Research Article

Nonderogatory Directed Webgraph

Ilhan Hacioglu, Selman Bayat, Ozkan Yilmaz, and Oktay Cesur
Department of Mathematics, Arts and Science Faculty, Çanakkale Onsekiz Mart University, 17100 Çanakkale, Turkey
Correspondence should be addressed to Ilhan Hacioglu; hacioglu@comu.edu.tr

Received 26 December 2012; Accepted 12 March 2013
Academic Editor: Palle E. Jorgensen
Copyright © 2013 Ilhan Hacioglu et al. This is an open access article distributed under the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

By assigning a certain direction to the webgraphs, which are defined as the Cartesian product of cycles and paths, we prove that they are nonderogatory.

1. Introduction

Let G be a digraph with vertices labelled $\{1,2, \ldots, n\}$ and its adjacency matrix $A(G)$ the $n \times n$ matrix whose $i j$ th entry is the number of arcs joining vertex i to vertex j. A digraph is nonderogatory if the characteristic polynomial and minimal polynomial of its adjacency matrix are equal. Computation of the minimal polynomial of a matrix is harder than the characteristic polynomial especially when the matrix is large. That is, why it is important to know when the matrix is nonderogatory. The ladder graphs are examples of nonderogatory graphs first studied by Lim and Lam [1]. Later, difans were added to this family by Deng and Gan [2]. After that, Gan [3], proved that the complete product of difans and diwheels is also nonderogatory [3]. Bravo and Rada [4], found a characterization of nonderogatory unicyclic digraphs in terms of Hamiltonicity conditions. In another article, Rada [5], showed that directed windmills $M_{h}(r)$ where $r \geq 2, h \geq 3$, are nonderogatory if and only if $r=2$.

All graphs considered in the paper are directed, finite, loopless, and without multiple arcs.

A dipath P_{n} is a digraph (directed graph) with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$ and $\operatorname{arcs}\left(v_{i}, v_{i+1}\right)$ for $i=1, \ldots, n-1$.

A dicycle C_{n} is a digraph with vertex set $\left\{v_{1}, \ldots, v_{n}\right\}$ having $\operatorname{arcs}\left(v_{i}, v_{i+1}\right)$ for $i=1, \ldots, n-1$ and $\left(v_{n}, v_{1}\right)$.

A Cartesian product $G_{1} \times G_{2}$ of graphs G_{1} and G_{2} with disjoint point sets V_{1} and V_{2} and edge sets X_{1} and X_{2} is the graph with point set $V_{1} \times V_{2}$ and $u=\left(u_{1}, u_{2}\right)$ adjacent with $v=\left(v_{1}, v_{2}\right)$ whenever $u_{1}=v_{1}$ and u_{2} adjacent with v_{2} or $u_{2}=v_{2}$ and u_{1} adjacent with v_{1}.

We use the definition as in [6]; for any arbitrary $n \times n$ matrix A, form the characteristic matrix $x I_{n}-A$ and let $d_{j}(x)$ denote the greatest common divisor (gcd) of all minors of order j of $x I_{n}-A, j=1,2, \ldots, n$. These polynomials are called the determinantal divisor of $x I_{n}-A$, and it follows that the quotients $i_{j}(x)=d_{j}(x) / d_{j-1}(x)$ for $j=1,2, \ldots, n\left(d_{0} \equiv 1\right)$ are also polynomials, called the similarity invariants of A.

We use the following theorem from [6] to prove our main result.

Theorem 1. A matrix $A(G)$ is nonderogatory if and only if its first $n-1$ similarity invariants are unity.

2. Diwebgraph

The diwebgraph (m, n) denoted shortly by $\vec{W}(m, n)$ is the digraph obtained by taking the Cartesian product of C_{m} and P_{n}.

Without loss of generality, we assume that the arcs of C_{m} have clockwise orientation and the arcs of P_{n} have inward orientation as in Figure 1. For the algorithms described below, we used the prescribed labelling in the figure.

