODEOP2 AGTGAATTATTTGAACCAGATCGCATTACAGTGATGCAAACTTGTAAGTAGAT 
TTCCTTAATTGTGATGTGTATCGAAGTGTGTTGCGGAGTAGATGTTAGAATA 

ECOGALE GCGCATAAAAAACGGCTAAATTCTTGTGTAAACGATTCCACTAATTTATTCCA 
TGTCACACTTTTCGCATCTTTGTTATGCTATGGTTATTTCATACCATAAGCC 

ECOILVBPR GCTCCGGCGGGGTTTTTTGTTATCTGCAATTCAGTACAAAACGTGATCAACCC 
CTCAATTTTCCCTTTGCTGAAAAATTTTCCATTGTCTCCCCTGTAAAGCTGT 

ECOLAC AACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAGGCTTTACACTT 
TATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCAC 

ECOMALBA ACATTACCGCCAATTCTGTAACAGAGATCACACAAAGCGACGGTGGGGCGTAG 
GGGCAAGGAGGATGGAAAGAGGTTGCCGTATAAAGAAACTAGAGTCCGTTTA 

ECOMALBA2 GGAGGAGGCGGGAGGATGAGAACACGGCTTCTGTGAACTAAACCGAGGTCATG 
TAAGGAATTTCGTGATGTTGCTTGCAAAAATCGTGGCGATTTTATGTGCGCA 

ECOMALT GATCAGCGTCGTTTTAGGTGAGTTGTTAATAAAGATTTGGAATTGTGACACAG 
TGCAAATTCAGACACATAAAAAAACGTCATCGCTTGCATTAGAAAGGTTTCT 

ECOOMPA GCTGACAAAAAAGATTAAACATACCTTATACAAGACTTTTTTTTCATATGCCT 
GACGGAGTTCACACTTGTAAGTTTTCAACTACGTTGTAGACTTTACATCGCC 

TABLE V.   

COMPARISON OF THE RESULTS BETWEEN ACRI AND TRADITIONAL 
ALGORITHMS 

No. Binding 
sites 

Gibbs 
Sampler difference AlignACE difference MEME difference ACRI difference 

1 17,61 59 -2 63 2 61 0 63 2 
2 17,65 53 -2 57 2 55 0 57 2 
3 76 74 -2 78 2 76 0 78 2 
4 63 59 -4 65 2 63 0 65 2 
5 50 11 -39 52 2 13 -37 52 2 
6 7,60 5 -2 9 2 7 0 9 2 
7 42 40 -2 26 -16 42 0 44 2 
8 39 37 -2 41 2 39 0 41 2 
9 9,80 7 -2 11 2 9 0 11 2 

10 14 12 -2 16 2 14 0 16 2 
11 61 59 -2 63 2 35 -16 63 2 
12 41 47 6 43 2 34 -7 43 2 
13 48 46 -2 50 2 48 0 50 2 
14 71 69 -2 73 2 71 0 73 2 
15 17 15 -2 19 2 75 58 19 2 
16 53 49 -4 55 2 6 -47 55 2 
17 1,84 25 24 68 -16 27 26 95 4 
18 78 74 -4 80 2 16 -2 78 0 

 
Table V shows the experimental results of our 

algorithm ACRI in comparison with other traditional 
algorithms. It can be observed from table Ⅴ that there 
are 5 mistakes made by MEME[11] (http://meme.nbcr. 
net/meme4_4_0/intro.html), which are the 5th, the 11th, 
the 15th, the 16th and the 17th sequences. The differences 
between the five sequences and the known ones are more 
than 10 (shown as the number in the shadow in Table Ⅴ). 
Similarly, Each of algorithms Gibbs Sampler [9] 
(http://bayesweb.wadsworth.org/gibbs/gibbs.html) and 
AlignACE[7] made 2 mistakes.  Because the similarity of 
the 17th sequence’s binding site is lower than others, three 
software mentioned above can not find its binding site.  
However our algorithm ACRI has successfully found all 
binding sites of these 18 sequences. Especially for the 
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17th sequence, although its corresponding difference is 
lager than others, our algorithm can thoroughly find it. 
The main reason for its success is that our algorithm 
ACRI uses powerful optimization ability of ant colony 
algorithm and the local search method so that the motif 
we found has much higher information content, which 
can be seen from Table Ⅵ. Thus it can be seen that the 
results of our algorithm ACRI is more precise than other 
traditional algorithms, and it is really very accurate and 
effective to solve regulatory elements identification 
problems.  

