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Abstract. In this paper we introduce the concepts of generalized noncooperative

games and Nash equilibria in topological vector spaces. Some sufficient conditions

for the existence of Nash equilibria in such games are established. By applying these

results to quasiconvex and convex vector optimization problems, we have obtained

some new results on the existence of optimal solutions which extend some previously

corresponding results.
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1. Introduction

In the classical sense, a noncooperative game Ω = (Xi, fi)i∈I consists of a finite
set I of players and for each i ∈ I, a set Xi of strategies and a loss function
fi : X → R of ith player, where X :=

∏
i∈I

Xi. For x = (xj)j∈I ∈ X, i ∈ I, yi ∈ Xi,

we define xi := (xj)j∈I\{i} and denote by (xi, yi) the vector x with ith component
replaced by yi. A point x̄ = (x̄i)i∈I ∈ X is called a Nash equilibrium of the game
Ω if for each i ∈ I,

fi(x̄) 6 fi(x̄i, xi), ∀xi ∈ Xi.

It is well known (see [7]) that if for each i ∈ I,
i) Xi is a nonempty convex and compact subset of some finite dimensional

Euclide space,
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ii) fi is continuous on X and convex in the ith argument,
then Ω has a Nash equilibrium.

In this paper, we shall generalize the concepts of noncooperative game and
Nash equilibrium in the following cases:
a) The index set I is infinite.
b) For each i ∈ I, Xi is a subset of some real topological vector space.
c) At each time, the set of strategies of each player is changed by the strategies

of other players.
d) The loss function fi has value in a real topological vector space which is

ordered by a convex cone.

These new concepts are suggested by concepts of equilibria in abstract econo-
mies [5]. Besides, in practice, there are several models in which at each time
the set of strategies of each player is specified by strategies of other players, for
instance, in chess play. Hence the strategy sets of players are not fixed but often
changed.

The purpose of this paper is to establish some sufficient conditions for the
existence of Nash equilibria in such games and to show some applications in
vector optimization problems. Our paper is organized as follows. In the next
section, we present some preliminaries concerning cone orders in topological
vector spaces, continuity and convexity of vector functions with respect to a cone,
continuity and generalized fixed point theorems for set-valued maps. In Sec. 3,
we establish some sufficient conditions for the existence of Nash equilibria in
generalized games in finite and infinite dimensions cases. Applying these results
to vector optimization, we obtain some new results on the existence of optimal
solutions of quasiconvex and convex vector optimization problems.

2. Preliminaries

Let Y be a real topological vector space, C  Y a convex cone. We define an
order ‘�C’ in Y as follow

x, y ∈ Y, x �C y ⇔ y − x ∈ C.

When no confusion occurs, we write ’�’ instead of ’�C ’. We also write x ≺ y if
x � y and x 6= y. If intC 6= ∅ then x � y means y − x ∈ intC. The cone C is
called pointed if C ∩ (−C) = {0}.

Lemma 2.1. Assume that the cone C  Y is convex with nonempty interior.
Then
i) 0 /∈ intC.
ii) intC = λ intC, ∀λ > 0.
iii) C + intC = intC.
iv) {0} ∪ intC is pointed.

Proof. i) If 0 ∈ intC then intC is an absorbent neighborhood of 0. Since C is a
cone then C = Y, which contradicts assumptions.
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ii) Let λ > 0. Then λ intC ⊂ C and λ intC is open. Hence λintC ⊂ intC.
Conversely, as above we have intC = λ ( 1

λ intC) ⊂ λ intC.
iii) Let x ∈ C, y ∈ intC. Since C is convex then 1

2 (x + y) ∈ int C. Apply ii),
we get x + y ∈ int C. The converse inclusion is obvious.

iv) Suppose the contrary, that {0}∪ int C is not pointed. Then there exists
x ∈ int C ∩ (−int C). By iii), 0 = x + (−x) ∈ int C which contradicts i). The
proof is complete. �

Definition 2.2. ([9, Definition 2.1]) We say C satisfies condition (∗) if there
exists a convex cone K  Y with nonempty interior such that

C \ {0} ⊂ intK.

We recall that a set B ⊂ C is called a base of C if 0 /∈ B and for every
x ∈ C \ {0}, there are unique y ∈ B, t > 0 such that x = ty.

Proposition 2.3. ([9, Proposition 2.3]) Let Y be a real locally convex Hausdorff
space. If C has a convex compact base then it satisfies condition (∗).

