ORIENTING SUPERSINGULAR ISOGENY GRAPHS

LEONARDO COLÒ & DAVID KOHEL

Institut de Mathématiques de Marseille

Journées Nationales de Calcul Formel 2019 CIRM, Luminy, 7 February 2019

→ ∃ →

► Let *k* be a field of characteristic $\neq 2, 3$. An elliptic curve E/k is a smooth projective curve of genus 1 defined by a Weierstrass equation

 $E: Y^2Z = X^3 + aXZ^2 + bZ^3$ where $a, b \in k$ such that $4a^3 + 27b^2 \neq 0$

- We have a special point defined on *E* (point at infinity): O = (0:1:0).
- Affine equation of *E*: $y^2 = x^3 + ax + b$.
- ▶ The set of *k*-rational points on *E* is a group.
 - if E is defined over an algebraically closed field \overline{k} of characteristic p, then

$$E[m] \simeq \frac{\mathbb{Z}}{m\mathbb{Z}} \times \frac{\mathbb{Z}}{m\mathbb{Z}}$$
 $E[p^r] \simeq \begin{cases} \frac{\mathbb{Z}}{p^r\mathbb{Z}} & \text{Ordinary Curve} \\ \{O\} & \text{Supersingular Curve} \end{cases}$

• The *j*-invariant of an elliptic curve $E : y^2 + x^3 + ax + b$ is

$$j(E) = 1728 \frac{4a^3}{4a^3 + 27b^2}$$

Two elliptic curves *E* and *E'* are isomorphic over \overline{k} if and only if j(E) = j(E').

イロト イポト イヨト イヨト

Recalls Isogenies

- An isogeny $\phi: E_1 \rightarrow E_2$ of elliptic curves is a map that is also a surjective group homomorphism.
- Among isogenies, we have the multiplication by n map ([n] : E → E) and the Frobenius morphism (k finite field): π : (X : Y : Z) → (X^p : Y^p : Z^p)
- ► Tate's Theorem: two elliptic curves *E* and *F* defined over a finite field *k* are isogenous over *k* if and only if #*E*(*k*) = #*F*(*k*).
- The degree of an isogeny ϕ is deg $\phi = [k(E) : \phi^* k(F)]$.
- Given an isogeny $\phi: E \to F$, there is a unique isogeny $\hat{\phi}: F \to E$ such that

$$\phi \circ \hat{\phi} = [\deg \phi]_F \qquad \hat{\phi} \circ \phi = [\deg \phi]_E$$

 $\hat{\phi}$ is called dual isogeny.

If E is an elliptic curve defined over a finite field k of characteristic p, there are ℓ + 1 distinct isogenies of degree ℓ ≠ p with domain E defined over k.

イロト イポト イヨト イヨト

Definition

The endomorphism ring $\text{End}(E) = \text{End}_{\overline{k}}(E)$ of an elliptic curve E/k is the set of all isogenies $E \to E$ (together with the 0-map) endowed with sum and multiplication.

Theorem (Deuring)

Let E/k be an elliptic curve over a finite field k of characteristic p > 0. End(E) is isomorphic to one of the following:

- An order \mathcal{O} in a quadratic imaginary field; we say that E is ordinary.
- A maximal order in a quaternion algebra; we say that *E* is supersingular.

Theorem (Hasse)

Let E/k be defined over a finite field with q elements. Its Frobenius endomorphism satisfies a quadratic equation $\pi^2 - t\pi + q = 0$ for some $|t| \le 2\sqrt{q}$, called the trace of π .

< □ > < □ > < □ > < □ > < □ >

Two elliptic curves E_0 and E_1 defined over a finite field k are isogenous if and only if $\text{End}(E_0) \otimes_{\mathbb{Z}} \mathbb{Q} \simeq \text{End}(E_1) \otimes_{\mathbb{Z}} \mathbb{Q}$.

