

Available online at http://www.journalcra.com

International Journal of Current Research Vol. 8, Issue, 11, pp.42619-42628, November, 2016 INTERNATIONAL JOURNAL OF CURRENT RESEARCH

RESEARCH ARTICLE

SURVEY STUDY ON GASTRO-INTESTINAL PARASITES OF BUFFALO IN CHEYYAR TALUK THIRUVANNAMALAI DISTRICT

Aruna, M., *Subramanian, N. and Muthu, M.

PG and Research Department of Zoology, Arignar Anna Govt. Arts College, Cheyyar- 604 407

ARTICLE INFO	ABSTRACT		
Article History: Received 19 th August, 2016 Received in revised form 03 rd September, 2016 Accepted 05 th October, 2016 Published online 25 th November, 2016 <i>Key words:</i> Buffalo parasites, Gastrointestinal tract <i>Dicroccelium</i> spp, <i>Balantidium coli</i> , <i>Moniezia benedeni</i> , <i>Oeophagostomum columbiunum</i> , <i>Trichuris ovis</i> .	A total of 50 dung samples were collected from non-descript cattle. Similarly 50 gastrointestinal tracts of non-descript cattle was collected in and around Vembakkam Taluk, Thiruvannamalai District. The work was carried out for six months from March 2016 to August 2016. Parasitological examination of dung samples revealed the eggs of Amphistomes, <i>Moniezia</i> sp, Strongyle, Strongyloides and <i>Eimeria sp</i> . The overall prevalence of parasitic eggs and oocysts was 76.00 per cent. Amphistome egg was the only trematode parasites identified in this study. Similarly in Cestodes, <i>Monizia benedeni</i> egg was identified in this study. Where as in Nematodes three types of eggs were identified viz., Strongyle, and Strongyloides eggs. In Protozoan parasites, <i>Eimeria sp</i> . was the only coccidian parasite identified in this study. Of this overall prevalence of 76.0%, 40.0% was infected by nematodes, 36.09% by Trematodes, 16% by protozoan parasite (<i>Eimeria sp</i> .) and 10.00% by cestodes. The most common gastrointestinal nematodes observed in this study was the strongyle (21.05%) compared to Strongyloides (2.63%). Among the age groups (Young and Adult), younger animals had higher infection of nematodes (24.0%) and Trematode (20.00%) than the adult cattle. Among sex, male cattle had higher infection of Cestodes (8.0%). Among the season (summer and monsoon), cattle had heavier infection of Trematodes (10.0%) during monsoon months. The worms collected from the rumen and duodenum was identified as Paramphistomum cevrvi. The worms collected from abomasum was <i>Haemonchus contortus, Mecistocirrus digitatus, Trichostrongylus axei</i> and <i>Oesophagostomum radiatum</i> (Nematodes). The worms collected from intestines was identified as <i>Moniezia benedeni</i> (Tapeworm) and the caecum was <i>Oeophagostomum columbiunum</i> and <i>Trichuris ovis</i> . The overall prevalence of intestinal parasitic infection of trematode (36.0%), nematodes (32.0%) and cestode (30.0%) than the adult cattle.		

Copyright©2016, Aruna et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Citation: Aruna, M., Subramanian, N. and Muthu, M. 2016. "Survey study on gastro-intestinal parasites of Buffalo in Cheyyar taluk Thiruvannamalai district", *International Journal of Current Research*, 8, (11), 42619-42628.

INTRODUCTION

The infection with various types of gastrointestinal parasites in buffalo is a worldwide problem (Bennema et al., 2010; Khan et al., 2010; Dorny et al., 2011; Rinaldi et al., 2011). Gastrointestinal (GI) parasitic infections may be considered as one of the major constraints in buffalo production. The infection causes productivity losses through reduced feed intake and decreased efficiency in feed utilization due to subclinical or chronic infections that are responsible for economic losses (Belem et al., 2001; Jittapalapong et al., 2011; Stromberg et al., 2012). GI parasitic infections in buffalo in general cause economic losses to the livestock owner due to decreased milk production (Charlier et al., 2009;

PG and Research, Department of Zoology, Arignar Anna Govt. Arts College, Cheyyar- 604 407

Bandyopadhyay et al., 2010). The decreased milk production due to the infection of parasites may be mediated by growth hormone, type I insulin-like growth factor and prolactin, because a decrease of these hormones in serum during lactation in buffalo with positive EPG has been observed in a recent study (Perri et al., 2011). The water buffalo (Bubalusbubalus) is important to the economy of several countries, especially in Asia and South America. It is the main dairy animal species in India. Little is known regarding the impact of coccidiosis in buffaloes. Buffalo and buffaloes are considered to have common species of Eimeria (Levine, 1973), but critical cross-transmissions have not been made because it is difficult to raise these hosts coccidian free. Additionally, E. bareillvi has been described in water buffalo (Gill et al., 1963). In a study from India, E. bareillyi was non transmissible to buffalo, whereas E. zuerniiand E. ellipsoidalis were cross transmissible (Sanyal et al., 1985). In addition to several

^{*}Corresponding author: Subramanian, N.

reports of E. bareillyi infection in buffaloes in India, coccidian oocysts have been found in buffaloes from Italy, Turkey, and Brazil. Restani and Tassi (1969) reported E. bareillyi oocysts in feces of 23 of 162 buffalo calves from 20 farms in Italian provinces of Caserta and Latina; no mention was made of clinical signs associated with oocysts. Riebeiro et al., (2000)reported eimerian oocysts in all 106 young Murrah buffalo calves from Ribeira Valley, Sa o Paulo state, Brazil; 48 of the these calves had diarrhea. Sayin (1968) described oocysts of 11 species n 93.5% of 130 apparently healthy buffaloes from 5 provinces of Turkey. Three, 1-wk-old buffalo calves fed a mixture of E. bovis, E. zuernii, E. ellipsodalis, E. auburnensis, and a newspecies, E. ankarensis from buffalos, shed oocysts of E. bovis, E. zuernii, E. ellipsodalis, and E. Auburnensis but not E. ankarensis. Eimeriabovis, E.suspherica, and E. clyinderica oocysts were reported in faeces of 20 Murrah buffalo calves from Malaysia (Sani and Chandrawathani, 1987).