By Lemma 2.1 i), C satisfies condition (*) only if C is pointed. The converse
is not true in general. However, when Y is finite dimensional then every closed,
convex and pointed cone has a convex and compact base (see [5, Remark 1.6]),
hence it satisfies condition (*).

Definition 2.4. ([6, Definition 2.1]) Let A ⊂ Y and x ∈ A. We say that
i) x is an efficient (or Pareto-minimal) point of A if y � x for some y ∈ A

implies x � y. The set of efficient points of A is denoted by Min(A|C).
ii) Suppose that intC 6= ∅, x is a weakly efficient point of A if x ∈ Min(A|{0}∪

intC). The set of weakly efficient points of A is denoted by WMin(A|C).
If no confusion occurs, we write Min(A), WMin(A) instead of Min(A|C),

WMin(A|C).

Lemma 2.5. Let A ⊂ Y and x ∈ A. Then
i) If C is pointed then

x ∈ MinA ⇔ y 6≺ x, ∀y ∈ A.

ii) If int C 6= ∅ then
x ∈ WMinA ⇔ y 6� x, ∀y ∈ A.

iii) If K  Y is a convex cone with nonempty interior such that C \{0} ⊂ intK,
then

x ∈ WMin(A|K) ⇒ x ∈ Min(A|C).

Proof. The proof is straightforward. �

Now, let E be another real topological vector space, D be a nonempty subset
of E, f : D → Y be a vector function and x ∈ D. We say f attains Pareto-
minimum (respectively, weakly minimum) at x if f(x) ∈ Minf(D) (respectively,
f(x) ∈ WMinf(D)).
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Definition 2.6. ([9, Definition 2.6]) We say that
i) f is lower semicontinuous, in brief l.s.c., (resp., upper semicontinuous, in

brief u.s.c.) at x with respect to C if for any neighborhood V of f(x), there
exists a neighborhood W of x such that y ∈ W ∩ D implies f(y) ∈ V + C
(resp., f(y) ∈ V − C).

ii) f is continuous with respect to C at x if it is l.s.c. and u.s.c. with respect to
C at this point.

iii) f is continuous (resp., l.s.c., u.s.c.) with respect to C if it is continuous
(resp., l.s.c., u.s.c.) with respect to C at every x ∈ D.

From the definition we see that if f is continuous in the usual sense then it
is continuous with respect to any cone. The converse is true if Y is Hausdorff
and C has a closed convex bounded base (see [6, Proposition 1.8]).

Assume that D ⊂ E is convex. Then the vector function f : D → Y is called
convex (with respect to C) if for every x, y ∈ D, λ ∈ [0, 1],

f(λx + (1 − λ)y � λf(x) + (1 − λ)f(y).

Let A ⊂ Y and a ∈ Y , we say that a is an upper bound of A if

x � a, ∀x ∈ A.

The set of upper bounds of A is denoted by UbA.

Definition 2.7. A vector function f : D → Y is called quasiconvex (with respect
to C) if for every x, y ∈ D, λ ∈ [0, 1],

f(λx + (1 − λ)y � a, ∀a ∈ Ub{f(x), f(y)}.

Let a ∈ Y . We denote by levaf the level set

levaf := {x ∈ D| f(x) � a}.

Lemma 2.8. Let D ⊂ E be a nonempty convex set and let f : D → Y be a
vector function. We have
i) If f is convex then it is also quasiconvex.
ii) If f is convex (resp., continuous) with respect to C then it is also convex

(resp., continuous) with respect to any cone K ⊃ C.
iii) f is quasiconvex if and only if levaf is convex for all a ∈ Y .

Proof. This is immediate from definition. �

Now, we assume that intC 6= ∅. Let x ∈ D. We define P̄ (x) := {y ∈
D|f(y) � f(x)}, P (x) := {y ∈ D|f(y) � f(x)}.

Lemma 2.9. If f : D → Y is quasiconvex, then for every x ∈ D, we have
i) P̄ (x) and P (x) are convex,
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ii) x ∈ P̄ (x) and x /∈ P (x).