Definition

An isogeny graph is a graph whose vertices are *j*-invariants of elliptic curves (elliptic curves up to isomorphism) and whose edges are isogenies between them.

イロト イヨト イヨト イヨ

Two elliptic curves E_0 and E_1 defined over a finite field k are isogenous if and only if $\text{End}(E_0) \otimes_{\mathbb{Z}} \mathbb{Q} \simeq \text{End}(E_1) \otimes_{\mathbb{Z}} \mathbb{Q}$.

Definition

An isogeny graph is a graph whose vertices are *j*-invariants of elliptic curves (elliptic curves up to isomorphism) and whose edges are isogenies between them.

In the ordinary case, the isogeny graph has a precise structure (volcanoes):

ヘロト ヘヨト ヘヨト ヘ

Two elliptic curves E_0 and E_1 defined over a finite field k are isogenous if and only if $\text{End}(E_0) \otimes_{\mathbb{Z}} \mathbb{Q} \simeq \text{End}(E_1) \otimes_{\mathbb{Z}} \mathbb{Q}$.

Definition

An isogeny graph is a graph whose vertices are *j*-invariants of elliptic curves (elliptic curves up to isomorphism) and whose edges are isogenies between them.

Let $\operatorname{End}(E) = \mathcal{O} \subseteq \mathbb{Q}(\sqrt{D})$. The class group of \mathcal{O} is $\operatorname{Cl}(\mathcal{O})$ (finite abelian group) acts on the set of elliptic curves with endomorphism ring \mathcal{O} :

$$E \longrightarrow E/E[\mathfrak{a}]$$

 ${\it E}[\mathfrak{a}]=\{{\it P}\in{\it E}\mid \alpha({\it P})=0\;\forall\alpha\in\mathfrak{a}\}$

イロト イヨト イヨト イヨト

Two elliptic curves E_0 and E_1 defined over a finite field k are isogenous if and only if $\text{End}(E_0) \otimes_{\mathbb{Z}} \mathbb{Q} \simeq \text{End}(E_1) \otimes_{\mathbb{Z}} \mathbb{Q}$.

Definition

An isogeny graph is a graph whose vertices are *j*-invariants of elliptic curves (elliptic curves up to isomorphism) and whose edges are isogenies between them.

The supresingular case lack of the commutativity of $Cl(\mathcal{O})$ and therefore is far more complicated.

Supersingular isogeny graphs have been used in the Charles-Goren-Lauter cryptographic hash function and the supersingular isogeny Diffie--Hellman (SIDH) protocole of De Feo and Jao.

A recently proposed alternative to SIDH is the commutative supersingular isogeny Diffie-Hellman (CSIDH) protocole, in which the isogeny graph is first restricted to \mathbb{F}_p -rational curves E and \mathbb{F}_p -rational isogenies then oriented by the subring $\mathbb{Z}[\pi] \subset \text{End}(E)$ generated by the Frobenius endomorphism $\pi : E \to E$.

We introduce a general notion of orienting supersingular elliptic curves and their isogenies, and use this as the basis to construct a general oriented supersingular isogeny Diffie-Hellman (OSIDH) protocole.

< □ > < □ > < □ > < □ > < □ >

Supersingular isogeny graphs have been used in the Charles-Goren-Lauter cryptographic hash function and the supersingular isogeny Diffie--Hellman (SIDH) protocole of De Feo and Jao.

A recently proposed alternative to SIDH is the commutative supersingular isogeny Diffie-Hellman (CSIDH) protocole, in which the isogeny graph is first restricted to \mathbb{F}_p -rational curves E and \mathbb{F}_p -rational isogenies then oriented by the subring $\mathbb{Z}[\pi] \subset \text{End}(E)$ generated by the Frobenius endomorphism $\pi : E \to E$.

We introduce a general notion of orienting supersingular elliptic curves and their isogenies, and use this as the basis to construct a general oriented supersingular isogeny Diffie-Hellman (OSIDH) protocole.

