ORIENTING SUPERSINGULAR ISOGENY GRAPHS

LEONAROOCOLḊ \& DAVIDKOHEL

Institut de Mathématiques de Marseille
Journées Nationales de Calcul Formel 2019
CIRM, Luminy, 7 February 2019

- Let k be a field of characteristic $\neq 2,3$. An elliptic curve E / k is a smooth projective curve of genus 1 defined by a Weierstrass equation

$$
E: Y^{2} Z=X^{3}+a X Z^{2}+b Z^{3} \quad \text { where } a, b \in k \text { such that } 4 a^{3}+27 b^{2} \neq 0
$$

- We have a special point defined on E (point at infinity): $O=(0: 1: 0)$.
- Affine equation of $E: y^{2}=x^{3}+a x+b$.
- The set of k-rational points on E is a group.
- if E is defined over an algebraically closed field \bar{k} of characteristic p, then

$$
E[m] \simeq \frac{\mathbb{Z}}{m \mathbb{Z}} \times \frac{\mathbb{Z}}{m \mathbb{Z}} \quad E\left[p^{r}\right] \simeq \begin{cases}\frac{\mathbb{Z}}{p^{r} \mathbb{Z}} & \text { Ordinary Curve } \\ \{O\} & \text { Supersingular Curve }\end{cases}
$$

- The j-invariant of an elliptic curve $E: y^{2}+x^{3}+a x+b$ is

$$
j(E)=1728 \frac{4 a^{3}}{4 a^{3}+27 b^{2}}
$$

Two elliptic curves E and E^{\prime} are isomorphic over \bar{k} if and only if $j(E)=j\left(E^{\prime}\right)$.

- An isogeny $\phi: E_{1} \rightarrow E_{2}$ of elliptic curves is a map that is also a surjective group homomorphism.
- Among isogenies, we have the multiplication by n map $([n]: E \rightarrow E)$ and the Frobenius morphism (k finite field): $\pi:(X: Y: Z) \rightarrow\left(X^{p}: Y^{p}: Z^{p}\right)$
- Tate's Theorem: two elliptic curves E and F defined over a finite field k are isogenous over k if and only if $\# E(k)=\# F(k)$.
- The degree of an isogeny ϕ is $\operatorname{deg} \phi=\left[k(E): \phi^{*} k(F)\right]$.
- Given an isogeny $\phi: E \rightarrow F$, there is a unique isogeny $\hat{\phi}: F \rightarrow E$ such that

$$
\phi \circ \hat{\phi}=[\operatorname{deg} \phi]_{F} \quad \hat{\phi} \circ \phi=[\operatorname{deg} \phi]_{E}
$$

$\hat{\phi}$ is called dual isogeny.

- If E is an elliptic curve defined over a finite field k of characteristic p, there are $\ell+1$ distinct isogenies of degree $\ell \neq p$ with domain E defined over \bar{k}.

Definition
 The endomorphism ring $\operatorname{End}(E)=\operatorname{End}_{\bar{k}}(E)$ of an elliptic curve E / k is the set of all isogenies $E \rightarrow E$ (together with the 0-map) endowed with sum and multiplication.

Theorem (Deuring)
Let E / k be an elliptic curve over a finite field k of characteristic $p>0$. $\operatorname{End}(E)$ is isomorphic to one of the following:

- An order \mathcal{O} in a quadratic imaginary field; we say that E is ordinary.
- A maximal order in a quaternion algebra; we say that E is supersingular.

Theorem (Hasse)
Let E / k be defined over a finite field with q elements. Its Frobenius endomorphism satisfies a quadratic equation $\pi^{2}-t \pi+q=0$ for some $|t| \leq 2 \sqrt{q}$, called the trace of π.

Theorem (Serre-Tate)
Two elliptic curves E_{0} and E_{1} defined over a finite field k are isogenous if and only if $\operatorname{End}\left(E_{0}\right) \otimes_{\mathbb{Z}} \mathbb{Q} \simeq \operatorname{End}\left(E_{1}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$.

Definition

An isogeny graph is a graph whose vertices are j-invariants of elliptic curves (elliptic curves up to isomorphism) and whose edges are isogenies between them.