The adjacency matrix $A_{m n \times m n}$ of $\vec{W}(m, n)$ can be put in a block matrix form with blocks:
(1) $A_{i i}=A\left(C_{m}\right)$ for $i=1,2, \ldots, n$,
(2) $A_{i, i+1}=I_{m}$ for $i=1,2, \ldots, n-1$, where I_{m} is $m \times m$ identity matrix,
(3) all the remaining blocks are zero matrices and if we write them explicitly, $A_{i j}=\mathbf{0}$ for $i=1,2, \ldots, n-2$, $j=i+2, i+3, \ldots, n$ and $A_{i j}=\mathbf{0}$ for $i=2,3, \ldots, n$, $j=1,2, \ldots, i-1$, where $\mathbf{0}$ is $m \times m$ zero matrix.

For example, the adjacency matrix of the graph in Figure 1 is shown below:

$$
\left[\begin{array}{lllll|llll|lllll}
0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{1}
\end{array}\right)
$$

We compute the invariant factors of characteristic matrix $M=x I-A$ by using the following algorithms. In all the algorithms r_{i} and c_{i} denote the i th row and column, respectively, and $r_{i} \leftrightarrow r_{j}\left(c_{i} \leftrightarrow c_{j}\right)$ means interchange of row (column) i with j.

After Algorithm 1, we obtain a block matrix with n blocks on the diagonal of the form

$$
\begin{equation*}
D_{m \times m}=\operatorname{diag}\left[(-1)^{m-1}\left(x^{m}-1\right)^{1}\right] \tag{2}
\end{equation*}
$$

and all the other nonzero entries are

$$
\begin{equation*}
M_{i j}=(-1)^{r+s}\binom{m}{s-r} x^{m-(s-r)} \tag{3}
\end{equation*}
$$

where $i=r m, r=1,2, \ldots, n$ and $j=s m, s=r+1, r+$ $2, \ldots, n$.

For example, applying Algorithm 1 to $M=x I-$ $A(\vec{W}(5,3))$, we get

$$
M=\left[\begin{array}{ccccc|ccccc|ccccc}
-1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & x^{5}-1 & 0 & 0 & 0 & 0 & -5 x^{4} & 0 & 0 & 0 & 0 & 10 x^{3} \\
\hline 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & x^{5}-1 & 0 & 0 & 0 & 0 & -5 x^{4} \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & x^{5}-1
\end{array}\right] .
$$

Now, we apply the next algorithm to put the matrix M in a simpler form.

By applying Algorithm 2, the matrix M whose nonzero entries are the first $m n-n$ diagonal entries that are all 1 and

Input: m, n and $M=x I-A(\vec{W}(m, n))$
(1) for $k=0 \rightarrow m n-m$ by m do

$$
\text { for } i=m \rightarrow 2 \text { by }(-1) \text { do }
$$

$c_{k+i-1} \leftarrow x \times c_{k+i}+c_{k+i-1}$
end for
for $i=1 \rightarrow m-1$ do
$r_{k+m} \leftarrow M_{k+m, k+i+1} \times r_{k+i}+r_{k+m}$
end for
if $(k<m n-m)$ then for $i=k+2 \rightarrow k+m$ do
$c_{i+m-1} \leftarrow(-1) \times c_{i}+c_{i+m-1}$ end for
end if
for $i=1 \rightarrow m-1$ do
$c_{k+i} \leftrightarrow c_{k+i+1}$
end for
(16) end for
(17) for $k=m n-m \rightarrow m$ by $(-m)$ do
(18) for $i=m n-1 \rightarrow m+1$ by (-1) do
(19) \quad if $(i \bmod m \neq 0)$ then
(20)
$r_{k} \leftarrow M_{k i} \times r_{i}+r_{k}$
end if
end for
(23) end for

Output: M

Algorithm 1

Input: m, n and M (output of the Algorithm 1)
(1) $s \leftarrow 0$
(2) for $k=m \rightarrow m n$ by m do
(3) for $i=k-s \rightarrow m n-1$ do
(4) $\quad r_{i} \leftrightarrow r_{i+1}$
(5) $\quad c_{i} \leftrightarrow c_{i+1}$
(6) end for
(7) $s \leftarrow s+1$
(8) end for
(9) for $i=1 \rightarrow m n-n$ do
(10) $\quad r_{i} \leftarrow(-1) \times r_{i}$
(11) end for

Output: M

Algorithm 2

Input: m, n and N

(1) $U \leftarrow$ minor $N_{n 1}$
(2) for $i=1 \rightarrow n-2$ do
(3) $\quad r_{i+1} \leftarrow \frac{-\left(x^{m}-1\right)}{U_{i i}} \times r_{i}+r_{i+1}$
(4) end for

Output: U
the remaining $n \times n$ block N on the diagonal has the following form.