イロト イポト イヨト イヨト

Supersingular isogeny graphs have been used in the Charles-Goren-Lauter cryptographic hash function and the supersingular isogeny Diffie--Hellman (SIDH) protocole of De Feo and Jao.

A recently proposed alternative to SIDH is the commutative supersingular isogeny Diffie-Hellman (CSIDH) protocole, in which the isogeny graph is first restricted to \mathbb{F}_p -rational curves *E* and \mathbb{F}_p -rational isogenies then oriented by the subring $\mathbb{Z}[\pi] \subset \text{End}(E)$ generated by the Frobenius endomorphism $\pi: E \to E$.

We introduce a general notion of orienting supersingular elliptic curves and their isogenies, and use this as the basis to construct a general oriented supersingular isogeny Diffie-Hellman (OSIDH) protocole.

via OK

< □ > < □ > < □ > < □ > < □ >

Supersingular isogeny graphs have been used in the Charles-Goren-Lauter cryptographic hash function and the supersingular isogeny Diffie--Hellman (SIDH) protocole of De Feo and Jao.

A recently proposed alternative to SIDH is the commutative supersingular isogeny Diffie-Hellman (CSIDH) protocole, in which the isogeny graph is first restricted to \mathbb{F}_p -rational curves E and \mathbb{F}_p -rational isogenies then oriented by the subring $\mathbb{Z}[\pi] \subset \text{End}(E)$ generated by the Frobenius endomorphism $\pi : E \to E$.

We introduce a general notion of orienting supersingular elliptic curves and their isogenies, and use this as the basis to construct a general oriented supersingular isogeny Diffie-Hellman (OSIDH) protocole.

Motivations

SIDH

a large prime $p = \ell_A^{n_A} \ell_B^{n_B} f \mp 1$ where f is a small correction term.

We also choose a random supersingular elliptic curve E/\mathbb{F}_{p^2} with

$$E(\mathbb{F}_{p^2}) \simeq \left(\mathbb{Z}/(p\pm 1)\mathbb{Z}\right)^2$$

We use isogenies ϕ_A and ϕ_B with ker-nius. nels of order $\ell_A^{e_a}$ and $\ell_B^{e_B}$ respectively. The following commutative diagram establish the key exchange protocol:

CSIDH

We take two small primes ℓ_A and ℓ_B and We fix *n* small primes ℓ_i and a large prime $p = 4\ell_1 \cdot \ldots \cdot \ell_n - 1$.

> We fix the supersingular elliptic curve $E_0: y^2 = x^3 + x$ defined over \mathbb{F}_p . We consider endomorphism rings defined over \mathbb{F}_{p} and therefore we get $\operatorname{End}(E_{0}) =$ $\mathbb{Z}[\pi].$ Thus we orient supersingular isogeny graphs (over \mathbb{F}_p) using Frobe-

> The protocol then follows the Couveignes-Rostovtsev-Stolbunov idea in the union of ℓ_i -isogeny graphs (over \mathbb{F}_p):

< ∃ →

Suppose we are given:

- A maximal order \mathcal{O}_K in a quadratic imaginary field K of (small) discriminant Δ (eg. $\Delta = -3, -4$).
- A large prime number *p* ramified or inert in $\mathcal{O}_{\mathcal{K}}$. Set $k = \mathbb{F}_{p^2}$.
- A supersingular elliptic curve E_0 defined over \mathbb{F}_p equipped with an embedding $\mathcal{O}_K \hookrightarrow \operatorname{End}(E_0)$.
 - Observe that in the supersingular case $\operatorname{End}(E_0) := \operatorname{End}_{\overline{k}}(E_0) = \operatorname{End}_k(E_0)$
 - For $\Delta = -3$ we have j = 0 and we may take $E_0 : y^2 = x^3 + 1$.
- A small prime ℓ (eg $\ell = 2, 3$) and a chain of ℓ -isogenies

$$E_0 \xrightarrow{\ell} E_1 \xrightarrow{\ell} E_2 \xrightarrow{\ell} \dots \xrightarrow{\ell} E_n$$

イロト イポト イヨト イヨト

Let us consider K/\mathbb{Q} a quadratic imaginary extension and its ring of integers \mathcal{O}_K .