Theorem (Serre-Tate)

Two elliptic curves E_{0} and E_{1} defined over a finite field k are isogenous if and only if $\operatorname{End}\left(E_{0}\right) \otimes_{\mathbb{Z}} \mathbb{Q} \simeq \operatorname{End}\left(E_{1}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$.

Definition

An isogeny graph is a graph whose vertices are j-invariants of elliptic curves (elliptic curves up to isomorphism) and whose edges are isogenies between them.

In the ordinary case, the isogeny graph has a precise structure (volcanoes):

$\operatorname{End}(E)$

Theorem (Serre-Tate)

Two elliptic curves E_{0} and E_{1} defined over a finite field k are isogenous if and only if $\operatorname{End}\left(E_{0}\right) \otimes_{\mathbb{Z}} \mathbb{Q} \simeq \operatorname{End}\left(E_{1}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$.

Definition

An isogeny graph is a graph whose vertices are j-invariants of elliptic curves (elliptic curves up to isomorphism) and whose edges are isogenies between them.

Let $\operatorname{End}(E)=\mathcal{O} \subseteq \mathbb{Q}(\sqrt{D})$. The class group of \mathcal{O} is $\mathrm{Cl}(\mathcal{O})$ (finite abelian group) acts on the set of elliptic curves with endomorphism ring \mathcal{O} :

$$
\begin{gathered}
E \longrightarrow E / E[\mathfrak{a}] \\
E[\mathfrak{a}]=\{P \in E \mid \alpha(P)=0 \forall \alpha \in \mathfrak{a}\}
\end{gathered}
$$

$\operatorname{End}(E)$

Theorem (Serre-Tate)

Two elliptic curves E_{0} and E_{1} defined over a finite field k are isogenous if and only if $\operatorname{End}\left(E_{0}\right) \otimes_{\mathbb{Z}} \mathbb{Q} \simeq \operatorname{End}\left(E_{1}\right) \otimes_{\mathbb{Z}} \mathbb{Q}$.

Definition

An isogeny graph is a graph whose vertices are j-invariants of elliptic curves (elliptic curves up to isomorphism) and whose edges are isogenies between them.

The supresingular case lack of the commutativity of $\mathrm{Cl}(\mathcal{O})$ and therefore is far more complicated.

Supersingular isogeny graphs have been used in the Charles-Goren-Lauter cryptographic hash function and the supersingular isogeny Diffie--Hellman (SIDH) protocole of De Feo and Jao.

A recently proposed alternative to SIDH is the commutative supersingular isogeny Diffie-Hellman (CSIDH) protocole, in which the isogeny graph is first restricted to \mathbb{F}_{p}-rational curves E and \mathbb{F}_{p}-rational isogenies then oriented by the subring $\mathbb{Z}[\pi] \subset E n d(E)$ generated by the Frobenius endomorphism $\pi: E \rightarrow E$.

We introduce a general notion of orienting supersingular elliptic curves and their isogenies, and use this as the basis to construct a general oriented supersingular isogeny Diffie-Hellman (OSIDH) protocole.

Supersingular isogeny graphs have been used in the Charles-Goren-Lauter cryptographic hash function and the supersingular isogeny Diffie--Hellman (SIDH) protocole of De Feo and Jao.

A recently proposed alternative to SIDH is the commutative supersingular isogeny Diffie-Hellman (CSIDH) protocole, in which the isogeny graph is first restricted to \mathbb{F}_{p}-rational curves E and \mathbb{F}_{p}-rational isogenies then oriented by the subring $\mathbb{Z}[\pi] \subset E n d(E)$ generated by the Frobenius endomorphism $\pi: E \rightarrow E$.

We introduce a general notion of orienting supersingular elliptic curves and their isogenies, and use this as the basis to construct a general oriented supersingular isogeny Diffie-Hellman (OSIDH) protocole.

Supersingular isogeny graphs have been used in the Charles-Goren-Lauter cryptographic hash function and the supersingular isogeny Diffie--Hellman (SIDH) protocole of De Feo and Jao.