The entry $N_{11}=x^{m}-1$ and the remaining entries on the first row are given by $(-1)^{i}\binom{m}{i} x^{m-i}$, where $i=1,2, \ldots$, $n-1$. The next row of N is obtained by deleting the last entry of the previous row, then cyclic shifting of it, and so on.

For example, applying Algorithm 2 to M (output of the Algorithm 1 applied to $M=x I-A(\vec{W}(5,3)))$, we get

$$
M=\left[\begin{array}{cccccccccccc|ccc}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \tag{5}\\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\
\hline 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & x^{5}-1 & -5 x^{4} & 10 x^{3} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & x^{5}-1 & -5 x^{4} \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & x^{5}-1
\end{array}\right],
$$

$$
N=\left[\begin{array}{ccc}
x^{5}-1 & -5 x^{4} & 10 x^{3} \tag{6}\\
0 & x^{5}-1 & -5 x^{4} \\
0 & 0 & x^{5}-1
\end{array}\right]
$$

Now, we have to get the relationship between the invariant factors of N.

Lemma 2. We have the following relationship between the determinant of some of the minors of (N);

$$
\begin{equation*}
\operatorname{gcd}\left(\operatorname{det}\left(\operatorname{minor} N_{11}\right), \operatorname{det}\left(\operatorname{minor} N_{n 1}\right)\right)=1 \tag{7}
\end{equation*}
$$

Proof. $\operatorname{det}\left(\right.$ minor $\left.N_{11}\right)=\left(x^{m}-1\right)^{n-1}$ and $\operatorname{det}\left(\operatorname{minor} N_{n 1}\right)$ can be computed by Algorithm 3, which turns our matrix into a diagonal one. Since the entries on the diagonal are not a factor of $x^{m}-1$ the result follows.

For example, applying Algorithm 3 to the 3 by 3 matrix N in the example, we get

$$
U=\left[\begin{array}{cc}
-5 x^{4} & 10 x^{3} \tag{8}\\
0 & -\frac{3 x^{5}+2}{x}
\end{array}\right]
$$

Theorem 3. $\vec{W}(m, n)$ is nonderogatory.
Proof. By applying Lemma 2, we get that the

$$
\begin{equation*}
\operatorname{gcd}\left(\operatorname{det}\left(\operatorname{minor} N_{11}\right), \operatorname{det}\left(\operatorname{minor} N_{n 1}\right)\right)=1 \tag{9}
\end{equation*}
$$

Now, by Theorem 1, the result follows.
Remark 4. By changing the orientation of the arcs of C_{m} to be counterclockwise and the arcs of P_{n} to be outward and applying similar algorithms shown above, we can show that the formed new diwebgraphs are still nonderogatory.

Further topics for research: are there any other digraphs formed by a Cartesian product that are nonderogatory?

References

[1] C. K. Lim and K. S. Lam, "The characteristic polynomial of ladder digraph and an annihilating uniqueness theorem," Discrete Mathematics, vol. 151, no. 1-3, pp. 161-167, 1996.
[2] C. L. Deng and C. S. Gan, "On digraphs with non-derogatory adjacency matrix," Bulletin of the Malaysian Mathematical Society, vol. 21, no. 2, pp. 87-93, 1998.
[3] C. S. Gan, "The complete product of annihilatingly unique digraphs," International Journal of Mathematics and Mathematical Sciences, no. 9, pp. 1327-1331, 2005.
[4] D. Bravo and J. Rada, "Nonderogatory unicyclic digraphs," International Journal of Mathematics and Mathematical Sciences, vol. 2007, Article ID 46851, 8 pages, 2007.
[5] J. Rada, "Nonderogatory directed windmills," Revista Colombiana de Matemáticas, vol. 42, no. 1, pp. 61-66, 2008.
[6] S. Barnett, Polynomials and Linear Control Systems, Marcel Dekker, New York, NY, USA, 1983.