Proof. i) Let y, z ∈ P (x), λ ∈ (0, 1) be arbitrary. Then f(y)−f(x), f(z)−f (x) ∈
−intC, hence, 0 ∈ (f(y)−f (x)+intC)∩ (f(z)−f(x)+intC). By the absorption
of neighborhoods of the origin and by Lemma 2.1, there exists a ∈ −intC ∩
[(f(y)−f(x)+ intC)∩ (f(z)−f(x)+ intC)]. Then f(y)−f(x), f(z)−f (x) � a,
or, f(y), f(z) � f(x) + a. By the quasiconvexity of f , we have

f(λy + (1 − λ)z) � f(x) + a.

Since a ∈ −intC then f(λy + (1 − λ)z) � f(x). Hence, P (x) is convex. The
convexity of P̄ (x) is immediate from Lemma 2.8 (iii).

ii) This is immediate from definition and from the fact that 0 /∈ intC. �

Let F be another topological vector space, α : E → F be a set-valued map
and x ∈ domα, where domα := {x ∈ E|α(x) 6= ∅}. Let D ⊂ F , we denote
α−1(D) := {x ∈ E|α(x) ∩ D 6= ∅}.

Definition 2.10. ([1]). We say that
i) α is lower semicontinuous, in brief l.s.c., at x if for any open set V ⊂ F

such that V ∩ α(x) 6= ∅, α−1(V ) is a neighborhood of x.
ii) α is upper semicontinuous, in brief u.s.c., at x if for any neighborhood V of

α(x), there exists a neighborhood W of x such that α(y) ⊂ V, ∀y ∈ W .
iii) α is continuous at x if it is l.s.c. and u.s.c. at x.
iv) α is continuous (resp., l.s.c., u.s.c.) if it is continuous (resp., l.s.c., u.s.c.)

at every x ∈ domα.
v) α has nonempty (resp., closed, convex) value if α(x) is nonempty (resp.,
closed, convex) for all x ∈ E.

Proposition 2.11. [5] Let I be a finite or countably infinite index set, X =∏
i∈I

Xi, where Xi is a nonempty convex compact subset of some finite dimensional

Euclide space; for each i ∈ I, let ϕi : X → Xi be a set-valued map with convex
values and l.s.c. Then there exists x̄ ∈ X such that, for each i, either x̄i ∈ ϕi(x̄)
or ϕi(x̄) = ∅.

Let {Ei}i∈I be an arbitrary family of real topological vector spaces, Xi ⊂ Ei,
be nonempty sets, αi : X → Xi be set-valued maps, for every i ∈ I, where
X :=

∏
i∈I

Xi. Let j ∈ I.

Definition 2.12. [3] We say that
i) αj is KF on X if xj /∈ coαj(x), for all x = (xi)i∈I ∈ X and α−1

j (yj) ∩ K
is open in K for any nonempty compact subset K ⊂ X, and for any yj ∈ Xj ,
where coαj(x) denotes the convex hull of αj(x).
ii) αj is KF-majorized at x ∈ X if there exist a KF map βj : X → Xj and a

neighborhood V of x such that αj(y) ⊂ βj(y), for all y ∈ V .
iii) αj is KF-majorized if it is KF-majorized at every x ∈ domαj.
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If αj is KF on X then obviously it is KF-majorized.

Lemma 2.13. Assume that αj : X → Xj is KF on X. Let Di ⊂ Xi be
nonempty sets, for every i ∈ I. If αj(D) ⊂ Dj , then βj : D → Dj is KF on D,
where, D :=

∏
i∈I

Di and βj := αj|D .

Proof. Let x = (xi)i∈I ∈ D. Since αj is KF then xj /∈ coαj(x) = coβj(x).
Moreover, for any yj ∈ Dj and for any nonempty compact subset K ⊂ D, we
have

β−1
j (yj) ∩ K = α−1

j (yj) ∩ D ∩ K = α−1
j (yj) ∩ K.

Since αj is KF and K is compact in X then from equality above, β−1
j (yj) ∩ K

is open in K. The proof is complete. �

Proposition 2.14. Assume that {Ei}i∈I is a family of real locally convex Haus-
dorff spaces. If for each i ∈ I, we have
i) Xi is nonempty, convex and compact,
ii) αi is KF-majorized,
iii) domαi is open in X,
then there exists x̄ ∈ X such that αi(x̄) = ∅, for all i ∈ I.

Proof. The proof is immediate by Theorem 3 of [4]. �

Remark 2.15. We note that Proposition 2.14 is still valid if ii) and iii) are
replaced by
ii’) αi is KF, for every i ∈ I.