A recently proposed alternative to SIDH is the commutative supersingular isogeny Diffie-Hellman (CSIDH) protocole, in which the isogeny graph is first restricted to \mathbb{F}_{p}-rational curves E and \mathbb{F}_{p}-rational isogenies then oriented by the subring $\mathbb{Z}[\pi] \subset$ End (E) generated by the Frobenius endomorphism $\pi: E \rightarrow E$.

We introduce a general notion of orienting supersingular elliptic curves and their isogenies, and use this as the basis to construct a general oriented supersingular isogeny Diffie-Hellman (OSIDH) protocole.

Orienting
$\overrightarrow{\text { via } \mathcal{O}_{K}}$

Supersingular isogeny graphs have been used in the Charles-Goren-Lauter cryptographic hash function and the supersingular isogeny Diffie--Hellman (SIDH) protocole of De Feo and Jao.

A recently proposed alternative to SIDH is the commutative supersingular isogeny Diffie-Hellman (CSIDH) protocole, in which the isogeny graph is first restricted to \mathbb{F}_{p}-rational curves E and \mathbb{F}_{p}-rational isogenies then oriented by the subring $\mathbb{Z}[\pi] \subset E n d(E)$ generated by the Frobenius endomorphism $\pi: E \rightarrow E$.

We introduce a general notion of orienting supersingular elliptic curves and their isogenies, and use this as the basis to construct a general oriented supersingular isogeny Diffie-Hellman (OSIDH) protocole.

Orienting $\overrightarrow{\text { via } \mathcal{O}_{K}}$

SIDH

We take two small primes ℓ_{A} and ℓ_{B} and We fix n small primes ℓ_{i} and a large a large prime $p=\ell_{A}^{n_{A}} \ell_{B}^{n_{B}} f \mp 1$ where f is a small correction term.
We also choose a random supersingular elliptic curve $E / \mathbb{F}_{p^{2}}$ with prime $p=4 \ell_{1} \cdot \ldots \cdot \ell_{n}-1$.
We fix the supersingular elliptic curve $E_{0}: y^{2}=x^{3}+x$ defined over \mathbb{F}_{p}. We consider endomorphism rings defined over \mathbb{F}_{p} and therefore we get $\operatorname{End}\left(E_{0}\right)=$

$$
E\left(\mathbb{F}_{p^{2}}\right) \simeq(\mathbb{Z} /(p \pm 1) \mathbb{Z})^{2} \quad \begin{aligned}
& \mathbb{Z}[\pi] . \quad \text { Thus we orient supersingular } \\
& \text { isogeny graphs (over } \left.\mathbb{F}_{p}\right) \text { using Frobe- }
\end{aligned}
$$ We use isogenies ϕ_{A} and ϕ_{B} with ker- nius. nels of order $\ell_{A}^{e_{A}}$ and $\ell_{B}^{e_{B}}$ respectively. The protocol then follows the The following commutative diagram establish the key exchange protocol:

idea in the union of ℓ_{i}-isogeny graphs (over \mathbb{F}_{p}):

Suppose we are given:

- A maximal order \mathcal{O}_{K} in a quadratic imaginary field K of (small) discriminant Δ (eg. $\Delta=-3,-4$).
- A large prime number p ramified or inert in \mathcal{O}_{K}. Set $k=\mathbb{F}_{p^{2}}$.
- A supersingular elliptic curve E_{0} defined over \mathbb{F}_{p} equipped with an embedding $\mathcal{O}_{K} \hookrightarrow \operatorname{End}\left(E_{0}\right)$.
- Observe that in the supersingular case $\operatorname{End}\left(E_{0}\right):=\operatorname{End}_{\bar{k}}\left(E_{0}\right)=\operatorname{End}_{k}\left(E_{0}\right)$
- For $\Delta=-3$ we have $j=0$ and we may take $E_{0}: y^{2}=x^{3}+1$.
- A small prime ℓ (eg $\ell=2,3$) and a chain of ℓ-isogenies

$$
E_{0} \xrightarrow[\phi_{0}]{\ell} E_{1} \xrightarrow[\phi_{1}]{\ell} E_{2} \xrightarrow[\phi_{2}]{\ell} \ldots \xrightarrow[\phi_{n-1}]{\ell} E_{n}
$$

Let us consider K / \mathbb{Q} a quadratic imaginary extension and its ring of integers \mathcal{O}_{K}.