Definition

A K-orientation on E/k is a homomorphism

$$\iota: K \hookrightarrow \operatorname{End}_k(E) \otimes \mathbb{Q} = \operatorname{End}_k^0(E) = \mathfrak{B}$$

- E/k has complex multiplication: if k is a finite field then either
 - $K \simeq \mathbb{Q}(\pi)$ where $\pi = \operatorname{Frob}(\pi)$; *E* is ordinary or
 - \mathfrak{B} is a quaternion algebra; *E* is supersingular.

Definition

Given an order $\mathcal{O} \subseteq \mathcal{O}_{\mathcal{K}} \subseteq \mathcal{K}$, a primitive \mathcal{O} -orientation on $E_{/k}$ is:

- A K-orientation on E/k such that
- ▶ $\iota : \mathcal{O} \xrightarrow{\sim} \iota(K) \cap \operatorname{End}_k(E)$ is an isomorphism.

< □ > < □ > < □ > < □ > < □ >

► Let *q* be a prime such that $q\mathcal{O}_{K} = q\overline{q}$, i.e., $\left(\frac{\Delta}{q}\right) = 1$. Here we consider *q* another "small" (bounded by some constant) prime different from ℓ .

イロト イヨト イヨト イ

- ► Let *q* be a prime such that $q\mathcal{O}_K = q\overline{q}$, i.e., $\left(\frac{\Delta}{q}\right) = 1$. Here we consider *q* another "small" (bounded by some constant) prime different from ℓ .
- Solve for $C_0 = E_0[\mathfrak{q}]$. This can be determined by
 - Kernel polynomial or
 - Root of $\Phi_q(j_0, X)$.

- ► Let *q* be a prime such that $q\mathcal{O}_{K} = q\overline{q}$, i.e., $\left(\frac{\Delta}{q}\right) = 1$. Here we consider *q* another "small" (bounded by some constant) prime different from ℓ .
- Solve for $C_0 = E_0[\mathfrak{q}]$. This can be determined by
 - Kernel polynomial or
 - Root of $\Phi_q(j_0, X)$.

▶ Solve for $C_i = E_i[\mathfrak{q}_i]$ where now $\mathfrak{q}_i = \mathfrak{q} \cap \mathbb{Z} + \ell^i \mathcal{O}_K$

- Pushing forward C_i , i.e., $C_i = \phi_{i-1}(C_{i-1})$ or
- Common root of $\Phi_{\ell}(j(F_{i-1}), X)$ and $\Phi_q(j(E_i), X)$.

(日) (四) (日) (日) (日)

- ► Let *q* be a prime such that $q\mathcal{O}_{K} = q\overline{q}$, i.e., $\left(\frac{\Delta}{q}\right) = 1$. Here we consider *q* another "small" (bounded by some constant) prime different from ℓ .
- Solve for $C_0 = E_0[\mathfrak{q}]$. This can be determined by
 - Kernel polynomial or
 - Root of $\Phi_q(j_0, X)$.

▶ Solve for $C_i = E_i[\mathfrak{q}_i]$ where now $\mathfrak{q}_i = \mathfrak{q} \cap \mathbb{Z} + \ell^i \mathcal{O}_K$

- Pushing forward C_i , i.e., $C_i = \phi_{i-1}(C_{i-1})$ or
- Common root of $\Phi_{\ell}(j(F_{i-1}), X)$ and $\Phi_q(j(E_i), X)$.

▶ The data of C_n (or $j(F_n)$) and $q \subseteq \mathcal{O}_K$ determine a (K, q)-orientation on E_n .

