Moments for L-functions for $G L_{r} \times G L_{r-1}$

A. Diaconu, P. Garrett, D. Goldfeld garrett@math.umn.edu http://www.math.umn.edu/garrett/

1. The moment expansion
2. Spectral expansion: reduction to $G L_{2}$
3. Spectral expansion for $G L_{2}$
4. Continuation and holomorphy at $s^{\prime}=0$ for $G L_{2}$
5. Spectral expansion for $G L_{r}$
6. Continuation and holomorphy at $s^{\prime}=0$ for $G L_{r}$
7. Appendix: half-degenerate Eisenstein series
8. Appendix: Eisenstein series for $G L_{2}$
9. Appendix: residues of degenerate Eisenstein series for $P^{n-1,1}$
10. Appendix: degenerate Eisenstein series for $P^{r-2,1,1}$

We exhibit elementary kernels Pé which produce sums of integral moments for cuspforms f on $G L_{r}$ by

$$
\int_{Z_{\mathrm{A}} G L_{r}(k) \backslash G L_{r}(\mathbb{A})} \mathrm{Pé} \cdot|f|^{2}=\sum_{F \text { on } G L_{r-1}} \int_{\operatorname{Re}(s)=\frac{1}{2}} \frac{|L(s, f \otimes F)|^{2}}{\langle F, F\rangle} M(s) d s+\text { (continuous part) }
$$

over number fields k, with certain weights $M(s)$. Here F runs over an orthogonal basis for cuspforms on $G L_{r-1}$. There are further continuous-spectrum terms analogous to the discrete-spectrum sum over cuspforms. The kernel (Poincaré series) Pé admits a spectral decomposition, surprisingly consisting of only three parts: a leading term, a sum arising from cuspforms on $G L_{2}$, and a continuous part from $G L_{2}$. That is, no cuspforms on $G L_{\ell}$ with $2<\ell \leq r$ contribute. This spectral decomposition makes possible the meromorphic continuation of Pé in auxiliary parameters.

Moments of level-one holomorphic elliptic modular forms were treated in [Good 1983] and [Good 1986], the latter using an idea that is a precursor of part of the present approach. Level-one waveforms over \mathbb{Q} appear in [Diaconu-Goldfeld 2006a], over $\mathbb{Q}(i)$ in [Diaconu-Goldfeld 2006b]. Arbitrary level, groundfield, and ∞-type for $G L_{2}$ are in [Diaconu-Garrett 2006] and [Diaconu-Garrett 2008].

We do have in mind application not only to cuspforms, but also to truncated Eisenstein series (with cuspidal data) or wave packets of Eisenstein series, giving a non-trivial application of harmonic analysis on larger groups $G L_{r}$ to L-functions attached to smaller groups, for example, on $G L_{1}$, giving high integral moments of $\zeta_{k}(s)$.

For context, we review the [Diaconu-Goldfeld 2006a] treatment of spherical waveforms f for $G L_{2}(\mathbb{Q})$. In that case, the sum of moments is a single term

$$
\int_{Z_{\mathbb{A}} G L_{2}(\mathbb{Q}) \backslash G L_{2}(\mathbb{A})} \operatorname{Pé}(g)|f(g)|^{2} d g=\frac{1}{2 \pi i} \int_{\operatorname{Re}(s)=\frac{1}{2}} L\left(s^{\prime}+s, f\right) \cdot \bar{L}(s, f) \cdot \Gamma\left(s, s^{\prime}, s^{\prime \prime}, f_{\infty}\right) d s
$$

where $\Gamma\left(s, s^{\prime}, s^{\prime \prime}, f_{\infty}\right)$ is a ratios of products of gammas, with arguments depending upon the archimedean data attached to f. Here the Poincaré series Pé $(g)=\operatorname{Pé}\left(g, s^{\prime}, s^{\prime \prime}\right)$ has a spectral expansion

$$
\begin{gathered}
\operatorname{Pé}\left(s^{\prime}, s^{\prime \prime}\right)=\frac{\pi^{\frac{1-s^{\prime \prime}}{2}} \Gamma\left(\frac{s^{\prime \prime}-1}{2}\right)}{\pi^{-\frac{s^{\prime \prime}}{2}} \Gamma\left(\frac{s^{\prime \prime}}{2}\right)} \cdot E_{1+s^{\prime}}+\frac{1}{2} \sum_{F \text { on } G L_{2}} \frac{L\left(\frac{1}{2}+s^{\prime}, \bar{F}\right)}{\langle F, F\rangle} \cdot \mathcal{G}\left(\frac{1}{2}-i t_{F}, s^{\prime}, s^{\prime \prime}\right) \cdot F \\
+\frac{1}{4 \pi i} \int_{\operatorname{Re}(s)=\frac{1}{2}} \frac{\zeta\left(s^{\prime}+s\right) \zeta\left(s^{\prime}+1-s\right)}{\xi(2-2 s)} \mathcal{G}\left(1-s, s^{\prime}, s^{\prime \prime}\right) \cdot E_{s} d s \quad\left(\text { for } \operatorname{Re}\left(s^{\prime}\right) \gg \frac{1}{2}, \operatorname{Re}\left(s^{\prime \prime}\right) \gg 0\right)
\end{gathered}
$$

where $\xi(s)=\pi^{-s / 2} \Gamma(s / 2) \zeta(s)$, where \mathcal{G} is essentially a product of gamma function values ${ }^{[1]}$

$$
\mathcal{G}\left(s, s^{\prime}, s^{\prime \prime}\right)=\pi^{-\left(s^{\prime}+\frac{s^{\prime \prime}}{2}\right)} \frac{\Gamma\left(\frac{s^{\prime}+1-s}{2}\right) \Gamma\left(\frac{s^{\prime}+s}{2}\right) \Gamma\left(\frac{s^{\prime}-s+s^{\prime \prime}}{2}\right) \Gamma\left(\frac{s^{\prime}+s-1+s^{\prime \prime}}{2}\right)}{\Gamma\left(s^{\prime}+\frac{s^{\prime \prime}}{2}\right)}
$$

and F is summed over (an orthogonal basis for) spherical (at finite primes) cuspforms on $G L_{2}$ with Laplacian eigenvalues $\frac{1}{4}+t_{F}^{2}$, and E_{s} is the usual spherical Eisenstein series

$$
E_{s}\left(\begin{array}{ll}
y & 0 \\
0 & 1
\end{array}\right)=|y|^{s}+\frac{\xi(2-2 s)}{\xi(2 s)}|y|^{1-s}+\ldots
$$

It is not obvious, but the continuous part (the integral of Eisenstein series) cancels the pole at $s^{\prime}=1$ of the leading term, and when evaluated at $s^{\prime}=0$ is ${ }^{[2]}$

$$
\begin{aligned}
\operatorname{Pé}\left(g, 0, s^{\prime \prime}\right)= & \text { (holomorphic at } \left.s^{\prime}=0\right)+\frac{1}{2} \sum_{F \text { on } G L_{2}} \frac{L\left(\frac{1}{2}, \bar{F}\right)}{\langle F, F\rangle} \cdot \mathcal{G}\left(\frac{1}{2}-i t_{F}, 0, s^{\prime \prime}\right) \cdot F \\
& +\frac{1}{4 \pi i} \int_{\operatorname{Re}(s)=\frac{1}{2}} \frac{\zeta(s) \zeta(1-s)}{\xi(2-2 s)} \mathcal{G}\left(1-s, 0, s^{\prime \prime}\right) \cdot E_{s} d s
\end{aligned}
$$

In this spectral expansion, the coefficient in front of a cuspform F includes \mathcal{G} evaluated at $s^{\prime}=0$ and $s=\frac{1}{2} \pm i t_{F}$, namely

$$
\mathcal{G}\left(\frac{1}{2}-i t_{F}, 0, s^{\prime \prime}\right)=\pi^{-\frac{s^{\prime \prime}}{2}} \frac{\Gamma\left(\frac{\frac{1}{2}-i t_{F}}{2}\right) \Gamma\left(\frac{\frac{1}{2}+i t_{F}}{2}\right) \Gamma\left(\frac{s^{\prime \prime}-\frac{1}{2}-i t_{F}}{2}\right) \Gamma\left(\frac{s^{\prime \prime}-\frac{1}{2}+i t_{F}}{2}\right)}{\Gamma\left(\frac{s^{\prime \prime}}{2}\right)}
$$

The gamma function has poles at $0,-1,-2, \ldots$, so this coefficient has poles at $s^{\prime \prime}=\frac{1}{2} \pm i t_{F},-\frac{3}{2} \pm i t_{F}, \ldots$. Over \mathbb{Q}, among spherical cuspforms (or for any fixed level) these values have no accumulation point. ${ }^{[3]}$ The continuous part of the spectral side at $s^{\prime}=0$ is

$$
\frac{1}{4 \pi i} \int_{\operatorname{Re}(s)=\frac{1}{2}} \frac{\xi(s) \xi(1-s)}{\xi(2-2 s)} \frac{\Gamma\left(\frac{s^{\prime \prime}-s}{2}\right) \Gamma\left(\frac{s^{\prime \prime}-1+s}{2}\right)}{\Gamma\left(\frac{s^{\prime \prime}}{2}\right)} \cdot E_{s} d s
$$

with gamma factors grouped with corresponding zeta functions, to form the completed L-functions ξ. Thus, the evident pole of the leading term at $s^{\prime \prime}=1$ can be exploited, using the obvious continuation to $\operatorname{Re}\left(s^{\prime \prime}\right)>1 / 2$.

Further, a subtle contour-shifting argument ${ }^{[4]}$ shows that the continuous part of this spectral decomposition has a meromorphic continuation to \mathbb{C} with poles at $\rho / 2$ for zeros ρ of ζ, in addition to the obvious poles from the gamma functions.

[^0]Already for $G L_{2}$, over general groundfields k, infinitely many Hecke characters enter ${ }^{[5]}$ both the spectral decomposition of the Poincaré series and the moment expression. This naturally complicates isolation of literal moments, and complicates analysis of poles via the spectral expansion. Suppressing constants, the moment expansion is a sum of twists by χ 's

$$
\int_{Z_{\mathbb{A}} G L_{2}(k) \backslash G L_{2}(\mathbb{A})} \mathrm{Pé} \cdot|f|^{2}=\sum_{\chi} \int_{\operatorname{Re}(s)=\frac{1}{2}} L\left(s^{\prime}+s, f \otimes \chi\right) \cdot L(1-s, \bar{f} \otimes \bar{\chi}) \cdot M_{\chi}(s) d s
$$

And, suppressing constants, the spectral expansion is

$$
\begin{aligned}
\text { Pé } & =(\infty-\text { part }) \cdot E_{1+s^{\prime}}+\sum_{F \text { on } G L_{2}}(\infty-\text { part }) \cdot \frac{L\left(\frac{1}{2}+s^{\prime}, \bar{F}\right)}{\langle F, F\rangle} \cdot F \\
& +\sum_{\chi} \int_{\operatorname{Re}(s)=\frac{1}{2}} \frac{L\left(s^{\prime}+s, \bar{\chi}\right) L\left(s^{\prime}+1-s, \chi\right)}{L\left(2-2 s, \bar{\chi}^{2}\right)} \mathcal{G}_{\chi}(s) \cdot E_{s, \chi} d s
\end{aligned}
$$

In the simplest case beyond $G L_{2}$, take f a spherical cuspform ${ }^{[6]}$ on $G L_{3}$ over ${ }^{[7]} \mathbb{Q}$. We construct a weight function $\Gamma\left(s, s^{\prime}, s^{\prime \prime}, f_{\infty}, F_{\infty}\right)$ depending upon complex parameters s, s^{\prime}, and $s^{\prime \prime}$, and upon the archimedean data for both f and cuspforms F on $G L_{2}$, such that $\Gamma\left(s, s^{\prime}, s^{\prime \prime}, f_{\infty}, F_{\infty}\right)$ has explicit asymptotic behavior, and such that the moment expansion is

$$
\begin{aligned}
& \int_{Z_{\mathrm{A}} G L_{3}(\mathbb{Q}) \backslash G L_{3}(\mathbb{A})} \operatorname{Pé}\left(s^{\prime}, s^{\prime \prime}\right) \cdot|f|^{2} d g=\sum_{F \text { on } G L_{2}} \frac{1}{2 \pi i} \int_{\operatorname{Re}(s)=\frac{1}{2}} \frac{|L(s, f \otimes F)|^{2}}{\langle F, F\rangle} \cdot \Gamma\left(s, 0, s^{\prime \prime}, f_{\infty}, F_{\infty}\right) d s \\
& \quad+\frac{1}{4 \pi i} \frac{1}{2 \pi i} \sum_{k \in \mathbb{Z}} \int_{\operatorname{Re}\left(s_{1}\right)=\frac{1}{2}} \int_{\operatorname{Re}\left(s_{2}\right)=\frac{1}{2}} \frac{\left|L\left(s_{1}, f \otimes E_{1-s_{2}}^{(k)}\right)\right|^{2}}{\left|\xi\left(1-2 i t_{2}\right)\right|^{2}} \cdot \Gamma\left(s_{1}, 0, s^{\prime \prime}, f_{\infty}, E_{1-s_{2}, \infty}^{(k)}\right) d s_{1} d s_{2}
\end{aligned}
$$

where F runs over (an orthogonal basis for) all level-one cuspforms on $G L_{2}$, with no restriction on the right K_{∞}-type, and $E_{s}^{(k)}$ is the usual level-one Eisenstein series of K_{∞}-type k. Here and throughout, for $\operatorname{Re}(s)=1 / 2$, write $1-s$ in place of \bar{s}, to maintain holomorphy in complex-conjugated parameters. In this vein, over \mathbb{Q}, it is reasonable to put

$$
L\left(s_{1}, f \otimes \bar{E}_{s_{2}}^{(k)}\right)=L\left(s_{1}, f \otimes E_{1-s_{2}}^{(k)}\right)=\frac{L\left(s_{1}+\frac{1}{2}-s_{2}, f\right) \cdot L\left(s_{1}-\frac{1}{2}+s_{2}, f\right)}{\zeta\left(2-2 s_{2}\right)} \quad \text { (finite-prime parts only) }
$$

since the natural normalization of the Eisenstein series $E_{s_{2}}^{(k)}$ on $G L_{2}$ contributes the denominator $\zeta\left(2-2 s_{2}\right)$. Meromorphic continuation in s^{\prime} and evaluation at $s^{\prime}=0$ gives the desired specialization of the moment expansion. There is also a meromorphic continuation in the parameter $s^{\prime \prime}$ in the archimedean data.

More generally, for a cuspform f on $G L_{r}$ with $r \geq 3$, whether over \mathbb{Q} or over a numberfield, the moment expansion includes an infinite sum ${ }^{[8]}$ of $|L(s, f \otimes F)|^{2} /\langle F, F\rangle$ over an orthogonal basis for cuspforms F
[5] See [Sarnak 1985], [Diaconu-Goldfeld 2006b] for $\mathbb{Q}(i)$, and [Diaconu-Garrett 2006] for number fields.
[6] For our purposes, a cuspform generates an irreducible unitary representation of the adele group, so has a central character, and the representation factors over primes. This factorization follows from the admissibility of irreducible unitaries of reductive groups over archimedean and non-archimedean local fields (the former due to Harish-Chandra in the 1950s, the latter reduced to the supercuspidal case by Harish-Chandra, and completed by J. Bernstein in 1972).
${ }^{[7]}$ The assumption of groundfield \mathbb{Q} achieves the minor simplification that for $G L_{2}(\mathbb{Q})$ there is a single (family of) Eisenstein series participating in the spectral decomposition.
${ }^{[8]}$ In fact, it is non-trivial to prove (after Selberg) that there are infinitely-many spherical waveforms for $S L_{2}(\mathbb{Z})$.
on $G L_{r-1}$, as well as integrals of products of L-functions $L(s, f \otimes F)$ for F ranging over cuspforms on $G L_{r_{1}} \times \ldots \times G L_{r_{\ell}}$ for all partitions $\left(r_{1}, \ldots, r_{\ell}\right)$ of r. Correspondingly, the natural normalization of the cuspidal-data Eisenstein series gives products of convolution L-functions $L\left(*, F_{i} \otimes F_{j}\right)$ in the denominators of these terms, as well as factors $\left\langle F_{i}, F_{i}\right\rangle^{1 / 2} \cdot\left\langle F_{j}, F_{j}\right\rangle^{1 / 2}$. ${ }^{[9]}$
Generally, the spectral expansion for $G L_{r}$ is an induced-up version of that for $G L_{2}$. Suppressing constants, using groundfield \mathbb{Q} to skirt Hecke characters,

$$
\begin{gathered}
\text { Pé }=(\infty-\text { part }) \cdot E_{s^{\prime}+1}^{r-1,1}+\sum_{F \text { on } G L_{2}}(\infty-\text { part }) \cdot \frac{L\left(\frac{r s^{\prime}+r-2}{2}+\frac{1}{2}, \bar{F}\right)}{\langle F, F\rangle} \cdot E_{\frac{s^{\prime}+1}{2}, F}^{r-2,2} \\
+\int_{\operatorname{Re}(s)=\frac{1}{2}}(\infty-\text { part }) \cdot \frac{\zeta\left(\frac{r s^{\prime}+r-2}{2}+\frac{1}{2}-s\right) \cdot \zeta\left(\frac{r s^{\prime}+r-2}{2}+\frac{1}{2}+s\right)}{\zeta(2-2 s)} \cdot E_{s^{\prime}+1, s-\frac{s^{\prime}+1}{2},-s-\frac{s^{\prime}+1}{2}}^{r-2,1,1} d s
\end{gathered}
$$

where the Eisenstein series are normalized naively. The continuous part has a pole that cancels the obvious pole of the leading term at $s^{\prime}=0$.
Again over \mathbb{Q}, the most-continuous part of the moment expansion for $G L_{n}$ is of the form

$$
\int_{\operatorname{Re}(s)=\frac{1}{2}} \int_{t \in \Lambda}\left|L\left(s, f \otimes E_{\frac{1}{2}+i t}^{\min }\right)\right|^{2} M_{t}(s) d s d t=\iint_{\Lambda}\left|\frac{\Pi_{1 \leq \ell \leq n-1} L\left(s+i t_{\ell}, f\right)}{\Pi_{1 \leq j<\ell<n} \zeta\left(1-i t_{j}+i t_{\ell}\right)}\right|^{2} M_{t}(s) d s d t
$$

where

$$
\Lambda=\left\{t \in \mathbb{R}^{n-1}: t_{1}+\ldots+t_{n-1}=0\right\}
$$

and where M is a weight function depending upon f and F. More generally, let $n-1=m \cdot b$. For F on $G L_{m}$, let

$$
F^{\Delta}=F \otimes \ldots \otimes F
$$

on $G L_{m} \times \ldots \times G L_{m}$. Inside the moment expansion we have (recall Langlands-Shahidi)

$$
\int_{\operatorname{Re}(s)=\frac{1}{2}} \int_{\Lambda}\left|L\left(s, f \otimes E_{F^{\Delta}, \frac{1}{2}+i t}\right)\right|^{2} M_{F, t}(s) d s d t=\iint\left|\frac{\Pi_{1 \leq \ell \leq b} L\left(s+i t_{\ell}, f \otimes F\right)}{\Pi_{1 \leq j<\ell \leq b} L\left(1-i t_{j}+i t_{\ell}, F \otimes F^{\vee}\right)}\right|^{2} M d s d t
$$

If we replace the cuspform f on $G L_{n}(\mathbb{Q})$ by a (truncated) minimal-parabolic Eisenstein series E_{α} with $\alpha \in \mathbb{C}^{n-1}$, the most-continuous part of the moment expansion contains a term

$$
\iint_{\Lambda}\left|\frac{\Pi_{1 \leq \mu \leq n, 1 \leq \ell \leq n-1} \zeta\left(\alpha_{\mu}+s+i t_{\ell}\right)}{\Pi_{1 \leq j<\ell<n} \mid \zeta\left(1-i t_{j}+i t_{\ell}\right)}\right|^{2} d s d t
$$

Taking $\alpha=0 \in \mathbb{C}^{n-1}$ gives

$$
\iint_{\Lambda}\left|\frac{\Pi_{1 \leq \ell \leq n-1} \zeta\left(s+i t_{\ell}\right)^{n}}{\Pi_{1 \leq j<\ell<n} \zeta\left(1-i t_{j}+i t_{\ell}\right)}\right|^{2} M d s d t
$$

For example, for $G L_{3}$, where $\Lambda=\{(t,-t)\} \approx \mathbb{R}$,

$$
\iint_{\mathbb{R}}\left|\frac{\zeta(s+i t)^{3} \cdot \zeta(s-i t)^{3}}{\zeta(1-2 i t)}\right|^{2} M d s d t
$$

and for $G L_{4}$

$$
\int_{(s)} \int_{\Lambda}\left|\frac{\zeta\left(s+i t_{1}\right)^{4} \cdot \zeta\left(s+i t_{2}\right)^{4} \cdot \zeta\left(s+i t_{3}\right)^{4}}{\zeta\left(1-i t_{1}+i t_{2}\right) \zeta\left(1-i t_{1}+i t_{3}\right) \zeta\left(1-i t_{2}+i t_{3}\right)}\right|^{2} M d s d t
$$

[^1]
1. The moment expansion

Let $G=G L_{r}$ over a number field k. Let P be the standard maximal proper parabolic

$$
P=P^{r-1,1}=\left\{\left(\begin{array}{cc}
(r-1) \text {-by- }(r-1) & * \\
0 & 1 \text {-by-1 }
\end{array}\right)\right\}
$$

Let

$$
U=\left\{\left(\begin{array}{cc}
1_{r-1} & * \\
0 & 1
\end{array}\right)\right\} \quad H=\left\{\left(\begin{array}{cc}
(r-1)-\text { by }-(r-1) & 0 \\
0 & 1
\end{array}\right)\right\}
$$

and

$$
\begin{gathered}
\quad N=\{\text { upper triangular unipotent elements in } H\} \\
=(\text { unipotent radical of standard minimal parabolic in } H)
\end{gathered}
$$

Let Z be the center of G. Let K_{v} be the standard maximal compact in the k_{v}-valued points G_{v} of G. Thus, for $v<\infty, K_{v}=G L_{r}\left(\mathfrak{o}_{v}\right)$. For $v \approx \mathbb{R}$, take $K_{v}=O_{r}(\mathbb{R})$. For $v \approx \mathbb{C}$ take $K_{v}=U(r)$.
The standard choice of non-degenerate character on $N_{k} U_{k} \backslash N_{\mathbb{A}} U_{\mathrm{A}}$ is

$$
\psi(n \cdot u)=\psi_{0}\left(n_{12}+n_{23}+\ldots+n_{r-2, r-1}\right) \cdot \psi_{0}\left(u_{r-1, r}\right)
$$

where ψ_{0} is a fixed non-trivial character on \mathbb{A} / k. A cuspform ${ }^{[10]} f$ has a Fourier expansion ${ }^{[12]}$ along $N U$

$$
f(g)=\sum_{\xi \in N_{k} \backslash H_{k}} W_{f}(\xi g) \quad \text { where } \quad W_{f}(g)=\int_{N_{k} U_{k} \backslash N_{\mathbf{A}} U_{\mathbf{A}}} \bar{\psi}(n u) f(n u g) d n d u
$$

The (Whittaker) function $W_{f}(g)$ factors over primes. ${ }^{[13]}$
[1.1] Poincaré series For $s^{\prime} \in \mathbb{C}$, let

$$
\varphi=\bigotimes_{v} \varphi_{v}
$$

where for v finite

$$
\varphi_{v}(g)=\left\{\begin{array}{cl}
\left|(\operatorname{det} A) / d^{r-1}\right|_{v}^{s^{\prime}} & \left(\text { for } g=m k \text { with } m=\left(\begin{array}{cc}
A & 0 \\
0 & d
\end{array}\right) \text { in } Z_{v} H_{v} \text { and } k \in K_{v}\right) \\
0 & (\text { otherwise })
\end{array}\right.
$$