Definition

A K-orientation on E / k is a homomorphism

$$
\iota: K \hookrightarrow \operatorname{End}_{k}(E) \otimes \mathbb{Q}=\operatorname{End}_{k}^{0}(E)=\mathfrak{B}
$$

- E / k has complex multiplication: if k is a finite field then either
- $K \simeq \mathbb{Q}(\pi)$ where $\pi=\operatorname{Frob}(\pi) ; E$ is ordinary or
- \mathfrak{B} is a quaternion algebra; E is supersingular.

Definition

Given an order $\mathcal{O} \subseteq \mathcal{O}_{K} \subseteq K$, a primitive \mathcal{O}-orientation on $E_{/ k}$ is:

- A K-orientation on E / k such that
- $\iota: \mathcal{O} \xrightarrow{\sim} \iota(K) \cap \operatorname{End}_{k}(E)$ is an isomorphism.
- Let q be a prime such that $q \mathcal{O}_{K}=\mathfrak{q} \overline{\mathfrak{q}}$, i.e., $\left(\frac{\Delta}{q}\right)=1$. Here we consider q another "small" (bounded by some constant) prime different from ℓ.
- Let q be a prime such that $q \mathcal{O}_{K}=\mathfrak{q q}$, i.e., $\left(\frac{\Delta}{q}\right)=1$. Here we consider q another "small' ' (bounded by some constant) prime different from ℓ.
- Solve for $C_{0}=E_{0}[\mathfrak{q}]$. This can be determined by
- Kernel polynomial or
- Root of $\Phi_{q}\left(j_{0}, X\right)$.

- Let q be a prime such that $q \mathcal{O}_{K}=\mathfrak{q} \bar{q}$, i.e., $\left(\frac{\Delta}{q}\right)=1$. Here we consider q another "small' ' (bounded by some constant) prime different from ℓ.
- Solve for $C_{0}=E_{0}[\mathfrak{q}]$. This can be determined by
- Kernel polynomial or
- Root of $\Phi_{q}\left(j_{0}, X\right)$.
- Solve for $C_{i}=E_{i}\left[\mathfrak{q}_{i}\right]$ where now $\mathfrak{q}_{i}=\mathfrak{q} \cap \mathbb{Z}+\ell^{i} \mathcal{O}_{K}$
- Pushing forward C_{i}, i.e., $C_{i}=\phi_{i-1}\left(C_{i-1}\right)$ or
- Common root of $\Phi_{\ell}\left(j\left(F_{i-1}\right), X\right)$ and $\Phi_{q}\left(j\left(E_{i}\right), X\right)$.

- Let q be a prime such that $q \mathcal{O}_{K}=\mathfrak{q} \overline{\mathfrak{q}}$, i.e., $\left(\frac{\Delta}{q}\right)=1$. Here we consider q another "small' ' (bounded by some constant) prime different from ℓ.
- Solve for $C_{0}=E_{0}[\mathfrak{q}]$. This can be determined by
- Kernel polynomial or
- Root of $\Phi_{q}\left(j_{0}, X\right)$.
- Solve for $C_{i}=E_{i}\left[\mathfrak{q}_{i}\right]$ where now $\mathfrak{q}_{i}=\mathfrak{q} \cap \mathbb{Z}+\ell^{i} \mathcal{O}_{K}$
- Pushing forward C_{i}, i.e., $C_{i}=\phi_{i-1}\left(C_{i-1}\right)$ or
- Common root of $\Phi_{\ell}\left(j\left(F_{i-1}\right), X\right)$ and $\Phi_{q}\left(j\left(E_{i}\right), X\right)$.

- The data of $C_{n}\left(\right.$ or $\left.j\left(F_{n}\right)\right)$ and $\mathfrak{q} \subseteq \mathcal{O}_{K}$ determine a (K, \mathfrak{q})-orientation on E_{n}.