Coccidiosis is an intestinal disease that affects several different animal species including buffalo, sheep, goats, cats, water buffalo, dogs, rabbits, and poultry. Since the disease may result in death especially in young animals, it is the cause of a considerable economic loss in farm animal world-wide (Levine 1985; Mimioglu et al., 1969; Pellèrdy 1974; Soulsby 1982). Coccidian species generally have host specificity, and in this respect the species of E. ankarensis, E. azerbaidjanica, E. bareillyi, E. gokaki, E. ovoidalis and E.thianethi have been reported in water buffaloes. Moreover, species found in buffalo, suchas Eimeriaalabamensis, E. auburnensis, E. bovis, E. brasiliensis, E. bukidnonensis, E. canadensis, E. cylindrica, E. ellipsoidalis, E. subspherica, E. wyomingensis, and E. zuerniihave also been reported in the water buffalo (Levine 1985; Pellèrdy 1974; Sayin 1968; Soulsby 1982). The prevalence of helminths in tropical and sub tropical areas has reduced production potential of livestock development programmes by causing countless deaths and economic losses (Al-Quaisy et al., 1987). In Pakistan, parasitism is one of the major menaces for livestock, causing obstacles to the development of a profitable livestock industry, as in sheep (Khan et al., 1999; Iqbal et al., 1993), goats (Iqbal et al., 1993), Buffalo and buffaloes (Hayat et al., 1990). Geoclimatic conditions and a poor awareness of livestock farmers contribute towards a conductive environment for the development and growth of parasites. In spite of significant production losses the problem is neglected due to its chronic and insidious nature (Sanyal, et al., 1992). The potential importance of cross-regulated immune defenses for disease control and public health has been recognized (Bentwich et al., 1999, Elias et al., 2006), but their relevance to the dynamics of infectious diseases in wildlife populations has yet to be demonstrated. Parasites and pathogens represent an increasing threat to natural populations (Harvell et al., 1999; Daszak, Cunningham and Hyatt, 2000), and recently, attention has been focused on examining methods by which disease threats can be managed in free-ranging wildlife (Woodroffe, 1999). Buffalo diseases have been identified as one of the major factor which have disrupted the development of the industry in Asia and have caused substantial economic loss to the poor subsistent farmers in the developing countries. The parasitic diseases are not less important in buffaloes than other infectious diseases. The buffalo milk and meat production of Pakistan are 16.46 and 0.6 million metric tons that are 27.27 and 19.56% of the total world milk and meat production, respectively (FAO, 2000).

The pathogen is exotic to sub-Saharan Africa, and bovine tuberculosis (bTB) is emerging as a wildlife disease in southern Africa. In excess of helminths, buffaloes are suffered from various intestinal protozoan infections also (Azam et al., 2002; Nalbantoglu et al., 2008). Coccidiosis can occur at any age of animals, but clinical coccidiosis occurs mainly in young calves (Penzhorn, 2002). They continue to pass oocysts in their feaces (Andrews, 2002). There are 13 known species of Eimeria, but not all are pathogenic. Although, coccidiosis is host specific, every host may be infected with several species of coccidia at the same time (Andrews, 2002). The global population of buffaloes (Bubalusbubalis) is estimated to be approximately 177.247 million of which 97% (171 million) are found in Asia (FAO. Food and Agriculture Organization. Rome 2008). India has 98.7 million buffalo heads which constitute approximately 55.7% of the total world buffalo population. Buffaloes are raised as economically important animals because they are multipurpose; providing milk, meat and good quality hides. The global population of buffaloes (Bubalusbubalis) spread in some 42 countries is estimated to be approximately 177.2 million of which 97% (171 million) and 55.7% (98.7 million) are found in Asia and India, respectively (FAO, 2008). But the coccidiosis in Buffalo are almost a neglected area in our country because of the scarcity of research on this specific topic, especially in buffalos little is known concerning the impact of coccidiosis in buffaloes (Dubey et al., 2008). They are also used as draft animals ("tractors" in Southeast Asia) in agriculture farms, means of transportation, and their dung act as a good fertilizer. Buffaloes are raised as economically important animals because they are multipurpose animals providing milk, meat and good quality hides (Liu et al., 2009).

MATERIALS AND METHODS

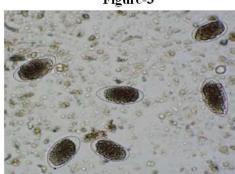
Four places in Thiruvannamalai District viz., Cheyyar, Vembakkam, Vanthavasi, and Arani were chosen for the study. A total of 50 dung samples were collected from Buffalos. Similarly 50 gastrointestinal tracts of Buffalo were collected in and around Cheyyar Taluk Thiruvannamalai district. All the animals were maintained under extensive system. The Buffalos were penned at night and allowed to graze in the day from 8.30 am to 5.00 pm. Dung sample and gastrointestinal tracts were collected from two age groups (young, <12 months and adult,>12 months) and in two seasons viz, summer (March and May) and Monsoon (June to August). Dung samples were collected from male and female Buffalos whereas gastrointestinal tracts were collected only from male Buffalo, since males only slaughtered for beef. A total of 50 fresh faecal samples were obtained from the rectum of buffalo and individually labeled in polythene bags. The dung samples were collected over a period of six months from January 2016 to June 2016. Dung samples collected were brought to the PG and Research Department of Zoology (Division of Parasitology) Arignar Anna Govt Arts College, Cheyyar for identification of different types eggs/oocysts. For confirmation the samples were sent to Department of Veterinary Parasitiology, Veterinary College, Chennai, Tamil Nadu. Qualitative parasitological examination was performed by faecal sedimentation technique with following standard procedures for the presence of parasitic eggs/oocysts (Sloss et al., 1994; Rathore et al., 2005). Trematodes and Cestodes were placed in a dorso ventral position on a slide. Another slide was placed over the worm and pressed gently until desired flattening was reached. At the stage is, to the end of the slides

was tied together with the thread and then the whole material was put in 5% formalin for fixation for 48 hours. Then it was removed from the formalin, thoroughly washed in water and it was put in the Acetic Alum Carmine stain (1:7) for 3 days. Then the worms were removed from the stain and de stained with 1% acid alcohol to remove excess stain. The worms were immediately washed in running tap water to remove acid alcohol (Bluing). The stained parasites were then dehydrated in ascending grades of alcohol (70%, 90% and absolute alcohol). Then the worms were cleared in carbolic acid and then the worms were mounted in Canada balsam and examined under low or high power. The nematode worms were washed well in water to remove the preservative. Then the worms were dehydrated in ascending grades of alcohol (70%, 90% and absolute alcohol). The nematodes were cleared in lacto phenol and then the worms were mounted in Canada balsam and examined under low or high power. Worms were identified with keys provided by (Soulsby 1982; Urquhart et al., 1987; Taylor et al., 2007).