TABLE VI.   

COMPARISON OF THE COMPUTATION INFORMATION CONTENT WITH 
DIFFERENT SOFTWARE 

Software Information Content 

ACRI 10.273 

MEME 9.508 

AlignACE 9.752 

Gibbs Sampler 9.229 

B.  The Running Speed Analysis of Our Algorithm 
To validity the speed of our algorithm ACRI, we use 

the promoter binding sites of RAP1 as the test data since 
it has the largest volume of data. In the experiment, the 
initial characteristic matrix Mbest is composed of some 
random numbers and contains 20 groups of initial Motifs. 
We test our algorithm ACRI and the greedy-based 
algorithm Consensus on these initial motifs to compare 
their computation time. Table Ⅶ shows the comparison 
of the computation time of the two algorithms. From 
table Ⅶ, we can see that the speed of algorithm ACRI is 
8-12 times faster than greedy algorithms, which indicates 
that the efficiency of our algorithm is superior over the 
others. 

TABLE VII.   

COMPARISON OF THE COMPUTATION TIME BETWEEN ACRI AND GREEDY 
ALGORITHM 

No. Iteration number ACRI(ms) Greedy algorithm(ms)

1 40 189 1875 
2 22 107 1031 
3 26 103 1078 
4 22 96 1062 
5 20 87 875 
6 23 101 1000 
7 25 103 1235 
8 32 169 1640 
9 28 133 1313 
10 28 125 1250 
11 22 94 984 
12 24 119 1313 
13 30 140 1484 
14 24 107 1141 
15 25 130 1328 
16 22 101 1016 
17 26 107 1109 
18 25 107 1109 
19 28 124 1235 
20 29 122 1281 

 

We also compared the running time of our algorithm 
with other algorithms such as AlignACE, MEME, Gibbs 
Sampler etc.  Table VIII shows the comparison of the 
computation time of ACRI and other algorithms. From 
table VIII, we can see that the speed of ACRI is much 
faster than all of other algorithms. For instance, algorithm 
ACRI is eight times faster than Gibbs Sampler. This 
indicates our algorithm is more efficient. 

TABLE VIII.   

COMPARISON OF THE COMPUTATION TIME BETWEEN ACRI AND 
TRADITIONAL ALGORITHMS 

No. Iteration 
number

AlignACE
(ms) 

MEME 
(ms) 

Gibbs 
Sampler(ms)

ACRI
(ms) 

1 40 1565 1912 1890 179 
2 22 948 1231 1048 101 
3 26 897 1304 1101 99 
4 22 843 1239 1072 92 
5 20 527 987 903 83 
6 23 723 1105 1021 97 
7 25 1001 1407 1395 91 
8 32 1214 1842 1640 155 
9 28 998 1479 1298 119 
10 28 998 1250 1257 111 
11 22 623 1084 992 80 
12 24 1223 1512 1279 105 
13 30 1100 1620 1348 126 
14 24 841 1148 1037 93 
15 25 1232 1491 1385 116 
16 22 704 1230 1054 87 
17 26 811 1156 1063 93 
18 25 797 1009 982 91 

 
Since most of current regulatory elements 

identification algorithms use local search approach   
which neither guarantees the optimal results nor reduces 
time complexity. Our algorithm ACRI has higher 
optimization ability due to the powerful optimization 
ability of ant-colony algorithm. Algorithm ACRI can not 
only avoid converging to local optimal, but also greatly 
improve the efficiency. 

VI. CONCLUSION 

Most of current regulatory elements identification 
algorithms are easily to converge into a local optimum, 
and have high time complexity. Based on the ant colony 
optimization, we propose a novel algorithm named ACRI 
for regulatory elements identification. Due to the 
powerful optimization ability of ant-colony algorithm, the 
algorithm ACRI can not only improve the quality of 
results, but also solve the problem in a very high speed.  
Experimental results show that ACRI have not only 
higher quality of solutions but also less computational 
complexity compared with other traditional algorithms. 
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