Let $E_{0} \rightarrow E_{1} \rightarrow E_{2} \rightarrow \ldots \rightarrow E_{n}$ be an ℓ-isogeny chain of length n and $\phi: E_{0} \rightarrow F_{0}$ an isogeny of degree q with ℓ and q two distinct "small' ' primes.

Definition
A ladder is a commutative diagram of isogenies

Let $E_{0} \rightarrow E_{1} \rightarrow E_{2} \rightarrow \ldots \rightarrow E_{n}$ be an ℓ-isogeny chain of length n and $\phi: E_{0} \rightarrow F_{0}$ an isogeny of degree q with ℓ and q two distinct "small' ' primes.

Definition

A ladder is a commutative diagram of isogenies

Modular Interpretation

A modular ladder of width q and depth n is a pair of $(n+1)$-tuples

$$
\left(j_{0}, j_{1}, \ldots, j_{n}\right) \quad \text { and } \quad\left(j_{0}^{\prime}, j_{1}^{\prime}, \ldots, j_{n}^{\prime}\right)
$$

such that

$$
\Phi_{\ell}\left(j_{i}, j_{i+1}\right)=\Phi_{\ell}\left(j_{i}^{\prime}, j_{i+1}^{\prime}\right)=\Phi_{q}\left(j_{i}, j_{i}^{\prime}\right)=0 \quad \text { for all } 0 \leq i \leq n
$$

Let $E_{0} \rightarrow E_{1} \rightarrow E_{2} \rightarrow \ldots \rightarrow E_{n}$ be an ℓ-isogeny chain of length n and $\phi: E_{0} \rightarrow F_{0}$ an isogeny of degree q with ℓ and q two distinct "smalll' primes.

Definition

A ladder is a commutative diagram of isogenies

If $q=\ell$, the ladder collapses:

Let $E_{0} \rightarrow E_{1} \rightarrow E_{2} \rightarrow \ldots \rightarrow E_{n}$ be an ℓ-isogeny chain of length n and $\phi: E_{0} \rightarrow F_{0}$ an isogeny of degree q with ℓ and q two distinct "smalll' primes.

Definition
A ladder is a commutative diagram of isogenies

A ladder is rectangular if $\phi: E_{0} \rightarrow F_{0}$ is horizontal.
Lemma
If a ladder is rectangular, then $\operatorname{End}\left(E_{i}\right)=\operatorname{End}\left(F_{i}\right)$ for all $0 \leq i \leq n$.

We define a vortex to be an isogeny cycle (crater) equipped with an action of a (subgroup of) $\mathrm{Cl}(\mathcal{O})$.

Instead of considering the union of different isogeny graphs, we focus on one single crater and we think of all the other primes as acting on it: the resulting object is a single isogeny circle rotating under the action of $\mathrm{Cl}(\mathcal{O})$.

In the same way, we define a whirpool to be a complete isogeny volcano acted on by the class group. We would like to think at isogeny graphs as moving objects.

In the same way, we define a whirpool to be a complete isogeny volcano acted on by the class group. We would like to think at isogeny graphs as moving objects.

Actually, we would like to take the ℓ-isogeny graph on the full $\mathrm{Cl}\left(\mathcal{O}_{K}\right)$-orbit. This might be composed of several ℓ-isogeny orbits (craters), although the class group is transitive.

We consider an elliptic curve E_{0} with an effective endomorphism ring (eg. $\left.j_{0}=0,1728\right)$ and a chain of ℓ-isogenies.

We consider an elliptic curve E_{0} with an effective endomorphism ring (eg. $\left.j_{0}=0,1728\right)$ and a chain of ℓ-isogenies.

- For $\ell=2$ or 3) a suitable candidate for \mathcal{O}_{K} could be the Gaussian integers $\mathbb{Z}[i]$ or the Eisenstein integers.

We consider an elliptic curve E_{0} with an effective endomorphism ring (eg. $\left.j_{0}=0,1728\right)$ and a chain of ℓ-isogenies.

- Horizontal isogenies must be endomorphisms

We consider an elliptic curve E_{0} with an effective endomorphism ring (eg. $\left.j_{0}=0,1728\right)$ and a chain of ℓ-isogenies.