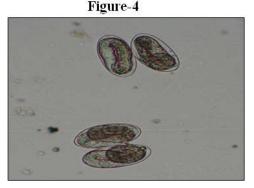
RESULTS

Studies on gastrointestinal parasites of Buffalo in and around Cheyyar Taluk, Thirvannamalai district of Tamil Nadu were carried out for six months from January 2016 to June 2016. Parasitological examination of dung samples revealed the presence of eggs of Amphistomes, Moniezia sp, Strongyle, Strongyloides and Eimeria sp (Figure 1 to 5). Amphistomes eggs were identified by oval shape, colourless, distinct operculum at one end and contain yolk and germ cells with. Monizia sp egg was identified based on square shape and contain an embryo with 6 hooks (hexacanth embryo). Strongyle egg was identified by oval shape, the egg shell with segmented yolk while strongyloides was identified based on oval shape both poles blunt and well developed embryo (larva) inside. The prevalence of intestinal parasitic eggs / oocysts identified in Buffalo shown in Table 1. The overall prevalence of parasitic eggs and oocysts was 92.00 per cent. Amphistome egg was the only Trematode parasites identified in this study. Similarly in Cestodes, Monizia benedeni egg was identified in this study. Where as in

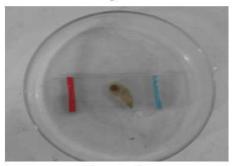
Figure-1



Amphistome eggs


Figure-3

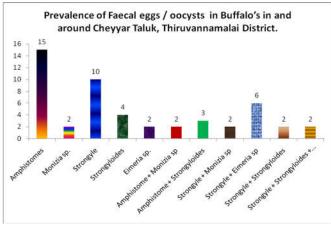
Moneizia eggs



Strongyle eggs

Strongyloides eggs

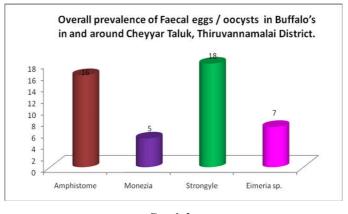
Figure-5


Eimeria Sp

Nematodes three types of eggs were identified viz., Strongyle, and Strongyloides eggs. In Protozoan parasites, Eimeria sp. was the only coocidian parasites identified in this study. Single infection of Amphistome egg and Strongyle egg had the highest prevalence of 15 (36.60 %) and 10 (21.73%) respectively, followed by Eimeria sp. oocysts 2 (4.34%) while Monizia sp. Egg 2(4.34%) and Strongyloides eggs had third highest with 4 (8.69%). Mixed infection by Strongyle egg + Eimeria oocyst had highest prevalence of 6 (13.04%) followed by Amphistome + Strongyle 3 (6.52%) and with lowest level of Strongyle + Monizia 3 (4.34%) and Amphistme + Moniezia 2 (4.34%) (Table -1 and Graph -1). Of this overall prevalence of 92.00%, 39.13% was infected by nematodes, 34.78% by trematodes, 15.21% by protozoan para site (Eimeria sp.) and 10.86% by cestodes (Table 2 and Graph-2). The most common gastrointestinal nematodes observed in this study was the strongyle (21.73%) compared to Strongyloides (8.69%). Single and mixed parasitic infection were also examined in this study in which single infection by trematode (36.60%) and nematode (30.42%) were higher than the mixed infections. The results are given in Table 3 and Graph -3. Table-4 and Graph-4 shows the prevalence of faecal eggs / oocysts in Buffalo in relation to age, sex and season. Among the age groups (Young and Adult), younger animals had higher infection of nematodes (9.36%) and trematode 8 (32.07%) than the adult Buffalo. Among sex, male Buffalo had higher infection of nematodes (43.47%), tremaotode (39.13%) and *Eimeria sp.* (13.04%) while female Buffalo had higher infection of Cestodes (17.39%). Among the season (summer and monsoon), Buffalo had heavier infection of Trematodes only during summer months (40.00%) where as Buffalo had heavy infection of nematodes (50.00%), Eimeria sp (11.53%) and cestodes (23.07%) during monsoon months. Table-5 and Graph-5 shows the relative incidence of paracitic infection in pure and mixed form. In the present study, Cotylophoron cotylophorum, Gastrothylax Fishoederius elongatus, cumenifer and Paramphistomum cevrvi. (Trematode parasites), Monizia expansa, (Cestoda parasites), Strongyle Haemonchus, Controtus, Mecsitistocirrus digitatus, Trichostrongylus axei and Oesophagostomum Columbiunum (Nematode) Mixed parasites Trematode + Cestode, Trematode + Nemato de, Nematode+ Cestode, and Trematode + Cestode + Nematode. Monizia expansa and Eimeria spp were the gastrointestinal parasites found in buffalo. The Strongyloides was found to be the commonestparasites (25%). Such fining have also been reported by Sharma and Pannde (1963) and Patnaika and Pande (1963). Highest incidence of this Parasite is above studies might be due to parental infection and milk-borne larval transmission as reported by Soulsby (1982). Monizia was the second common parasite. The Moniziaexpansa was found in only 2% cases. The worms collected from the rumen and duodenum was identified as Paramphistomes viz., Cotylophoron cotylophorum, Fishoederius elongates, Gastrothylax crumenifer and Paramphistomum cevrvi. The worm collected from abomasum was Haemonchus contortus, Mecistocirrus digitatus, Trichostrongylus axei and Oesophagos tomum radiatum (Nematodes). The worm collected from intestines was identified as Moniezia benedeni (Tapeworm) and the caecum was Oeophagostomum columbiunum and Trichuris ovis.

The overall prevalence of intestinal parasitic infection (worm count) was 96.0%. Single infection of termatode (paramphistomes) Termatode had highest prevalence of 16 (33.33%) and Nematode 12 (25.00%) respectively while tapeworm had the lowest with 4 (8.33%).