[10] A cuspform f satisfies the Gelfand-Fomin-Graev condition ${ }^{[11]} \int_{N_{k} \backslash N_{\mathrm{A}}} f(n g) d n=0$ for all unipotent radicals N of (proper, rational) parabolics, generates an irreducible representation locally everywhere (hence, has a central character ω), and is in $L^{2}\left(Z_{\mathbb{A}} G_{k} \backslash G_{\mathrm{A}}, \omega\right)$.
[12] Fourier-Whittaker expansions for $G L(n)$ with $n>2$ are due to [Shalika 1974] and [Piatetski-Shapiro 1975], independently.
[13] Uniqueness of Whittaker models, by [Shalika 1974] at archimedean places, [Gelfand-Kazhdan 1975] at nonarchimedean, implies the factorization over primes. The local factors are ambiguous up to constants, naturally. For cuspforms f at primes v where f is spherical, the spherical Whittaker function W_{v}° with the same local data as f, normalized by $W_{v}^{\circ}(1)=1$, is the standard choice. However, even at good primes, for natural normalization in construction of Eisenstein series presents us most naturally with a local Whittaker function which is an image under the intertwining operator from principal series to the Whittaker model. This contributes an extra factor which is a product of L-functions, as studied at length in [Langlands 1971], [Shahidi 1978], [Shahidi 1983], and elsehwere. Luckily, our subsequent convolution L-functions will lack archimedean factors, so avoid the most acute concern about choices of data at archimedean places, thus skirting issues addressed in [Jacquet-Shalika 1990], [Cogdell-PS 2003].
and for v archimedean require right K_{v}-invariance and left equivariance

$$
\varphi_{v}(m g)=\left|\frac{\operatorname{det} A}{d^{r-1}}\right|_{v}^{s^{\prime}} \cdot \varphi_{v}(g) \quad\left(\text { for } g \in G_{v}, \text { for } m=\left(\begin{array}{cc}
A & 0 \\
0 & d
\end{array}\right) \in Z_{v} H_{v}\right)
$$

Thus, for $v \mid \infty$, the further data determining φ_{v} consists of its values on U_{v}. The simplest useful choice is [14]

$$
\varphi_{v}\left(\begin{array}{cc}
1_{r-1} & x \\
0 & 1
\end{array}\right)=\left(1+\left|x_{1}\right|^{2}+\ldots+\left|x_{r-1}\right|^{2}\right)^{-s^{\prime \prime} / 2} \quad\left(\text { where } x=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{r-1}
\end{array}\right), \text { and } s^{\prime \prime} \in \mathbb{C}\right)
$$

and where the norm $\left|x_{1}\right|^{2}+\ldots+\left|x_{r-1}\right|^{2}$ is normalized to be invariant under K_{v}. ${ }^{[15]}$ Thus, φ is left $Z_{\text {A }} H_{k}$-invariant. We attach to φ a Poincaré series

$$
\operatorname{Pé}(g)=\sum_{\gamma \in Z_{k} H_{k} \backslash G_{k}} \varphi(\gamma g)
$$

[1.2] Two obvious unwindings Integrate the norm-squared $|f|^{2}$ of a cuspform f against Pé. The typical first unwinding is

$$
\int_{Z_{\mathbf{A}} G_{k} \backslash G_{\mathbf{A}}} \operatorname{Pé}(g)|f(g)|^{2} d g=\int_{Z_{\mathbf{A}} H_{k} \backslash G_{\mathbf{A}}} \varphi(g)|f(g)|^{2} d g
$$

Next, express f in its Fourier-Whittaker expansion, and unwind further:

$$
\int_{Z_{\mathbf{A}} H_{k} \backslash G_{\mathbf{A}}} \varphi(g) \sum_{\xi \in N_{k} \backslash H_{k}} W_{f}(\xi g) \bar{f}(g) d g=\int_{Z_{\mathbf{A}} N_{k} \backslash G_{\mathbf{A}}} \varphi(g) W_{f}(g) \bar{f}(g) d g
$$

[1.3] Iwasawa decomposition, simplification of integral Suppose for simplicity that f is right $K_{\mathbb{A}}$ invariant, so we can use an Iwasawa decomposition $G=(H Z) U K$ (everywhere locally) to rewrite the whole integral as

$$
\int_{N_{k} \backslash H_{\mathrm{A}} \times U_{\mathbf{A}}} \varphi(h u) W_{f}(h u) \bar{f}(h u) d h d u
$$

[1.4] Spectral decomposition on $G L_{r-1}$ Use a spectral decomposition ${ }^{[16]}$ for $F \in L^{2}\left(H_{k} \backslash H_{\mathbb{A}}\right)$, inexplicitly

$$
F=\int_{(\eta)}\langle F, \eta\rangle \cdot \eta d \eta
$$

${ }^{[14]}$ Over \mathbb{Q} and $\mathbb{Q}(i)$, in effect this is the choice of archimedean data in [Good 1983], [Diaconu-Goldfeld 2006a], [Diaconu-Goldfeld 2006b].
[15] Thus, for this purpose, to be K_{v}-invariant at real places v, we use the standard norm. At complex places we also use the standard norm, not the norm compatible with the product formula. That is, for this purpose, for $v \approx \mathbb{C}$ the norm is not $|z|_{v}=z \cdot \bar{z}$, but is $|z|=\sqrt{z \cdot \bar{z}}$.
${ }^{[16]}$ Let $H^{1}=\left\{h \in H_{\mathbb{A}}:|\operatorname{det} h|=1\right\}$. Then $H_{k} \backslash H_{\mathbb{A}}=H_{k} \backslash H^{1} \times(0,+\infty)$ is the relevant decomposition. The most obvious continuous part coming from $(0,+\infty)$ will eventually give integrals over vertical lines. Still $L^{2}\left(H_{k} \backslash H^{1}\right)$ has both continuous and discrete parts in its decomposition. Since some of the necessary functions η for such a spectral decomposition are not literally in L^{2} (both Eisenstein series and ordinary exponentials in Fourier transforms and Fourier inversion), the inner integral is not at all symmetric. Further, that integral, (as well as the outer) only make literal sense for F in a suitable (dense) subspace (e.g., pseudo-Eisenstein series and Schwartz functions in the corresponding circumstances), and the mappings indicated must be defined by isometric extension. See [Langlands 1976] and [Moeglin-Waldspurger 1995].
where each η generates an irreducible representation of $H_{\mathbb{A}}$.
[1.5] Expand $\bar{f}(h u) \quad$ Since \bar{f} is left H_{k}-invariant, it decomposes along $H_{k} \backslash H_{\mathbb{A}}$ as

$$
\bar{f}(h u)=\int_{(\eta)} \eta(h) \int_{H_{k} \backslash H_{\mathrm{A}}} \bar{\eta}(m) \bar{f}(m u) d m d \eta
$$

Unwind the Fourier-Whittaker expansion of \bar{f}

$$
\begin{aligned}
\bar{f}(h u)= & \int_{(\eta)} \eta(h) \int_{H_{k} \backslash H_{\mathrm{A}}} \bar{\eta}(m) \sum_{\xi \in N_{k} \backslash H_{k}} \bar{W}_{f}(\xi m u) d m d \eta \\
& =\int_{(\eta)} \eta(h) \int_{N_{k} \backslash H_{\mathbf{A}}} \bar{\eta}(m) \bar{W}_{f}(m u) d m d \eta
\end{aligned}
$$

Then the whole integral is

$$
\begin{gathered}
\int_{Z_{\mathrm{A}} G_{k} \backslash G_{\mathrm{A}}} \operatorname{Pé}(g)|f(g)|^{2} d g \\
=\int_{(\eta)} \int_{N_{k} \backslash H_{\mathrm{A}} \times U_{\mathrm{A}}} \varphi(h u) \eta(h) W_{f}(h u) \int_{N_{k} \backslash H_{\mathrm{A}}} \bar{W}_{f}(m u) \bar{\eta}(m) d m d h d u d \eta
\end{gathered}
$$

[1.6] Decoupling at finite primes The part of the integrand that depends upon $u \in U$ is

$$
\int_{U_{\mathrm{A}}} \varphi(h u) W_{f}(h u) \bar{W}_{f}(m u) d u=\varphi(h) W_{f}(h) \bar{W}_{f}(m) \cdot \int_{U_{\mathrm{A}}} \varphi(u) \psi\left(h u h^{-1}\right) \bar{\psi}\left(m u m^{-1}\right) d u
$$

The latter integrand visibly factors over primes.
[1.6.1] Lemma: Let v be a finite prime. For $h, m \in H_{v}$ such that $W_{f, v}(h) \neq 0$ and $\bar{W}_{f, v}(m) \neq 0$,

$$
\int_{U_{v}} \varphi_{v}(h) \psi_{v}\left(h u h^{-1}\right) \bar{\psi}_{v}\left(m u m^{-1}\right) d u=\int_{U_{v} \cap K_{v}} 1 d u
$$

Proof: At a finite place $v, \varphi_{v}(u) \neq 0$ if and only if $u \in U_{v} \cap K_{v}$, and for such u

$$
\psi_{v}\left(h u h^{-1}\right) \cdot W_{f, v}(h)=W_{f, v}\left(h u h^{-1} \cdot h\right)=W_{f, v}(h u)=W_{f, v}(h) \cdot 1
$$

by the right K_{v}-invariance. Thus, for $W_{f, v}(h) \neq 0, \psi_{v}\left(h u h^{-1}\right)=1$, and similarly for $\psi_{v}\left(m_{m}{ }^{-1}\right)$. Thus, the finite-prime part of the integral over U_{v} is just the integral of 1 over $U_{v} \cap K_{v}$, as indicated.
[1.7] Archimedean kernel The archimedean part of the integral does not necessarily decouple. Thus, with subscripts ∞ denoting the infinite-adele part of various objects, for $h, m \in H_{\infty}$, define

$$
\mathcal{K}(h, m)=\int_{U_{\infty}} \varphi_{\infty}(u) \psi_{\infty}\left(h u h^{-1}\right) \bar{\psi}_{\infty}\left(m u m^{-1}\right) d u
$$

The whole integral is

$$
\int_{Z_{\mathrm{A}} G_{k} \backslash G_{\mathrm{A}}} \operatorname{Pé}(g)|f(g)|^{2} d g=\int_{(\eta)} \int_{N_{k} \backslash H_{\mathrm{A}}} \int_{N_{k} \backslash H_{\mathrm{A}}} \mathcal{K}(h, m) \varphi(h)\left(W_{f}(h) \eta(h)\right)\left(\bar{W}_{f}(m) \bar{\eta}(m)\right) d m d h d \eta
$$

[1.8] Fourier expansion of η Normalize the volume of $N_{k} \backslash N_{\mathrm{A}}$ to 1 . Thus, for a left N_{k}-invariant function F on $H_{\text {A }}$

$$
\int_{N_{k} \backslash H_{\mathrm{A}}} F(h) d h=\int_{N_{\mathrm{A}} \backslash H_{\mathrm{A}}} \int_{N_{k} \backslash N_{\mathrm{A}}} F(n h) d n d h
$$

Using the left N_{A}-equivariance of W by ψ, and the left N_{A}-invariance of φ,

$$
\int_{N_{k} \backslash N_{\mathrm{A}}} \varphi(n h) \eta(n h) W_{f}(n h) d n=\varphi(h) W_{f}(h) \int_{N_{k} \backslash N_{\mathrm{A}}} \psi(n) \eta(n h) d n=\varphi(h) W_{f}(h) W_{\eta}(h)
$$

where

$$
W_{\eta}(h)=\int_{N_{k} \backslash N_{\mathrm{A}}} \psi(n) \eta(n h) d n
$$

(The integral is not against $\bar{\psi}(n)$, but $\psi(n)$.) That is, the integral over $N_{k} \backslash H_{\mathbb{A}}$ is equal to an integral against (up to an alteration of the character) the Whittaker function W_{η} of η, which factors ${ }^{[17]}$ over primes. The whole integral is

$$
\int_{Z_{\mathrm{A}} G_{k} \backslash G_{\mathrm{A}}} \operatorname{Pé}(g)|f(g)|^{2} d g=\int_{(\eta)} \int_{N_{\mathrm{A}} \backslash H_{\mathrm{A}}} \int_{N_{\mathrm{A}} \backslash H_{\mathrm{A}}} \mathcal{K}(h, m) \varphi(h)\left(W_{f}(h) W_{\eta}(h)\right)\left(\bar{W}_{f}(m) \bar{W}_{\eta}(m)\right) d m d h d \eta
$$

And the $\eta^{t h}$ part is a product of two Euler products. It is evident that for f right $K_{\text {fin }}$-invariant only right ($K_{\text {fin }} \cap H_{\text {fin }}$)-invariant η 's will appear, due to the decoupling. However, at archimedean places v right K_{v}-invariance of f does not allows us to restrict our attention to right ($K_{v} \cap H_{v}$)-invariant η.
[1.9] Appearance of the parameter s In fact, as usual,

$$
H_{k} \backslash H_{\mathbb{A}} \approx G L_{r-1}(k) \backslash G L_{r-1}(\mathbb{A}) \approx \mathbb{R}^{+} \times H_{k} \backslash H^{1}
$$

where \mathbb{R}^{+}is positive real numbers, and

$$
H^{1}=\left\{\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right): a \in G L_{r-1}(\mathbb{A}),|\operatorname{det} a|=1\right\}
$$

The quotient $H_{k} \backslash H^{1}$ has finite volume. Thus, the spectral decomposition uses functions

$$
\eta\left(\begin{array}{ll}
a & 0 \\
0 & 1
\end{array}\right)=|\operatorname{det} a|^{s} \cdot F(a) \quad \text { with } \quad F \in L^{2}\left(H_{k} \backslash H^{1}\right), \quad s \in i \mathbb{R}
$$

The real part of the parameter s will necessarily be shifted in the subsequent discussion. Thus, the functions η above are of the form $|\operatorname{det}|^{s} \otimes F$, and the Whittaker function W_{η} of $\eta=|\operatorname{det}|^{s} \otimes F$ is

$$
W_{\eta}\left(\begin{array}{ll}
a & \\
& 1
\end{array}\right)=|\operatorname{det} a|^{s} \cdot W_{F}(a)
$$

where W_{F} is the Whittaker function of F, normalized here by

$$
W_{F}(g)=\int_{N_{k} \backslash N_{\mathrm{A}}} \bar{\psi}(n) F(n g) d n
$$

[17] When η is either a cuspform (in a strong sense) or is an Eisenstein series attached to suitable (e.g., cuspidal, in a strong sense) data, this Whittaker function W_{η} factors over primes. The usual normalization for the spherical Whittaker function W_{v}° at finite places v is $W_{v}^{\circ}(1)=1$. This is the normalization we take for cuspforms, but this is incompatible with a standard normalization of Eisenstein series $E(g)=\sum_{\gamma} \varphi(\gamma g)$ by requiring $\varphi(1)=1$. This produces a normalizing denominator which (as in simple cases of Langlands-Shahidi) is a product of convolution L-functions.
where N is the unipotent radical of the standard minimal parabolic in $G L_{r-1}$.

[1.10] Non-archimedean local factors

In terms of s and F, the non-archimedean local factors are ${ }^{[18]}$

$$
\int_{N_{v} \backslash H_{v}}|\operatorname{det} a|^{s+s^{\prime}} W_{f, v}\left(\begin{array}{cc}
a & \\
& 1
\end{array}\right) W_{F, v}(a) d a=\frac{L_{v}\left(s+s^{\prime}+\frac{1}{2}, f \otimes F\right)}{\langle F, F\rangle^{1 / 2}} \quad\left(\text { for } \operatorname{Re}\left(s+s^{\prime}\right) \gg 0\right)
$$

The second Euler product is the complex conjugate of this, but lacking the shift by s^{\prime}, namely, the complex conjugate of

$$
\int_{N_{v} \backslash H_{v}}\left|\operatorname{det} a^{\prime}\right|^{s} W_{f, v}\left(\begin{array}{cc}
a^{\prime} & \\
& 1
\end{array}\right) W_{F, v}\left(a^{\prime}\right) d a^{\prime}=\frac{L_{v}\left(s+\frac{1}{2}, f \otimes F\right)}{\langle F, F\rangle^{1 / 2}} \quad\left(\text { for } \operatorname{Re}\left(s+s^{\prime}\right) \gg 0 \text { and } \operatorname{Re}(s) \gg 0\right)
$$

When $\eta=|\operatorname{det}|^{s} \otimes F$ is not cuspidal, but, instead, is an Eisenstein series with cuspidal data, it still does generate an irreducible representation of $G_{\text {A }}$. At a place v where η generates a spherical representation, the Euler product expansion of degree $r \cdot(r-1)$ falls apart into smaller factors, and has a denominator arising from the (natural) normalization of the cuspidal-data Eisenstein series entering. Discussion of these terms and their normalizations is postponed.

[1.11] Replace \bar{s} by $1-s$ on $\operatorname{Re}(s)=1 / 2$

The global integrals for the L-functions $L\left(s^{\prime}+s+\frac{1}{2}, f \otimes F\right)$ and $L\left(s+\frac{1}{2}, f \otimes F\right)$ only converge for $\operatorname{Re}\left(s^{\prime}+s\right) \gg 0$ and $\operatorname{Re}(s) \gg 0$, so we will need to meromorphically continue. To this end, it is most convenient for the whole integral to be holomorphic in s, rather than having both s and \bar{s} appear.

To these ends, first absorb the $1 / 2$ into s by replacing s by $s+\frac{1}{2}$, so we have

$$
L\left(s^{\prime}+s, f \otimes F\right) \cdot \overline{L(s, f \otimes F)}
$$

and want to eventually move to the line $\operatorname{Re}(s)=1 / 2$. To avoid the anti-holomorphy in the second factor, since $\bar{s}=1-s$ on the line $\operatorname{Re}(s)=1 / 2$, we can rewrite this as

$$
L\left(s^{\prime}+s, f \otimes F\right) \cdot L(1-s, \bar{f} \otimes \bar{F}) \quad\left(\text { for } \operatorname{Re}(1-s) \gg 0 \text { and } \operatorname{Re}\left(s^{\prime}+s\right) \gg 0\right)
$$

[1.12] The vertical integral(s) Keep in mind that we have absorbed a $1 / 2$ into s, and have replaced \bar{s} by $1-s$. The archimedean part of the whole integral is the function $\Gamma_{\varphi_{\infty}}\left(s, s^{\prime}, f, F\right)$ defined by

$$
\begin{gathered}
\Gamma_{\varphi_{\infty}}\left(s, s^{\prime}, f, F\right)= \\
\int_{N_{\infty} \backslash H_{\infty}} \int_{N_{\infty} \backslash H_{\infty}}^{\mathcal{K}}(h, m)|\operatorname{det} a|^{s^{\prime}+s-\frac{1}{2}}\left|\operatorname{det} a^{\prime}\right|^{\frac{1}{2}-s}\left(W_{f, \infty}\left(\begin{array}{ll}
a & \\
& 1
\end{array}\right) W_{F, \infty}(a)\right) \\
\times\left(\bar{W}_{f, \infty}\left(\begin{array}{ll}
a^{\prime} & \\
& 1
\end{array}\right) \bar{W}_{F, \infty}\left(a^{\prime}\right)\right) d a d a^{\prime} \quad\left(\text { with } h=\left(\begin{array}{ll}
a & \\
& 1
\end{array}\right) \text { and } m=\left(\begin{array}{ll}
a^{\prime} & \\
& 1
\end{array}\right)\right)
\end{gathered}
$$

[^2]since $\varphi_{\infty}(h)=|\operatorname{det} a|^{s^{\prime}}$. Note that this depends only upon the archimedean data attached to f and F. Thus, so far, the whole is
\[

$$
\begin{gathered}
\int_{Z_{\mathrm{A}} G_{k} \backslash G_{\mathrm{A}}} \operatorname{Pé}(g)|f(g)|^{2} d g \\
=\sum_{F \text { on } G L(r-1)} \int_{\operatorname{Re}(s)=\frac{1}{2}} \Gamma_{\varphi_{\infty}}\left(s, s^{\prime}, f, F\right) \frac{L\left(s^{\prime}+s, f \otimes F\right) L(1-s, \bar{f} \otimes \bar{F})}{\langle F, F\rangle} d t \\
+(\text { continuous part }) \quad \quad\left(\text { with } \operatorname{Re}\left(s^{\prime}\right) \gg 0\right)
\end{gathered}
$$
\]

Again, we want to meromorphically continue to $s^{\prime}=0$.
[1.12.1] Remark: With or without detailed knowledge of the residual part of L^{2} (meaning that consisting of square-integrable iterated residues of cuspidal-data Eisenstein series), automorphic forms in the residual spectrum not admitting Whittaker models do not enter in this expansion.

2. Spectral expansion: reduction to $G L_{2}$

The Poincaré series admits a spectral expansion in terms of Eisenstein series, cuspforms, and L-functions, preparing for its meromorphic continuation. This section reduces the general spectral expansion to the case $r=2$.
[2.1] Poisson summation Form the Poincaré series in two stages to allow application of Poisson summation, namely

$$
\operatorname{Pé}(g)=\sum_{Z_{k} H_{k} \backslash G_{k}} \varphi(\gamma g)=\sum_{Z_{k} H_{k} U_{k} \backslash G_{k}} \sum_{\beta \in U_{k}} \varphi(\beta \gamma g)=\sum_{Z_{k} H_{k} U_{k} \backslash G_{k}} \sum_{\psi \in\left(U_{k} \backslash U_{\mathbf{A}}\right)} \hat{\varphi}_{\gamma g}(\psi)
$$

where

$$
\widehat{\varphi}_{g}(\psi)=\int_{U_{\mathrm{A}}} \bar{\psi}(u) \varphi(u g) d u \quad\left(\text { for } g \in G_{\mathrm{A}}\right)
$$

[2.2] The leading term The inner summand for $\psi=1$ gives a vector from which an extremely degenerate Eisenstein series ${ }^{[19]}$ for the $(r-1,1)$ parabolic $P^{r-1,1}=Z H U$ is formed by the outer sum. That is,

$$
g \rightarrow \int_{U_{\mathrm{A}}} \varphi(u g) d u
$$

is left equivariant by a character on $P_{\mathrm{A}}^{r-1,1}$, and is left invariant by $P_{k}^{r-1,1}$, namely,

$$
\begin{aligned}
& \int_{U_{\mathbf{A}}} \varphi(u p g) d u=\int_{U_{\mathbf{A}}} \varphi\left(p \cdot p^{-1} u p \cdot g\right) d u=\delta_{P^{r-1,1}}(m) \cdot \int_{U_{\mathbf{A}}} \varphi(m \cdot u \cdot g) d u \\
= & \left.\left|\frac{\operatorname{det} A}{d^{r-1}}\right|^{s^{\prime}+1} \int_{U_{\mathbf{A}}} \varphi(u g) d u \quad \quad \text { (where } p=\left(\begin{array}{cc}
A & * \\
0 & d
\end{array}\right), A \in G L_{r-1}, d \in G L_{1}\right)
\end{aligned}
$$

[^3]The normalization ${ }^{[20]}$ is explicated by setting $g=1$:

$$
\int_{U_{\mathrm{A}}} \varphi(u) d u=\int_{U_{\infty}} \varphi_{\infty} \cdot \int_{U_{\mathrm{fin}}} \varphi_{\mathrm{fin}}=\int_{U_{\infty}} \varphi_{\infty} \cdot \operatorname{meas}\left(U_{\mathrm{fin}} \cap K_{\mathrm{fin}}\right)=\int_{U_{\infty}} \varphi_{\infty}
$$

A natural normalization would have been that this value be 1, so the Eisenstein series here implicitly includes the archimedean integral and finite-prime measure constant as factors:

$$
\int_{U_{\infty}} \varphi_{\infty} \cdot E_{s^{\prime}+1}^{r-1,1}(g)=\sum_{\gamma \in P_{k}^{r-1,1} \backslash G_{k}}\left(\int_{U_{\mathbf{A}}} \varphi(u \gamma g) d u\right)
$$

As advance warning: the pole at $s^{\prime}=0$ of this leading term will be cancelled by a contribution from the continuous part of the spectral decomposition, below.
[2.3] Main terms: appearance of \mathfrak{Q} from $G L_{2}$ The group H_{k} is transitive on non-trivial characters on $U_{k} \backslash U_{\mathrm{A}}$. As usual, for fixed non-trivial character ψ_{0} on $k \backslash A$, let

$$
\psi^{\xi}(u)=\psi_{0}\left(\xi \cdot u_{r-1, r}\right) \quad\left(\text { for } \xi \in k^{\times}\right)
$$