- We push forward our q-orientation obtaining F_{1}.

We consider an elliptic curve E_{0} with an effective endomorphism ring (eg. $\left.j_{0}=0,1728\right)$ and a chain of ℓ-isogenies.

- We repeat the process for F_{2}.

We consider an elliptic curve E_{0} with an effective endomorphism ring (eg. $\left.j_{0}=0,1728\right)$ and a chain of ℓ-isogenies.

- And again till F_{n}.

We consider an elliptic curve E_{0} with an effective endomorphism ring (eg. $\left.j_{0}=0,1728\right)$ and a chain of ℓ-isogenies.

How far should we go? We would like to move away from the center $\left(E_{0}\right)$ untill $\# \mathrm{Cl}(\mathcal{O})$ is around the size of p in order to cover all supersingular curves (get all the possible choices). For instance, $p \sim 2^{1024}$ and $n \sim 1024$.

If we look at modular polynomials $\Phi_{\ell}(X, Y)$ and $\Phi_{q}(X, Y)$ we realize that all we need are the j-invariants:

Since j_{2} is given (the initial chain is known) and supposing that j_{1}^{\prime} has already been constructed, j_{2}^{\prime} is determined by a system of two equations

$$
\left\{\begin{array}{l}
\Phi_{\ell}\left(j_{1}^{\prime}, Y\right)=0 \\
\Phi_{q}\left(j_{2}, Y\right)=0
\end{array}\right.
$$

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ ALICE

BOB

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$

ALICE
Choose a smooth \mathcal{O}_{K}-orientation of E_{0}

BOB

Push it forward to depth n
Exchange data

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$

ALICE
Choose a smooth \mathcal{O}_{K}-orientation of E_{0}

BOB

Push it forward to depth n
Exchange data
Compute shared secret

Compute $\phi_{A} \cdot\left\{G_{i}\right\}$
Compute $\phi_{B} \cdot\left\{F_{i}\right\}$

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$

ALICE

Choose a smooth \mathcal{O}_{K}-orientation of E_{0}

BOB

Push it forward to depth n
Exchange data
Compute shared secret

Compute $\phi_{A} \cdot\left\{G_{i}\right\} \quad$ Compute $\phi_{B} \cdot\left\{F_{i}\right\}$
Compute $\phi_{A} \cdot\left\{G_{i}\right\} \quad$ Compute $\phi_{B} \cdot\left\{F_{i}\right\}$

In the end, both Alice and Bob will share a new chain $E_{0} \rightarrow H_{1} \rightarrow \ldots \rightarrow H_{n}$

This first attempt presents a weak point: we know End $\left(E_{0}\right)$ and, at each step, we also deduce

$$
\mathbb{Z}+\ell E \operatorname{nd}\left(E_{i}\right) \subset \operatorname{End}\left(E_{i+1}\right)=\operatorname{End}\left(F_{i+1}\right)
$$

Thus, knowing $\mathbb{Z}+\ell^{n} \operatorname{End}\left(E_{0}\right) \subset \operatorname{End}\left(F_{n}\right)$, we can construct $\operatorname{End}\left(F_{n}\right)$ and this will give us information on how to construct ϕ_{A} - Alice's private key. ${ }^{1}$

The problem is that we pass to the other party the knowledge of the entire chain $\left\{F_{i}\right\}$ (respectively G_{i}).

How can we avoid this still while giving the other enogh information?

[^0]PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O} \subseteq \operatorname{End}\left(E_{n}\right) \cap K \subseteq \mathcal{O}_{K}$ ALICE

BOB

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O} \subseteq \operatorname{End}\left(E_{n}\right) \cap K \subseteq \mathcal{O}_{K}$ ALICE

BOB
Choose integers in some bound $[-r, r]$

$$
\left(e_{1}, \ldots, e_{t}\right)
$$

$$
\left(d_{1}, \ldots, d_{t}\right)
$$

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O} \subseteq \operatorname{End}\left(E_{n}\right) \cap K \subseteq \mathcal{O}_{K}$