Table 1. Prevalence of Faecal eggs / oocysts in Buffalo's in and around Cheyyar Taluk, Thiruvannamalai District

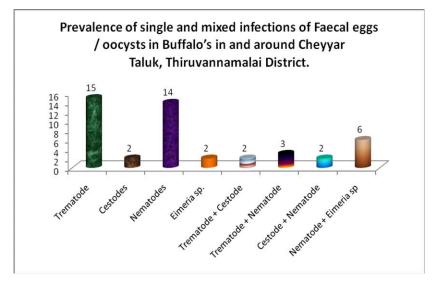

Parasite	Parasitic eggs / oocysts	No. (%) of animals infected (N=50)	
	Overall	46 (92.00)	
Trematode	Amphistomes	15 (36.60)	
Cestode	Monizia sp.	2 (4.34)	
Nematode	Strongyle	10 (21.73)	
	Strongyloides	4 (8.69)	
Protozoan parasite	Eimeria sp.	2 (4.34)	
Trematode + Cestode	Amphistome + Monizia sp	2 (4.34)	
Trematode + Nematode	Amphistome + Strongyle	3 (6.52)	
Nematode + Cestode	Strongyle + Monizia sp	2 (4.34)	
Nematode + Protozoan parasite	Strongyle + Eimeria sp	6 (13.04)	

Graph 1.

 Table
 2. Overall prevalence of Faecal eggs / oocysts in Buffalo's in and around Cheyyar Taluk, Thiruvannamalai District

Parasite	Species	No. (%) of positive
Trematode	Amphistome	16 (34.78)
Cestode	Monezia	5 (10.86)
Nematode	Strongyle	18 (39.13)
Protozoan parasite	Eimeria sp.	7 (15.21)
Total	*	46 (92.00)

Graph 2.


Table 3. Prevalence of single and mixed infections of Faecal eggs / oocysts in Buffalo's in and around Cheyyar Taluk, Thiruvannamalai District

Infection	Parasite	No. (%) of positive
Single	Trematode	15 (36.60)
	Cestodes	2 (4.34)
	Nematodes	14 (30.42)
	Eimeria sp.	2 (4.34)
Double	Trematode + Cestode	2 (4.34)
	Trematode + Nematode	3 (6.52)
	Cestode + Nematode	2 (4.34)
	Nematode + Eimeria sp	6 (13.04)

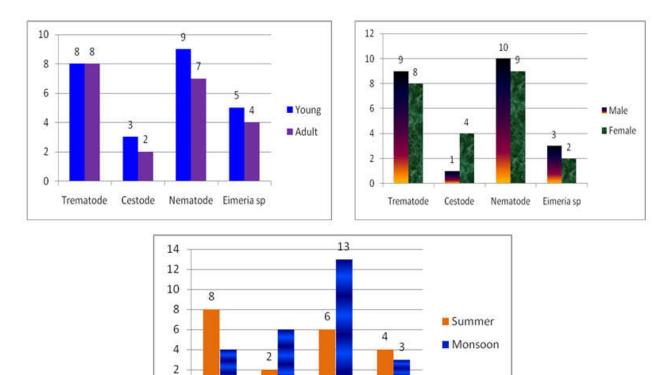
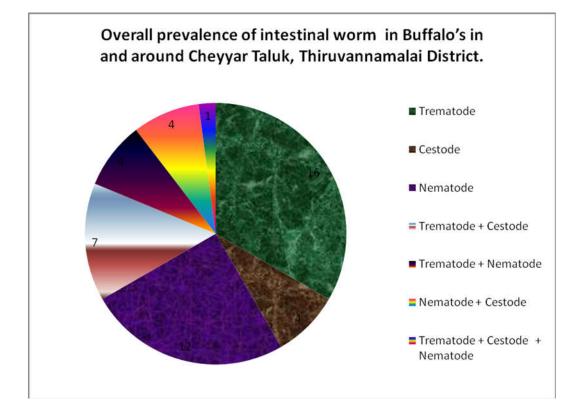


 Table 4. Prevalence of Faecal eggs / oocysts in Buffalo's in relation to age, sex and season in and around Cheyyar Taluk, Thiruvannamalai District

Variable	Species	Trematode	Cestode	Nematode	Eimeria sp	Total
Age	Young	32.07% (8)	11.53% (3)	36.00% (9)	20.00% (5)	25
	Adult	38.09% (8)	9.52% (2)	33.33% (7)	19.04% (4)	21
Sex	Male	39.13% (9)	4.34% (1)	43.47% (10)	13.04% (3)	23
	Female	34.78% (8)	17.39% (4)	39.13% (9)	8.69% (2)	23
Season	Summer	40.00% (8)	10.00% (2)	30.00% (6)	20.00% (4)	20
	Monsoon	15.38% (4)	23.07% (6)	50.00% (13)	11.53% (3)	26

Trematode Cestode Nematode Eimeria sp


0

Graph 4. Prevalence of Faecal eggs / oocysts in Buffalo in relation to age, sex and season in and around Cheyyar Taluk

Season

Table 5. Overall prevalence of intestinal worm in Buffalo's in and around Cheyyar Taluk, Thiruvannamalai District

Parasite	e Species of the parasite	
	Overall	48 (96.00)
Trematode	Cotylophorun cotylophorum, Fishoederius elonatus, Gastrothylax crumenifer and Paramphistomum cervi	16 (33.33)
Cestode	Monizia expansa	4 (8.33)
Nematode	Strongyle Haemonchus Contortus, Mecistocirrus digitatus, Trichostrongylus axei and Oeophagostomum columbiunum	12 (25.00)
Trematode + Cestode		7 (14.58)
Trematode + Nematode		4 (8.33)
Nematode + Cestode		4 (8.33)
Trematode + Cestode + Nematode		1 (2.08)

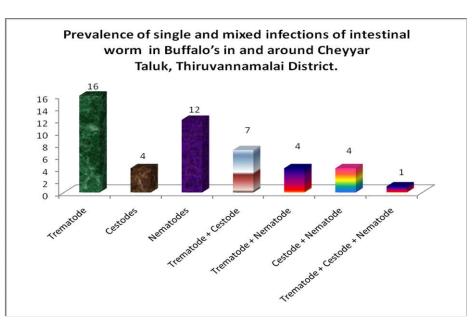


Table 6. Prevalence of single and mixed infections of intestinal worm in Buffalo's in and around Cheyyar Taluk, Thiruvannamalai District