The spectral expansion of Pé with the obvious leading term removed, is

$$
\sum_{\gamma \in P_{k}^{r-1,1} \backslash G_{k}} \sum_{\alpha \in P_{k}^{r-2,1} \backslash H_{k}}\left(\sum_{\xi \in k^{\times}} \hat{\varphi}_{\alpha \gamma g}\left(\psi^{\xi}\right)\right)
$$

where $P^{r-2,1}$ is the parabolic subgroup of $H \approx G L_{r-1}$. Let

$$
U^{\prime}=\left\{\left(\begin{array}{ccc}
1_{r-2} & & * \\
& 1 & \\
& & 1
\end{array}\right)\right\} \quad U^{\prime \prime}=\left\{\left(\begin{array}{ccc}
1_{r-2} & & \\
& 1 & * \\
& & 1
\end{array}\right)\right\}
$$

Let

$$
\Theta=\left\{\left(\begin{array}{lll}
1_{r-2} & & \\
& * & * \\
& * & *
\end{array}\right)\right\}
$$

Then the expansion of the Poincaré series with leading term removed is

$$
\begin{aligned}
& \sum_{\gamma \in P_{k}^{r-2,1,1} \backslash G_{k}}\left(\sum_{\xi \in k^{\times}} \int_{U_{\mathbf{A}}^{\prime \prime}} \bar{\psi}^{\xi}\left(u^{\prime \prime}\right) \int_{U_{\mathbf{A}}^{\prime}} \varphi\left(u^{\prime} u^{\prime \prime} \gamma g\right) d u^{\prime} d u^{\prime \prime}\right) \\
= & \sum_{\gamma \in P_{k}^{r-2,2} \backslash G_{k}} \sum_{\alpha \in P^{1,1} \backslash \Theta_{k}}\left(\sum_{\xi \in k^{\times}} \int_{U_{\mathbf{A}}^{\prime \prime}} \bar{\psi}^{\xi}\left(u^{\prime \prime}\right) \int_{U_{\mathbf{A}}^{\prime}} \varphi\left(u^{\prime} u^{\prime \prime} \alpha \gamma g\right) d u^{\prime} d u^{\prime \prime}\right)
\end{aligned}
$$

Letting

$$
\widetilde{\varphi}(g)=\int_{U_{\mathbf{A}}^{\prime}} \varphi\left(u^{\prime} g\right) d u^{\prime}
$$

[^4]the expansion becomes
$$
\sum_{\gamma \in P_{k}^{r-2,2} \backslash G_{k}} \sum_{\alpha \in P^{1,1} \backslash \Theta_{k}} \sum_{\xi \in k^{\times}} \int_{U_{\mathbf{A}}^{\prime \prime}} \bar{\psi}^{\xi}\left(u^{\prime \prime}\right) \widetilde{\varphi}\left(u^{\prime \prime} \alpha \gamma g\right) d u^{\prime \prime}
$$

We claim the equivariance

$$
\widetilde{\varphi}(p g)=|\operatorname{det} A|^{s^{\prime}+1} \cdot|a|^{s^{\prime}} \cdot|d|^{-(r-1) s^{\prime}-(r-2)} \cdot \widetilde{\varphi}(g) \quad\left(\text { for } p=\left(\begin{array}{ccc}
A & * & * \\
& a & \\
& & d
\end{array}\right) \in G_{\mathbb{A}}, \text { with } A \in G L_{r-2}\right)
$$

This is verified by changing variables in the defining integral: let $x \in \mathbb{A}^{r-1}$ and compute

$$
\left(\begin{array}{ccc}
1_{r-2} & & x \\
& 1 & \\
& & 1
\end{array}\right)\left(\begin{array}{ccc}
A & b & c \\
& a & \\
& & d
\end{array}\right)=\left(\begin{array}{ccc}
A & b & c+x d \\
& a & \\
& & d
\end{array}\right)=\left(\begin{array}{ccc}
A & b & c \\
& a & \\
& & d
\end{array}\right)\left(\begin{array}{ccc}
1_{r-2} & & A^{-1} x d \\
& 1 & \\
& & 1
\end{array}\right)
$$

Thus, $|\operatorname{det} A|^{s^{\prime}} \cdot|a|^{s^{\prime}} \cdot|d|^{-(r-1) s^{\prime}}$ comes out of the definition of φ, and another $|\operatorname{det} A| \cdot|d|^{2-r}$ from the change-of-measure in the change of variables replacing x by $A x / d$ in the integral defining $\widetilde{\varphi}$ from φ. Note that

$$
|a|^{s^{\prime}} \cdot|d|^{-(r-1) s^{\prime}-(r-2)}=\left|\operatorname{det}\left(\begin{array}{ll}
a & \\
& d
\end{array}\right)\right|^{-\frac{(r-2)}{2} \cdot\left(s^{\prime}+1\right)} \cdot|a / d|^{\frac{r^{\prime}+(r-2)}{2}}
$$

Thus, letting

$$
\Phi(g)=\sum_{\alpha \in P_{k}^{1,1} \backslash \Theta_{k}} \sum_{\xi \in k^{\times}} \int_{U_{A}^{\prime \prime}} \bar{\psi}^{\xi}\left(u^{\prime \prime}\right) \widetilde{\varphi}\left(u^{\prime \prime} \alpha g\right) d u^{\prime \prime}
$$

we can write

$$
\operatorname{Pé}(g)-\sum_{\gamma \in P_{k}^{r-1,1} \backslash G_{k}} \int_{U_{\mathrm{A}}} \varphi(u \gamma g) d u=\sum_{\gamma \in P_{k}^{r-2,2} \backslash G_{k}} \Phi(\gamma g)
$$

This is not an Eisenstein series for $P^{r-2,2}$ in the strictest sense. An expression in terms of genuine Eisenstein series is helpful in understanding meromorphic continuations.

Define a $G L_{2} \operatorname{kernel} \varphi^{(2)}$ for a Poincaré series as follows. We require right invariance by the maximal compact subgroups locally everywhere, and left equivariance

$$
\left.\varphi^{(2)}\left(\begin{array}{ll}
a & \\
& d
\end{array}\right) \cdot D\right)=|a / d|^{s} \cdot \varphi^{(2)}(D)
$$

Then the the archimedean data $\varphi_{\infty}^{(2)}$ is completely specified by

$$
\varphi_{\infty}^{(2)}\left(\begin{array}{ll}
1 & x \\
& 1
\end{array}\right)=\widetilde{\varphi}\left(\begin{array}{ccc}
1_{r-2} & & \\
& 1 & x \\
& & 1
\end{array}\right) \quad \text { (with } \widetilde{\varphi} \text { as above) }
$$

Then put

$$
\varphi^{*}(s, \widetilde{\varphi}, D)=\sum_{\xi \in k^{\times}} \int_{U_{\mathbf{A}}} \bar{\psi}^{\xi}(u) \varphi^{(2)}(s, u D) d u \quad \quad \text { (with } U \text { now the unipotent radical of } P^{1,1} \text { in } G L_{2} \text {) }
$$

The corresponding $G L_{2}$ Poincaré series with leading term removed is

$$
\mathfrak{Q}(s, D)=\sum_{\alpha \in P_{k}^{1,1} \backslash G L_{2}(k)} \varphi^{*}(s, \alpha D)
$$

Thus, for

$$
g=\left(\begin{array}{cc}
A & * \\
& D
\end{array}\right) \quad\left(\text { with } A \in G L_{r-2}(\mathbb{A}) \text { and } D \in G L_{2}(\mathbb{A})\right)
$$

the inner integral

$$
g \rightarrow \int_{U_{\mathbf{A}}^{\prime \prime}} \bar{\psi}\left(u^{\prime \prime}\right) \widetilde{\varphi}\left(u^{\prime \prime} g\right) d u^{\prime \prime}
$$

is expressible in terms of the kernel φ^{*} for \mathfrak{Q}, namely,

$$
\sum_{\xi \in k^{\times}} \int_{U_{\mathbf{A}}^{\prime \prime}} \bar{\psi}^{\xi}\left(u^{\prime \prime}\right) \widetilde{\varphi}\left(u^{\prime \prime} g\right) d u^{\prime \prime}=|\operatorname{det} A|^{s^{\prime}+1} \cdot|\operatorname{det} D|^{-\frac{(r-2)}{2} \cdot\left(s^{\prime}+1\right)} \cdot \varphi^{*}\left(\frac{r s^{\prime}+r-2}{2}, D\right)
$$

Thus,

$$
\sum_{\alpha \in P_{k}^{1,1} \backslash \Theta_{k}} \sum_{\xi \in k^{\times}} \int_{U_{\mathbf{A}}^{\prime \prime}} \bar{\psi}^{\xi}\left(u^{\prime \prime}\right) \widetilde{\varphi}\left(u^{\prime \prime} \alpha g\right) d u^{\prime \prime}=|\operatorname{det} A|^{s^{\prime}+1} \cdot|\operatorname{det} D|^{-\frac{(r-2)}{2} \cdot\left(s^{\prime}+1\right)} \cdot \mathfrak{Q}\left(\frac{r s^{\prime}+r-2}{2}, D\right)
$$

Thus, to obtain a (not necessarily L^{2}) spectral decomposition of the Poincaré series Pé (with main term removed) we first determine the $\left(L^{2}\right)$ spectral decomposition of \mathfrak{Q} for $r=2$, and then form $P^{r-2,2}$ Eisenstein series from the spectral fragments.

3. Spectral expansion for $G L_{2}$

The spectral expansion of the Poincaré series for $G L_{2}$ is easy, because the Poincaré series (with leading term removed) is essentially a kernel for the linear map $f \rightarrow L\left(s^{\prime}+\frac{1}{2}, f\right)$.
[3.1] Recall the set-up Take $r=2$ and $G=G L_{2}$, and $\varphi=\bigotimes_{v} \varphi_{v}$ with φ_{v} constructed above. Namely, at a finite prime v

$$
\varphi_{v}\left(\left(\begin{array}{ll}
a & * \\
& d
\end{array}\right) \cdot \theta\right)=|a / d|_{v}^{s^{\prime}} \quad\left(\text { for } \theta \in K_{v}\right)
$$

and at infinite v we have at least the left equivariance

$$
\varphi_{v}\left(\left(\begin{array}{ll}
a & * \\
& d
\end{array}\right) \cdot g\right)=|a / d|_{v}^{s^{\prime}} \cdot \varphi_{v}(g)
$$

Let

$$
H=\left\{\left(\begin{array}{cc}
* & \\
& 1
\end{array}\right)\right\} \quad U=\left\{\left(\begin{array}{ll}
1 & * \\
& 1
\end{array}\right)\right\} \quad P=\left\{\left(\begin{array}{cc}
* & * \\
& *
\end{array}\right)\right\}
$$

Form a P_{k}-invariant function

$$
\Phi(g)=\sum_{\xi \in k^{\times}} \int_{U_{k} \backslash U_{\mathbf{A}}} \bar{\psi}_{0}\left(\xi \cdot u_{1,2}\right) \varphi(u g) d u
$$

and the Poincaré series

$$
\mathfrak{Q}(g)=\sum_{P_{k} \backslash G_{k}} \Phi(\gamma g)
$$

For $G L_{2}$, the $L^{2}\left(G_{k} \backslash G^{1}\right)$ decomposition ${ }^{[21]}$ has a cuspidal part, a continuous part, and a residual part. Since \mathfrak{Q} is right K_{A}-invariant and has trivial central character, all the spectral components will have these attributes.
[21] We grant that suitable parameter choices put Pé (with a leading term, an Eisenstein series, removed) in L^{2}, allowing such a decomposition, which persists by analytic continuation even when \mathfrak{Q} is not in L^{2}. See estimates over \mathbb{Q} and $\mathbb{Q}(i)$ for $G L_{2}$, but with arbitrary level, in [Zhang 2005] and [Zhang 2006]. The general ideas of the spectral decomposition for $G L_{2}$, at least over \mathbb{Q}, have been understood for a long time. See [Selberg 1956], [Roelcke 1956], [Godement 1966a], [Godement 1966b].
[3.2] Cuspidal part Computation of \langle Pé, $F\rangle$ for F a cuspform can be done directly. This pairing can also be computed as for the pairing against Eisenstein series below, but the cuspform case allows an illuminating direct computation. Let F be a spherical cuspform ${ }^{[22]}$ with trivial central character, and Fourier-Whittaker expansion

$$
F(g)=\sum_{\gamma \in H_{k}} W_{F}(\gamma g) \quad\left(\text { where } W_{F}(g)=\int_{U_{k} \backslash U_{\mathbf{A}}} \bar{\psi}(u) F(u g) d u\right)
$$

Unwinding the Poincaré series gives ${ }^{[23]}$

$$
\langle\text { Pé, } F\rangle=\int_{Z_{\mathbb{A}} G_{k} \backslash G_{\mathrm{A}}} \text { Pé } \cdot \bar{F}=\int_{Z_{\mathbb{A}} G_{k} \backslash G_{\mathrm{A}}} \mathfrak{Q} \cdot \bar{F}=\int_{Z_{\mathbb{A}} H_{k} \backslash G_{\mathrm{A}}} \varphi \cdot \bar{F}
$$

Since F is a cuspform on $G L_{2}$, its Fourier-Whittaker expansion is $F(g)=\sum_{\gamma \in H_{k}} W_{F}(\gamma g)$. Substituting the Fourier expansion of F into the integral unwinds further to

$$
\int_{Z_{\boldsymbol{A}} \backslash G_{\boldsymbol{A}}} \varphi(g) \bar{W}_{F}(g) d g=\prod_{v<\infty} \int_{Z_{v} \backslash G_{v}} \varphi_{v}(g) \bar{W}_{F, v}(g) d g \cdot \prod_{v \mid \infty} \int_{Z_{v} \backslash G_{v}} \varphi_{v}(g) \bar{W}_{F, v}(g) d g
$$

At finite primes v, the right K_{v}-invariance implies (via an Iwasawa decomposition) that the $v^{\text {th }}$ integral is

$$
\int_{H_{v} \times U_{v}} \varphi_{v}(h u) \bar{W}_{F, v}(h u) d h d u=\int_{H_{v}} \varphi_{v}(h) \bar{W}_{F, v}(h) d h=\int_{k_{v}^{\times}}|a|_{v}^{s^{\prime}} \bar{W}_{F, v}\left(\begin{array}{ll}
a & \\
& 1
\end{array}\right) d a
$$

since φ_{v} is supported on $H_{v} K_{v}$. We can adjust F by a scalar (without changing $F /\langle F, F\rangle^{1 / 2}$ so that the non-archimedean Whittaker functions for the cuspform F give non-archimedean integrals over H_{v} which are exactly the local L-factors $L_{v}\left(s^{\prime}+\frac{1}{2}, \bar{F}\right)$. The archimedean integrals are not the usual gamma factors, but still do depend only upon the local data of F. Thus,

$$
\langle\text { Pé, } F\rangle=\left(\int_{Z_{\infty} \backslash G_{\infty}} \varphi_{\infty} \cdot W_{\bar{F}, \infty}\right) \cdot L\left(s^{\prime}+\frac{1}{2}, \bar{F}\right) \quad \text { (F a suitable cuspform) }
$$

[3.3] Poisson summation To isolate the leading term of the Poincaré series, as well as to determine the continuous part of the spectral decomposition, recall the rewritten form of the Poincaré series via Poisson summation:

$$
\operatorname{Pé}(g)=\sum_{\gamma \in Z_{k} H_{k} \backslash G_{k}} \varphi(\gamma g)=\sum_{\gamma \in Z_{k} H_{k} U_{k} \backslash G_{k}} \sum_{\beta \in U_{k}} \varphi(\beta \gamma g)=\sum_{\gamma \in Z_{k} H_{k} U_{k} \backslash G_{k}} \sum_{\psi \in\left(U_{k} \backslash U_{\mathbf{A}}\right)^{\prime}} \widehat{\varphi}_{\gamma g}(\psi)
$$

where

$$
\widehat{\varphi}_{g}(\psi)=\int_{U_{\mathrm{A}}} \bar{\psi}(u) \varphi(u g) d u \quad\left(\text { for } g \in G_{\mathrm{A}}\right)
$$

[3.4] The leading term The inner summand for trivial ψ gives a vector from which an Eisenstein series is formed by the outer sum. That is,

$$
g \rightarrow \int_{U_{\mathbf{A}}} \varphi(u g) d u
$$

[22] As earlier, for us a cuspform generates an irreducible unitary representation of $G_{\text {A }}$.
[23] In this context, the pairing \langle,$\rangle can be taken to be an integral over Z_{\mathrm{A}} G_{k} \backslash G_{\mathrm{A}}$, since the integrand has trivial central character.
is left equivariant by a character on P_{A}, and is left invariant by P_{k}, namely,

$$
\begin{array}{cl}
\int_{U_{\mathbf{A}}} \varphi(u p g) d u=\int_{U_{\mathbf{A}}} \varphi\left(p \cdot p^{-1} u p \cdot g\right) d u=\delta_{P}(m) \cdot \int_{U_{\mathbf{A}}} \varphi(m \cdot u \cdot g) d u \\
=|a / d|^{s^{\prime}+1} \int_{U_{\mathbf{A}}} \varphi(u g) d u & \left(\text { where } p=\left(\begin{array}{cc}
a & * \\
0 & d
\end{array}\right)\right)
\end{array}
$$

The normalization is understood by setting $g=1$:

$$
\int_{U_{\mathrm{A}}} \varphi(u) d u=\int_{U_{\infty}} \varphi_{\infty} \cdot \int_{U_{\mathrm{fin}}} \varphi_{\mathrm{fin}}=\int_{U_{\infty}} \varphi_{\infty}
$$

The natural normalization would have been that this value be 1, so this Eisenstein series includes the archimedean integral and finite-prime measure constant as factors:

$$
(\text { leading term of Pé })=\left(\int_{U_{\infty}} \varphi_{\infty}\right) \cdot E_{s^{\prime}+1}
$$

[3.5] Continuous part First, let

$$
\mathfrak{Q}=\text { Pé }-(\text { leading term })=\text { Pé }-(\text { factor }) \cdot E_{s^{\prime}+1}=\sum_{\gamma \in Z_{k} H_{k} U_{k} \backslash G_{k}} \sum_{\psi \neq 1} \widehat{\varphi}_{\gamma g}(\psi)
$$

be the Poincaré series with its leading term removed. Let

$$
\kappa=\operatorname{meas}\left(\mathbb{J}^{1} / k^{\times}\right)
$$

The residue of the zeta function of k at $z=1$ is

$$
\operatorname{Res}_{z=1} \zeta_{k}(z)=\frac{\kappa}{\left|D_{k}\right|^{1 / 2}} \quad \text { (where } D_{k} \text { is the discriminant of } k \text {) }
$$

The continuous part of the Poincaré series is ${ }^{[24]}$

$$
\frac{1}{4 \pi i \kappa} \sum_{\chi} \int_{\operatorname{Re}(s)=\frac{1}{2}}\left\langle\mathfrak{Q}, E_{s, \chi}\right\rangle \cdot E_{s, \chi} d s
$$

Computation of the pairing of \mathfrak{Q} against Eisenstein series is best approached indirectly, unlike the pairings against cuspforms. [25] For $G L_{2}$, the simple transitivity of H_{k} on non-trivial characters allows \mathfrak{Q} to be rewritten, with any fixed choice of non-trivial ψ, as

$$
\mathfrak{Q}(g)=\sum_{\gamma \in Z_{k} H_{k} U_{k} \backslash G_{k}} \sum_{\beta \in H_{k}} \widehat{\varphi}_{\beta \gamma g}(\psi)=\sum_{\gamma \in Z_{k} U_{k} \backslash G_{k}} \widehat{\varphi}_{\gamma g}(\psi)
$$

[^5]$$
\text { Diaconu-Garrett-Goldfeld: Moments for } L \text {-functions for } G L_{r} \times G L_{r-1}
$$

Integrate \mathfrak{Q} against an Eisenstein series ${ }^{[26]} \quad E_{s, \chi}$ with χ an unramified Hecke character χ.

$$
\left\langle\mathfrak{Q}, E_{s, \chi}\right\rangle=\int_{Z_{\mathrm{A}} G_{k} \backslash G_{\mathrm{A}}} \mathfrak{Q}(g) \bar{E}_{s, \chi}(g) d g
$$

In the latter integral, unwind \mathfrak{Q} to obtain

$$
\begin{aligned}
& \int_{Z_{\mathbf{A}} U_{k} \backslash G_{\mathbf{A}}} \widehat{\varphi}_{g}(\psi) \bar{E}_{s, \chi}(g) d g=\int_{Z_{\mathbf{A}} U_{k} \backslash G_{\mathbf{A}}} \int_{U_{\mathbf{A}}} \bar{\psi}(u) \varphi(u g) \bar{E}_{s, \chi}(g) d u d g \\
= & \int_{Z_{\mathbf{A}} U_{\mathrm{A}} \backslash G_{\mathbf{A}}} \int_{U_{\mathbf{A}}} \bar{\psi}(u) \varphi(u g) \bar{W}_{s, \chi}^{E}(g) d u d g=\int_{Z_{\mathbf{A}} U_{\mathbf{A}} \backslash G_{\mathbf{A}}} \int_{U_{\mathbf{A}}} \varphi(u g) \bar{W}_{s, \chi}^{E}(u g) d u d g \\
= & \left.\int_{Z_{\mathbf{A}} \backslash G_{\mathbf{A}}} \varphi(g) \bar{W}_{s, \chi}^{E}(g) d g \quad \quad \text { (where } W_{s, \chi}^{E}(g)=\int_{U_{k} \backslash U_{\mathbf{A}}} \bar{\psi}(u) E_{s, \chi}(u g) d u\right)
\end{aligned}
$$

The Whittaker function of the Eisenstein series does factor over primes, into local factors depending only upon the local data at v

$$
W_{s, \chi}^{E}=\bigotimes_{v} W_{s, \chi, v}^{E}
$$

Thus,

$$
\left\langle\mathfrak{Q}, E_{s, \chi}\right\rangle=\prod_{v} \int_{Z_{v} \backslash G_{v}} \varphi_{v}(g) \bar{W}_{s, \chi, v}^{E}(g) d g
$$

At finite v, using an Iwasawa decomposition and the vanishing of φ_{v} off $H_{v} U_{v}$, as in the integration against cuspforms, the local factor is

$$
\int_{k_{v}^{\times}}|a|_{v}^{s^{\prime}} \bar{W}_{s, \chi, v}^{E}\left(\begin{array}{ll}
a & \\
& 1
\end{array}\right) d a
$$

However, for Eisenstein series, the natural normalization of the Whittaker functions differs from that used for cuspforms, instead presenting the local Whittaker functions as images under intertwining operators. Specifically, define the normalized spherical vector for data s, χ_{v}

$$
\varphi_{v}^{\circ}(p \theta)=|a / d|_{v}^{s} \cdot \chi_{v}(a / d) \quad\left(\text { for } p=\left(\begin{array}{ll}
a & * \\
& d
\end{array}\right) \text { in } P_{v} \text { and } \theta \text { in } K_{v}\right)
$$

The corresponding (spherical) local Whittaker function for Eisenstein series is the integral ${ }^{[27]}$

$$
W_{s, \chi, v}^{E}(g)=\int_{U_{v}} \bar{\psi}(u) \varphi_{v}^{\circ}\left(w_{\circ} u g\right) d u
$$

where w_{\circ} is the longest Weyl element. The Mellin transform of the Eisenstein-series normalization W_{v}^{E} compares to the Mellin transform of the usual normalization W_{v}° of the Whittaker function (with the same data s, χ_{v}) as follows. Let \mathfrak{o}_{v}^{*} be the local inverse different at v, and let $\mathfrak{d}_{v} \in k_{v}^{\times}$be such that

$$
\left(\mathfrak{o}_{v}^{*}\right)^{-1}=\mathfrak{d}_{v} \cdot \mathfrak{o}_{v}
$$