ALICE

$$
\left(e_{1}, \ldots, e_{t}\right)
$$

$$
F_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{e_{1}} \cdot \ldots \cdot \mathfrak{p}_{t}^{e_{t}}\right] \quad G_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{d_{1}} \cdot \ldots \cdot \mathfrak{p}_{t}^{d_{t}}\right]
$$

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O} \subseteq \operatorname{End}\left(E_{n}\right) \cap K \subseteq \mathcal{O}_{K}$

ALICE

BOB
Choose integers in some bound $[-r, r]$

$$
\begin{array}{cc}
\left(e_{1}, \ldots, e_{t}\right) & \left(d_{1}, \ldots, d_{t}\right) \\
F_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{e_{1}} \cdot \ldots \cdot \mathfrak{p}_{t}^{e_{t}}\right] & G_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{d_{1}} \cdot \ldots \cdot \mathfrak{p}_{t}^{d_{t}}\right] \\
F_{n, i}^{(-r)} \leftarrow F_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow F_{n, i}^{(1)} \leftarrow F_{n} & G_{n, i}^{(-r)} \leftarrow G_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow G_{n, i}^{(1)} \leftarrow G_{n}
\end{array}
$$

Construct an
isogenous curve Precompute all directions for each i

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O} \subseteq \operatorname{End}\left(E_{n}\right) \cap K \subseteq \mathcal{O}_{K}$

ALICE

BOB
Choose integers in some bound $[-r, r]$

Construct an
isogenous curve Precompute all directions for each i
... and their
conjugates

$$
\begin{array}{cc}
\left(e_{1}, \ldots, e_{t}\right) & \left(d_{1}, \ldots, d_{t}\right) \\
F_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{e_{1}} \cdot \ldots \cdot \mathfrak{p}_{t}^{e_{t}}\right] & G_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{d_{1}} \cdot \ldots \cdot \mathfrak{p}_{t}^{d_{t}}\right] \\
F_{n, i}^{(-r)} \leftarrow F_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow F_{n, i}^{(1)} \leftarrow F_{n} & G_{n, i}^{(-r)} \leftarrow G_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow G_{n, i}^{(1)} \leftarrow G_{n} \\
F_{n} \rightarrow F_{n, i}^{(1)} \rightarrow \ldots \rightarrow F_{n, i}^{(r-1)} \rightarrow F_{n, 1}^{(r)} & G_{n} \rightarrow G_{n, i}^{(1)} \rightarrow \ldots \rightarrow G_{n, i}^{(r-1)} \rightarrow G_{n, 1}^{(r)}
\end{array}
$$

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O} \subseteq \operatorname{End}\left(E_{n}\right) \cap K \subseteq \mathcal{O}_{K}$

ALICE

BOB

Choose integers in some bound $[-r, r]$

$$
\left(e_{1}, \ldots, e_{t}\right)
$$

$$
\left(d_{1}, \ldots, d_{t}\right)
$$

Construct an isogenous curve

$$
F_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{e_{1}} \cdot \ldots \cdot \mathfrak{p}_{t}^{e_{t}}\right] \quad G_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{d_{1}} \cdot \ldots \cdot \mathfrak{p}_{t}^{d_{t}}\right]
$$

Precompute all directions for each i

$$
F_{n, i}^{(-r)} \leftarrow F_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow F_{n, i}^{(1)} \leftarrow F_{n} \quad G_{n, i}^{(-r)} \leftarrow G_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow G_{n, i}^{(1)} \leftarrow G_{n}
$$

$$
\begin{gathered}
F_{n} \rightarrow F_{n, i}^{(1)} \rightarrow \ldots \rightarrow F_{n, i}^{(r-1)} \rightarrow F_{n, 1}^{(r)} \quad G_{n} \rightarrow G_{n, i}^{(1)} \rightarrow \ldots \rightarrow G_{n, i}^{(r-1)} \rightarrow G_{n, 1}^{(r)} \\
G_{n}+\text { directions }
\end{gathered}
$$

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of

 splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O} \subseteq \operatorname{End}\left(E_{n}\right) \cap K \subseteq \mathcal{O}_{K}$
ALICE