Indeed, from the remark after Definition 2.12, we have ii’)⇒ ii). Moreover,
from the equality

domαi = {x ∈ X|αi(x) 6= ∅} = ∪
yi∈αi(X)

(α−1
i (yi) ∩ X),

and from the fact that (α−1
i (yi) ∩ X) is open in X, since X is compact and αi

is KF, we have iii).

3. Nash Equilibria of Generalized Noncooperative Games and Appli-
cations

A noncooperative game Ω = (Xi, fi)i∈I consists of a set I of agents (or players)
and for each i ∈ I, a set Xi of strategies and a loss function fi : X → Y of
ith player, where X :=

∏
i∈I

Xi and Y is a real topological vector space which is

ordered by a convex cone C  Y with nonempty interior.
For x = (xj)j∈I ∈ X, i ∈ I, yi ∈ Xi, we define xi := (xj)j∈I\{i} and denote

by (xi, yi) the vector x with ith component is replaced by yi.

Definition 3.1. [9] We say that
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i) a point x̄ = (x̄i)i∈I ∈ X is a Nash equilibrium of the game Ω (with respect
to C) if

∀i ∈ I, fi(x̄) ∈ Min({fi(x̄i, xi)|xi ∈ Xi}|C).

ii) a point x̄ = (x̄i)i∈I ∈ X is a weakly Nash equilibrium of the game Ω (with
respect to C) if

∀i ∈ I, fi(x̄) ∈ WMin({fi(x̄i, xi)|xi ∈ Xi}|C).

For each i ∈ I, giving a constraint correspondence (set-valued map) αi : X →
Xi, we have a generalized noncooperative game Ω′ = (Xi, αi, fi)i∈I . We could
see that, in practice, there are several games in which the strategy set of each
player at each time is changed by the strategies of other players, for instant, chess
play. This fact is described by constraint correspondences αi : X → Xi, i ∈ I,
where αi(x) symbolizes the set of strategies that ith player can choose if other
players play strategies xi. In chess play, for i = 1, 2, we denote by Xi the set
of all the moves that ith player can choose at any time, by xi the move that ith

player chooses at a given time and by α1(x1, x2) the set of all the moves that
the 1st player can choose if the 2nd player chooses x2. Then |X1| = 6416 while
|α1(x1, x2)| is always less than |X1|, where |A| denotes the number of elements
of A.

Definition 3.2. We say that
1) a point x̄ = (x̄i)i∈I ∈ X is a Nash equilibrium of the generalized game Ω′

(with respect to C) if for every i ∈ I,
i) x̄i ∈ αi(x̄),
ii) fi(x̄) ∈ Min({fi(x̄i, xi)|xi ∈ αi(x̄)}|C).
2) a point x̄ = (x̄i)i∈I ∈ X is a weakly Nash equilibrium of the generalized game
Ω′ (with respect to C) if for every i ∈ I,
i) x̄i ∈ αi(x̄),
ii) fi(x̄) ∈ WMin({fi(x̄i, xi)|xi ∈ αi(x̄)}|C).

Since the cone {0} ∪ intC is pointed then by Lemma 2.5, 2. ii) is equivalent
to
2. ii’) fi(x̄i, xi) 6� fi(x̄), ∀xi ∈ αi(x̄).

Now, we consider the generalized game Ω′ = (Xi, αi, fi)i∈I . Assume that I
is finite or countably infinite and for each i ∈ I, Xi is a subset of some finite
dimensional Euclidean space.

Theorem 3.3. If for each i ∈ I,
i) Xi is nonempty, convex and compact,
ii) fi is continuous with respect to C and quasiconvex in the ith argument,
iii) αi is continuous and has nonempty, convex, closed values,
then Ω′ has a weakly Nash equilibrium. In addition, if C satisfies condition
(∗) and fi is convex in the ith argument, for every i ∈ I, then Ω′ has a Nash
equilibrium.

To prove the theorem, we need the following lemmas.
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Lemma 3.4. Let f, g : X → Y be u.s.c. vector functions (with respect to C).
For each i ∈ I, define hi : X × Xi → Y as follows

hi(x, yi) := f(xi, yi) + g(x), ∀x ∈ X, yi ∈ Xi.

Then h is also u.s.c..

Proof. Let (x, yi) ∈ X ×Xi and let V ⊂ Y be an arbitrary neighborhood of the
origin. Then there exists another neighborhood W of the origin such that

W + W ⊂ V.