[^6]Let \mathfrak{d} be the idele with $v^{t h}$ component \mathfrak{d}_{v} at finite places v and component 1 at archimedean places. Let $\nu(x)=|x|$. Then for finite v the $v^{t h}$ local integral is ${ }^{[28]}$

$$
\begin{gathered}
\int_{k_{v}^{\times}}|a|_{v}^{s^{\prime}} \bar{W}_{s, \chi, v}^{E}\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right) d a=|\mathfrak{d}|^{1 / 2} \cdot \frac{L_{v}\left(s^{\prime}+\frac{1}{2}, \nu^{\bar{s}} \bar{\chi}_{v}\right) \cdot L_{v}\left(s^{\prime}+\frac{1}{2}, \nu^{1-\bar{s}} \chi_{v}\right)}{\bar{L}_{v}\left(2 s, \chi_{v}^{2}\right)} \cdot\left|\mathfrak{d}_{v}\right|^{-\left(s^{\prime}+1-\bar{s}\right)} \bar{\chi}\left(\mathfrak{d}_{v}\right) \\
\\
=|\mathfrak{d}|^{1 / 2} \cdot \frac{L_{v}\left(s^{\prime}+\bar{s}, \bar{\chi}_{v}\right) \cdot L_{v}\left(s^{\prime}+1-\bar{s}, \chi_{v}\right)}{\bar{L}_{v}\left(2 s, \chi_{v}^{2}\right)} \cdot\left|\mathfrak{d}_{v}\right|^{-\left(s^{\prime}+1-\bar{s}\right)} \chi\left(\mathfrak{d}_{v}\right)
\end{gathered}
$$

Then

$$
\left\langle\mathfrak{Q}, E_{s, \chi}\right\rangle=\left(\int_{Z_{\infty} \backslash G_{\infty}} \varphi_{\infty} \cdot \bar{W}_{s, \chi, \infty}^{E}\right) \cdot|\mathfrak{d}|^{1 / 2} \cdot \frac{L\left(s^{\prime}+\bar{s}, \bar{\chi}\right) \cdot L\left(s^{\prime}+1-\bar{s}, \chi\right)}{\bar{L}\left(2 s, \chi^{2}\right)} \cdot|\mathfrak{d}|^{-\left(s^{\prime}+1-\bar{s}\right)} \chi(\mathfrak{d})
$$

[3.6] Maintaining holomorphy The integral of $\left\langle\mathfrak{Q}, E_{s, \chi}\right\rangle \cdot E_{s}$ along the vertical line $\operatorname{Re}(s)=1 / 2$ is anti-holomorphic in the first s and holomorphic in the second s, inconvenient when we want to move the line of integration. To maintain holomorphy, as earlier, since $\bar{s}=1-s$ on $\operatorname{Re}(s)=\frac{1}{2}$, we rewrite

$$
\left\langle\mathfrak{Q}, E_{s, \chi}\right\rangle=\int_{Z_{\mathbf{A}} G_{k} \backslash G_{\mathbf{A}}} \text { Pé } \cdot E_{1-s, \bar{\chi}}
$$

The latter expression is holomorphic in s and has the expected Euler product expansion for $\operatorname{Re}(1-s) \gg 0$. With this adjustment,

$$
\left\langle\mathfrak{Q}, E_{s, \chi}\right\rangle=\left(\int_{Z_{\infty} \backslash G_{\infty}} \varphi_{\infty} \cdot W_{1-s, \bar{\chi}, \infty}^{E}\right) \cdot|\mathfrak{d}|^{1 / 2} \cdot \frac{L\left(s^{\prime}+1-s, \bar{\chi}\right) \cdot L\left(s^{\prime}+s, \chi\right)}{L\left(2-2 s, \bar{\chi}^{2}\right)} \cdot|\mathfrak{d}|^{-\left(s^{\prime}+s\right)} \chi(\mathfrak{d})
$$

Thus, with the contour at $\operatorname{Re}(s)=\operatorname{Re}(1-s)=1 / 2$ and with $\operatorname{Re}\left(s^{\prime}\right) \gg 0$,

$$
\begin{gathered}
\text { Pé }=\int_{U_{\infty}} \varphi_{\infty} \cdot E_{s^{\prime}+1}+\sum_{F}\left(\int_{Z_{\infty} \backslash G_{\infty}} \varphi_{\infty} \cdot W_{\bar{F}, \infty}\right) \cdot L\left(s^{\prime}+\frac{1}{2}, \bar{F}\right) \cdot \frac{F}{\langle F, F\rangle} \\
+\sum_{\chi} \frac{\chi(\mathfrak{d})}{4 \pi i \kappa} \int_{\operatorname{Re}(s)=\frac{1}{2}}\left(\int_{Z_{\infty} \backslash G_{\infty}} \varphi_{\infty} \cdot W_{1-s, \bar{\chi}, \infty}^{E}\right) \frac{L\left(s^{\prime}+1-s, \bar{\chi}\right) \cdot L\left(s^{\prime}+s, \chi\right)}{L\left(2-2 s, \bar{\chi}^{2}\right)} \cdot|\mathfrak{d}|^{-\left(s^{\prime}+s-1 / 2\right)} \cdot E_{s, \chi} d s
\end{gathered}
$$

4. Continuation and holomorphy at $s^{\prime}=0$ for $G L_{2}$

The meromorphic continuation and non-obvious cancellation ${ }^{[29]}$ in the spectral decomposition of the Poincaré series for $G L_{2}$ are reviewed in detail here, over an arbitrary number field, proving that the spectral expression for the Poincaré series is holomorphic at $s^{\prime}=0$.

To obtain the desired expression for integral moments, we must set $s^{\prime}=0$, which on the spectral side requires that the meromorphically continued Poincaré series be holomorphic at $s^{\prime}=0$. The (obvious) leading Eisenstein series $E_{s^{\prime}+1}$ (without the archimedean factor) has a pole at $s^{\prime}+1=1$, that is, at $s^{\prime}=0$, but we will see now that this is cancelled by part of the continuous spectrum of the Poincare series. This cancellation is independent of the choice of archimedean data φ_{∞}.
[28] This elementary comparison is reproduced in an appendix.
${ }^{[29]}$ This cancellation argument was given in detail over \mathbb{Q} in [Diaconu-Goldfeld 2006a].
[4.1] The leading term From above, the leading term Eisenstein series, including the extra leading archimedean factor (and measure constant from finite primes) is

$$
\left(\int_{U_{\infty}} \varphi_{\infty}\right) \cdot E_{s^{\prime}+1}(g)=\sum_{\gamma \in P_{k} \backslash G_{k}} \int_{U_{\mathrm{A}}} \varphi(u \gamma g) d u
$$

[4.2] Two residues of the continuous part The only fragment of the continuous part of the spectral decomposition of \mathfrak{Q} with poles to the right of the line $\operatorname{Re}(s)=1 / 2$ is that with trivial Hecke character χ. Replacing (as above) \bar{s} by $1-s$ to maintain holomorphy in the integral ${ }^{[30]}$ for $\left\langle\mathfrak{Q}, E_{s}\right\rangle$, the term with relevant poles is ${ }^{[31]}$

$$
\begin{gathered}
\frac{1}{4 \pi i \kappa} \int_{\operatorname{Re}(s)=\frac{1}{2}}\left\langle\mathfrak{Q}, E_{s}\right\rangle \cdot E_{s} d s \\
=\frac{1}{4 \pi i \kappa} \int_{\operatorname{Re}(s)=\frac{1}{2}}\left(\int_{Z_{\infty} \backslash G_{\infty}} \varphi_{\infty} \cdot W_{1-s, \bar{\chi}, \infty}^{E}\right) \frac{\zeta_{k}\left(s^{\prime}+1-s\right) \cdot \zeta_{k}\left(s^{\prime}+s\right)}{\zeta_{k}(2-2 s)}|\mathfrak{d}|^{-\left(s^{\prime}+s-1 / 2\right)} E_{s} d s
\end{gathered}
$$

Aiming to analytically continue to $s^{\prime}=0$, in the integral first take $\operatorname{Re}\left(s^{\prime}\right)=1 / 2+\varepsilon$, and move the contour from $\operatorname{Re}(s)=1 / 2$ to $\operatorname{Re}(s)=1 / 2-2 \varepsilon$. This picks up the residue of the integrand due to the pole of $\zeta_{k}\left(s^{\prime}+s\right)$ at $s^{\prime}+s=1$, that is, at $s=1-s^{\prime}$. This contributes

$$
\begin{gathered}
\frac{1}{4 \pi i \kappa} \cdot 2 \pi i \cdot\left(\int_{Z_{\infty} \backslash G_{\infty}} \varphi_{\infty} \cdot W_{s^{\prime}, \infty}^{E}\right) \cdot \frac{\zeta_{k}\left(2 s^{\prime}\right) \cdot \operatorname{Res}_{z=1} \zeta_{k}(z)}{\zeta_{k}\left(2 s^{\prime}\right)}|\mathfrak{d}|^{-1 / 2} \cdot E_{1-s^{\prime}} \\
=\frac{1}{2} \cdot\left(\int_{Z_{\infty} \backslash G_{\infty}} \varphi_{\infty} \cdot W_{s^{\prime}, \infty}^{E}\right) \cdot|\mathfrak{d}|^{1 / 2} \cdot|\mathfrak{d}|^{-1 / 2} \cdot E_{1-s^{\prime}}=\frac{1}{2} \cdot\left(\int_{Z_{\infty} \backslash G_{\infty}} \varphi_{\infty} \cdot W_{s^{\prime}, \infty}^{E}\right) \cdot E_{1-s^{\prime}}
\end{gathered}
$$

The vertical integral on $\operatorname{Re}(s)=1 / 2-2 \varepsilon$ is holomorphic in s^{\prime} in (at least) the strip

$$
\frac{1}{2}-\varepsilon \leq \operatorname{Re}\left(s^{\prime}\right) \leq \frac{1}{2}+\varepsilon \quad\left(\text { while } \operatorname{Re}(s)=\frac{1}{2}-2 \varepsilon\right)
$$

Move s^{\prime} to $\operatorname{Re}\left(s^{\prime}\right)=1 / 2-\varepsilon$, and then move the vertical integral from the contour $\sigma=1 / 2-2 \varepsilon$ back to the contour $\sigma=1 / 2$. This picks up (-1) times the residue at the pole of $\zeta_{k}\left(s^{\prime}+1-s\right)$ at 1 , that is, at $s=s^{\prime}$, with another sign due to the sign on s inside this zeta function. Thus, we pick up the residue, namely

$$
\begin{gathered}
\frac{1}{4 \pi i \kappa} \cdot 2 \pi i \cdot\left(\int_{Z_{\infty} \backslash G_{\infty}} \varphi_{\infty} \cdot W_{1-s^{\prime}, \infty}\right) \cdot \frac{\operatorname{Res}_{z=1} \zeta_{k}(z) \cdot \zeta_{k}\left(2 s^{\prime}\right)}{\zeta_{k}\left(2-2 s^{\prime}\right)} \cdot|\mathfrak{d}|^{-2 s^{\prime}+\frac{1}{2}} \cdot E_{1-\left(1-s^{\prime}\right)} \\
=\frac{1}{2} \cdot\left(\int_{Z_{\infty} \backslash G_{\infty}} \varphi_{\infty} \cdot W_{1-s^{\prime}, \infty}\right) \cdot \frac{\zeta_{k}\left(2 s^{\prime}\right)}{\zeta_{k}\left(2-2 s^{\prime}\right)} \cdot|\mathfrak{d}|^{-2 s^{\prime}+1} \cdot E_{s^{\prime}}
\end{gathered}
$$

[4.3] Use of functional equation of E_{s} The latter expression can be simplified by using the functional equation of $E_{s^{\prime}}$. Specifically, letting ζ_{∞} be the gamma factor for ζ_{k},

$$
\zeta_{\infty}\left(2 s^{\prime}\right) \cdot \zeta_{k}\left(2 s^{\prime}\right) \cdot E_{s^{\prime}}=|\mathfrak{d}|^{2 s^{\prime}-1} \cdot \zeta_{\infty}\left(2-2 s^{\prime}\right) \cdot \zeta_{k}\left(2-2 s^{\prime}\right) \cdot E_{1-s^{\prime}}
$$

[30] The pairing \langle,$\rangle can be taken to be an integration over Z_{\mathbb{A}} G_{k} \backslash G_{\mathrm{A}}$, since the central character is trivial.
[31] Again, κ is the natural volume of $\mathbb{J}^{1} / k^{\times}$, and is invisible in the case of $k=\mathbb{Q}$ because in that case $\kappa=1$. And $\kappa / D_{k}^{1 / 2}$ is the residue of ζ_{k} at 1 , again invisible for groundfield \mathbb{Q}.

In the situation at hand, this gives

$$
\frac{\zeta_{k}\left(2 s^{\prime}\right)}{\zeta_{k}\left(2-2 s^{\prime}\right)} \cdot E_{s^{\prime}}=|\mathfrak{d}|^{2 s^{\prime}-1} \cdot \frac{\zeta_{\infty}\left(2-2 s^{\prime}\right)}{\zeta_{\infty}\left(2 s^{\prime}\right)} \cdot E_{1-s^{\prime}}
$$

Thus, the powers of $|\mathfrak{d}|$ cancel, and the second residue can be rewritten as

$$
\frac{1}{2} \cdot\left(\int_{Z_{\infty} \backslash G_{\infty}} \varphi_{\infty} \cdot W_{1-s^{\prime}, \infty}\right) \cdot \frac{\zeta_{\infty}\left(2-2 s^{\prime}\right)}{\zeta_{\infty}\left(2 s^{\prime}\right)} \cdot E_{1-s^{\prime}}
$$

These two contributions from the continuous part are

$$
\frac{1}{2} \cdot\left(\int_{Z_{\infty} \backslash G_{\infty}} \varphi_{\infty} \cdot\left[W_{s^{\prime}, \infty}+\frac{\zeta_{\infty}\left(2-2 s^{\prime}\right)}{\zeta_{\infty}\left(2 s^{\prime}\right)} \cdot W_{1-s^{\prime}, \infty}\right]\right) \cdot E_{1-s^{\prime}}
$$

[4.4] Use of functional equation of archimedean Whittaker functions The archimedean-place (and finite-prime) Whittaker functions are normalized by presenting the Whittaker functions by the usual intertwining integral (and analytically continuing), as follows. Let

$$
\eta_{s}(u m \theta)=|a / d|_{v}^{s} \quad\left(\text { for } u \in U, m=\left(\begin{array}{ll}
a & \\
& d
\end{array}\right), \theta \in K_{v}\right)
$$

The normalization of the Whittaker function is

$$
W_{s, v}^{E}(g)=\int_{U_{v}} \bar{\psi}(u) \eta_{s}\left(w_{\circ} u g\right) d u \quad(\text { for } \operatorname{Re}(s) \gg 0, \text { fixed non-trivial } \psi)
$$

Further, for v archimedean

$$
W_{s, v}^{E}\left(\begin{array}{cc}
a & \\
& 1
\end{array}\right)=\int_{k_{v}} \bar{\psi}_{0}(x)\left|\frac{a}{a a^{\iota}+x x^{\iota}}\right|_{v}^{s} d x=|a|_{v}^{1-s} \int_{k_{v}} \bar{\psi}_{0}(a x) \frac{1}{\left|1+x x^{\iota}\right|_{v}^{s}} d x
$$

by replacing x by $a x$, where ι is complex conjugation for $v \approx \mathbb{C}$ and is the identity map for $v \approx \mathbb{R}$. The usual computation shows that

$$
W_{s, \mathbb{R}}^{E}\left(\begin{array}{cc}
a & \\
& 1
\end{array}\right)=\frac{|a|^{1 / 2}}{\pi^{-s} \Gamma(s)} \int_{0}^{\infty} e^{-\pi\left(t+\frac{1}{t}\right)|a|} t^{s-\frac{1}{2}} \frac{d t}{t}=\frac{1}{\zeta_{\mathbb{R}}(2 s)} \times(\text { invariant under } s \leftrightarrow 1-s)
$$

and, similarly, ${ }^{[32]}$

$$
W_{s, \mathbb{C}}^{E}\left(\begin{array}{cc}
a & \\
& 1
\end{array}\right)=\frac{|a|}{(2 \pi)^{-2 s} \Gamma(2 s)} \int_{0}^{\infty} e^{-2 \pi\left(t+\frac{1}{t}\right)|a|} t^{2 s-1} \frac{d t}{t}=\frac{1}{\zeta_{\mathbb{C}}(2 s)} \times(\text { invariant under } s \leftrightarrow 1-s)
$$

Thus, in both cases,

$$
\frac{\zeta_{v}(2-2 s)}{\zeta_{v}(2 s)} \cdot W_{1-s, v}^{E}\left(\begin{array}{cc}
a & \\
& 1
\end{array}\right)=W_{s, v}^{E}\left(\begin{array}{ll}
a & \\
& 1
\end{array}\right) \quad \text { (for } v \text { archimedean) }
$$

[32] In the displayed identity for $v \approx \mathbb{C}$, an unadorned absolute value is not $|x|_{\mathbb{C}}=x x^{\iota}$, but, rather, the standard $|x|=\sqrt{x x^{l}}$. The appropriate measure is double the usual.
and

$$
W_{1-s}^{E}=\frac{\zeta_{\infty}(2 s)}{\zeta_{\infty}(2-2 s)} \cdot W_{s}^{E}
$$

Thus, in fact, the second of the two residues from the continuous part is identical to the first. Thus, these two residues combine to give

$$
\left(\int_{Z_{\infty} \backslash G_{\infty}} \varphi_{\infty} \cdot W_{s^{\prime}, \infty}\right) \cdot E_{1-s^{\prime}}
$$

Thus, to prove that the leading term's pole at $s^{\prime}=0$ is cancelled by the poles of these residues at $s^{\prime}=0$, we must show that

$$
\left(\int_{U_{\infty}} \varphi_{\infty}\right) \cdot E_{1+s^{\prime}}+\left(\int_{Z_{\infty} \backslash G_{\infty}} \varphi_{\infty} \cdot W_{s^{\prime}, \infty}\right) \cdot E_{1-s^{\prime}}=\left(\text { holomorphic at } s^{\prime}=0\right)
$$

[4.5] Invocation of Fourier inversion Thus, to prove cancellation of poles at $s^{\prime}=0$ it suffices to prove a local fact, namely, that

$$
\int_{U_{v}} \varphi_{v}=\left.\left(\int_{Z_{v} \backslash G_{v}} \varphi_{v} \cdot W_{s^{\prime}, v}^{E}\right)\right|_{s^{\prime}=0} \quad \text { (for all archimedean } v \text {) }
$$

The Whittaker function $W_{s, v}^{E}$ can be presented in terms of a Fourier transform

$$
W_{s, v}^{E}\left(\begin{array}{cc}
a & \\
& 1
\end{array}\right)=|a|^{1-s} \cdot \widehat{\Psi}_{s, v}(a) \quad\left(\text { where } \Psi(x)=\Psi_{s}(x)=\left|1+x x^{c}\right|_{v}^{-s}, v \text { archimedean }\right)
$$

Let

$$
\Phi(x)=\varphi_{v}\left(\begin{array}{ll}
1 & x \\
& 1
\end{array}\right)
$$

Using the right K_{v}-invariance and an Iwasawa decomposition, and noting that Φ and Ψ are even,

$$
\begin{gathered}
\int_{Z_{v} \backslash G_{v}} \varphi_{v} \cdot W_{s^{\prime}, v}^{E}=\int_{k_{v}^{\times}} \int_{k_{v}}|a|^{s^{\prime}} \Phi(x) \cdot|a|^{1-s^{\prime}} \widehat{\Psi}(a) \psi(a x) d x d a \\
=\int_{k_{v}^{\times}} \widehat{\Phi}(a) \widehat{\Psi}(a)|a| d a=\int_{k_{v}^{\times}} \Phi(a) \Psi(a)|a| d a
\end{gathered}
$$

by Fourier inversion, since $|a| d a$ is an additive Haar measure. Writing the latter expression out, it is

$$
\int_{k_{v}} \varphi_{v}\left(\begin{array}{ll}
1 & a \\
& 1
\end{array}\right) \cdot \frac{1}{\left|1+a a^{\iota}\right|_{v}^{v^{\prime}}}|a| d a
$$

The equality

$$
\int_{Z_{v} \backslash G_{v}} \varphi_{v} \cdot W_{s^{\prime}, v}^{E}=\int_{k_{v}^{\times}} \varphi_{v}\left(\begin{array}{cc}
1 & a \\
& 1
\end{array}\right) \cdot \frac{1}{\left|1+a a^{\nu}\right|_{v}^{s^{\prime}}}|a| d a
$$

holds at first only for $\operatorname{Re}\left(s^{\prime}\right) \gg 0$, but then extends by analytic continuation for φ_{v} sufficiently integrable on N_{v}. Thus, we can evaluate the latter integral at $s^{\prime}=0$, obtaining

$$
\int_{Z_{v} \backslash G_{v}} \varphi_{v} \cdot W_{0, v}^{E}=\int_{k_{v}^{\times}} \varphi_{v}\left(\begin{array}{ll}
1 & a \\
& 1
\end{array}\right)|a| d a
$$

At archimedean places v, the normalization $|a| d a$ for an additive Haar measure, in terms of a multiplicative Haar measure $d a$, is correct. This proves that, indeed,

$$
\left.\left(\int_{Z_{v} \backslash G_{v}} \varphi_{v} \cdot W_{s^{\prime}, v}^{E}\right)\right|_{s^{\prime}=0}=\int_{U_{v}} \varphi_{v} \quad \text { (for all archimedean } v \text {) }
$$

which yields the desired cancellation.

5. Spectral expansion for $G L_{r}$

The spectral decomposition of the Poincaré series for $r=2$ yields that for $r>2$ by inducing. For $r>2$, nothing remains after all the non- L^{2} terms are removed. The non- L^{2} terms are induced from the genuinely L^{2} spectral expansion of the Poincaré series on $G L_{2}$.

Before carrying out the spectral expansion for $r=2$, we had found that

$$
\operatorname{Pé}(g)=\left(\int_{U_{\infty}} \varphi_{\infty}\right) \cdot E_{s^{\prime}+1}^{r+1,1}(g)+\sum_{\gamma \in P_{k}^{r-2,2} \backslash G_{k}} \Phi(\gamma g)
$$

where

$$
\Phi\left(\begin{array}{ll}
A & * \\
& D
\end{array}\right)=|\operatorname{det} A|^{s^{\prime}+1} \cdot|\operatorname{det} D|^{-(r-2) \cdot \frac{s^{\prime}+1}{2}} \cdot \mathfrak{Q}\left(\frac{r s^{\prime}+r-2}{2}, \widetilde{\varphi}, D\right) \quad\left(\text { with } A \in G L_{r-2} \text { and } D \in G L_{2}\right)
$$

with \mathfrak{Q} from $G L_{2}$, and

$$
\widetilde{\varphi}(g)=\int_{U_{k}^{\prime} \backslash U_{\mathbf{A}}^{\prime}} \varphi\left(u^{\prime} g\right) d u^{\prime}
$$

Thus, formation of Pé (with its leading term removed) amounts to forming an Eisenstein series from Φ, with analytical properties explicated by expressing Φ as a superposition of vectors generating irreducibles.