イロト イヨト イヨト イヨト

Ladders

Let $E_0 \rightarrow E_1 \rightarrow E_2 \rightarrow \ldots \rightarrow E_n$ be an ℓ -isogeny chain of length *n* and $\phi: E_0 \to F_0$ an isogeny of degree q with ℓ and q two distinct "small" primes.

Definition

A ladder is a commutative diagram of isogenies

・ロト ・回 ト ・ ヨト ・

OSIDH

Ladders

Let $E_0 \rightarrow E_1 \rightarrow E_2 \rightarrow \ldots \rightarrow E_n$ be an ℓ -isogeny chain of length *n* and $\phi: E_0 \to F_0$ an isogeny of degree q with ℓ and q two distinct "small" primes.

Definition

A ladder is a commutative diagram of isogenies

Modular Interpretation

A modular ladder of width q and depth n is a pair of (n + 1)-tuples

$$(j_0, j_1, \dots, j_n)$$
 and $(j'_0, j'_1, \dots, j'_n)$

such that

$$\Phi_{\ell}(j_i, j_{i+1}) = \Phi_{\ell}(j_i', j_{i+1}') = \Phi_{q}(j_i, j_i') = 0 \quad \text{ for all } 0 \le i \le n$$

Let $E_0 \to E_1 \to E_2 \to \ldots \to E_n$ be an ℓ -isogeny chain of length n and $\phi: E_0 \to F_0$ an isogeny of degree q with ℓ and q two distinct "small" primes.

Definition

A ladder is a commutative diagram of isogenies

If $q = \ell$, the ladder collapses:

イロト イヨト イヨト イ

OSIDH Ladders

Let $E_0 \to E_1 \to E_2 \to \ldots \to E_n$ be an ℓ -isogeny chain of length n and $\phi: E_0 \to F_0$ an isogeny of degree q with ℓ and q two distinct "small" primes.

Definition

A ladder is a commutative diagram of isogenies

A ladder is rectangular if $\phi : E_0 \to F_0$ is horizontal.

Lemma

If a ladder is rectangular, then $End(E_i) = End(F_i)$ for all $0 \le i \le n$.

イロト イヨト イヨト イヨ

We define a *vortex* to be an isogeny cycle (crater) equipped with an action of a (subgroup of) Cl(O).

Instead of considering the union of different isogeny graphs, we focus on one single crater and we think of all the other primes as acting on it: the resulting object is a single isogeny circle rotating under the action of Cl(O).

・ロト ・回 ト ・ ヨト ・

OSIDH Whirpools

In the same way, we define a *whirpool* to be a complete isogeny volcano acted on by the class group. We would like to think at isogeny graphs as moving objects.

・ロト ・回 ト ・ ヨト ・

OSIDH Whirpools

In the same way, we define a *whirpool* to be a complete isogeny volcano acted on by the class group. We would like to think at isogeny graphs as moving objects.

Actually, we would like to take the ℓ -isogeny graph on the full $Cl(\mathcal{O}_{\mathcal{K}})$ -orbit. This might be composed of several ℓ -isogeny orbits (craters), although the class group is transitive.

・ロト ・回 ト ・ ヨト ・

• For $\ell = 2$ or 3) a suitable candidate for $\mathcal{O}_{\mathcal{K}}$ could be the Gaussian integers $\mathbb{Z}[i]$ or the Eisenstein integers.

• • • • • • • • • • • •

Horizontal isogenies must be endomorphisms

En $E_{0} \stackrel{E_{1}}{\stackrel{\ell}{\longrightarrow}} \Phi$ \check{F}_0

イロト イヨト イヨト イ

• We push forward our *q*-orientation obtaining F_1 .

En F_2 E_1

• We repeat the process for F_2 .

En E_2 E_1 F_0

イロト イヨト イヨト イ

• And again till F_n .

イロト イヨト イヨト イ

How far should we go? We would like to move away from the center (E_0) untill $\#Cl(\mathcal{O})$ is around the size of p in order to cover all supersingular curves (get all the possible choices). For instance, $p \sim 2^{1024}$ and $n \sim 1024$.