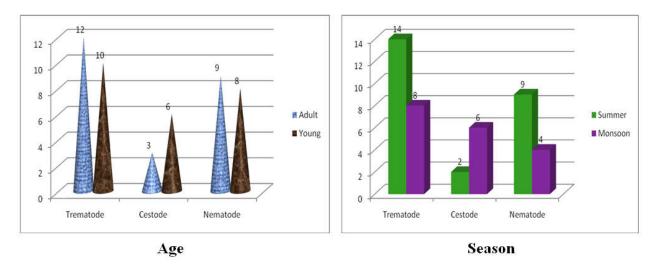

Infection	Parasite	No. (%) of positive
Single	Trematode	16 (33.33)
-	Cestodes	4 (8.33)
	Nematodes	12 (25.00)
Double	Trematode + Cestode	7 (14.58)
	Trematode + Nematode	4 (8.33)
	Cestode + Nematode	4 (8.33)
Triple	Trematode + Cestode + Nematode	1 (2.08)

Table 7. Prevalence of intestinal parasites worm in Buffalo's in relation to age and season in and around Cheyyar Taluk, Thiruvannamalai District

Variable		Trematode	Cestode	Nematode	Total
Age	Adult	50.00% (12)	12.50% (3)	37.50% (9)	24
•	Young	41.66% (10)	25.00% (6)	33.33% (8)	24
Season	Summer	56.00% (14)	8.00% (2)	36.00% (9)	25
	Monsoon	28.57% (8)	21.42% (6)	50.00% (14)	28

Graph 7. Prevalence of intestinal parasites worm in Buffalos in relation to age, and season in and around Cheyyar Taluk

Mixed infection by Trematode + Cestode worms had highest prevalence of 7 (14.58%) followed by Trematode + Nematode of 4 (8.33%) and Nematode + Cestode of 4 (8.33%) while the lowest by Trematode + Cestode + Nematode worms with 1 (2.08) (Table-6 and Graph-6). Among the age groups (Young and Adult), younger animals had higher infection of trematode (50.00%), nematodes (37.50%) and cestode (12.50%) than the adult Buffalo. All the slaughtered Buffalo were males. Among the season (summer and monsoon), Buffalo had heavier infection of trematodes worms during summer months (38.0%) whereas Buffalo had heavy infection of cestode worms (21.42%) and nematodes worms (50.00%) during monsoon months (Table-7 and Graph-7).

DISCUSSION

Coccidia cause an intestinal disease of young Buffalo, usually 3 weeks to 6 months old, but can affect Buffalo up to 2 years old. They are transmitted when:

- 1. Infected Buffalo pass cysts in manure on to the ground;
- 2. Rain washes the cysts from the manure;

- 3. The cysts develop under moist and moderate temperature conditions; and
- 4. Buffalo swallow cysts on moist ground.

As with hair worms and lung worms, transmission is common during rainy times in spring and fall. The diarrhea caused by coccidia may be confused with the diarrhea caused by hairworms, bacteria and viruses. Several types of nematodes or roundworms can infect Buffalo. Although there are many species of worm parasites harbored in the gastrointestinal tract of Buffalo, only a few target species are clinically and economically important. Haemonchus place and Haemonchuscontortus are also known as: the barber pole, large stomach, and twisted stomach or wire worms of Buffalo. These worms are found in the abomasums of Buffalo and are notorious blood suckers. Haemonchus are capable of undergoing a period of arrested development which allows them to persist for long periods of time. They have also shown some seasonal inhibition. Generally these nematodes are restricted to the south and southeastern portions of the United States as major Buffalo parasites. Ostertagiaostertagi is the brown or medium stomach worm and is recognized as the most important nematode parasite of Buffalo raised in North America. This parasite is a resident of the abomasum. In Buffalo this worm is able to arrest its development depending upon the season or number of infecting adults. By arresting its development this allows for a longer duration of infection by adults and evading immune regulation by the host. Trichostrongylusaxei is the small or minute stomach worm. It is found as resident of the abomasums and is immunologically protected somewhat by co-infecting Ostertagia. This worm is usually found in low numbers and in approximately 10% of animals examined for intestinal parasites. Internal parasites can cause significant production losses in Buffalo, resulting in substantial economic losses for owners. Often, parasite losses are subclinical and unnoticed but severe infestation can cause disease and even death. Subclinical production losses caused by internal parasites include reduced milk production, reduced weaning weights, delayed puberty and decreased fertility in replacement heifers, reduced pregnancy rates in mature cows, and reduced feed intake, reduced feed efficiency and immune suppression in all classes of Buffalo. A parasitic relationship exists when one organism (the parasite) benefits at the expense of another organism (the host). The parasite may cause harm to the host - enough to kill it if not properly controlled. Parasites can damage and irritate stomach and intestinal linings or mucosa, resulting in reduced digestion and absorption of nutrients from the intestine as well as bleeding and protein loss from the gut. Parasites are normally host-specific, and Buffalo serve as hosts for a variety of parasites. The major threat to Buffalo health and performance comes from internal parasitic nematodes (worms), especially those found in the stomach and intestines (gastrointestinal parasites). Pasture management is a critical component of effective parasite control. Buffalo production relies on the efficient use of grazing for cost effective weight gains; however, grazing exposes young Buffalo to large numbers of parasite larvae if pasture parasite contamination isn't controlled.