[5.1] Decomposition into irreducibles

From the decomposition of \mathfrak{Q} on $G L_{2}$ for $\operatorname{Re}\left(s^{\prime}\right) \gg 0$

$$
\begin{gathered}
\Phi\left(\begin{array}{cc}
A & * \\
0 & D
\end{array}\right)=|\operatorname{det} A|^{2 \cdot \frac{s^{\prime}+1}{2}} \cdot|\operatorname{det} D|^{-(r-2) \cdot \frac{s^{\prime}+1}{2}} \cdot \mathfrak{Q}\left(\frac{r s^{\prime}+r-2}{2}, \widetilde{\varphi}, D\right) \\
=|\operatorname{det} A|^{2 \cdot \frac{s^{\prime}+1}{2}} \cdot|\operatorname{det} D|^{-(r-2) \cdot \frac{s^{\prime}+1}{2}} \sum_{F}\left(\int_{P G L_{2}\left(k_{\infty}\right)} \widetilde{\varphi}_{\infty} \cdot W_{\bar{F}, \infty}\right) \cdot L\left(\frac{r s^{\prime}+r-2}{2}+\frac{1}{2}, \bar{F}\right) \cdot \frac{F}{\langle F, F\rangle} \\
+|\operatorname{det} A|^{2 \cdot \frac{s^{\prime}+1}{2}} \cdot|\operatorname{det} D|^{-(r-2) \cdot \frac{s^{\prime}+1}{2}} \sum_{\chi} \frac{\chi(\mathfrak{d})}{4 \pi i \kappa} \\
\int_{\operatorname{Re}(s)=\frac{1}{2}}\left(\int_{P G L_{2}\left(k_{\infty}\right)} \widetilde{\varphi}_{\infty} \cdot W_{1-s, \bar{\chi}, \infty}^{E}\right) \cdot \frac{L\left(\frac{r s^{\prime}+r-2}{2}+1-s, \bar{\chi}\right) \cdot L\left(\frac{r s^{\prime}+r-2}{2}+s, \chi\right)}{L\left(2-2 s, \bar{\chi}^{2}\right)} \cdot|\mathfrak{d}|^{-\left(\frac{r s^{\prime}+r-2}{2}+s-1 / 2\right)} \cdot E_{s, \chi}(D) d s
\end{gathered}
$$

[5.2] Least continuous part of Poincaré series

Let

$$
\Phi_{\frac{s^{\prime}+1}{2}, F}\left(\left(\begin{array}{cc}
A & * \\
0 & D
\end{array}\right) \cdot \theta\right)=|\operatorname{det} A|^{2 \cdot \frac{s^{\prime}+1}{2}} \cdot|\operatorname{det} D|^{-(r-2) \cdot \frac{s^{\prime}+1}{2}} F(D) \quad\left(\text { for } \theta \in K_{\mathbb{A}}\right)
$$

and define a half-degenerate Eisenstein series ${ }^{\text {[33] }}$

$$
E_{\frac{s^{\prime}+1}{2}, F}^{r-2,2}(g)=\sum_{\gamma \in P_{k}^{r-2,2} \backslash G_{k}} \Phi_{\frac{s^{\prime}+1}{2}, F}(\gamma g)
$$

Then the most-cuspidal (or least continuous) part of the Poincaré series is

$$
\sum_{F}\left(\int_{P G L_{2}\left(k_{\infty}\right)} \widetilde{\varphi} \cdot W_{\bar{F}, \infty}\right) \cdot \frac{L\left(\frac{r s^{\prime}+r-2}{2}+\frac{1}{2}, \bar{F}\right)}{\langle F, F\rangle} \cdot E_{\frac{s^{\prime}+1}{2}, F}^{r-2,2} \quad \quad \quad\left(\text { cuspforms } F \text { on } G L_{2}\right)
$$

The summands of this expression have relatively well understood meromorphic continuations. As discussed in an appendix, the half-degenerate Eisenstein series $E_{s, F}^{r-2,2}$ has no poles in $\operatorname{Re}(s) \geq 1 / 2$. With $s=\left(s^{\prime}+1\right) / 2$ this assures absence of poles in $\operatorname{Re}\left(s^{\prime}\right) \geq 0$.
[5.3] Continuous part of the Poincare series The Eisenstein series integral part of \mathfrak{Q} on $G L_{2}$ gives degenerate Eisenstein series attached to the $(r-2,1,1)$-parabolic in $G L_{r}$. This arises from a similar consideration as for $G L_{2}$ cuspforms, but for $G L_{2}$ Eisenstein series, as follows.

Let $E_{s, \chi}$ be the usual Eisenstein series for $G L_{2}$, and let

$$
\Phi_{\frac{s^{\prime}+1}{2}, E_{s, \chi}}\left(\left(\begin{array}{cc}
A & * \\
0 & D
\end{array}\right) \cdot \theta\right)=|\operatorname{det} A|^{2 \cdot \frac{s^{\prime}+1}{2}} \cdot|\operatorname{det} D|^{-(r-2) \cdot \frac{s^{\prime}+1}{2}} E_{s, \chi}(D) \quad\left(\text { for } \theta \in K_{\mathbb{A}}\right)
$$

and define an Eisenstein series

$$
E_{\frac{s^{\prime}+1}{2}, E_{s, \chi}}^{r-2,2}(g)=\sum_{\gamma \in P_{k}^{r-2,2} \backslash G_{k}} \Phi_{\frac{s^{\prime}+1}{2}, E_{s, \chi}}(\gamma g)
$$

For given $s \in \mathbb{C}$, an easy variant of Godement's criterion ${ }^{[34]}$ proves convergence for sufficiently large $\operatorname{Re}\left(s^{\prime}\right)$.
Then, ignoring the issue of interchange of sums and integrals, the Poincaré series has most continuous part

$$
\begin{gathered}
\sum_{\chi} \frac{\chi(\mathfrak{d})}{4 \pi i \kappa} \int_{\operatorname{Re}(s)=\frac{1}{2}}\left(\int_{P G L_{2}\left(k_{\infty}\right)} \widetilde{\varphi}_{\infty} \cdot W_{1-s, \bar{\chi}, \infty}^{E}\right) \\
\times \frac{L\left(\frac{r s^{\prime}+r-2}{2}+1-s, \bar{\chi}\right) \cdot L\left(\frac{r s^{\prime}+r-2}{2}+s, \chi\right)}{L\left(2-2 s, \bar{\chi}^{2}\right)} \cdot|\mathfrak{d}|^{-\left(\frac{r s^{\prime}+r-2}{2}+s-1 / 2\right)} \cdot E_{\frac{s^{\prime}+1}{2}, E_{s, \chi}}^{r-2,2} d s
\end{gathered}
$$

That is, it is the analytically continued E_{s} on the line $\operatorname{Re}(s)=\frac{1}{2}$ that enters. However, as usual, for $\operatorname{Re}(s) \gg 0$ and $\operatorname{Re}\left(s^{\prime}\right) \gg 0$ this iterated formation of Eisenstein series is equal to a single-step Eisenstein series. The equality persists after analytic continuation.

Thus, let

$$
\begin{gathered}
\Phi_{s_{1}, s_{2}, s_{3}, \chi}\left(\left(\begin{array}{ccc}
A & * & * \\
0 & m_{2} & * \\
0 & 0 & m_{3}
\end{array}\right) \cdot \theta\right) \\
=|\operatorname{det} A|^{s_{1}} \cdot\left|m_{2}\right|^{s_{2}} \chi\left(m_{2}\right) \cdot\left|m_{3}\right|^{s_{3}} \bar{\chi}\left(m_{3}\right) \quad \quad \quad\left(\text { for } \theta \in K_{\mathbb{A}} \text { and } A \in G L_{r-2}\right)
\end{gathered}
$$

[33] Visibly, this Eisenstein series is a $P^{r-2,2}$ Eisenstein series degenerate on the (upper-left) Levi component $G L_{r-2}$
for $r>3$, while cuspidal on the (lower-right) Levi component $G L_{2}$. Basic analytic properties of such Eisenstein series
are accessible by relatively elementary methods, as noted in the appendix on half-degenerate Eisenstein series.
[34] A neo-classical version of Godement's criterion is in [Borel 1966].
and

$$
E_{s_{1}, s_{2}, s_{3}, \chi}^{r-2,1,1}=\sum_{\gamma \in P_{k}^{r-2,1,1} \backslash G_{k}} \Phi_{s_{1}, s_{2}, s_{3}, \chi}(\gamma g)
$$

Then, ignoring the issue of interchange of sums and integrals, the Poincaré series has most continuous part

$$
\begin{gathered}
\sum_{\chi} \frac{\chi(\mathfrak{d})}{4 \pi i \kappa} \int_{\operatorname{Re}(s)=\frac{1}{2}}\left(\int_{P G L_{2}\left(k_{\infty}\right)} \widetilde{\varphi}_{\infty} \cdot W_{1-s, \bar{\chi}, \infty}^{E}\right) \\
\times \frac{L\left(\frac{r s^{\prime}+r-2}{2}+1-s, \bar{\chi}\right) \cdot L\left(\frac{r s^{\prime}+r-2}{2}+s, \chi\right)}{L\left(2-2 s, \bar{\chi}^{2}\right)} \cdot|\mathfrak{d}|^{-\left(\frac{r s^{\prime}+r-2}{2}+s-1 / 2\right)} \cdot E_{2 \cdot \frac{s^{\prime}+1}{2}, s-(r-2) \cdot \frac{s^{\prime}+1}{2},-s-(r-2) \cdot \frac{s^{\prime}+1}{2}, \chi}^{r-1} d s
\end{gathered}
$$

[5.4] Comment It is remarkable that there are no further terms in the spectral expansion of Pé, beyond the main term, the cuspidal $G L_{2}$ part induced up to $G L_{r}$, and the continuous $G L_{2}$ part induced up to $G L_{r}$.

6. Continuation and cancellation for $G L_{r}$

Take $r>2$. In meromorphically continuing the Poincaré series to $s^{\prime}=0$ the leading term

$$
\left(\int_{U_{\infty}} \varphi_{\infty}\right) \cdot E_{s^{\prime}+1}^{r+1,1}(g)
$$

seems to create an obstruction, having a pole at $s^{\prime}=0$ (coming from the pole of the Eisenstein series). As with $G L_{2}$, it is not obvious, but this pole is cancelled by poles coming from the trivial- χ integral of Eisenstein series

$$
\begin{gathered}
\frac{1}{4 \pi i \kappa} \int_{\operatorname{Re}(s)=\frac{1}{2}}\left(\int_{P G L_{2}\left(k_{\infty}\right)} \widetilde{\varphi}_{\infty}\left(\frac{r s^{\prime}+r-2}{2}\right) \cdot W_{1-s, \infty}^{E}\right) \\
\times \frac{\zeta\left(\frac{r s^{\prime}+r-2}{2}+1-s\right) \cdot \zeta\left(\frac{r s^{\prime}+r-2}{2}+s\right)}{\zeta(2-2 s)} \cdot|\mathfrak{d}|^{-\left(\frac{r s^{\prime}+r-2}{2}+s-1 / 2\right)} \cdot E_{2 \cdot \frac{s^{\prime}+1}{2}, s-(r-2) \cdot \frac{s^{\prime}+1}{2},-s-(r-2) \cdot \frac{s^{\prime}+1}{2}}^{r-2,1} d s
\end{gathered}
$$

Unlike the $G L_{2}$ case, for $r>2$ the relevant poles of this integral are due to the Eisenstein series, not to the zeta functions.
[6.1] Residue of leading term First, recall from the appendix that the leading term has residue at $s^{\prime}=0$ given explicitly by the residue of the Eisenstein series, namely ${ }^{[35]}$

$$
\operatorname{Res}_{s^{\prime}=0}\left(\int_{U_{\infty}} \varphi_{\infty}\right) \cdot E_{s^{\prime}+1}^{r+1,1}(g)=\left(\int_{U_{\infty}} \varphi_{\infty}\right) \cdot \operatorname{Res}_{s^{\prime}=0} E_{s^{\prime}+1}^{r+1,1}(g)=\left(\int_{U_{\infty}} \varphi_{\infty}\right) \cdot \frac{\kappa \cdot|\mathfrak{d}|^{r / 2}}{r \cdot \xi(r)}
$$

[6.2] The initial situation The spectral decomposition initially holds for $\operatorname{Re}\left(s^{\prime}\right) \gg 0$ while the integral
[35] As usual, the function $\xi(s)$ is the zeta function of the underlying number field with gamma factors added, but not attempting to compensate for the conductor or epsilon factor (the latter being absent here). Thus, the functional equation is

$$
\xi(s)=|\mathfrak{d}|^{1 / 2} \cdot|\mathfrak{d}|^{-(1-s)} \cdot \xi(1-s)=|\mathfrak{d}|^{s-\frac{1}{2}} \cdot \xi(1-s)
$$

where \mathfrak{d} is a finite idele generating the local different everywhere. The first $|\mathfrak{d}|^{1 / 2}$ is the product of standard measures of local integers at ramified primes, and $|\mathfrak{d}|^{-(1-s)}$ arises because the Fourier transform of the characteristic function of the local integers is the characteristic function of the local inverse different.
is along $\operatorname{Re}(s)=1 / 2$. For brevity, let the three complex arguments to the Eisenstein series be denoted

$$
s_{1}=2 \cdot \frac{s^{\prime}+1}{2} \quad s_{2}=s-(r-2) \frac{s^{\prime}+1}{2} \quad s_{3}=-s-(r-2) \frac{s^{\prime}+1}{2}
$$

For $\operatorname{Re}\left(s^{\prime}\right) \gg 0$, certainly $\operatorname{Re}\left(s_{1}-s_{2}\right)>r-1$ and $\operatorname{Re}\left(s_{1}-s_{3}\right)>r$, although $\operatorname{Re}\left(s_{2}-s_{3}\right)=1$, since $\operatorname{Re}(s)=1 / 2$. Thus, for convergence, the Eisenstein series $E_{s_{1}, s_{2}, s_{3}}^{r-2,1,1}$ must be understood as formed by inducing up along $P^{r-2,2}$ the meromorphic continuation of $E_{s_{2}, s_{3}}^{1,1}$. Godement's criterion ${ }^{[36]}$ yields convergence.
[6.3] Move s^{\prime} to the left edge Aiming to move s^{\prime} toward 0 , first move s^{\prime} as far to the left as possible without violating either of the two conditions

$$
\begin{cases}\operatorname{Re}\left(s_{1}-s_{2}\right)>r-1 & \text { (first condition) } \\ \operatorname{Re}\left(s_{1}-s_{3}\right)>r & \text { (second condition) }\end{cases}
$$

Let $\sigma=\operatorname{Re}(s)$ and $\sigma^{\prime}=\operatorname{Re}\left(s^{\prime}\right)$. Expanded, the first condition is

$$
2 \cdot \frac{\sigma^{\prime}+1}{2}-\left(\sigma-(r-2) \cdot \frac{\sigma^{\prime}+1}{2}\right)>r-1
$$

which simplifies to

$$
r \cdot \frac{\sigma^{\prime}+1}{2}>\sigma+r-1
$$

and then

$$
\frac{\sigma^{\prime}+1}{2}>\frac{\sigma}{r}+1-\frac{1}{r}
$$

and finally

$$
\sigma^{\prime}>1-\frac{2(1-\sigma)}{r} \quad \quad \text { (first condition, simplified) }
$$

Similarly, the second condition becomes

$$
\sigma^{\prime}>1-\frac{2 \sigma}{r} \quad \text { (second condition, simplified) }
$$

For $\sigma=\operatorname{Re}(s)=1 / 2$, which is where we start, these two conditions are equivalent, namely

$$
\sigma^{\prime}>1-\frac{1}{r} \quad\left(\text { either condition, at } \sigma=\frac{1}{2}\right)
$$

Thus, move s^{\prime} close to the left edge of the region defined by these conditions: for small $\varepsilon>0$ move $\sigma^{\prime}=\operatorname{Re}\left(s^{\prime}\right)$ to $\sigma^{\prime}=1-\frac{1}{r}+\varepsilon$.
[6.4] First contour shift and residue Now solve the two inequalities for σ in terms of σ^{\prime}. These are

$$
\left\{\begin{array}{lll}
\sigma<\frac{r}{2} \cdot \sigma^{\prime}-\frac{r-2}{2} & \text { (first condition, rearranged) } \\
\sigma>-\frac{r}{2} \cdot \sigma^{\prime}+\frac{r}{2} & \text { (second condition, rearranged) }
\end{array}\right.
$$

With $\sigma^{\prime}=1-\frac{1}{r}+\varepsilon$, move σ to the left, from $\frac{1}{2}$ to $\frac{1}{2}-\frac{r+1}{2} \varepsilon$. This causes the second condition (but not the first) to be violated:

$$
\left\{\begin{array}{lll}
\frac{1}{2}-\frac{r+1}{2} \cdot \varepsilon<\frac{1}{2}+\frac{r}{2} \cdot \varepsilon=\frac{r}{2} \cdot\left(1-\frac{1}{r}+\varepsilon\right)-\frac{r-2}{2} & \text { (first condition holds) } \\
\frac{1}{2}-\frac{r+1}{2} \cdot \varepsilon \ngtr \frac{1}{2}-\frac{r}{2} \cdot \varepsilon=-\frac{r}{2} \cdot\left(1-\frac{1}{r}+\varepsilon\right)+\frac{r}{2} & \text { (second condition fails) }
\end{array}\right.
$$

[^7]Thus, we pick up $2 \pi i$ times the residue of the pole of the Eisenstein series at

$$
s=-\frac{r}{2} \cdot s^{\prime}+\frac{r}{2}=\frac{r}{2} \cdot\left(1-s^{\prime}\right)
$$

The corresponding residue of the $P^{r-2,1,1}$ Eisenstein series is (from the appendix)

$$
\begin{aligned}
& \frac{\kappa \cdot|\mathfrak{d}|^{\frac{r-1}{2}}}{\xi(r-1)} \cdot \frac{\xi\left(s_{2}-s_{3}-1\right)}{\xi\left(s_{2}-s_{3}\right)} \cdot E_{s_{1}-1, s_{2}-1}^{r-1,1} \\
= & \frac{\kappa \cdot|\mathfrak{d}|^{\frac{r-1}{2}}}{\xi(r-1)} \cdot \frac{\xi\left(r\left(1-s^{\prime}\right)-1\right)}{\xi\left(r\left(1-s^{\prime}\right)\right)} \cdot E_{s^{\prime},-(r-1) s^{\prime}}^{r-1,1}
\end{aligned}
$$

With $s=r\left(1-s^{\prime}\right) / 2$, the zeta functions in the integral of Eisenstein series become

$$
\frac{\zeta\left(\frac{r s^{\prime}+r-2}{2}+1-\frac{r}{2}\left(1-s^{\prime}\right)\right) \cdot \zeta\left(\frac{r s^{\prime}+r-2}{2}+\frac{r}{2}\left(1-s^{\prime}\right)\right)}{\zeta\left(2-r\left(1-s^{\prime}\right)\right)}=\frac{\zeta\left(r s^{\prime}\right) \cdot \zeta(r-1)}{\zeta\left(2-r+r s^{\prime}\right)}
$$

That is, apart from the $2 \pi i$ and archimedean factor, we have picked up

$$
(2 \pi i) \cdot \frac{\zeta\left(r s^{\prime}\right) \cdot \zeta(r-1)}{\zeta\left(2-r+r s^{\prime}\right)} \cdot \frac{\kappa \cdot|\mathfrak{d}|^{\frac{r-1}{2}}}{\xi(r-1)} \cdot \frac{\xi\left(r\left(1-s^{\prime}\right)-1\right)}{\xi\left(r\left(1-s^{\prime}\right)\right)} \cdot E_{s^{\prime}}^{r-1,1}
$$

From the appendix,

$$
\operatorname{Re}_{s^{\prime}=0} \xi\left(r s^{\prime}\right) \cdot E_{s^{\prime}}^{r-1,1}=-\frac{\kappa}{r}
$$

The only other finite-prime zeta which misbehaves at $s^{\prime}=0$ is the $\zeta\left(2-r+r s^{\prime}\right)$ in the denominator. From the functional equation

$$
\zeta(s)=\frac{\xi(s)}{\zeta_{\infty}(s)}=\frac{|\mathfrak{d}|^{s-\frac{1}{2}} \cdot \xi(1-s)}{\zeta_{\infty}(s)}
$$

we have

$$
\frac{1}{\zeta\left(2-r+r s^{\prime}\right)}=|\mathfrak{d}|^{\frac{1}{2}-\left(2-r+r s^{\prime}\right)} \cdot \frac{\zeta_{\infty}\left(2-r+r s^{\prime}\right)}{\xi\left(1-\left(2-r+r s^{\prime}\right)\right)}=|\mathfrak{d}|^{\frac{1}{2}-2+r-r s^{\prime}} \cdot \frac{\zeta_{\infty}\left(2-r+r s^{\prime}\right)}{\xi\left(r-1-r s^{\prime}\right)}
$$

Thus, the iterated residue at $s^{\prime}=0$ of this residue (without $2 \pi i$ and without the archimedean factor) is

$$
\begin{aligned}
\operatorname{Res}_{s^{\prime}=0} & \left(\frac{\zeta_{\infty}\left(2-r+r s^{\prime}\right)}{\zeta_{\infty}\left(r s^{\prime}\right)}\right) \cdot \frac{\zeta(r-1) \cdot \kappa \cdot|\mathfrak{d}|^{\frac{3 r}{2}-2} \cdot \xi(r-1)}{\xi(r-1) \cdot \xi(r-1) \cdot \xi(r)} \cdot\left(-\frac{\kappa}{r}\right) \\
& =-\operatorname{Res}_{s^{\prime}=0}\left(\frac{\zeta_{\infty}\left(2-r+r s^{\prime}\right)}{\zeta_{\infty}\left(r s^{\prime}\right)}\right) \cdot \frac{\kappa \cdot|\mathfrak{d}|^{\frac{3 r}{2}-2}}{\zeta_{\infty}(r-1) \cdot \xi(r)} \cdot\left(\frac{\kappa}{r}\right)
\end{aligned}
$$

[6.5] The archimedean factor Take

$$
s=\frac{r}{2} \cdot\left(1-s^{\prime}\right)
$$

and use the functional equation for the $G L_{2}$ archimedean Whittaker function, namely

$$
W_{1-s}^{E}=\frac{\zeta_{\infty}(2 s)}{\zeta_{\infty}(2-2 s)} \cdot W_{s}^{E}
$$

Then the archimedean integral is

$$
\int_{P G L_{2}\left(k_{\infty}\right)} \widetilde{\varphi}_{\infty}\left(\frac{r s^{\prime}+r-2}{2}\right) \cdot \frac{\zeta_{\infty}\left(r \cdot\left(1-s^{\prime}\right)\right)}{\zeta_{\infty}\left(2-r \cdot\left(1-s^{\prime}\right)\right)} \cdot W_{\frac{r}{2}\left(1-s^{\prime}\right), \infty}^{E}
$$

Continuing this discussion shows that the continuous-spectrum part of the spectral decomposition cancels the pole of the singular term, giving the meromorphic continuation to $s^{\prime}=0$.