OSIDH

Orienting Isogeny Graphs 2

If we look at modular polynomials $\Phi_{\ell}(X, Y)$ and $\Phi_{q}(X, Y)$ we realize that all we need are the *j*-invariants:

Since j_2 is given (the initial chain is known) and supposing that j'_1 has already been constructed, j'_2 is determined by a system of two equations

$$\begin{cases} \Phi_{\ell}(j_1', \mathbf{Y}) = 0\\ \Phi_{q}(j_2, \mathbf{Y}) = 0 \end{cases}$$

PUBLIC DATA: A chain of ℓ -isogenies $E_0 \rightarrow E_1 \rightarrow \ldots \rightarrow E_n$

ALICE

イロト イヨト イヨト イヨト

イロト イヨト イヨト イヨト

・ロト ・日下・ ・ ヨト・

DH Cryptographic Protocol: A First Attempt (Picture)

DH Cryptographic Protocol: A First Attempt (Picture)

SIDH Cryptographic Protocol: A First Attempt (Picture)

This first attempt presents a weak point: we know $End(E_0)$ and, at each step, we also deduce

$$\mathbb{Z} + \ell \mathsf{End}(E_i) \subset \mathsf{End}(E_{i+1}) = \mathsf{End}(F_{i+1})$$

Thus, knowing $\mathbb{Z} + \ell^n \text{End}(E_0) \subset \text{End}(F_n)$, we can construct $\text{End}(F_n)$ and this will give us information on how to construct ϕ_A - Alice's private key.¹

The problem is that we pass to the other party the knowledge of the entire chain $\{F_i\}$ (respectively G_i).

How can we avoid this still while giving the other enogh information?

¹Theorem 4.1 "On the security of supersingular isogeny cryptosystems", S.D. Galbraith, C. Petit, B. Shani, Y. Bo Ti, 2016 ← □ → ← ♂ → ← ≥ → ← ≥ → ⊃ ⊃ ○ ○

ALICE

BOB

ALICEBOBChoose integers in
some bound [-r, r] (e_1, \dots, e_t) (d_1, \dots, d_t)

ALICE	BOB
	(\mathbf{d}, \mathbf{d})
(e_1,\ldots,e_t)	(a_1,\ldots,a_t)
$F = F / F [n^{e_1} \dots n^{e_t}]$	$C = E / E \left[n^{d_1} \cdot \dots \cdot n^{d_t} \right]$
$r_n = L_n / L_n [p_1 \cdots p_t]$	$\mathbf{U}_n = \mathbf{L}_n / \mathbf{L}_n \begin{bmatrix} \mathbf{p}_1 & \cdots & \mathbf{p}_t \end{bmatrix}$
	ALICE (e_1, \dots, e_t) $F_n = E_n / E_n [\mathfrak{p}_1^{e_1} \cdot \dots \cdot \mathfrak{p}_t^{e_t}]$

	ALICE	BOB
Choose integers in		
some bound $[-r, r]$	(e_1,\ldots,e_t)	(a_1,\ldots,a_t)
Construct an	$\Gamma = \Gamma [\omega^{e_1}] [\omega^{e_t}]$	$C = E / E \left[u^{d_1} & u^{d_t} \right]$
isogenous curve	$\boldsymbol{\Gamma}_n \equiv \boldsymbol{\Sigma}_n / \boldsymbol{\Sigma}_n \left[\boldsymbol{\mathfrak{p}}_1^{-1} \cdot \ldots \cdot \boldsymbol{\mathfrak{p}}_t^{-1} \right]$	$\mathbf{G}_n \equiv \mathbf{E}_n / \mathbf{E}_n \left[\mathbf{p}_1^{-1} \cdot \ldots \cdot \mathbf{p}_t^{-1} \right]$
Precompute all	-(-r) $-(-r+1)$ $-(1)$ $-$	c(-r) = c(-r+1) = c(1) = c(1)
directions for each <i>i</i>	$F_{n,i}^{(1)} \leftarrow F_{n,i}^{(1)} \leftarrow \cdots \leftarrow F_{n,i}^{(2)} \leftarrow F_n$	$G_{n,i}^{(1)} \leftarrow G_{n,i}^{(1)} \leftarrow \cdots \leftarrow G_{n,i}^{(1)} \leftarrow G_n$