Most of the internal parasites of Buffalo are found in the abomasums stomach) small intestine. (true or Ostertagiaspecies are common internal parasites of Buffalo and can cause significant production losses, severed disease and even death in all classes of Buffalo. They typical Ostertagia spp. Life cycles are direct. Infected Buffalo pass eggs in the manure, and with favorable weather conditions, the eggs hatch and develop into third-stage, infective larvae in about 14 days. These larvae move from the manure up moist grass bides and are eaten as the Buffalo graze. Under normal conditions they do not migrate more than a few feet from the manure pile where they hatched. They penetrate the lining of the abomasums, and mature into egg-laying adults two to four weeks after they're eaten. In this study also revealed Paramphistomes, Strongyle and Eimeriaspecies as the most common parasites of the Buffalo, and are reported as the most incriminated gastro-intestinal parasites of domestic ruminants (Eysker and Ounsun, 1998). VijayaBhaskara Reddy et al. (2012) also reported the highest incidence amphistomes 180 (22.5%) followed by Coccidia 65 (8.1%), Strongyles 61 (7.6%) and Fasciola 30 (3.8%) among Buffalo and buffaloes inPiler, Chittoor district of Andhra Pradesh. The most prevalent infection was that of Amphistomes (34.21%) which is in agreement with the report of Hirani et al. (1999). In this study, younger animals (<12 months) had higher infection of Nematodes, Amphistomes and Eimeria oocysts than the adult Buffalo. Choudhury et al., (1994) concluded that this could be due to heavy grazing in submerged areas. In naturally infected

beef suckling calves, the first OPG peak can be observed at about 3 months of age, involving E. ellipsoidalis, E. bovis and E. zuernii (Parker and Jones, 1987). As compared to females, male Buffalo had higher infection of nematodes, Trematode and Eimeria sp. while female Buffalo had higher infection of Cestodes (6.00%). Among the season (summer and monsoon), Buffalo had heavier infection of Trematodes only during summer months (32.00%) whereas Buffalo had heavy infection of nematodes (30.00%), Eimeriasp (10.00%) and cestodes (10.00%) during monsoon months similarly. Dhar et al., (1982), Gupta et al., (1987), Singh et al., (1997) and Khan et al., (1999) reported nematode (Strongyle infection) was more during monsoon months. Soundararajan (2000) also recorded highest egg per gram (e.p.g) during northeast monsoon (June to August) in Buffalo and Toda buffaloes in Nilgiris hills of Tamil Nadu.

In the present study, the overall prevalence of intestinal parasitic infection (worm count) was 92.00%. Trematodes (Cotylophoroncotylophorum, Fishoederiuselongatus, Gastrothylax and Gigantcotyleexplanatum), cestodes (Haemonchuscontortus. (Monieziaexpansa) and Nematodes Mecistocirrusdigitatus, Trichostrongylusaxei and Oeophagostomumradiatum) were identified in this study. Sey and Eslami (1981) reported Paramphistomumcervi, P. gotoi, P. gracile, P. microbothrium, Cotylophoroncotylophorum, Gastrothylaxcrumenifer, G. compressus, Carmyeriusspatiosus, Calicophoronpapillosus, Orthocoeliumscoliocoeium were identified in ruminants of Iran Buffalo. The prevalence of Paramphistomumin Buffalo was proved to be 32.0% in the current study. Similar prevalence were recorded by Mogdy et al. (2009) who recorded 38.92 % in Egypt and Bouvry and Rau (1984) who confirmed the prevalence of Paramphistomum in Buffalo to be 34 % in Canada. Lower prevalence of Paramphistomum in Buffalo was recorded by Ozdal et al. (2010) who recorded 8.95 % prevalence in Turkey. Similarly, 12% prevalence Titi et al. (2010) recorded of Paramphistomum in Buffalo in Algeria and Haridy et al. (2006) indicated the prevalence of Paramphistomumin Buffalo to be 7.3 % in Egypt. Higher prevalence of Paramphistomumin Buffalo (40.1%) was recorded by Manna et al. (1994) and SintayehuMelaku and Mekonnen Addis (2012) in Ethiopia. Among the age groups (Young and Adult), younger animals (<12 months) had higher infection of Trematode, Cestodeand nematodes than the adult Buffalo. SintayehuMelaku and Mekonnen Addis (2012) reported that the adult Buffalo were highly infected with Paramphistomes than the young animals. The occurrence of parasitic infection was influenced by season. Seasonal influence showed that Buffalo had heavier infection of trematodes worms during summer months whereas Buffalo had heavy infection of Cestode worms and nematodes worms during monsoon months. These findings are in accordance with those reported by Hirani et al. (1999) and Vijaya Bhaskara Reddy et al. (2012). The variation in the incidence of parasitic infections might be due to the differences in the climatic conditions prevailing in the study area. The high prevalence of Coccidia in the month of monsoon might be due to contamination of water bodies which are filled with water resulting from monsoon rains. The onset of southwest monsoon is early during that year in the study area. Hirani et al. (1999) and Raman et al. (1999) reported the occurrence of different parasitic infections with variable prevalence rates from different parts of country. These variations in the prevalence rates might be due to agro climatic variations. Paramphistomosis constitutes a major health hazard

to ruminants particularly in low-lying areas where snails are found abundantly during monsoon and post monsoon season. The death rate due to immature paramphistomosis is very high and may go up to 80% in ruminants (Hassan and Juyal, 2006). Adult flukes that live in rumen and reticulum of ruminants do not cause serious problem, but massive number of immature paramphistomes can migrate through intestinal tract causing acute gastroenteritis with high morbidity and mortality rate especially in young animals (Borgia and collis 1989). The resultant infection pressure by gastrointestinal helminths is more serious in Buffalo that suffer from acute disease, particularly haemonchosis (Haemonchuscontortus). Chronic helminthosis is more widespread and probably of more significance in all grazing ruminants (Allonby and Urquahrt, 1975) because of its insidious effects which reduce weight gain, milk yield, wool production and carcass quality, especially in situation where nutrition is poor (Gatani et al., 1997). Haemonchus species are major gastro-intestinal parasites affecting ruminants across the world (Tanveer Hussain et al., 2014). In conclusion, the egg output by gastrointestinal parasites; which is an important index to determine the degree of pasture contamination with parasitic eggs / oocysts suggests periodic deworming treatment to the Buffalo.