7. Appendix: half-degenerate Eisenstein series

Take $q>1$, and let f be a cuspform on $G L_{q}(\mathbb{A})$, in the strong sense that f is in $L^{2}\left(G L_{q}(k) \backslash G L_{q}(\mathbb{A})^{1}\right)$, and f meets the Gelfand-Fomin-Graev conditions

$$
\int_{N_{k} \backslash N_{\mathrm{A}}} f(n g) d n=0 \quad \text { (for almost all } g \text {) }
$$

and f generates an irreducible representation of $G L_{q}\left(k_{\nu}\right)$ locally at all places ν of k. For a Schwartz function Φ on $\mathbb{A}^{q \times r}$ and Hecke character χ, let

$$
\varphi(g)=\varphi_{\chi, f, \Phi}(g)=\chi(\operatorname{det} g)^{q} \int_{G L_{q}(\mathbb{A})} f\left(h^{-1}\right) \chi(\operatorname{det} h)^{r} \Phi\left(h \cdot\left[0_{q \times(r-q)} 1_{q}\right] \cdot g\right) d h
$$

This function φ has the same central character as f. It is left invariant by the adele points of the unipotent radical

$$
N=\left\{\left(\begin{array}{cc}
1_{r-q} & * \\
& 1_{r}
\end{array}\right)\right\} \quad \text { (unipotent radical of } P=P^{r-q, q} \text {) }
$$

The function φ is left invariant under the k-rational points M_{k} of the standard Levi component of P,

$$
M=\left\{\left(\begin{array}{ll}
a & \\
& d
\end{array}\right): a \in G L_{r-q}, d \in G L_{r}\right\}
$$

To understand the normalization, observe that

$$
\xi\left(\chi^{r}, f, \Phi(0, *)\right)=\varphi(1)=\int_{G L_{q}(\mathbb{A})} f\left(h^{-1}\right) \chi(\operatorname{det} h)^{r} \Phi\left(h \cdot\left[0_{q \times(r-q)} 1_{q}\right]\right) d h
$$

is a zeta integral as in [Godement-Jacquet 1972] for the standard L-function attached to the cuspform f (or perhaps a contragredient). Thus, the Eisenstein series formed from φ includes this zeta integral as a factor, so write

$$
\xi\left(\chi^{r}, f, \Phi(0, *)\right) \cdot E_{\chi, f, \Phi}^{P}(g)=\sum_{\gamma \in P_{k} \backslash G L_{r}(k)} \varphi(\gamma g) \quad(\text { convergent for } \operatorname{Re}(\chi) \gg 0)
$$

Now prove the meromorphic continuation via Poisson summation:

$$
\begin{gathered}
\xi\left(\chi^{r}, f, \Phi(0, *)\right) \cdot E_{\chi, f, \Phi}^{P}(g) \\
=\chi(\operatorname{det} g)^{q} \sum_{\gamma \in P_{k} \backslash G L_{r}(k)} \int_{G L_{q}(k) \backslash G L_{q}(\mathbb{A})} f(h) \chi(\operatorname{det} h)^{-r} \sum_{\alpha \in G L_{q}(k)} \Phi\left(h^{-1} \cdot[0 \alpha] \cdot g\right) d h \\
=\chi(\operatorname{det} g)^{q} \int_{G L_{q}(k) \backslash G L_{q}(\mathbb{A})} f(h) \chi(\operatorname{det} h)^{-r} \sum_{y \in k^{q \times r}, \text { full rank }} \Phi\left(h^{-1} \cdot y \cdot g\right) d h
\end{gathered}
$$

The Gelfand-Fomin-Graev condition on f will compensate for the otherwise-irksome full-rank constraint. Anticipating that we can drop the rank condition suggests that we define

$$
\Theta_{\Phi}(h, g)=\sum_{y \in k^{q \times r}} \Phi\left(h^{-1} \cdot y \cdot g\right)
$$

As in [Godement-Jacquet 1972], the non-full-rank terms integrate to 0: ${ }^{[37]}$
[7.0.1] Proposition: For f a cuspform, less-than-full-rank terms integrate to 0 , that is,

$$
\int_{G L_{q}(k) \backslash G L_{q}(\mathbb{A})} f(h) \chi(\operatorname{det} h)^{-r} \sum_{y \in k^{q \times r}, \text { rank }<q} \Phi\left(h^{-1} \cdot y \cdot g\right) d h=0
$$

Proof: Since this is asserted for arbitrary Schwartz functions Φ, we can take $g=1$. By linear algebra, given $y_{0} \in k^{q \times r}$ of rank ℓ, there is $\alpha \in G L_{q}(k)$ such that

$$
\alpha \cdot y_{0}=\binom{y_{\ell \times r}}{0_{(q-\ell) \times r}} \quad\left(\text { with } \ell \text {-by- } r \text { block } y_{\ell \times r} \text { of rank } \ell\right)
$$

Thus, without loss of generality fix y_{0} of the latter shape. Let Y be the orbit of y_{0} under left multiplication by the rational points of the parabolic

$$
P^{\ell, q-\ell}=\left\{\left(\begin{array}{cc}
\ell \text {-by- } \ell & * \\
0 & (q-\ell) \text {-by- }(q-\ell)
\end{array}\right)\right\} \subset G L_{q}
$$

This is some set of matrices of the same shape as y_{0}. Then the subsum over $G L_{q}(k) \cdot y_{0}$ is

$$
\int_{G L_{q}(k) \backslash G L_{q}(\mathbb{A})} f(h) \chi(\operatorname{det} h)^{-r} \sum_{y \in G L_{q}(k) \cdot y_{0}} \Phi\left(h^{-1} \cdot y\right) d h=\int_{P_{k}^{\ell, q-\ell} \backslash G L_{q}(\mathbb{A})} f(h) \chi(\operatorname{det} h)^{-r} \sum_{y \in Y} \Phi\left(h^{-1} \cdot y\right) d h
$$

Let N and M be the unipotent radical and standard Levi component of $P^{\ell, q-\ell}$,

$$
N=\left(\begin{array}{cc}
1_{\ell} & * \\
0 & 1_{q-\ell}
\end{array}\right) \quad M=\left(\begin{array}{cc}
\ell \text {-by- } \ell & 0 \\
0 & (q-\ell) \text {-by- }(q-\ell)
\end{array}\right)
$$

Then the integral can be rewritten as an iterated integral

$$
\begin{aligned}
& \int_{N_{k} M_{k} \backslash G L_{q}(\mathbb{A})} f(h) \chi(\operatorname{det} h)^{-r} \sum_{y \in Y} \Phi\left(h^{-1} \cdot y\right) d h \\
= & \int_{N_{\mathbb{A}} M_{k} \backslash G L_{q}(\mathbb{A})} \sum_{y \in Y} \int_{N_{k} \backslash N_{\mathbf{A}}} f(n h) \chi(\operatorname{det} n h)^{-r} \Phi\left((n h)^{-1} \cdot y\right) d n d h \\
= & \int_{N_{\mathbf{A}} M_{k} \backslash G L_{q}(\mathbb{A})} \sum_{y \in Y} \chi(\operatorname{det} h)^{-r} \Phi\left(h^{-1} \cdot y\right)\left(\int_{N_{k} \backslash N_{\mathrm{A}}} f(n h) d n\right) d h
\end{aligned}
$$

[37] There are issues of convergence. First, for $\operatorname{Re}(\chi)$ sufficiently large, the integral

$$
\chi(\operatorname{det} g)^{q} \sum_{\gamma \in P_{k} \backslash G L_{r}(k)} \int_{G L_{q}(k) \backslash G L_{q}(\mathbb{A})} f(h) \chi(\operatorname{det} h)^{-r} \Theta(h, g) d h
$$

is absolutely convergent. Also, we have the integrals analogous to integrals over $k^{\times} \backslash \mathbb{J}^{+}$. That is, let $G L_{q}^{+}=\left\{h \in G L_{q}(\mathbb{A}):|\operatorname{det} h| \geq 1\right\}$. Then, for arbitrary χ, using the fact that cuspforms f are of rapid decay in Siegel sets,

$$
\chi(\operatorname{det} g)^{q} \sum_{\gamma \in P_{k} \backslash G L_{r}(k)} \int_{G L_{q}(k) \backslash G L_{q}^{+}} f(h) \chi(\operatorname{det} h)^{-r} \sum_{y \in k^{q \times r}, \text { full rank }} \Phi\left(h^{-1} \cdot y \cdot g\right) d h
$$

is absolutely convergent.
since all fragments but $f(n h)$ in the integrand are left invariant by N_{A}. But the inner integral of $f(n h)$ is 0 , by the Gelfand-Fomin-Graev condition, so the whole is 0 .

Let ι denote the transpose-inverse involution(s). Poisson summation gives

$$
\begin{gathered}
\Theta_{\Phi}(h, g)=\sum_{y \in k^{q \times r}} \Phi\left(h^{-1} \cdot y \cdot g\right) \\
=\left|\operatorname{det}\left(h^{-1}\right)^{\iota}\right|^{r}\left|\operatorname{det} g^{\iota}\right|^{q} \sum_{y \in k^{q \times r}} \widehat{\Phi}\left(\left(h^{\iota}\right)^{-1} \cdot y \cdot g^{\iota}\right)=\left|\operatorname{det}\left(h^{-1}\right)^{\iota}\right|^{r}\left|\operatorname{det} g^{\iota}\right|^{q} \Theta_{\widehat{\Phi}}\left(h^{\iota}, g^{\iota}\right)
\end{gathered}
$$

As with Θ_{Φ}, the not-full-rank summands in $\Theta_{\widehat{\Phi}}$ integrate to 0 against cuspforms. Thus, letting

$$
\begin{gathered}
G L_{q}^{+}=\left\{h \in G L_{q}(\mathbb{A}):|\operatorname{det} h| \geq 1\right\} \quad G L_{q}^{-}=\left\{h \in G L_{q}(\mathbb{A}):|\operatorname{det} h| \leq 1\right\} \\
\xi\left(\chi^{r}, f, \Phi(0, *)\right) \cdot E_{\chi, f, \Phi}^{P}(g)=\chi(\operatorname{det} g)^{q} \int_{G L_{q}(k) \backslash G L_{q}(\mathbb{A})} f(h) \chi(\operatorname{det} h)^{-r} \Theta_{\Phi}(h, g) d h \\
=\chi(\operatorname{det} g)^{q} \int_{G L_{q}(k) \backslash G L_{q}^{+}} f(h) \chi(\operatorname{det} h)^{-r} \Theta_{\Phi}(h, g) d h+\chi(\operatorname{det} g)^{q} \int_{G L_{q}(k) \backslash G L_{q}^{-}} f(h) \chi(\operatorname{det} h)^{-r} \Theta_{\Phi}(h, g) d h \\
=\chi(\operatorname{det} g)^{q} \int_{G L_{q}(k) \backslash G L_{q}^{+}} f(h) \chi(\operatorname{det} h)^{-r} \Theta_{\Phi}(h, g) d h \\
+\chi(\operatorname{det} g)^{q} \int_{G L_{q}(k) \backslash G L_{q}^{-}}\left|\operatorname{det}\left(h^{-1}\right)^{\iota}\right|^{r}\left|\operatorname{det} g^{\iota}\right|^{q} f(h) \chi(\operatorname{det} h)^{-r} \Theta_{\widehat{\Phi}}\left(h^{\iota}, g^{\iota}\right) d h
\end{gathered}
$$

By replacing h by h^{ι} in the second integral, convert it to an integral over $G L_{q}(k) \backslash G L_{q}^{+}$, and the whole is

$$
\begin{gathered}
\xi\left(\chi^{r}, f, \Phi(0, *)\right) \cdot E_{\chi, f, \Phi}^{P}(g)=\chi(\operatorname{det} g)^{q} \int_{G L_{q}(k) \backslash G L_{q}^{+}} f(h) \chi(\operatorname{det} h)^{-r} \Theta_{\Phi}(h, g) d h \\
\quad+\nu \chi^{-1}\left(\operatorname{det} g^{\iota}\right)^{q} \int_{G L_{q}(k) \backslash G L_{q}^{+}} f\left(h^{\iota}\right) \nu \chi^{-1}\left(\operatorname{det} h^{\iota}\right)^{-r} \Theta_{\widehat{\Phi}}\left(h, g^{\iota}\right) d h
\end{gathered}
$$

Since $f \circ \iota$ is a cuspform, the second integral is entire in χ. Thus, we have proven

$$
\xi\left(\chi^{r}, f, \Phi(0, *)\right) \cdot E_{\chi, f, \Phi}^{P} \quad \text { is entire }
$$

[7.1] Remark Except for the extreme case $q=r-1$, these Eisenstein series are degenerate, so occur only as (iterated) residues of cuspidal-data Eisenstein series. Assessing poles of residues is less effective in the present special circumstances than the above argument.

8. Appendix: Eisenstein series for $G L_{2}$

We compute Mellin transforms of the Whittaker functions attached to Eisenstein series for $G L_{2}$ (with trivial central character, spherical, over a number field k). The natural normalization of Eisenstein series adds a further local L-factor to the Mellin transform (as well as a measure constant at ramified primes), by contrast to the usual Mellin transform of the usual normalization W_{v}° of the spherical Whittaker function. And at the end we give a precise function equation.
[8.1] The standard Eisenstein series Let $G=G L_{2}$ and

$$
P=\left\{\left(\begin{array}{cc}
* & * \\
0 & *
\end{array}\right)\right\} \quad N=\left\{\left(\begin{array}{cc}
1 & * \\
0 & 1
\end{array}\right)\right\} \quad M=\left\{\left(\begin{array}{cc}
* & 0 \\
0 & 1
\end{array}\right)\right\}
$$

and let Z be the center. An absolutely unramified Hecke character can be decomposed as $\chi(\alpha) \cdot|\alpha|^{s}$ corresponding to the usual decomposition

$$
\mathbb{J} / k^{\times} \approx \mathbb{J}^{1} / k^{\times} \times(0,+\infty)
$$

The standard normalization of the spherical function (in the tensor product of principal series) is $\varphi=\bigotimes_{v} \varphi_{v}$ with

$$
\varphi_{v}\left(\left(\begin{array}{cc}
a & * \\
0 & 1
\end{array}\right) \cdot \theta\right)=|a / d|_{v}^{s} \cdot \chi_{v}(a / d) \quad\left(\theta \text { in the standard maximal compact of } G L_{2}\left(k_{v}\right)\right)
$$

Thus, $\varphi_{v}(1)=1$ for all v. The standard Eisenstein series attached to data s, χ is

$$
E(g)=E_{s, \chi}(g)=\sum_{P_{k} \backslash G_{k}} \varphi(\gamma g)
$$

[8.2] The Eisenstein Whittaker functions Let ψ be the standard non-trivial character on \mathbb{A} / k. Let \mathfrak{o}_{v} be the local integers at a finite place v, let p be the rational prime lying under v. The dual lattice to \mathfrak{o}_{v} with respect to trace is

$$
\mathfrak{o}_{v}^{*}=\left\{\alpha \in k_{v}: \operatorname{tr}_{Q_{p}}^{k_{v}}(\alpha \beta) \in \mathbb{Z}_{p}: \text { for all } \beta \in \mathfrak{o}_{v}\right\}
$$

This dual lattice \mathfrak{o}_{v}^{*} is exactly the kernel of the standard ψ. Let

$$
W^{E}(g)=\int_{N_{k} \backslash N_{\mathrm{A}}} \bar{\psi}(n) E(n g) d n
$$

where the measure is normalized so that the total measure of $N_{k} \backslash N_{\text {A }}$ is 1 . As usual, this unwinds to

$$
\int_{N_{k} \backslash N_{\mathrm{A}}} \bar{\psi}(n) \varphi(n g) d n+\int_{N_{\mathrm{A}}} \bar{\psi}(n) \varphi\left(w_{\circ} n g\right) d n
$$

As ψ is non-trivial, the first of the two integrals is 0 . The second integral has an Euler product, with $v^{t h}$ factor

$$
W_{v}^{E}(g)=\int_{N_{v}} \bar{\psi}(n) \varphi_{v}\left(w_{\circ} n g\right) d n
$$

[8.3] Archimedean local computations

At archimedean places, for present application we do not need the Mellin transform of the Whittaker functions. Instead, we need to present the archimedean-place Eisenstein-Whittaker functions in a form that emphasizes local functional equations. As above, let

$$
\varphi_{v}\left(\left(\begin{array}{cc}
a & * \\
0 & 1
\end{array}\right) \cdot \theta\right)=|a / d|_{v}^{s} \cdot \chi_{v}(a / d) \quad\left(\theta \text { in the standard maximal compact of } G L_{2}\left(k_{v}\right)\right)
$$

and

$$
W_{v}^{E}(g)=\int_{N_{v}} \bar{\psi}(n) \varphi_{v}\left(w_{\circ} n g\right) d n
$$

By the right K_{v} invariance, Z_{v}-invariance, and left N_{v} equivariance, to understand W_{v}^{E} it suffices to take g of the form

$$
g=\left(\begin{array}{ll}
y & \\
& 1
\end{array}\right)
$$

For v complex and $x \in k_{v}$, let $x^{\sigma}=\bar{x}$, and for v real let σ be the identity map. For archimedean v, the standard Iwasawa decomposition is

$$
\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) \cdot\left(\begin{array}{ll}
1 & x \\
& 1
\end{array}\right) \cdot\left(\begin{array}{ll}
y & \\
& 1
\end{array}\right)=\left(\begin{array}{cc}
-y / r & x^{\sigma} / r \\
0 & r
\end{array}\right) \cdot\left(\begin{array}{cc}
x^{\sigma} / r & -y^{\sigma} / r \\
y / r & x / r
\end{array}\right) \quad\left(\text { where } r=\sqrt{x x^{\sigma}+y y^{\sigma}}\right)
$$

Thus,

$$
\varphi_{v}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right)\left(\begin{array}{ll}
1 & x \\
& 1
\end{array}\right)\left(\begin{array}{cc}
y & \\
& 1
\end{array}\right)=\varphi_{v}\left(\begin{array}{cc}
-y / r & * \\
0 & r
\end{array}\right)=\left|\frac{y}{r^{2}}\right|_{v}^{s}=\left|\frac{y}{x x^{\sigma}+y y^{\sigma}}\right|_{v}^{s}
$$

The Fourier-Whittaker transform is

$$
\int_{k_{v}} \bar{\psi}(x)\left|\frac{y}{x x^{\sigma}+y y^{\sigma}}\right|_{v}^{s} d x=|y|_{v} \int_{k_{v}} \bar{\psi}(x y)\left|\frac{y}{y y^{\sigma}\left(x x^{\sigma}+1\right)}\right|_{v}^{s} d x=|y|_{v}^{1-s} \int_{k_{v}} \bar{\psi}(x y)\left|\frac{1}{x x^{\sigma}+1}\right|_{v}^{s} d x
$$

For v real, the following computation is familiar, but the normalizations are important, so we recall it. Using the identity

$$
u^{-s}=\frac{1}{\Gamma(s)} \int_{0}^{\infty} e^{-t u} t^{s} \frac{d t}{t} \quad(\text { for } u>0 \text { and } \operatorname{Re}(s)>0)
$$

rewrite the Fourier-Whittaker transform as

$$
\begin{aligned}
& \frac{|y|^{1-s}}{\Gamma(s)} \int_{0}^{\infty} \int_{\mathbb{R}} \bar{\psi}(x y) e^{-t\left(1+x^{2}\right)} t^{s} d x \frac{d t}{t}=\frac{|y|^{1-s} \sqrt{\pi}}{\Gamma(s)} \int_{0}^{\infty} \int_{\mathbb{R}} \bar{\psi}\left(x y \frac{\sqrt{\pi}}{\sqrt{t}}\right) e^{-t} e^{-\pi x^{2}} t^{s-\frac{1}{2}} d x \frac{d t}{t} \\
= & \left.\frac{|y|^{1-s} \sqrt{\pi}}{\Gamma(s)} \int_{0}^{\infty} e^{-t} e^{-\pi y^{2} \cdot \frac{\pi}{t}} t^{s-\frac{1}{2}} \frac{d t}{t} \quad \quad \text { (Fourier transform after replacing } x \text { by } x \cdot \frac{\sqrt{\pi}}{\sqrt{t}}\right)
\end{aligned}
$$

Replacing t by $t \cdot \pi y$ turns the whole into

$$
(\pi y)^{s-\frac{1}{2}} \cdot \frac{|y|^{1-s} \sqrt{\pi}}{\Gamma(s)} \int_{0}^{\infty} e^{-\pi\left(t+\frac{1}{t}\right)|y|} t^{s-\frac{1}{2}} \frac{d t}{t}=\frac{\sqrt{y}}{\pi^{-s} \Gamma(s)} \int_{0}^{\infty} e^{-\pi\left(t+\frac{1}{t}\right)|y|} t^{s-\frac{1}{2}} \frac{d t}{t} \quad \quad(v \text { real })
$$

For v complex, the computation is less familiar, but follows the same course. Keep in mind that the complex norm fitting into the product formula is the square of the usual:

$$
|y|_{\mathbb{C}}=|y \bar{y}|_{\mathbb{R}}=|y|^{2}
$$

The character is

$$
\psi_{\mathbb{C}}(x y)=\psi_{\mathbb{R}}\left(\operatorname{tr}_{\mathbb{C} / \mathbb{R}}(x y)\right)
$$

In particular, for $x, y \in \mathbb{C}$, the trace $\operatorname{tr}_{\mathbb{C} / \mathbb{R}}(x y)$ is double the standard \mathbb{R}-valued pairing on $\mathbb{C} \approx \mathbb{R}^{2}$. This 2 appears explicitly in the Gaussian after a Fourier transform. And the measure on \mathbb{C} is twice the usual Lebesgue measure on \mathbb{R}^{2}. We write this factor explicitly from the outset. The same trick with the gamma function rewrites the Fourier-Whittaker transform as

$$
\begin{aligned}
& \frac{2|y|_{\mathbb{C}}^{1-s}}{\Gamma(2 s)} \int_{0}^{\infty} \int_{\mathbb{C}} \bar{\psi}(x y) e^{-t\left(1+x x^{\sigma}\right)} t^{s} d x \frac{d t}{t}=\frac{2|y|^{2-2 s} \pi}{\Gamma(2 s)} \int_{0}^{\infty} \int_{\mathbb{R}} \bar{\psi}\left(x y \frac{\sqrt{\pi}}{\sqrt{t}}\right) e^{-t} e^{-\pi x x^{\sigma}} t^{2 s-1} d x \frac{d t}{t} \\
= & \left.\frac{2|y|^{2-2 s} \pi}{\Gamma(2 s)} \int_{0}^{\infty} e^{-t} e^{-\pi 4 y y^{\sigma} \cdot \frac{\pi}{t}} t^{2 s-1} \frac{d t}{t} \quad \text { (Fourier transform after replacing } x \text { by } x \cdot \frac{\sqrt{\pi}}{\sqrt{t}}\right)
\end{aligned}
$$

Again, the $4=2^{2}$ in $4 y y^{\sigma}$ appears because of the normalization of the pairing. Replacing t by $t \cdot 2 \pi y$ turns the whole into
$(2 \pi y)^{2 s-1} \frac{2|y|^{2-2 s} \pi}{\Gamma(2 s)} \int_{0}^{\infty} e^{-2 \pi\left(t+\frac{1}{t}\right)|y|} t^{2 s-1} \frac{d t}{t}=\frac{|y|}{(2 \pi)^{-2 s} \Gamma(2 s)} \int_{0}^{\infty} e^{-2 \pi\left(t+\frac{1}{t}\right)|y|} t^{2 s-1} \frac{d t}{t} \quad(v$ complex $)$

In both cases, we have

$$
\zeta_{v}(2 s) \cdot W_{s, v}^{E}=(\text { invariant under } s \rightarrow 1-s)
$$

[8.4] The Mellin transform The global Mellin transform of W^{E} factors

$$
\int_{\mathbb{J}}|a|^{s^{\prime}} W_{s, \chi}^{E}\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right) d a=\prod_{v} \int_{k_{v}^{\times}}|a|^{s^{\prime}} W_{s, \chi, v}^{E}\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right) d a
$$

To compute this, we cannot simply change the order of integration, since this would produce a divergent integral along the way. Instead, we present ${ }^{[38]}$ the vectors φ_{v} in a different form. Let Φ_{v} be any Schwartz function on k_{v}^{2} invariant under K_{v} (under the obvious right action of $G L_{2}$), and put ${ }^{\text {[39] }}$

$$
\varphi_{v}^{\prime}(g)=\chi(\operatorname{det} g)|\operatorname{det} g|^{s} \cdot \int_{k_{v}^{\times}} \chi(t)^{2}|t|^{2 s} \cdot \Phi\left(t \cdot e_{2} \cdot g\right) d t
$$

where e_{2} is the second basis element in k^{2}. This φ_{v}^{\prime} has the same left P_{v}-equivariance as φ_{v}, namely

$$
\varphi_{v}^{\prime}\left(\left(\begin{array}{cc}
a & * \\
0 & d
\end{array}\right) \cdot g\right)=\varphi_{v}^{\prime}(g) \cdot|a / d|^{s} \chi(a / d)
$$

For Φ invariant under the standard maximal compact K_{v} of $G L_{2}\left(k_{v}\right)$, this function φ_{v}^{\prime} is right K_{v}-invariant. By the Iwasawa decomposition, up to constant multiples there is only one such function, so

$$
\varphi_{v}^{\prime}(g)=\varphi_{v}^{\prime}(1) \cdot \varphi_{v}(g) \quad\left(\text { since } \varphi_{v}(1)=1\right)
$$

and

$$
\varphi_{v}^{\prime}(1)=\int_{k_{v}^{\times}} \chi(t)^{2}|t|^{2 s} \cdot \Phi\left(t \cdot e_{2}\right) d t=\zeta_{v}\left(2 s, \chi^{2}, \Phi(0, *)\right) \quad \text { (a Tate-Iwasawa zeta integral) }
$$