Choose integers in some bound [-r, r]Construct an isogenous curve Precompute all directions for each *i* ... and their conjugates

$\mathfrak{p}_t \subseteq \mathcal{O} \subseteq End(\mathcal{E}_n) \cap \mathcal{K} \subseteq \mathcal{O}_{\mathcal{K}}$		
ALICE	BOB	
(e_1,\ldots,e_t)	(d_1,\ldots,d_t)	
$F_n = E_n/E_n[\mathfrak{p}_1^{e_1}\cdot\ldots\cdot\mathfrak{p}_t^{e_t}]$	$G_n = E_n/E_n \left[\mathfrak{p}_1^{d_1} \cdot \ldots \cdot \mathfrak{p}_t^{d_t} ight]$	
$F_{n,i}^{(-r)} \leftarrow F_{n,i}^{(-r+1)} \leftarrow \dots \leftarrow F_{n,i}^{(1)} \leftarrow F_n$	$G_{n,i}^{(-r)} \leftarrow G_{n,i}^{(-r+1)} \leftarrow \ldots \leftarrow G_{n,i}^{(1)} \leftarrow G_n$	
$F_n \rightarrow F_{n,i}^{(1)} \rightarrow \dots \rightarrow F_{n,i}^{(r-1)} \rightarrow F_{n,1}^{(r)}$	$G_n \rightarrow G_{n,i}^{(1)} \rightarrow \dots \rightarrow G_{n,i}^{(r-1)} \rightarrow G_{n,1}^{(r)}$	

Choose integers in some bound [-r, r]Construct an isogenous curve Precompute all directions for each *i* ... and their conjugates Exchange data

$p_t \subseteq \mathcal{O} \subseteq \operatorname{End}(\mathcal{L}_n) \cap \mathcal{K} \subseteq \mathcal{O}_{\mathcal{K}}$		
ALICE	BOB	
(e_1,\ldots,e_t)	(d_1,\ldots,d_t)	
$F_n = E_n/E_n [\mathfrak{p}_1^{e_1} \cdot \ldots \cdot \mathfrak{p}_t^{e_t}]$	$G_n = E_n/E_n \left[\mathfrak{p}_1^{d_1} \cdot \ldots \cdot \mathfrak{p}_t^{d_t} ight]$	
$F_{n,i}^{(-r)} \leftarrow F_{n,i}^{(-r+1)} \leftarrow \dots \leftarrow F_{n,i}^{(1)} \leftarrow F_n$	$G_{n,i}^{(-r)} \leftarrow G_{n,i}^{(-r+1)} \leftarrow \ldots \leftarrow G_{n,i}^{(1)} \leftarrow G_n$	
$F_n \rightarrow F_{n,i}^{(1)} \rightarrow \dots \rightarrow F_{n,i}^{(r-1)} \rightarrow F_{n,1}^{(r)}$	$G_n \rightarrow G_{n,i}^{(1)} \rightarrow \dots \rightarrow G_{n,i}^{(r-1)} \rightarrow G_{n,1}^{(r)}$	
G_n +directions	F_n +directions	

Choose integers in some bound [-r, r]Construct an isogenous curve Precompute all directions for each *i* ... and their conjugates Exchange data

