

Automorphisms

The Contragredient and Hermitian Duals

paper: www.liegroups.org/papers or arXiv

slides: www.liegroups.org/talks

Honk Please

Overview

G(F) reductive, F local

$$\tau \ \bigcirc \ \widehat{G}(F)_{adm} \longleftrightarrow \{\phi: W'_F \to {}^L\!\!G\} \ \bigcirc \ \gamma$$

Examples:

- 1) $\tau(\pi) = \pi^*$ (contragredient)
- 2) $\tau(\pi) = \pi^h$ Hermitian dual, and variants of this
- 3) γ : algebraic automorphism of G^{\vee}
- 4) γ : automorphism of $G^{\vee}(\mathbb{C})$ viewed as a *real* group

Closely related: D. Prasad (recent), D. Prasad/Ramakrishnan

 $\pi^* = \text{contragredient of } \pi$

Question: What is $\pi \to \pi^*$ in terms of L-homomorphisms?

(thanks to Kevin Buzzard for asking)

$$\phi: W'_F \to {}^L G \to \Pi(\phi) \quad \text{(conjectural)}$$

Question: Given: $\pi \in \Pi(\phi)$. Find ϕ^* so that $\pi^* \in \Pi(\phi^*)$.

GL(n, F) (F p-adic)

 $\phi \rightsquigarrow \pi(\phi) \text{ (singleton)}$

 ϕ = representation of $W'_F \rightsquigarrow \phi^* = {}^t \phi^{-1}$ (contragradient) Theorem (Harris/Taylor/Henniart):

LLC for GL(n, F) commutes with the contragredient:

$$\pi(\phi^*) = \pi(\phi)^*$$

(tied up with L, epsilon, and especially gamma factors)

General ${\cal G}$

C = Chevalley automorphism of $G^{\vee}(\mathbb{C})$:

1)
$$C(h) = h^{-1}, h \in H^{\vee}, C^2 = 1;$$

- 2) $C(h) \sim h^{-1}$ for all semisimple elements h,
- 3) C is unique up to conjugation by an inner automorphism,
- 4) C is the Cartan involution of the split real form of G^{\vee} ,
- 5) C defined in terms of the pinning $(H_0^{\vee}, B_0^{\vee}, \{X_{\alpha^{\vee}}\})$ defining ${}^{L}G$,
- 6) C extends to ${}^{L}G$, trivial on the Galois group.

Conjecture: Assume the local Langlands classification is known for π and π^* . Then

$$\pi \in \Pi(\phi) \Leftrightarrow \pi^* \in \Pi(C \circ \phi)$$

i.e.

$$\Pi(\phi)^* = \Pi(C \circ \phi)$$

(implies $\Pi(\phi)^*$ is an L-packet) GL(n): $C(g) = {}^tg^{-1} \Rightarrow$ true for GL(n, F) p-adic D. Prasad: stronger version of the same conjecture

Theorem: (A/Vogan) The conjecture holds over \mathbb{R} and \mathbb{C} Sketch of proof (comes down to a characterization of LLC) Fix $H_0, H_0^{\vee}, X^*(H_0) = X_*(H_0^{\vee})$ defining G^{\vee}

$$\phi(z) = z^{\lambda} \overline{z}^{\lambda'} \quad (\lambda, \lambda' \in X_*(H_0^{\vee}) \otimes \mathbb{C})$$

$$G_{rad} \hookrightarrow G \rightsquigarrow {}^{L}G \twoheadrightarrow {}^{p}G_{rad}$$

Definition: $\phi: W_{\mathbb{R}} \to {}^{L}G$

$$\chi_{inf}(\phi) = \lambda \in X^*(H_0) \otimes \mathbb{C}$$

$$\chi_{rad}(\phi) = \pi(p \circ \phi) \in \widehat{G_{rad}(\mathbb{R})} \quad \text{(from the torus case)}$$

Definition: $\chi_{inf}(\pi), \chi_{rad}(\pi)$

(infinitesimal character and radical characters of $\pi)$

Theorem:

The correspondence $\phi \to \Pi(\phi)$ is uniquely determined by:

- 1) $\Pi(\phi)$ has infinitesimal character $\chi_{inf}(\phi)$
- 2) $\Pi(\phi)$ has radical character $\chi_{rad}(\phi)$,
- 3) compatibility with parabolic induction: roughly:

Note: A discrete series L-packet is determined by an infinitesimal and radical character (don't need the full central character, embedding G in a group with connected center, etc.)