REFERENCES

- Allonby, E.W. and Urquhart M. 1975. The epidemiology and pathogenic significance of haemochosis in a Merino flock in East Africa. *Veteranry Parasitology*, 1: 129-143.
- Al-Quaisy, H.H.K., Al-Zubaidy, A.J., Altaf, K.I. and Makkiawi, A. 1987. The pathogenicity of haemonchosis in sheep and goats in Iraq. I. Clinical, parasitological and hematological findings. *Veterinary Parasitology*. 24:221– 228.
- Andrews, T. 2002. UK Coccidiosis survey in calves. *Veterinary Times*. 34(32):22
- Bandyopadhyay S., Mandal S., Datta K.K., Devi P., De S., Bera A.K., Bhattacharya D. 2010. Economic analysis risk of gastrointestinal parasitic infection in cattle in North Eastern States. *Tropical Animal Health Product*. 42 :1481.
- Belem A. M. G. ,Ouédraogo O.P., René Bessin, R. 2001. Gastro-intestinal nematodes and cestodes of cattle in Burkina Faso. Biotechnol. Agron. Soc. Environ., 5: 17-21.
- Bennema, S.C., Vercruvsse, J., Morgan, E., Stafford, K., Hoglund, J., Demeler, J., Von Samson-Himmelstierna, G., Charlier, J. 2010. Epidemiology and risk factors for exposure to gastrointestinal nematodes in dairy herds in northwestern Europe. *Veterinary Parasitology*. 173: 247-
- 254. Bentwich, Z., A. Kalinkovich, Z. Weisman, G. Borkow, N. Beyers, and A.D. Beyers. 1999. Can eradication of helminthic infections change the face of AIDS and tuberculosis. *Immunology Today*. 20:485–487.
- Bindernagel, J. 1970. Abomasal nematodes of sympatric wild ruminants in Uganda, East Africa. Ph.d., thesis, *University* of Wisconsin.
- Bowman, D. D. 1999. Georgis' *Parasitology for Veterinarians*, 7th Edn. W. B.Saunders. Philadelphia.
- Carlos F, Antonio, Noronha D Jr, Wilma A, Starke B, Donald WD, 2009. *Eimeria Spp.* In Brazilian Water Buffalo American Society of Parasitologists. *Journal of Parasitology*. 95(1):231–234.
- Choudhury, S.M.Z.H., Mondal, M.M.H., Islam, M.J.F.A., Taimur, B.H.R. and Ershaduzzaman, M. 1994. *Indian Veterinary Journal.* 71: 121.

- Cockrill, W.R. 1968. The working buffalo. *In: The Husbandry* and Health of the Domestic Buffalo, edited by W.R. Cockrill. Food and Agriculture Organization of the United Nations, Rome, Italy.
- Daszak, P., A. A. Cunningham, and A. D. Hyatt. 2000. Emerging infectious diseases of wildlife-threats to biodiversityand human health. *Science*. 287:443–449.
- Davoudi Y, Yagoob G, Freydoun NM, Zahra E, Saied S, 2011. Study on prevalence rate of Coccidiosis in diarrheic calves in East-Azerbaijan province *Advances in Environmental Biology*. 5(7):1563 -1565.
- Dhar, D.N., R.L. Sharma and G.C. Bansal. 1982. Gastrointestinal nematodes in sheep in Kashmir. *Veterinary Parasitology.*, 11:271-277.
- Dorny, P., Stoliar, V., Charlier, J., Meas, S., Sorn, S., Chea, B., Holl, D., Van Aken, D. and Vercruvsse, J. 2011. Infections with gastrointestinal nematodes, Fasciola and Paramphitunnel. stomum in cattle in Cambodia and their association with morbidity parameters. *Veterinary Parasitology*. 175: 293-199.
- Dubey JP, Wouda W, and Muskens J. 2008. Fatal Intestinal Coccidiosis in aThree-Week-Old Buffalo calf (*BUBALUS BUBALUS*) Journal of Parasitology. 94(6):1289–1294.
- Elias, D., H. Akuffo, and S. Britton, 2006. Helminthes could influence the out come of vaccines against TB in the tropics. *Parasite Immunology*. 28:507–514.
- Eysker, M. and Ounsuni, R.A. 1998. Observations on epidemiological and clinical aspects of gastrointestinal helminthiosis of sheep in Northern Nigeria during the rainy seasons. Review *Veteranry Science* 28: 58-62.
- FAO, 2000. Water Buffalo: an Asset Undervalued, pp.1-6.
- FAO, 2008. Food and Agriculture Organization. Rome, Italy. STAT database.
- Gill, B. S., M. B. Chabra, and N. B. Lall. 1963. A new species of coccidium, *Eimeriabareillyin*, sp. from buffaloes. Archives fur Protistenkunde 106: 571–574.
- Gupta, R.P., C.L. Yadav and S.S. Chaudhri., 1987. Epidemiology of gastrointestinal nematodes of sheep and goats in Haryana, *Indian Veterinary Parasitology.*,
- Harvell, C., Kim, K., Burkholder, J., Colwell, R., Epsteins, P., Grimes, D., Hofmann, E., Lipp, E., Osterhaus, A., Overstreet, R., Porter, J., Smith,G. and Vasta, G. 1999. Emerging marine diseases-climate links and anthropogenic factors. *Science*. 285, 1505–1510.
- Hayat, C.S., Malik, A.A., Anwar, A.H. and Iqbal, Z. 1990. Effect of experimentally induced coccidiosis on some blood parameters and productivity of lambs. *PakistanVeterinary Journal.* 10, 60–62.
- Hirani, N.D., 1999. Journal of Veterinary Parasitology., 13: 147.
- Iqbal, Z., Akhtar, M., Khan, M.N. and Riaz, M. 1993. Prevalence and economic significance of haemonchosis in sheep and goats slaughtered at Faisala badabattoir. *Pakistan Journal of Agriculture and Sciences*. 30: 51–53.
- Jittapalapong S., Sangwaranond A., Nimsuphan B., Inpankaew T., Phasuk C., Pinyopanuwat N., Chimnoil W., Kengradomkij C., Arunwipat P., and Anakewith T. 2011. Prevalence of Gastro-Intestinal Parasites of Dairy Cows in Thailand. *Kasetsart Journal (Nat. Sci.)*, 45: 40-45.
- Khan, F.A., Swarnkar, C.P., Singh, D., Jayasankar. and Bhawan, P.S.K. 1999. Ovine gastrointestinal parasitism in farmers flocks under semi arid conditions of Rajasthan. *Indian Journal of Small Ruminants* 5: 65-70.
- Khan, M.N., Sajid, M.S., Khan, M.K., Iqbal, Z., and Hussain, A. 2010. Gastrointestinal helminthiasis: prevalence and

associated determinants in domestic ruminants of district Toba Tek Singh, Punjab, Pakisthan. *Parasitology Research.*, 107: 787-794.