Since f, g are u.s.c. then there exist neighborhoods U1 of (xi, yi) and U2 of x
such that

z ∈ U1 ⇒ f(z) ∈ f(xi, yi) + W − C

z ∈ U2 ⇒ g(z) ∈ g(x) + W − C

By definition of product topology, there exist finite sets J ⊂ I \ {i}, L ⊂ I such
that

U1 ⊃
∏

j∈I\J∪{i}

Xj ×
∏

j∈J

U1j × U1i,

U2 ⊃
∏

j∈I\L

Xj ×
∏

j∈L

U2j,

where, U1j is a neighborhood of xj, for all j ∈ J, U1i is a neighborhood of yi,
U2j is a neighborhood of xj, for all j ∈ L. Put

U :=
[
(

∏

j∈I\J

Xj ×
∏

j∈J

U1j) ∩ (
∏

j∈I\L

Xj ×
∏

j∈L

U2j)
]
× U1i.

Then U is a neighborhood of (x, yi) and

(x′, y′i) ∈ U ⇒ (x′i, y′i) ∈ U1, x
′ ∈ U2.

Hence, hi(x′, y′i) = f(x′i, y′i) + g(x′) ∈ (f(xi, yi) + W − C) + (g(x) + W − C) ⊂
(f(xi, yi) + g(x) + V ) − C = (hi(x, yi) + V ) − C. The proof is complete. �

For each i ∈ I, x ∈ X, put Pi(x) := {yi ∈ Xi|fi(xi, yi) � fi(x)}. Since
fi is quasiconvex in the ith argument, then by Lemma 2.9, Pi(x) is convex and
xi /∈ Pi(x). Denote by grafPi the graph of Pi.

Lemma 3.5. grafPi is open in X × Xi.

Proof. Since fi is continuous with respect to C, then by Lemma 3.4 we obtain
the upper semicontinuity of the following function

h(x, yi) := fi(xi, yi) − fi(x).
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Let (x, yi) ∈ grafPi be arbitrary. Then fi(xi, yi)− fi(x) ∈ −intC. By the upper
semicontinuity of h, there exist neighborhoods U of x and V of yi such that

x′ ∈ U, y′i ∈ V ⇒ fi(x′i, y′i) − fi(x′) ∈ −intC − C = −intC,

hence, y′i ∈ Pi(x′), or, (x′, y′i) ∈ grafPi. Thus, (x, yi) is an interior point of
grafPi. The proof is complete. �

Remark 3.6. From the proofs above, we see that Lemma 3.4 and Lemma 3.5 are
still valid if Xi is an arbitrary topological space, for every i ∈ I.

Lemma 3.7. For each i ∈ I, the set-valued map x ∈ X → αi(x) ∩ Pi(x) ⊂ Xi

is l.s.c..

Proof. Let x ∈ dom(αi ∩ Pi) be arbitrary. Let U be an open subset of Xi

such that U ∩ (αi ∩ Pi)(x) 6= ∅. Let yi ∈ U ∩ (αi ∩ Pi)(x). Since grafPi is open
(Lemma 3.5) then there exist open neighborhoods V of x and W of yi such that
V × W ⊂ grafPi. Put U ′ = U ∩ W . Since V × U ′ ⊂ V × W ⊂ grafPi then

V ⊂ P−1
i (zi), ∀zi ∈ U ′. (a)

On the other hand, U ′ ∩ αi(x) 6= ∅ then by the continuity assumption of αi,
α−1

i (U ′) is a neighborhood of x. Hence, α−1
i (U ′)∩V is a neighborhood of x. By

(a), we have
α−1

i (U ′) ∩ V ⊂ (αi ∩ Pi)−1(U ′).

Hence, (αi ∩Pi)−1(U ) is a neighborhood of x. Thus, (αi ∩Pi) is l.s.c. at x. The
proof is complete. �

Lemma 3.8. Let G ⊂ X be open in X and let A : G → Xi, B : X → Xi be
set-valued maps such that A, B are l.s.c. and B(x) ⊂ A(x), for all x ∈ G. Then
the set-valued map C : X → Xi defined by

C(x) :=
{

A(x), x ∈ G,

B(x), x /∈ G,

is l.s.c..

Proof. Since A is l.s.c. on G and G is open in X, then C is l.s.c. at every
x ∈ G∩ domC. Now, let x ∈ domC \G and let U be an open subset in Xi such
that U ∩ C(x) 6= ∅. Since B is l.s.c. at x then there exists a neighborhood V of
x such that

x′ ∈ V ⇒ B(x′) ∩ U 6= ∅.