Lemma A: 1) $\chi_{inf}(\pi^*) = -\chi_{inf}(\pi)$ 2) $\chi_{rad}(\pi^*) = \chi_{rad}(\pi)^*$ 3) $\operatorname{Ind}_{M}^{G}(\pi_{M}^{*}) \simeq \operatorname{Ind}_{M}^{G}(\pi_{M})^{*}$ Lemma B: 1) $\chi_{inf}(C \circ \phi) = -\chi_{inf}(\phi)$ 2) $\chi_{rad}(C \circ \phi) = \chi_{rad}(\phi)^*$ (torus case) 3) $C_G|_M = C_M$

 \Rightarrow the theorem

Theorem is a special case of:

F = $\mathbb{R},\,G$ arbitrary:

 $\tau \in \operatorname{Aut}(G) = \operatorname{Aut}_{alg=hol}(G), \ \tau \theta = \theta \tau$ $\tau \text{ acts on } (\mathfrak{g}, K) \text{-modules}$

$$\operatorname{Aut}(G) \to \operatorname{Out}(G) \simeq \operatorname{Out}(G^{\vee}) \hookrightarrow \operatorname{Aut}({}^{L}G)$$

$$\tau \longrightarrow \tau^t$$

Theorem

$$\Pi(\phi)^{\tau} = \Pi(\tau^t \circ \phi)$$

 $(\tau = C \Rightarrow \text{contragredient Theorem})$

Digression: version without packets?

For simplicity assume: G is adjoint, simply connected, and Aut(G) = 1.

G has real forms $G_1(\mathbb{R}), \ldots, G_n(\mathbb{R}),$ K_1, \ldots, K_n (complexified maximal compacts)

 $\mathcal{X} = \bigcup_i K_i \backslash G / B$

$$\mathcal{X}^{\vee} = \bigcup_{j} K_{j}^{\vee} \backslash G^{\vee} / B^{\vee}$$

Digression: version without packets?

Theorem (atlas algorithm): There is a canonical bijection:

$$\{(x,y)\in\mathcal{X}\times\mathcal{X}^{\vee}\}_{0}\longleftrightarrow\bigcup_{i}\widehat{G_{i}(\mathbb{R})}_{\rho}$$

[{}_0: subset of (x, y) satisfying $\theta_x^t = -\theta_y$]

[General statement: fix an inner class; strong real forms; other infinitesimal characters]

```
y \rightsquigarrow \phi, x \rightsquigarrow \pi \text{ in } \Pi(\phi)
```

involution of $\{(x, y)\}$?

Contragredient: $(x, y) \rightarrow (w_0 x, w_0 C(y))$

Different version: D. Prasad

G: complex reductive, θ = involution, $K = G^{\theta} \leftrightarrow G(\mathbb{R})$ $(\pi, V) = (\mathfrak{g}, K)$ -module (everything here is complex) correspond to representations of $G(\mathbb{R})$

Definition: The Hermitian dual (π^h, V^h) of (π, V) : V^h : K-finite, conjugate-linear functionals $V \to \mathbb{C}$

$$\pi^{h}(X)(f)(v) = -\pi(f(X)v) \quad (X \in \mathfrak{g}_{0})$$

better:

$$\pi^{h}(X)(f)(v) = -\pi(f(\sigma(X))v) \quad (X \in \mathfrak{g})$$

 $(\mathfrak{g}^{\sigma}=\mathfrak{g}_0)$

 (π, V) irreducible

Lemma: π has an invariant Hermitian form

$$\langle \pi(X)v, w \rangle + \langle v, \pi(\sigma(X))w \rangle = 0$$

if and only if $(\pi, V) \simeq (\pi^h, V^h)$.

Do not assume \langle , \rangle is definite.

Unitary dual: subset of the fixed points of the $\pi \to \pi^h$ (those for which the form is definite).

Question: What is $\pi \to \pi^h$ on the level of L-homomorphisms?

Guess: since π^h involves σ ... use an anti-holomorphic involution of LG ? Which one?

Digression on real forms

G complex

 θ (holomorphic involution), $K = G^{\theta}$ σ (antiholomorphic involution), $G(\mathbb{R}) = G^{\sigma}$ Fix σ_c , $G_c(\mathbb{R}) = G^{\sigma_c}$ is compact (compact real form)

$$\theta \leftrightarrow \sigma: \quad \theta = \sigma \sigma_c, \sigma = \theta \sigma_c$$

 $K(\mathbb{R}) = K \cap G(\mathbb{R})$ is a maximal compact subgroup of $G(\mathbb{R})$

Digression on real forms

Some standard real forms

σ	θ	real form
σ_s	$\theta_s = C$	split
σ_{qs}	principal	quasisplit
σ	heta	$G(\mathbb{R})$
σ_{qc}	distinguished	quasicompact
σ_c	$\theta_c = 1$	compact

quasisplit: most split in the inner class (σ_{qs} fixes a Borel) quasicompact: most compact in the inner class (θ_{qc} distinguished)