- Levine, N. D. 1973. Protozoan parasites of domestic animals and of man, 2nd ed. Burgess Publishing Co., Minneapolis, Minnesota, 406 p., and V. Ivens. 1967. The sporulated oocysts of *Eimeria illinoisensis* n. sp. and of other species of *Eimeria* of the ox. *Journal of Proto zoology*. 14:351– 360.
- Manna, A., S. Prmanik and G. Mukherjee, S. 1994. Incidence of paramphistomiasis in West Bengal. *Indian Journal of Animal Health*, 33: 87-89.
- Mimioglu M, Goksu K, Sayin F, 1969. Veteriner Tibbi Protozoology II. (Veterinary and Medical Protozoology II) (in Turkish). Ankara Univ Vet Fak Yay 248: 1129-1144.
- Ozdal, N., A. Gul and S. Deger, 2010. Prevalence of *paramphistomum* infection in Cattle and sheep in Vanprovince, *Turkey Helminthologia*, 47: 20-24.
- Parker, R.J., Jones, G.W., 1987. The development of eimerian infections during the first eight months of life in unweaned beef calves in a dry tropical region of Australia. *Veterinary Parasitology*. 25 : 1–7.
- Pellérdy LP, 1974. *Coccidia and Coccidiosis*. Verlag Paul Parey, Berlin and Hamburg, 959 p.
- Perri, A.F., Mejia, M.E., Licoff, N., Lazaro, L., Miglierina, M., Ornstein, A., Becu-Villalobos, D., Lacau-Mengido, I.M. 2011. Gastrointestinal parasites presence during the peripartum decreases total milk production in grazing dairy Holstein cows. *Veterinary Parasitology.*, 178 : 311-318.
- Raman, M., R. Anandan, S.A. Joseph and P.K. Sanyal. 1999. Epidemiology of gastrointestinal helminths in dairy animals in and around Madras, *Indian Journal of Veterinary Parasitology*. 13 : 163-164.
- Rathore, V.R. and Senger, Y.S. 2005. Diagnostic Parasitology. Pointer Publishers, Jaipur, India. Roy, S. 2004. *Indian Veterinary Journal.*, 81 : 345
- Restani, R., And P. Tassi. 1969. Eimeriabareillyin bufaliItaliani. Attidella Societa Italianadelle Science Veterinarie. 23:881–885.
- Ribeiro, M. G., H. Langoni, J. A. Jerez, D. S. Leite, F. Ferreira, and S. M. Gennari. 2000. Identification of entero pathogens from buffalo calves with and without diarrhoea in the Ribeira Valley, State of Sao Paulo, Brazil. *Brazilian Journal of Veterinary Research and Animal Science*. 37:159–165.
- Rinaldi, M., Dreesen, L., Hoorens, P.R., Li R.W., Claerebout, E., Goddeeris, B., Vercruvsse, JVan Den Broek, W., and Geldhof, P. 2011. Infection with gastrointestinal nematode Ostertagiaostertagi in cattle affects mucus bio systhesis in the abomasums. *Veterinary Research.*, 42: 61.
- Sani, R. A., and P. Chandrawathani. 1987. Coccidia of buffalo calves. *Tropical Biomedicine*. 4:190–191.

- Sanyal, P. K., N. S. Ruprah, and M. B. Chhabra. 1984/1985a. Evidence of cell mediated immune response in infection with *Eimeria bareillyi* in buffaloes. *Veterinary Parasitology*. 17:111–115.
- Sayin, F. 1968. The sporulated oocysts of *Eimeriaankarensisn*. sp. And of other species of *Eimeria* of buffalo in Turkey and transmission of four species of *Eimeria* from buffalo to cow-calves. *Ankara University Veteriner Fakultesi Dergisi*. 15:282–300.
- Sey, O and Eslami, A. 1981. Rewiew of amphistomes (Trematoda, paramphistomata) in Iranian domestic ruminants. Parasite Hungary. 14: 61-65.
- Singh,D., C.P.Swarnkar, F.A. Khan, C.P. Srivastava and P.S.K.Bhagawan 1997. Epidemiology of ovine gastrointestinal nematodes at an organized farm in Rajasthan, *India small Ruminant research*. 26:31-37.
- Sintayehu Melaku and Mekonnen Addis. 2012. Prevalence and Intensity of Paramphistomum in Ruminants Slaughtered at Debre Zeit Industrial Abattoir, Ethiopia. Global Veterinaria 8 (3): 315-319.
- Sloss, M.W., Kemp, R.L. and Zajac, A.M. 1994. Veterinary Clinical Parasitology. International Book Distributing Co. Sixth edition.
- Soulsby E.L.J, (Ed.) 1982. Helminths, Artropods and Protozoa of Domesticated Animals. 7th ed. Bailliere Tindall, *London*, 809 p.
- Soundararajan, C. 2000. Epidemiological studies of gastrointestinal nematodes in ruminants and immunoprophylaxis against Haemonchus contortus infection. Ph.d., thesis submitted to Tamil Nadu Veterinary and Animal Sciences University.
- Stromberg, B.E., Gasbarre, L.C., Waite, A., Bechtol, D.T., Brown, M.S., Robinson, N.A., Olson, E.J., and Newcomb, H. 2012. Cooperiapunctata: effect on cattle productivity? *Veterinary Parasitology.*, 183 : 284-291.
- Tanveer Hussain, Kathiravan Periasamy, Asif Nadeem, Masroor Ellahi Babar, Rudolf Pichler, Adama Diallo., 2014. Sympatric species distribution, genetic diversity and population structure of Haemonchus isolates from domestic ruminants in Pakistan. Veterinary Parasitology 206 : 188– 199.
- Taylor, M.A., Coop, R.L. and Wall, R.L. 2007. Veterinary Parasitology. Blackwell publishing. Third edition.
- Urquhart, G.M., Armour, J., Duncan, J.L., Dunn, A.M. and Jennings, F.W. 1987. *Veterinary Parasitology*. ELBS . First edition.
- Vijaya Bhaskara Reddy, M, P. Sasikala, A. Karthik, 2012. Prevalence of parasitic infections in cattle and buffaloes of Piler, Chittoor district of Andhra Pradesh. *International Journal of Pharmaceutical Science and Health care*. 6(2): 132-135.
- Zar, H.H. 1984. Biostatistical analysis: Prentice Hall Inc. USA.