Since B(x) ⊂ C(x), for all x ∈ X, then C(x′) ∩ U 6= ∅, for all x′ ∈ V . Hence, C
is l.s.c. at x. The proof is complete. �

Proof of Theorem 3.3. For each i ∈ I, put Gi := {x ∈ X| xi /∈ αi(x)}. Let
x ∈ Gi be arbitrary. Since αi is u.s.c. with nonempty closed convex values, then
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there exist an open neighborhood Ux of x in X and an open convex Vx in Xi

such that
x′ ∈ Ux ⇒ x′

i /∈ Vx, αi(x′) ⊂ Vx. (b)

Hence, Gi is open in X. Since Gi is metrizable then it is paracompact. Hence,
the open covering (Ux)x∈Gi of Gi has a locally finite closed refinement (Wj)j∈J ,
i.e.,

• (Wj)j∈J is a covering of Gi and Wj is closed in Gi for every j ∈ J ,
• for each x ∈ Gi, there exists a neighborhood intersecting only finitely many

Wj ,
• there exists a mapping π : J → Gi such that Wj ⊂ Uπ(j), for every j ∈ J .

Define the set-valued map δi : Gi → Xi by

δi(x) := ∩
x∈Wj

Vπ(j).

Then δi has the following properties:
• δi is l.s.c. Let x ∈ Gi be arbitrary and let V ⊂ Xi be open such that

δi(x)∩V 6= ∅. Then there exists a neighborhood W of x intersecting only finitely
many Wj , j ∈ J ′, where J ′ is some finite index set. Since Wj is closed in Gi

then without loss of generality, we may assume x ∈ Wj , for all j ∈ J ′. Then
for each x′ ∈ W one has {j|x′ ∈ Wj} ⊂ J ′. Then by the definition of δi, we
get δi(x) ⊂ δi(x′). Hence, δi(x′) ∩ V 6= ∅, for all x′ ∈ W , i.e., δi

−1(V ) is a
neighborhood of x. Thus, δi is l.s.c. at x.

• For every x ∈ Gi, δi(x) is convex, xi /∈ δi(x) and αi(x) ⊂ δi(x). Let
x ∈ Gi. As above, one has δi(x) = ∩

j∈J ′
Vπ(j). For each j ∈ J ′, Vπ(j) is convex

then δi(x) is convex. On the other hand, x ∈ Wj ⊂ Uπ(j) then from (b), one has

xi /∈ Vπ(j) ⊃ αi(x).

Now, consider the set-valued map ϕi : X → Xi defined by

ϕi(x) =
{

δi(x), x ∈ Gi,
αi(x) ∩ Pi(x), x /∈ Gi.

From properties of δi, αi, Pi, by applying Lemmas 3.7, 3.8, then ϕi is l.s.c. with
convex values. Hence, by Proposition 2.11, there exists x̄ ∈ X such that

ϕi(x̄) = ∅ or x̄i ∈ ϕi(x̄), ∀i ∈ I.

Since xi /∈ ϕi(x), for all x ∈ X, i ∈ I, then by the definition of ϕi and the
relationship above, one has for every i ∈ I, x̄i ∈ αi(x̄),

fi(x̄i, xi) 6� fi(x̄), ∀xi ∈ αi(x̄).

Thus, x̄ is a weakly Nash equilibrium of the generalized game Ω′.

In addition, assume that C satisfies condition (*) and fi is convex in the
ith argument. Then there exists a convex cone K  Y such that C \ {0} ⊂
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intK. By Lemma 2.8, fi is continuous with respect to K and quasiconvex in the
ith argument with respect to K. Applying the results above, Ω′ has a weakly
Nash equilibrium x̄ with respect to K, hence by Lemma 2.5. iii), x̄ is a Nash
equilibrium of Ω′ with respect to C. The proof is complete. �

By taking αi(x) = Xi, for all x ∈ X, i ∈ I, we have immediately

Corollary 3.9. If for each i ∈ I,
i) Xi is nonempty, convex and compact,
ii) fi is continuous with respect to C and quasiconvex in the ith argument,
then the game Ω = (Xi, fi)i∈I has a weakly Nash equilibrium. In addition, if C
satisfies condition (∗) and fi is convex in the ith argument, for every i ∈ I, then
Ω has a Nash equilibrium .