Thus, it suffices to compute the local Mellin transform of

$$
\begin{gathered}
\varphi_{v}^{\prime}(1) \cdot W_{s, \chi, v}^{E}(m)=\int_{N_{v}} \bar{\psi}(n) \varphi_{v}^{\prime}\left(w_{\circ} n m\right) d n=\chi(a)|a|^{s} \int_{N_{v}} \bar{\psi}(n) \int_{k_{v}^{\times}} \chi^{2}(t)|t|^{2 s} \Phi\left(t \cdot e_{2} \cdot w_{\circ} n m\right) d t d n \\
=\chi(a)|a|^{s} \int_{k_{v}} \bar{\psi}(x) \int_{k_{v}^{\times}} \chi^{2}(t)|t|^{2 s} \Phi(t a t x) d t d x \quad \quad\left(\text { with } m=\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right)\right)
\end{gathered}
$$

At finite primes v, we may as well take Φ to be

$$
\Phi(t, x)=\operatorname{ch}_{\mathfrak{o}_{v}}(t) \cdot \operatorname{ch}_{\mathfrak{o}_{v}}(x) \quad\left(\operatorname{ch}_{X}=\text { characteristic function of set } X\right)
$$

Then $\varphi_{v}^{\prime}(1)$ is exactly an L-factor

$$
\varphi_{v}^{\prime}(1)=\zeta_{v}\left(2 s, \chi^{2}, \operatorname{ch}_{\mathfrak{o}_{v}}\right)=L_{v}\left(2 s, \chi^{2}\right)
$$

[38] This variant presentation of the vector used to form the Eisenstein series is essentially a globally split theta correspondence. At a more elementary level, this trick is a non-archimedean analogue of classical computations involving Bessel functions.
${ }^{\text {[39] }}$ The leading $\chi(\operatorname{det} g)|\operatorname{det} g|^{s}$ in this integral maintains the triviality of the central character.
and ${ }^{[40]}$

$$
\begin{aligned}
& \varphi_{v}^{\prime}(1) \cdot W_{s, \chi, v}^{E}\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right)=\chi(a)|a|^{s} \int_{k_{v}} \bar{\psi}(x) \operatorname{ch}_{\mathfrak{o}_{v}}(t x) \int_{k_{v}^{\times}} \chi^{2}(t)|t|^{2 s} \operatorname{ch}_{\mathfrak{o}_{v}}(t a) d t d x \\
&= \chi(a)|a|^{s} \operatorname{meas}\left(\mathfrak{o}_{v}\right) \int_{k_{v}^{\times}} \operatorname{ch}_{\mathfrak{o}_{v}^{*}}(1 / t) \chi^{2}(t)|t|^{2 s-1} \operatorname{ch}_{\mathfrak{o}_{v}}(t a) d t \\
& \quad=\left|\mathfrak{o}_{v}\right|_{v}^{1 / 2} \cdot \chi(a)|a|^{s} \int_{k_{v}^{\times}} \operatorname{ch}_{\mathfrak{o}_{v}^{*}}(1 / t) \chi^{2}(t)|t|^{2 s-1} \operatorname{ch}_{\mathfrak{o}_{v}}(t a) d t
\end{aligned}
$$

where $\mathfrak{d}_{v} \in k_{v}^{\times}$is such that $\left(\mathfrak{o}_{v}^{*}\right)^{-1}=\mathfrak{d}_{v} \cdot \mathfrak{o}_{v}$. We can compute the Mellin transform

$$
\int_{k_{v}^{\times}}|a|^{s^{\prime}} \cdot\left(\chi(a)|a|^{s} \int_{k_{v}^{\times}} \operatorname{ch}_{\mathfrak{o}_{v}^{*}}(1 / t) \chi^{2}(t)|t|^{2 s-1} \operatorname{ch}_{\mathfrak{o}_{v}}(t a) d t\right) d a
$$

Replace a by a / t, and then t by $1 / t$ to obtain a product of two zeta integrals

$$
\begin{gathered}
\left(\int_{k_{v}^{\times}}|a|^{s^{\prime}} \cdot \chi(a)|a|^{s} \operatorname{ch}_{\mathfrak{o}_{v}}(a) d a\right) \cdot\left(\int_{k_{v}^{\times}} \operatorname{ch}_{\mathfrak{o}_{v}^{*}}(1 / t) \chi(t)|t|^{s-1-s^{\prime}} d t\right) \\
=\zeta_{v}\left(s^{\prime}+s, \chi, \operatorname{ch}_{\mathfrak{o}_{v}}\right) \cdot \zeta_{v}\left(s^{\prime}+1-s, \bar{\chi}, \operatorname{ch}_{\mathfrak{o}_{v}^{*-1}}\right) \\
=L_{v}\left(s^{\prime}+s, \chi\right) \cdot L_{v}\left(s^{\prime}+1-s, \bar{\chi}\right) \cdot\left|\mathfrak{d}_{v}\right|^{-\left(s^{\prime}+1-s\right)} \chi\left(\mathfrak{d}_{v}\right)
\end{gathered}
$$

Thus, dividing through by $\varphi_{v}^{\prime}(1)$ and putting back the measure constant, the Mellin transform of $W_{s, \chi, v}^{E}$ is

$$
\int_{k_{v}^{\times}}|a|^{s^{\prime}} W_{s, \chi, v}^{E}\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right) d a=\left|\mathfrak{d}_{v}\right|_{v}^{1 / 2} \cdot \frac{L_{v}\left(s^{\prime}+s, \chi\right) \cdot L_{v}\left(s^{\prime}+1-s, \bar{\chi}\right)}{L_{v}\left(2 s, \chi^{2}\right)} \cdot\left|\mathfrak{d}_{v}\right|^{-\left(s^{\prime}+1-s\right)} \chi\left(\mathfrak{d}_{v}\right)
$$

Let \mathfrak{d} be the idele whose $v^{t h}$ component is \mathfrak{d}_{v} for finite v and whose archimedean components are all 1 . The product over all finite primes v of these local factors is

$$
\int_{\mathbb{J}^{\text {fin }}}|a|^{s^{\prime}} W_{s, \chi}^{E}\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right) d a=|\mathfrak{d}|^{1 / 2} \cdot \frac{L\left(s^{\prime}+s, \chi\right) \cdot L\left(s^{\prime}+1-s, \bar{\chi}\right)}{L\left(2 s, \chi^{2}\right)} \cdot|\mathfrak{d}|^{-\left(s^{\prime}+1-s\right)} \chi(\mathfrak{d})
$$

In our application, we will replace s by $1-s$ and χ by $\bar{\chi}$, giving

$$
\int_{\mathbb{J}_{\text {fin }}}|a|^{s^{\prime}} W_{1-s, \bar{\chi}}^{E}\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right) d a=|\mathfrak{d}|^{1 / 2} \cdot \frac{L\left(s^{\prime}+1-s, \bar{\chi}\right) \cdot L\left(s^{\prime}+s, \chi\right)}{L\left(2-2 s, \bar{\chi}^{2}\right)} \cdot|\mathfrak{d}|^{-\left(s^{\prime}+s\right)} \bar{\chi}(\mathfrak{d})
$$

In particular, with χ trivial,

$$
\int_{\mathbb{J}_{\text {fin }}}|a|^{s^{\prime}} W_{1-s}^{E}\left(\begin{array}{cc}
a & 0 \\
0 & 1
\end{array}\right) d a=|\mathfrak{d}|^{1 / 2} \cdot \frac{\zeta_{k}\left(s^{\prime}+1-s\right) \cdot \zeta_{k}\left(s^{\prime}+s\right)}{\zeta_{k}(2-2 s)} \cdot|\mathfrak{d}|^{-\left(s^{\prime}+s\right)}
$$

[8.5] Functional equation With χ trivial, Poisson summation gives the functional equation for the spherical Eisenstein series:

$$
\xi(2 s, \Phi(0, *)) \cdot E_{s}(g)=\xi(2-2 s, \widehat{\Phi}(0, *)) \cdot E_{1-s}\left(g^{l}\right)
$$

[40] The Fourier transform of the characteristic function $\operatorname{ch}_{\mathfrak{o}_{v}}$ of \mathfrak{o}_{v} is $\left|\mathfrak{d}_{v}\right|^{1 / 2}$ times the characteristic function of \mathfrak{o}_{v}^{*}.
where g^{ι} is g-transpose-inverse. Peculiar to $G L_{2}$ is that

$$
w g^{\iota} w^{-1}=(\operatorname{det} g)^{-1} \cdot g \quad\left(\text { where } w=\left(\begin{array}{cc}
0 & 1 \\
1 & 0
\end{array}\right)\right)
$$

Since w lies in the standard maximal compact locally everywhere, and is in $G L_{2}(k)$, and since the Eisenstein series is spherical everywhere and has trivial central character,

$$
\xi(2 s, \Phi(0, *)) \cdot E_{s}=\xi(2-2 s, \widehat{\Phi}(0, *)) \cdot E_{1-s}
$$

Take Φ to be K_{v}-invariant locally everywhere, Taking Φ to be the standard Gaussian at archimedean places, and the characteristic function of \mathfrak{o}_{v}^{2} at finite places, this gives

$$
\xi(2 s) \cdot E_{s}=|\mathfrak{d}| \cdot|\mathfrak{d}|^{2 s-2} \cdot \xi(2-2 s) \cdot E_{1-s}=|\mathfrak{d}|^{2 s-1} \cdot \xi(2-2 s) \cdot E_{1-s}
$$

where the first factor $|\mathfrak{d}|$ is the product of the measures of the \mathfrak{o}_{v}^{2}. Recall the functional equation of ξ

$$
\xi(s)=|\mathfrak{d}|^{s-\frac{1}{2}} \cdot \xi(1-s)
$$

Then

$$
\xi(2 s) \cdot E_{s}=\xi(2 s-1) \cdot E_{1-s}
$$

9. Appendix: residues of degenerate Eisenstein series for $P^{n-1,1}$

We prove meromorphic continuation and determine some residues of some very degenerate Eisenstein series (sometimes called Epstein zeta functions). We need to recall some specifics about these well-known examples. Let

$$
P=P^{n-1,1}=\left\{\left(\begin{array}{cc}
(n-1) \text {-by- }(n-1) & * \\
0 & 1 \text {-by- } 1
\end{array}\right)\right\}
$$

View \mathbb{A}^{n} and k^{n} as row vectors. Let e_{1}, \ldots, e_{n} the standard basis for k^{n}. The parabolic P is the stabilizer in $G L_{n}$ of the line $k e_{n}$. Given a Hecke character of the form $\chi(\alpha)=|\alpha|^{s}$ and a Schwartz function Φ on \mathbb{A}^{n}, let

$$
\varphi(g)=|\operatorname{det} g|^{s} \int_{\mathbb{J}}|t|^{n s} \Phi\left(t \cdot e_{n} \cdot g\right) d t
$$

The factor $|t|^{n s}$ in the integrand and the leading factor $|\operatorname{det} g|^{s}$ combine to give the invariance $\varphi(z g)=\varphi(g)$ for z in the center Z_{A} of $G=G L_{n}$. By changing variables in the integral observe the left equivariance

$$
\varphi(p g)=|\operatorname{det} p g|^{s} \int_{\mathbb{J}}|t|^{n s} \Phi\left(t \cdot e_{n} \cdot p g\right) d t=|\operatorname{det} A|^{s}|d|^{-(n-1) s} \cdot \varphi(g) \quad\left(\text { for } p=\left(\begin{array}{cc}
A & * \\
& d
\end{array}\right) \in P_{\mathbb{A}}\right)
$$

The normalization is not $\varphi(1)=1$ but

$$
\varphi(1)=\int_{\mathbb{J}}|t|^{n s} \Phi\left(t \cdot e_{n}\right) d t \quad \text { (Tate-Iwasawa zeta integral at } n s \text {) }
$$

Denote this zeta integral by $\xi=\xi(n s, \Phi(0, *))$, indicating that it only depends upon the values of Φ along the last coordinate axis. Thus, by comparison to the standard spherical Eisenstein series $E_{s}(g)$ corresponding to this $s^{t h}$ degenerate principal series, the Eisenstein series associated to φ has a factor of $\xi(n s, \Phi(0, *))$ included, namely

$$
\xi(n s, \Phi(0, *)) \cdot E_{s}(g)=\sum_{\gamma \in P_{k} \backslash G_{k}} \varphi(\gamma g)
$$

Poisson summation proves the meromorphic continuation of this Eisenstein series, as follows. Let

$$
\mathbb{J}^{+}=\{t \in \mathbb{J}:|t| \geq 1\} \quad \mathbb{J}^{-}=\{t \in \mathbb{J}:|t| \leq 1\}
$$

and $g^{\iota}=\left(g^{\top}\right)^{-1}$ (transpose inverse)

$$
\begin{gathered}
\xi(n s, \Phi(0, *)) \cdot E_{s}(g)=\sum_{\gamma \in P_{k} \backslash G_{k}} \varphi(\gamma g)=|\operatorname{det} g|^{s} \sum_{\gamma \in P_{k} \backslash G_{k}} \int_{\mathbb{J}}|t|^{n s} \Phi(t \cdot x \cdot \gamma g) d t \\
=|\operatorname{det} g|^{s} \sum_{\gamma \in P_{k} \backslash G_{k}} \int_{k^{\times} \backslash \mathbb{J}}|t|^{n s} \sum_{\lambda \in k^{\times}} \Phi\left(t \cdot \lambda e_{n} \cdot \gamma g\right) d t=|\operatorname{det} g|^{s} \int_{k^{\times} \backslash \mathbb{J}}|t|^{n s} \sum_{x \in k^{n}-0} \Phi(t \cdot x \cdot g) d t
\end{gathered}
$$

Let

$$
\Theta(g)=\sum_{x \in k^{n}} \Phi(t \cdot x \cdot g)
$$

Then

$$
\xi(n s, \Phi(0, *)) \cdot E_{s}(g)=|\operatorname{det} g|^{s} \int_{k^{\times} \backslash \mathbb{J}+}|t|^{n s}[\Theta(g)-\Phi(0)] d t+|\operatorname{det} g|^{s} \int_{k^{\times} \backslash \mathbb{J}-}|t|^{n s}[\Theta(g)-\Phi(0)] d t
$$

The usual estimate shows that the integral over $k^{\times} \backslash \mathbb{J}^{+}$converges absolutely for all $s \in \mathbb{C}$. Rewrite the second part of the integral as an analogous integral over $k^{\times} \backslash \mathbb{J}^{+}$. Poisson summation gives

$$
\sum_{x \in k^{n}-0} \Phi(t \cdot x \cdot g)+\Phi(0)=|t|^{-n}|\operatorname{det} g|^{-1} \sum_{x \in k^{n}-0} \widehat{\Phi}\left(t^{-1} \cdot x \cdot g^{l}\right)+|t|^{-n}|\operatorname{det} g|^{-1} \widehat{\Phi}(0)
$$

Let

$$
\Theta^{\prime}\left(g^{\iota}\right)=\sum_{x \in k^{n}} \widehat{\Phi}\left(t \cdot x \cdot g^{\iota}\right)
$$

Removing the $\Phi(0)$ and $\widehat{\Phi}(0)$ terms and replacing t by t^{-1} in the integral over $k^{\times} \backslash \mathbb{J}^{-}$turns this integral into

$$
\begin{gathered}
|\operatorname{det} g|^{s-1} \int_{k^{\times} \backslash \mathbb{J}+}|t|^{n(1-s)}\left[\Theta^{\prime}\left(g^{c}\right)-\widehat{\Phi}(0)\right] d t \\
-|\operatorname{det} g|^{s} \Phi(0) \int_{k^{\times} \backslash \mathbb{J}^{-}}|t|^{n s} d t+|\operatorname{det} g|^{s-1} \widehat{\Phi}(0) \int_{k^{\times} \backslash \mathbb{J}^{-}}|t|^{n(s-1)} d t
\end{gathered}
$$

The integral over $k^{\times} \backslash \mathbb{J}^{+}$is entire. Thus, the non-elementary part of the integral is converted into two entire integrals over $k^{\times} \backslash \mathbb{J}^{+}$together with two elementary integrals that give the only possible poles:

$$
\xi \cdot E_{s}(g)=(\text { entire })-|\operatorname{det} g|^{s} \Phi(0) \int_{k^{\times} \backslash \mathbb{J}^{-}}|t|^{n} d t+|\operatorname{det} g|^{s-1} \widehat{\Phi}(0) \int_{k^{\times} \backslash \mathbb{J}^{-}}|t|^{n(s-1)} d t
$$

With

$$
\kappa=\int_{k^{\times} \backslash \mathbb{J}^{1}} 1 d t
$$

the relatively elementary integrals can be evaluated

$$
\int_{k^{\times} \backslash \mathbb{J}^{-}}|t|^{n s} d t=\left(\int_{k^{\times} \backslash \mathbb{J}^{1}} 1 d t\right) \cdot\left(\int_{0}^{1} t^{n s} d t\right)=\frac{\kappa}{n s}
$$

Similarly,

$$
\int_{k^{\times} \backslash \mathbb{J}-}|t|^{n(s-1)} d t=\frac{\kappa}{n(s-1)}
$$

$$
\text { Diaconu-Garrett-Goldfeld: Moments for L-functions for } G L_{r} \times G L_{r-1}
$$

That is,

$$
\xi(n s, \Phi(0, *)) \cdot E_{s}=(\text { entire })-\frac{\kappa \Phi(0)}{n s}+\frac{\kappa \widehat{\Phi}(0)}{n(s-1)}
$$

Thus, the residue at $s=1$ of E_{s} is

$$
\operatorname{Res}_{s=1} E_{s}=\frac{\kappa \widehat{\Phi}(0)}{n \cdot \xi(n, \Phi(0, *))}
$$

Let \mathfrak{d} be an idele such that \mathfrak{d}_{v} generates the local different at a finite place v, and is trivial at archimedean places. Let Φ be the standard Gaussian at archimedean places (so its integral is 1), and the characteristic function of \mathfrak{o}_{v}^{n} at finite places v. With the standard measure on \mathbb{A} we have

$$
\widehat{\Phi}(0)=|\mathfrak{d}|^{n / 2} \quad \xi(n, \Phi(0, *))=\xi(n)
$$

where ξ is the usual zeta function with standard gamma factors, but without any epsilon factor or accounting for conductors. The residue at $s=1$ is

$$
\operatorname{Res}_{s=1} E=\frac{\kappa \cdot|\mathfrak{d}|^{n / 2}}{n \cdot \xi(n)}
$$

At $s=0$, the relevant residue is

$$
\operatorname{Res}_{s=0} \xi(n s, \Phi(0, *)) \cdot E_{s}=-\frac{\kappa \Phi(0)}{n}
$$

10. Appendix: degenerate Eisenstein series for $P^{r-2,1,1}$

Let $P=P^{r-2,1,1}$, and

$$
\varphi_{s_{1}, s_{2}, s_{3}}\left(\begin{array}{ccc}
A & * & * \\
& a & * \\
& & d
\end{array}\right)=|\operatorname{det} A|^{s_{1}} \cdot|a|^{s_{2}} \cdot|d|^{s_{3}} \quad\left(\text { with } A \in G L_{r-2}, a, d \in G L_{1}\right)
$$

and extend φ to a function on $G(\mathbb{A})=G L_{r}(\mathbb{A})$ by requiring right $K_{\mathbb{A}}$-equivariance. Define an Eisenstein series on $G=G L_{r}$ by

$$
E_{s_{1}, s_{2}, s_{3}}(g)=\sum_{\gamma \in P_{k}^{r-2,1,1} \backslash G_{k}} \varphi_{s_{1}, s_{2}, s_{3}}(\gamma g)
$$

[10.1] Symmetry in s_{2} and s_{3} This can be rewritten as an interated sum

$$
E_{s_{1}, s_{2}, s_{3}}(g)=\sum_{\gamma \in P_{k}^{r-2,2} \backslash G_{k}} \varphi_{s_{1} \otimes E_{s_{2}, s_{3}}^{1,1}}(\gamma g)
$$

where

$$
\varphi_{s_{1} \otimes E_{s_{2}, s_{3}}^{1,1}}\left(\begin{array}{cc}
A & * \\
& D
\end{array}\right)=|\operatorname{det} A|^{s_{1}} \cdot E_{s_{2}, s_{3}}^{1,1}(D) \quad\left(\text { with } A \in G L_{r-2} \text { and } D \in G L_{2}\right)
$$

and $E_{s_{2}, s_{3}}^{1,1}$ is the $G L_{2}$ Eisenstein series

$$
E_{s_{2}, s_{3}}^{1,1}(g)=\sum_{\gamma \in P_{k}^{1,1} \backslash G L_{2}(k)} \varphi_{s_{2}, s_{3}}(\gamma g) \quad\left(\text { with } \varphi_{s_{2}, s_{3}}\left(\begin{array}{ll}
a & * \\
& d
\end{array}\right)=|a|^{s_{2}}|d|^{s_{3}}\right)
$$

Since

$$
|a|^{s_{2}}|d|^{s_{3}}=|a d|^{\frac{s_{2}+s_{3}}{2}} \cdot|a / d|^{\frac{s_{2}-s_{3}}{2}}
$$

this $G L_{2}$ Eisenstein series can be expressed in terms of an Eisenstein series with trivial central character, namely

$$
E_{s_{2}, s_{3}}^{1,1}(g)=|\operatorname{det} g|^{\frac{s_{2}+s_{3}}{2}} \cdot E_{\frac{s_{2}-s_{3}}{2}}(g)
$$

where

$$
E_{s}(g)=\sum_{\gamma \in P_{k}^{1,1} \backslash G L_{2}(k)} \varphi_{s}(\gamma g) \quad \text { with } \quad \varphi_{s}\left(\begin{array}{ll}
a & * \\
& d
\end{array}\right)=|a / d|^{s}
$$

From the functional equation

$$
\xi(2 s) \cdot E_{s}=\xi(2 s-1) \cdot E_{1-s}
$$

the $P^{1,1}$ Eisenstein series $E_{s_{2}, s_{3}}^{1,1}$ has a functional equation under

$$
\left(s_{2}, s_{3}\right)=\left(\frac{1}{2},-\frac{1}{2}\right)+\left(s_{2}-\frac{1}{2}, s_{3}+\frac{1}{2}\right) \rightarrow\left(\frac{1}{2},-\frac{1}{2}\right)+\left(s_{3}+\frac{1}{2}, s_{2}-\frac{1}{2}\right)=\left(s_{3}+1, s_{2}-1\right)
$$

given by

$$
E_{s_{2}, s_{3}}^{1,1}=\frac{\xi\left(s_{2}-s_{3}-1\right)}{\xi\left(s_{2}-s_{3}\right)} \cdot E_{s_{3}+1, s_{2}-1}^{1,1}
$$

Thus,

$$
E_{s_{1}, s_{2}, s_{3}}^{r-2,1,1}=\frac{\xi\left(s_{2}-s_{3}-1\right)}{\xi\left(s_{2}-s_{3}\right)} \cdot E_{s_{1}, s_{3}+1, s_{2}-1}^{r-2,1,1}
$$

[10.2] Pole at $s_{1}-s_{2}=r-1$ There is another iterated sum expression

$$
E_{s_{1}, s_{2}, s_{3}}^{r-2,1,1}(g)=\sum_{\gamma \in P_{k}^{r-1,1} \backslash G_{k}} \varphi_{E_{s_{1}, s_{2}}^{r-2,1} \otimes s_{3}}(\gamma g)
$$

where

$$
\left.\varphi_{E_{s_{1}, s_{2}}^{r-2,1} \otimes s_{3}}\left(\begin{array}{ll}
A & * \\
& d
\end{array}\right)=E_{s_{1}, s_{2}}^{r-2,1}(A) \quad \text { (with } A \in G L_{r-1} \text { and } d \in G L_{1}\right)
$$

and $E_{s_{1}, s_{2}}^{r-2,1}$ is the $G L_{r-1}$ Eisenstein series

$$
E_{s_{1}, s_{2}}^{r-2,1}\left(\begin{array}{ll}
A & * \\
& d
\end{array}\right)=\sum_{\gamma \in P_{k}^{r-2,1} \backslash G L_{r-1}(k)} \varphi_{s_{1}, s_{2}}(\gamma g) \quad\left(\text { with } \varphi_{s_{1}, s_{2}}\left(\begin{array}{ll}
A & * \\
& d
\end{array}\right)=|A|^{\left.s_{1}|d|^{s_{2}}\right)}\right.
$$