Compute shared data

ALICE	BOB
(e_1,\ldots,e_t)	(d_1,\ldots,d_t)
$F_n = E_n/E_n[\mathfrak{p}_1^{e_1}\cdot\ldots\cdot\mathfrak{p}_t^{e_t}]$	$G_n = E_n/E_n \left[\mathfrak{p}_1^{d_1} \cdot \ldots \cdot \mathfrak{p}_t^{d_t} ight]$
$F_{n,i}^{(-r)} \leftarrow F_{n,i}^{(-r+1)} \leftarrow \ldots \leftarrow F_{n,i}^{(1)} \leftarrow F_n$	$G_{n,i}^{(-r)} \leftarrow G_{n,i}^{(-r+1)} \leftarrow \ldots \leftarrow G_{n,i}^{(1)} \leftarrow G_n$
$F_n \rightarrow F_{n,i}^{(1)} \rightarrow \dots \rightarrow F_{n,i}^{(r-1)} \rightarrow F_{n,1}^{(r)}$	$G_n \rightarrow G_{n,i}^{(1)} \rightarrow \dots \rightarrow G_{n,i}^{(r-1)} \rightarrow G_{n,1}^{(r)}$
G_n +directions Takes e_i steps in \mathfrak{p}_i -isogeny chain & push forward information for j > i.	F_n +directions Takes d_i steps in p_i -isogeny chain & push forward information for j > i.

	ALICE	BOB
Choose integers in some bound $[-r, r]$	(e_1,\ldots,e_t)	(d_1,\ldots,d_t)
Construct an isogenous curve	$F_n = E_n/E_n[\mathfrak{p}_1^{e_1}\cdot\ldots\cdot\mathfrak{p}_t^{e_t}]$	$G_n = E_n/E_n \left[\mathfrak{p}_1^{d_1} \cdot \ldots \cdot \mathfrak{p}_t^{d_t} ight]$
Precompute all directions for each <i>i</i>	$F_{n,i}^{(-r)} \leftarrow F_{n,i}^{(-r+1)} \leftarrow \ldots \leftarrow F_{n,i}^{(1)} \leftarrow F_n$	$G_{n,i}^{(-r)} \leftarrow G_{n,i}^{(-r+1)} \leftarrow \ldots \leftarrow G_{n,i}^{(1)} \leftarrow G_n$
and their conjugates	$F_n \rightarrow F_{n,i}^{(1)} \rightarrow \dots \rightarrow F_{n,i}^{(r-1)} \rightarrow F_{n,1}^{(r)}$	$G_n \rightarrow G_{n,i}^{(1)} \rightarrow \dots \rightarrow G_{n,i}^{(r-1)} \rightarrow G_{n,1}^{(r)}$
Exchange data		
	G_n +directions	F_n +directions
	Takes <i>e</i> ; steps in	Takes <i>d_i</i> steps in
Compute shared	p _i -isogeny chain & push	\mathfrak{p}_i -isogeny chain & push
data	forward information for	forward information for
	j > i.	j > i.
In the end, both Alice	and Bob will share the elliptic	curve
	$H_n = E_n/E_n \left[\mathfrak{p}_1^{e_1+d_1} \cdot \ldots \cdot \mathfrak{p}_t^{e_t+d_t} \right]$	/t]
Leonardo COLÒ (I2M-AMU)	OSIDH	7 February 2019 19 / 22

Orientations

Fn

◆□ > ◆圖 > ◆臣 > ◆臣 > □ 臣

Orientations

・ロト ・四ト ・ヨト ・ヨト 三日

OSIDH C

Orientations

2

ヘロト ヘロト ヘヨト ヘヨト

æ

Orientations

æ

Orientations

.∃⇒ ⇒

・ロト ・日下・ ・ ヨト・

글 > 글

・ロト ・日下・ ・ ヨト・

글 > 글

∃ ⊳

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ □臣 = のへで

э

イロン イロン イヨン イヨン

OSIDH A Picture

This is a work in progress and we still want to develop the following aspects:

- Security analysis and setting security parameters.
- Implementation and algorithmic optimization.
This is a work in progress and we still want to develop the following aspects:

- Security analysis and setting security parameters.
- Implementation and algorithmic optimization.

MERCI POUR VOTRE ATTENTION

→ Ξ →