(Distinguished: preserves a splitting datum $(G, H, \{X_{\alpha}\})$)

(Yu: "quasianisotropic")

Digression on real forms

Example:

SO(5,5)	split=quasisplit
SO(7,3)	$G(\mathbb{R})$
SO(9,1)	quasicompact
SO(10)	compact

SO(5,5)	split
SO(6, 4)	quasisplit
SO(8,2)	$G(\mathbb{R})$
SO(10)	compact=quasicompact

 δ^{\vee} distinguished

 δ^{\vee} think of as a Cartan involution $\rightsquigarrow \sigma_{qc}^{\vee}$ quasicompact real form, (antiholomorphic automorphism of G^{\vee} , ${}^{L}G^{\vee}$) Theorem: For $F = \mathbb{R}$, G arbitrary:

$$\Pi(\phi)^h = \Pi(\sigma_{qc}^{\vee} \circ \phi)$$

Note: $\sigma_{qc}^{\vee} = \sigma_c^{\vee}$ iff $G(\mathbb{R})$ is split

Note: This is a kind of functoriality for antiholomorphic automorphisms of ${}^{L}G$... what about when F is p-adic?

The Hermitian Dual: GL(n)

GL(n, F), F local, characteristic 0

 $\delta^{\vee} = 1, \ \sigma^{\vee}$ is the compact real form, $\sigma^{\vee}(g) = {}^t \overline{g}^{-1}$ $GL(n, \mathbb{C})^{\sigma^{\vee}} = U(n)$

 $\phi: W'_F \to GL(n, \mathbb{C}), n$ -dimensional representation

Hermitian dual of ϕ : $\phi^h = t \overline{\phi}^{-1}$

1) ϕ preserves a Hermitian form $\Leftrightarrow \phi \simeq \phi^h$

2) ϕ is unitary $\leftrightarrow \phi = \phi^h$

Hermitian dual of π defined as over \mathbb{R}

Theorem: (A/Ciubotaru) GL(n, F) for F local, characteristic 0 1) LLC commutes with the Hermitian dual:

$$\pi(\phi^h) = \pi(\phi)^h$$

2) ϕ is Hermitian if and only if $\pi(\phi)$ is Hermitian

3) ϕ is unitary if and only if $\pi(\phi)$ is tempered

Sketch of proof in p-adic case: supercuspidal, discrete series, relative discrete series, induction

Digression: KLV for forms

Kazhdan-Lusztig-Vogan picture

 λ = regular infinitesimal character

S = $\{\gamma\}$ parameter set (finite) for irreducible representations with infinitesimal character λ

 $\gamma \rightsquigarrow \pi(\gamma)$: irreducible representation

 $\gamma \rightsquigarrow I(\gamma)$: standard representation

Digression: KLV for forms

Character theory:

$$\pi(\gamma) = \sum_{\delta \in S} (-1)^{\ell(\gamma) - \ell(\delta)} P_{\gamma,\delta}(1) I(\delta)$$

 $P_{\gamma,\delta}:$ Kazhdan-Lusztig-Vogan polynomial

Version for representations equipped with Hermitian forms?

$$(\pi(\gamma), \langle , \rangle) \stackrel{?}{=} \sum_{\delta \in S} (-1)^{\ell(\gamma) - \ell(\delta)} M^{h}_{\gamma, \delta}(I(\delta), \langle , \rangle)$$

some $M^h_{\gamma,\delta} \in \mathbb{Z}[s]$ (s² = 1), (presumably given by some kind of KLV polynomial)

 $(a+bs)(\pi,\langle,\rangle)$ means: $a(\pi,\langle,\rangle)+b(\pi,-\langle,\rangle)$

Digression: KLV for forms

Problem:

- 1) $\pi(\gamma)$ may not have an invariant form
- 2) there is no canonical choice of \langle , \rangle versus $-\langle , \rangle$
- $\Rightarrow M^h_{\gamma,\delta}$ not well defined

Recall (π^h, V^h) :

$$\pi^h(X)(f)(v) = -f(\pi(\sigma(X)v))$$

Suppose σ' : any conjugate-linear automorphism of \mathfrak{g} Definition: $\pi^{h,\sigma'}(X)(f)(v) = -f(\pi(\sigma'(X)v))$ Proposition: $(\pi^{h,\sigma'}, V^h)$ is a (\mathfrak{g}, K) -module (even though σ' is unrelated to σ, \mathfrak{g}_0) $\pi^{h,\sigma'} = \sigma'$ -Hermitian dual

Check linearity:

$$\pi^{h,\sigma'}(\lambda X)(f)(v) = -\pi(f(\sigma'(\lambda X)v))$$

= $-\pi(f(\overline{\lambda}\sigma'(X)v))$ (σ' is conj. linear)
= $-\pi(\lambda f(\sigma'(X)v))$ (f is conj. linear)
= $\lambda \pi^{h,\sigma'}(X)(f)(v)$

Entirely trivial...