BOB

Choose integers in some bound $[-r, r]$ Construct an isogenous curve

$$
\begin{aligned}
& \left(e_{1}, \ldots, e_{t}\right) \\
& \left(d_{1}, \ldots, d_{t}\right) \\
& F_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{e_{1}} \cdot \ldots \cdot \mathfrak{p}_{t}^{e_{t}}\right] \quad G_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{d_{1}} \cdot \ldots \cdot \mathfrak{p}_{t}^{d_{t}}\right] \\
& F_{n, i}^{(-r)} \leftarrow F_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow F_{n, i}^{(1)} \leftarrow F_{n} \quad G_{n, i}^{(-r)} \leftarrow G_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow G_{n, i}^{(1)} \leftarrow G_{n} \\
& \begin{array}{cc}
F_{n} \rightarrow F_{n, i}^{(1)} \rightarrow \ldots \rightarrow F_{n, i}^{(r-1)} \rightarrow F_{n, 1}^{(r)} & G_{n} \rightarrow G_{n, i}^{(1)} \rightarrow \ldots \rightarrow G_{n, i}^{(r-1)} \rightarrow G_{n, 1}^{(r)} \\
G_{n} \text { +directions } & F_{n} \text { +directions } \\
\text { Takes } e_{i} \text { steps in } & \text { Takes } d_{i} \text { steps in }
\end{array} \\
& \mathfrak{p}_{i} \text {-isogeny chain \& push } \\
& \text { forward information for } \\
& j>i \text {. } \\
& \mathfrak{p}_{i} \text {-isogeny chain \& push } \\
& \text { forward information for } \\
& j>i \text {. }
\end{aligned}
$$

Precompute all directions for each i

Compute shared data

PUBLIC DATA: A chain of ℓ-isogenies $E_{0} \rightarrow E_{1} \rightarrow \ldots \rightarrow E_{n}$ and a set of splitting primes $\mathfrak{p}_{1}, \ldots, \mathfrak{p}_{t} \subseteq \mathcal{O} \subseteq \operatorname{End}\left(E_{n}\right) \cap K \subseteq \mathcal{O}_{K}$

ALICE

BOB

Choose integers in some bound $[-r, r]$

$$
\left(e_{1}, \ldots, e_{t}\right)
$$

$$
\left(d_{1}, \ldots, d_{t}\right)
$$

Construct an
isogenous curve

$$
\begin{array}{ll}
F_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{e_{1}} \cdot \ldots \cdot \mathfrak{p}_{t}^{e_{t}}\right] & G_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{d_{1}} \cdot \ldots \cdot \mathfrak{p}_{t}^{d_{t}}\right] \\
F_{n, i}^{(-r)} \leftarrow F_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow F_{n, i}^{(1)} \leftarrow F_{n} & G_{n, i}^{(-r)} \leftarrow G_{n, i}^{(-r+1)} \leftarrow \ldots \leftarrow G_{n, i}^{(1)} \leftarrow G_{n}
\end{array}
$$

Precompute all directions for each i
... and their
conjugates
Exchange data

Compute shared data
$\mathfrak{p}_{\text {- }}$-isogeny chain \& push forward information for

$$
j>i .
$$

\mathfrak{p}_{i}-isogeny chain \& push forward information for

$$
j>i .
$$

In the end, both Alice and Bob will share the elliptic curve

$$
H_{n}=E_{n} / E_{n}\left[\mathfrak{p}_{1}^{e_{1}+d_{1}} \cdot \ldots \cdot \mathfrak{p}_{t}^{e_{t}+d_{t}}\right]
$$

F_{n}

This is a work in progress and we still want to develop the following aspects:

- Security analysis and setting security parameters.
- Implementation and algorithmic optimization.

This is a work in progress and we still want to develop the following aspects:

- Security analysis and setting security parameters.
- Implementation and algorithmic optimization.

MERCI POUR VOTRE ATTENTION

[^0]: ${ }^{1}$ Theorem 4.1 "On the security of supersingular isogeny cryptosystems", S.D. Galbraith, C. Petit, B. Shani, Y. Bo Ti, 2016