When I has only one element, we obtain

Corollary 3.10. Assume E is a finite dimensional Euclide space, X ⊆ E is a
nonempty and convex subset and f : X → Y is a vector function. If
i) X is compact,
ii) f is continuous with respect to C and quasiconvex,
then f attains a weak minimum on X. In addition, if C satisfies condition (∗)
and f is convex, then f attains a Pareto-minimum on X.

Now we consider the generalized game Ω′ = (Xi, αi, fi)i∈I , where I is an
arbitrary index set, for each i ∈ I, Xi is a subset of some real locally convex
Hausdorff space Ei. Let x ∈ X, i ∈ I. Denote P̄i(x) := {yi ∈ Xi|fi(xi, yi) �
fi(x)}, Pi(x) := {yi ∈ Xi|fi(xi, yi) � fi(x)}.

Theorem 3.11. If for each i ∈ I,
i) Xi is nonempty and convex,
ii) fi is continuous with respect to C and quasiconvex in the ith argument,
iii) (αi)−1(yi)∩K is open in K, for any yi ∈ Xi and for any nonempty, convex,

compact subset K ⊆ X,
furthermore,
iv) there exists x̄ ∈ X such that for each i ∈ I,

• P̄i(x̄) is compact,
• Pi(x) ⊂ P̄i(x̄), ∀x ∈

∏
j∈I

P̄j(x̄),

• xi ∈ αi(x), ∀x ∈
∏
j∈I

P̄j(x̄),

then Ω′ has a weakly Nash equilibrium.

Proof. For each i ∈ I, we define a set-valued map Qi : X → Xi by

Qi(x) := αi(x) ∩ Pi(x), ∀x ∈ X.

By Lemma 2.9, Pi(x) is convex and xi /∈ Pi(x), then from the definition of Qi,
one has xi /∈ coQi(x), for all x ∈ X, i ∈ I. Now, let K ⊂ X be an arbitrary
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nonempty compact subset and let yi ∈ Xi. We have

Q−1
i (yi) = α−1

i (yi) ∩ P−1
i (yi).

Moreover, P−1
i (yi) is open in X since grafPi is open in X × Xi (Remark 3.6).

This and iii) imply that Q−1
i (yi) ∩ K is open in K. Hence, Qi is KF on X, for

all i ∈ I.
Next, we shall prove for each i ∈ I,

Qi(
∏

j∈I

P̄j(x̄)) ⊂ P̄i(x̄). (a)

Indeed, from the definition of Qi and from the second condition of iv), for all
x ∈

∏
j∈I

P̄j(x̄), one has

Qi(x) ⊂ Pi(x) ⊂ P̄i(x̄),

this implies (a). Then by Lemma 2.13, Qi is KF on
∏
j∈I

P̄j(x̄). The sets P̄j(x̄) are

compact and by Lemma 2.9, are convex and nonempty. Hence by Proposition
2.14 and Remark 2.15, there exists x∗ ∈

∏
j∈I

P̄j(x̄) such that

Qi(x∗) = ∅, ∀i ∈ I.

Then for every i ∈ I, one has

x∗
i ∈ αi(x∗),

fi(x∗i, xi) 6� fi(x∗), ∀xi ∈ αi(x∗).

Hence x∗ is a weakly Nash equilibrium of Ω′. The proof is complete. �

By taking αi(x) := Xi, for all x ∈ X, i ∈ I, one has

Corollary 3.12. Assume that the game Ω = (Xi, fi)i∈I satisfies, for each i ∈ I,
i) Xi is nonempty and convex,
ii) fi is continuous with respect to C; quasiconvex in the ith variable,
furthermore,
iii) there exists x̄ ∈ X such that for each i ∈ I,

•P̄i(x̄) is compact,
•Pi(x) ⊂ P̄i(x̄), ∀x ∈

∏
j∈I

P̄j(x̄).

Then Ω has a weakly Nash equilibrium.

When I has only one element, we get immediately the following corollary
which extends the corresponding result of Tan and Tinh [9].

Corollary 3.13. Assume that E is a locally convex Hausdorff space, X ⊆ E is
a nonempty convex subset and f : X → Y is a vector function. If
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i) f is continuous with respect to C and quasiconvex,
ii) there exists x̄ ∈ X such that the set {x ∈ X|f(x) � f(x̄)} is compact,
then f attains a weak minimum on X.
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