Remark: σ' inner to $\sigma \Rightarrow \pi^{h,\sigma'} \simeq \pi^{h,\sigma}$

Definition: The c-Hermitian dual is the Hermitian dual defined with respect to the compact form σ_c :

$$\pi^{h,c}=\pi^{h,\sigma_c}$$

 $\pi^{h,c}$ is a (\mathfrak{g}, K) -module

Definition: c-invariant form \langle , \rangle_c :

$$\langle \pi(X)v, w \rangle_c + \langle X, \pi(\sigma_c(X)) \rangle_c = 0$$

Theorem: (A, Trapa, Vogan, van Leeuwen, Yee) π irreducible, real infinitesimal character (in $X^*(H) \otimes \mathbb{R}$) 1) $\pi \simeq \pi^{h,c}$; π has a c-invariant form 2)

 π has a canonical c-invariant form

positive definite on all lowest K-types.

Sketch of proof:

- 1) π discrete series
- $\sigma = \theta \sigma_c, \ \theta \text{ is inner}$ $\Rightarrow \pi^{h,\sigma_c} = \pi^{h,\sigma} = \pi \quad (\pi \text{ is unitary})$ 2) *H* split torus, on $X^*(H) \otimes \mathbb{R}$: $\sigma_c = \theta \sigma = (-1)(+1) = -1$ $\chi \in X^*(H), \ \chi^{h,c} = -\chi^c = \chi$ 3) *G* split, *H* = split, $\operatorname{Ind}_{H_N}^G(\chi)^{h,\sigma_c} = \operatorname{Ind}_{H_N}^G(\chi^{h,\sigma_c}) = \operatorname{Ind}_{H_N}^G(\chi)$

Corollary: π irreducible, real infinitesimal character:

$$\pi^h \simeq \pi^\theta$$

since

$$\pi^{h,\sigma} = \pi^{h,\theta\sigma_c} = (\pi^{h,\sigma_c})^{\theta} = \pi^{\theta}$$

Corollary: $G(\mathbb{R})$ equal rank \Rightarrow

Every representation with real infinitesimal character has an invariant Hermitian form.

 $(\delta = 1, \theta \text{ is inner})$

Corollary: The theory of pairs $((\pi, V), \langle , \rangle_c)$ $((\mathfrak{g}, K)$ -module, c-Hermitian form) is equivalent to (twisted theory) $(\mathfrak{g}, K \rtimes \theta)$ -modules $(\theta \text{ acts on } (\mathfrak{g}, K)$ -module π by an intertwining operator $\pi \to \pi^{h,c})$

new class of KLV polynomials $P_{\gamma,\delta}^c \in \mathbb{Z}[s][q]$

Equal rank case: $P_{\gamma,\delta}^c(q) = P_{\gamma,\delta}(qs)$ (only new in the unequal rank case) See Lusztig/Vogan, arXiv

Digression: Hodge Theory

Schmid/Vilonen; also Milicic/Hecht

The c-invariant form appears naturally in Saito's theory of mixed Hodge modules

Saito $\Rightarrow (\pi, V)$ has a canonical filtration $F_p(V)$

Conjecture: (Schmid/Vilonen) The c-Hermitian form satisfies

the sign of the form is $(-1)^p$ on $F_p(V) \cap F_{p-1}(V)^{\perp}$

Natural Question: What is the c-Hermitian dual in terms of L-homomorphisms?

Recall: $\Pi(\phi)^h = \Pi(\sigma_{qc}^{\vee} \circ \phi)$

Theorem: σ_s^{\lor} = split real form of G^{\lor} :

$$\Pi(\phi)^{h,c} = \Pi(\sigma_s^{\vee} \circ \phi)$$

Questions

1) $F = \mathbb{R}$: what is the meaning of $\phi \to \sigma^{\vee} \circ \phi$ for any conjugate-linear involution of ${}^{L}G$? (σ^{\vee} inner to $\sigma_{qc}^{\vee}, \sigma_{s}^{\vee}$ give Hermitian dual, c-Hermitian dual)

2) F p-adic: What is the Hermitian dual on the ${}^{L}G$ side? (should be $\sigma_{c}^{\vee} \circ \phi$ if G(F) is split)

3) F p-adic: What is the meaning of $\phi \to \sigma_s^{\vee} \circ \phi$?

(should be some analogue of the c-Hermitian dual; answer is probably known on the level of affine Hecke algebras (given a type) (A/Ciubotaru))

4) $(\pi, V) \rightarrow (\overline{\pi}, \overline{V})$, relation with real representations, symplectic/orthogonal indicator (?)