Since

$$
|A|^{s_{1}}|d|^{s_{2}}=\left|\frac{\operatorname{det} A}{d^{r-2}}\right|^{\frac{s_{1}-s_{2}}{r-1}} \cdot|\operatorname{det} A \cdot d|^{\frac{(r-2) s_{1}+s_{2}}{r-1}}
$$

we can express $E_{s_{1}, s_{2}}^{r-2,1}$ in terms of an Eisenstein series with trivial central character, as

$$
E_{s_{1}, s_{2}}^{r-2,1}(h)=|\operatorname{det} h|^{\frac{(r-2) s_{1}+s_{2}}{r-1}} \cdot E_{\frac{s_{1}-s_{2}}{r-1}}(g)
$$

where

$$
E_{s}(h)=\sum_{P_{k}^{r-2,1} \backslash G L_{r-1}(k)} \varphi_{s}(\gamma h)
$$

with

$$
\varphi_{s}\left(\begin{array}{ll}
A & * \\
& d
\end{array}\right)(g)=\left|\frac{\operatorname{det} A}{d^{r-2}}\right|^{s} \quad\left(\text { for } A \in G L_{r-2} \text { and } d \in G L_{1}\right)
$$

$$
\text { Diaconu-Garrett-Goldfeld: Moments for L-functions for } G L_{r} \times G L_{r-1}
$$

From the previous appendix, the Eisenstein series E_{s} for $P^{r-2,1}$ has a pole at $s=1$ with constant residue

$$
\operatorname{Res}_{s=1} E_{s}=\frac{\kappa \cdot|\mathfrak{d}|^{\frac{r-1}{2}}}{(r-1) \cdot \xi(r-1)}
$$

Thus, at $\frac{s_{1}-s_{2}}{r-1}=1$, that is, at $s_{1}-s_{2}=r-1, E_{s_{1}, s_{2}}^{r-2,1}(h)$ has residue

$$
\operatorname{Res}_{s_{1}-s_{2}=r-1} E_{s_{1}, s_{2}}^{r-2,1}(h)=|\operatorname{det} h|^{\frac{(r-2) s_{1}+\left(s_{1}-(r-1)\right)}{r-1}} \cdot \frac{\kappa \cdot|\mathfrak{d}|^{\frac{r-1}{2}}}{(r-1) \cdot \xi(r-1)}=|\operatorname{det} h|^{s_{1}-1} \cdot \frac{\kappa \cdot|\mathfrak{d}|^{\frac{r-1}{2}}}{(r-1) \cdot \xi(r-1)}
$$

Thus, since

$$
|\operatorname{det} A|^{s_{1}} \cdot|a|^{s_{1}-(r-1)}=\left|\operatorname{det}\left(\begin{array}{cc}
A & \\
& a
\end{array}\right)\right|^{s_{1}-1} \cdot\left|\frac{\operatorname{det} A}{a^{r-2}}\right|^{1} \quad \quad\left(\text { for } A \in G L_{r-2} \text { and } a \in G L_{1}\right)
$$

the residue is

$$
\operatorname{Res}_{s_{1}-s_{2}=r-1} E_{s_{1}, s_{2}, s_{3}}^{r-2,1,1}=\frac{\kappa \cdot|\mathfrak{d}|^{\frac{r-1}{2}}}{(r-1) \cdot \xi(r-1)} \cdot E_{s_{1}-1, s_{3}}^{r-1,1}
$$

[10.3] Residue at $s_{1}-s_{3}=r$ The functional equation in s_{2} and $s_{3}\left(\right.$ from $\left.G L_{2}\right)$ is

$$
E_{s_{1}, s_{2}, s_{3}}^{r-2,1,1}=\frac{\xi\left(s_{2}-s_{3}-1\right)}{\xi\left(s_{2}-s_{3}\right)} \cdot E_{s_{1}, s_{3}+1, s_{2}-1}^{r-2,1,1}
$$

This functional equation and the pole of $E_{s_{1}, s_{2}, s_{3}}^{r-2,1,1}$ at $s-1-s_{2}=r-1$ give a pole of $E_{s_{1}, s_{2}, s_{3}}^{r-2,1,1}$ at $s_{1}-s_{3}=r$ with residue

$$
\begin{gathered}
\operatorname{Res}_{s_{1}-s_{3}=r} E_{s_{1}, s_{2}, s_{3}}^{r-2,1,1}=\operatorname{Res}_{s_{1}-s_{3}=r}\left(\frac{\xi\left(s_{2}-s_{3}-1\right)}{\xi\left(s_{2}-s_{3}\right)} \cdot E_{s_{1}, s_{3}+1, s_{2}-1}^{r-2,1,1}\right) \\
=\frac{\kappa \cdot|\mathfrak{d}|^{\frac{r-1}{2}}}{(r-1) \cdot \xi(r-1)} \cdot \frac{\xi\left(s_{2}-s_{3}-1\right)}{\xi\left(s_{2}-s_{3}\right)} \cdot E_{s_{1}-1, s_{2}-1}^{r-1,1} \\
=\frac{\kappa \cdot|\mathfrak{d}|^{\frac{r-1}{2}}}{(r-1) \cdot \xi(r-1)} \cdot \frac{\xi\left(s_{2}-\left(s_{1}-r\right)-1\right)}{\xi\left(s_{2}-\left(s_{1}-r\right)\right)} \cdot E_{s_{1}-1, s_{2}-1}^{r-1,1}
\end{gathered}
$$

[Asai 1977] T. Asai, On certain Dirichlet series associated with Hilbert modular forms, and Rankin's method, Math. Ann. 226 (1977), 81-94.
[Bernstein-Reznikoff 1999] J. Bernstein, A. Reznikov, Analytic continuation of representations and estimates of automorphic forms, Ann. of Math. 150 (1999), 329-352.
[Bernstein-Reznikoff 2005] J. Bernstein and A. Reznikov. Periods, subconvexity of L-functions, and representation theory J. Diff. Geom 10 no. 1 (2005), 129-141.
[Borel 1966] A. Borel, Introduction to Automorphic Forms, in Algebraic Groups and Discontinuous Subgroups, Proc. Symp. Pure Math. IX (1966), AMS, 199-210.
[Bump-Duke-Hoffstein-Iwaniec 1992] D. Bump, W. Duke, J. Hoffstein, H. Iwaniec, An estimate for the Hecke eigenvalues of Maass forms, Int. Math. Res. Notices, no. 4 (1992), 75-81.
[Burgess 1963] D. Burgess, On character sums and L-series, II, Proc. London Math. Soc. 313 (1963), 24-36.

$$
\text { Diaconu-Garrett-Goldfeld: Moments for L-functions for } G L_{r} \times G L_{r-1}
$$

[Casselman 1973] W. Casselman, On some results of Atkin and Lehner, Math. Ann. 206 (1973), 311-318.
[Casselman-Shalika 1980] W. Casselman, J. Shalika, The unramified principal series of p-adic groups, II, the Whittaker function, Comp. Math. 41 (1980), 207-231.
[Cogdell 2004] J. Cogdell, Lectures on L-functions, Converse Theorems, and Functoriality for $G L_{n}$, Fields Institute Notes, in Lectures on Automorphic L-functions, Fields Institute Monographs no. 20, AMS, Providence, 2004.
[Cogdell-PS 1990] J. Cogdell, I. Piatetski-Shapiro, The arithmetic and spectral analysis of Poincaré series, Perspectives in Mathematics, Academic Press, 1990.
[Cogdell-PS 2003] J. Cogdell, I. Piatetski-Shapiro, Remarks on Rankin-Selberg convolutions, in Contributions to Automorphic Forms, Geometry, and Number Theory (Shalikafest 2002), H. Hida, D. Ramakrishnan, and F. Shahidi eds., Johns Hopkins University Press, Baltimore, 2005.
[Cogdell-PS-Sarnak] J. Cogdell, I. Piatetski-Shapiro, P. Sarnak, Estimates for Hilbert modular L-functions and applications, in preparation.
[Deshouilliers-Iwaniec 1982] J. Deshouilliers and H. Iwaniec An additive divisor problem, J. London Math. Soc. 26 (1982), 1-14.
[Diaconu-Garrett 2006] A. Diaconu, P. Garrett, Integral moments of automorphic L-functions, preprint May 2006, http://www.math.umn.edu/~garrett/m/v/intmo_2008_may_05.pdf To appear, J. Math. Inst. Jussieu.
[Diaconu-Garrett 2008] A. Diaconu, P. Garrett, Subconvexity bounds for automorphic L-functions, preprint May 2008, http://www.math.umn.edu/~garrett/m/v/subconvexity_2008_mar_28.pdf To appear, J. Math. Inst. Jussieu.
[Diaconu-Goldfeld 2006a] A. Diaconu, D. Goldfeld, Second moments of $G L_{2}$ automorphic L-functions, in proceedings of Gauss-Dirichlet Conference (Göttingen, 2005), to appear.
[Diaconu-Goldfeld 2006b] A. Diaconu, D. Goldfeld, Second moments of Hecke L-series and multiple Dirichlet series, I, Proc. Symp. Pure Math. AMS, to appear.
[Donnelly 1982] H. Donnelly, On the cuspidal spectrum for finite volume symmetric spaces, J. Diff. Geom. 17 (1982), 239-253.
[Duke-Friedlander-Iwaniec 1993] W. Duke, J. Friedlander and H. Iwaniec Bounds for automorphic Lfunctions, Inv. Math. 112 (1993), 1-18.
[Duke-Friedlander-Iwaniec 1994] W. Duke, J. Friedlander and H. Iwaniec A quadratic divisor problem, Inv. Math. 115 (1994), 209-217.
[Duke-Friedlander-Iwaniec 1994b] W. Duke, J. Friedlander and H. Iwaniec Bounds for automorphic Lfunctions, II, Inv. Math. 115 (1994), 219-239.
[Duke-Friedlander-Iwaniec 2000] W. Duke, J.B. Friedlander and H. Iwaniec The subconvexity problem for Artin L-functions, Inv. Math. 149 (2000), 489-577.
[Duke-Friedlander-Iwaniec 2001] W. Duke, J. Friedlander and H. Iwaniec, Bounds for automorphic Lfunctions, III Inv. Math. 143 (2001), 221-248.
[Gelbart-Jacquet 1977] S. Gelbart, H. Jacquet, Forms of GL(2) from the analytic point of view, in Automorphic Forms, Representations, and L-functions (Corvallis), Proc. Symp. Pure Math. 33 (1979), 213-254.
[Gelbart-Shahidi 2001] S. Gelbart, F. Shahidi, Boundedness of automorphic L-functions in vertical strips, J.

Amer. Math. Soc. 14 (2001), 79-107.
[Gelfand-Fomin 1952] I. Gelfand, S. Fomin, Geodesic flows on manifolds of constant negative curvature, Uspekhi Mat. Nauk 7 (1952), no. 1 (47), 118-137. [Translation: Amer Math. Soc. Tr. (2) 1 (1955), 49-65.]
[Gelfand-Graev 1959] I. Gelfand, M. Graev, Geometry of homogeneous spaces, representations of groups in homogeneou spaces and related questions of integral geometry, Trudy Moskov. Math. Obsc. 8 (1959), 321-390; addendum 9 (1960), 563. [Translation: Amer. Math. Soc. Trans. (2) 37 (1964), 351-429.]
[Gelfand-PS 1963] I. Gelfand, I. Piatetski-Shapiro, Automorphic functions and representation theory, Trudy Moskov. Mat. Obsc. 12 (1963), 389-412. [Translation: Moscow Math. Soc. 12 (1963), 438-464.]
[Gelfand-Kazhdan 1975] I. Gelfand, D. Kazhdan, Representations of $G L(n, K)$ where K is a local field, in Lie Groups and their Representations (Budapest 1971), ed. I. Gelfand, Wiley and Sons, NY-Toronto, 1975, 95-118.
[Godement 1966a] R. Godement, The decomposition of $L^{2}\left(S L_{2}(\mathbb{Z}) \backslash S L_{2}(\mathbb{R})\right)$, in Proc. Symp. Pure Math IX (Boulder Conference), AMS, 1966, 211-224.
[Godement 1966b] R. Godement, Spectral decomposition of cuspforms, in Proc. Symp. Pure Math IX (Boulder Conference), AMS, 1966, 225-234.
[Godement-Jacquet 1972] R. Godement, H. Jacquet, Zeta functions of simple algebras, SLN 260, SpringerVerlag, Berlin, 1972.
[Goldfeld Sarnak 1983] D. Goldfeld, P. Sarnak, Sums of Kloosterman sums, Inv. Math. 71 no. 2 (1983), 243-250.
[Good 1981] A. Good, Cusp forms and eigenfunctions of the Laplacian, Math. Ann. 255 (1981), 523-548.
[Good 1983] A. Good, The square mean of Dirichlet series associated with cusp forms, Mathematika 29 (1983), 278-95.
[Good 1986] A. Good, The convolution method for Dirichlet series, in Selberg Trace Formula and Related Topics (Brunswick, Maine, 1984), Contemp. Math. 53, AMS, Providence, 1986, 207-214.
[Harcos-Michel 2006] G. Harcos and P. Michel, The subconvexity problem for Rankin-Selberg L-functions and equidistribution of Heegner points, II, Inv. Math. 163 (2006) no. 3, 581-655.
[Hoffstein-Lockhart 1994] J. Hoffstein, P. Lockhart, Coefficients of Maass forms and the Siegel zero, with appendix An effective zero-free region, by D. Goldfeld, J. Hoffstein, D. Lieman, Ann. of Math. 140 (1994), 161-181.
[Hoffstein-Ramakrishnan 1995] J. Hoffstein and D. Ramakrishnan, Siegel zeros and cuspforms, Int. Math. Research Notices 6 (1995), 279-308.
[Hörmander 1990] L. Hörmander, An introduction to complex analysis in several variables, third edition, North-Holland, Amsterdam, 1990.
[Iwaniec-Luo-Sarnak 200] H. Iwaniec, W. Luo and P. Sarnak, Low lying zeros of families of L-functions, Math. Publ. IHES 91 (2000), 55-131.
[Iwaniec-Sarnak 2000] H. Iwaniec and P. Sarnak, Perspectives on the analytic theory of L-functions, GAFA special volume (2000), 705-741.
[Ivic Motohashi] A. Ivic, Y. Motohashi, The mean square of the error term for the fourth power moment of the zeta-function, Proc. Lond. Math. Soc. (3) 69 (1994), no. 2, 309-329.
[Jacquet Langlands 1970] H. Jacquet, R. Langlands, Automorphic forms on GL(2), SLN 114, Springer-Verlag, 1970.
[Jacquet 1972] H. Jacquet, Automorphic forms on GL(2), part II, SLN 278, 1972.
[Jacquet 1983] H. Jacquet, On the residual spectrum of $G L_{n}$, in Lie Group Representations, II, SLN 1041.
[Jacquet-PS-Shalika 1979] H. Jacquet, I. Piatetski-Shapiro, J. Shalika, Automorphic forms on $G L_{3}$, I, Ann. of Math. 109 (1979), 169-258.
[Jacquet-PS-Shalika 1983] H. Jacquet, I. Piatetski-Shapiro, J. Shalika, Automorphic forms on $G L_{3}$, II, Amer. J. Math. 105 (1983), 367-464.
[Jacquet-PS-Shalika 1981b] H. Jacquet, I. Piatetski-Shapiro, J. Shalika, Conducteur des représentations du groupe linéaire, Math. Ann. 256 (1981),199-214.
[Jacquet-Shalika 1981] H. Jacquet, J. Shalika, On Euler products and the classification of automorphic representations I, II, Amer. J. Math. 103 (1981), 499-588, 777-815.
[Jacquet-Shalika 1990] H. Jacquet, J. Shalika, Rankin-Selberg convolutions: archimedean theory, in Festschrift in Honor of I.I. Piatetski-Shapiro, I, Weizmann Science Press, Jerusalem, 1990, 125-207.
[Kim 2005] H. Kim, On local L-functions and normalized intertwining operators, Canad. J. Math. 57 (2005), 535-597.
[Kim-Shahidi 2002] H. Kim and F. Shahidi, Cuspidality of symmetric powers with applications, Duke Math. J. 112 (2002), 177-197.
[Kowalski-Michel-Vanderkam 2002] E. Kowalski, P. Michel and J. Vanderkam, Rankin-Selberg L-functions in the level aspect, Duke Math. J. 114 (2002) no. 1, 123-191.
[Krötz-Stanton 2004] B. Krötz and R. Stanton, Holomorphic extensions of representations, I. Automorphic functions, Ann. of Math. (2) 159 (2004), 641-724.
[Langlands 1971] R. Langlands, Euler Products, Yale Univ. Press, New Haven, 1971.
[Langlands 1976] R. Langlands, On the functional equations satisfied by Eisenstein series, SLN 544, 1975.
[Lindenstrauss-Venkatesh 2006] E. Lindenstrauss and A. Venkatesh Existence and Weyl's law for spherical cusp forms, GAFA, to appear.
[Meurman 1990] T. Meurman, On the order of Maass L-functions on the critical line, in Number Theory, vol. I, Budapest Colloq. 51 1987, Math. Soc. Bolyai, Budapest, 1990, 325-354.
[Michel-Venkatesh 2006] P. Michel, A. Venkatesh, Equidistribution, L-functions, and ergodic theory: on some problems of Yu. Linnik, in Int. Cong. Math, vol II, Eur. Math. Soc., Zurich, 2006, 421-457.
[Michel 2004] P. Michel, The subconvexity problem for Rankin-Selberg L-functions and equidistribution of Heegner points, Ann. of Math.(2) 160 (2004), 185-236.
[Michel 2006] P. Michel, Analytic number theory and families of automorphic L-functions, in Automorphic forms and applications, IAS/Park City Math., ser. 12, AMS, to appear.
[Moeglin-Waldspurger 1989] C. Moeglin, J.-L. Waldspurger, Le spectre résiduel de $G L_{n}$, with appendix Poles des fonctions L de pairs pour $G L_{n}$, Ann. Sci. École Norm. Sup. 22 (1989), 605-674.
[Moeglin-Waldspurger 1995] C. Moeglin, J.-L. Waldspurger, Spectral Decompositions and Eisenstein series, Cambridge Univ. Press, Cambridge, 1995.
[Novodvorsky 1973] M. Novodvorsky, On certain stationary groups in infinite-dimensional representations of Chevalley groups, Funkcional. Anal. i. Prilozen 5 (1971), 87-88. [Transl. Functional Analysis and its Applications 5 (1971), 74-76.]
[Petridis 1995] Y. Petridis, On squares of eigenfunctions for the hyperbolic plane and new bounds for certain L-series, Int. Math. Res. Notices 3 (1995), 111-127.
[Petridis-Sarnak 2001] Y. Petridis and P. Sarnak, Quantum unique ergodicity for $S L_{2}(\mathscr{O}) \backslash H^{3}$ and estimates for L-functions, J. Evol. Equ. 1 (2001), 277-290.
[Piatetski-Shapiro 1975] I. Piatetski-Shapiro, Euler subgroups, in Lie Groups and their Representations (Budapest 1971), ed. I. Gelfand, Wiley and Sons, NY-Toronto, 1975, 597-620.
[Roelcke 1956] W. Roelcke, Über die Wellengleichung bei Grezkreisgruppen erster Art, S.-B. Heidelberger Akad. Wiss. Math.Nat.Kl. 1953/1955 (1956), 159-267.
[Rudnick-Sarnak 1994] Z. Rudnick and P. Sarnak, The behavior of egienstates of arithmetic hyperbolic manifolds, Comm. Math. Phys. 161 (1994), 195-213.
[Sarnak 1985] P. Sarnak, Fourth moments of Grössencharakteren zeta functions, Comom. Pure Appl. Math. 38 no. 2 (1985), 167-178.
[Sarnak 1995] P. Sarnak, Arithmetic quantum chaos, in The Schur Lectures, Tel Aviv, 1992, Israel Math. Conf. 8, Bar Ilan, 1995, 183-236.
[Sarnak 2001] P. Sarnak, Estimates for Rankin-Selberg L-functions and Quantum Unique Ergodicity, J. of Functional Analysis 184 (2001), 419-453.
[Sarnak 1992] P. Sarnak, Integrals of products of eigenfunctions, Int. Math. Res. Notices, no. 6 (1994), 251-260.
[Selberg 1956] A. Selberg, Harmonic analysis and discontinuous groups in weakly symmetric spaces, J. Indian Math. Soc. 20 (1956).
[Shahidi 1978] F. Shahidi, Functional equation satisfied by certain L-functions, Comp. Math. 37 (1978), 171-207.
[Shahidi 1980] F. Shahidi, On non-vanishing of L-functions, Bull. AMS 2 (1980), 462-464.
[Shahidi 1983] F. Shahidi, Local coefficients and normalizations of intertwining operators for $G L_{n}$, Comp. Math. 48 (1983), 271-295.
[Shalika 1974] J. Shalika, The multiplicity-one theorem for $G L_{n}$, Ann. of Math. 100 (1974), 171-193.
[Shintani 1976] T. Shintani, On an explicit formula for class-one Whittaker functions on $G L_{n}$ over p-adic fields, Proc. Japan Acad. 52 (1976), 180-182.
[Söhne] P. Söhne, An Upper Bound for the Hecke Zeta-Functions with Grossencharacters, J. Number Theory 66 (1997), 225-250.
[Weyl 1921] H. Weyl, Zur Abschatzung von $\zeta(1+i t)$, Math. Zeitschrift 10 (1921), 88-101.
[Zhang 2005] Q. Zhang, Integral mean values of modular L-functions, J. No. Th. 115 (2005), 100-122.
[Zhang 2006] Q. Zhang, Integral mean values of Maass' L-functions, preprint, 2006.

[^0]: ${ }^{[1]}$ This from [Diaconu-Goldfeld 2006a], the result of a direct computation with the simplest useful choice of archimedean data in the Poincaré series.
 ${ }^{[2]}$ This evaluation of the meromorphic continuation, from [Diaconu-Goldfeld 2006a], is not trivial. Note that the leading term (after continuation) is reminiscent of the Kronecker limit formula. See [Asai 1977].
 ${ }^{[3]}$ The discreteness of the parameters t_{F} as F ranges over cuspforms of a fixed level follows from the compactness of test-function operators on cuspforms, from [Gelfand-PS 1963]. In particular, at this point we do not need any sort of Weyl's law, and, thus, do not need trace formula computations yet.
 ${ }^{\text {[4] }}$ See [Diaconu-Goldfeld 2006a]. A contour shifting argument is also necessary to meromorphically continue the continuous part of the spectral decomposition to $s^{\prime}=0$ in the first place.

[^1]: [9] The identification of these denominators in the natural normalization of the Eisenstein series is part of the refinement in [Shahidi 1978] and [Shahidi 1983] of [Langlands 1976]'s treatment of L-functions arising in constant terms of these Eisenstein series. Here we need to keep track of constants, due to the average over F.

[^2]: [18] The L-functions $L(s, f \otimes F)$ attached to cuspforms f and F by these zeta integrals are Euler products with local factor equal to that of the L-functions $L\left(s, \pi_{f} \times \pi_{F}\right)$ attached to the corresponding (irreducible cuspidal automorphic) representations at all finite primes at which f and F are spherical. At other finite places the local factors of $L(s, f \otimes F)$ may be polynomial (in q_{v}^{-s} and q_{v}^{s}) multiples of the corresponding local factor of $L\left(s, \pi_{f} \times \pi_{F}\right)$. At archimedean places, $L_{v}(s, f \otimes F) / L_{v}\left(s, \pi_{f} \times \pi_{F}\right)$ is entire, etc. Last, but not least, there are global constant factors sometimes denoted $\rho_{f}(1)$ which for newforms f for $G L(2)$ are the ratios of the first Fourier coefficient of f to the Petersson norm squared of f. See [Hoffstein-Lockhart 1994], [Bernstein-Reznikoff 1999], and [Sarnak 1985], [Sarnak 1992]. Here the latter global normalizing constant is accommodated by a division by $\langle F, F\rangle^{1 / 2}$, to make $F /\langle F, F\rangle^{1 / 2}$ run through an orthonormal basis when F runs through an orthogonal basis.

[^3]: [19] These degenerate (spherical) Eisenstein series $E_{s}^{r-1,1}$ are readily understood via Poisson summation, imitating Riemann et alia. There is a simple pole at $s=1$, with constant residue, and no other poles in $\operatorname{Re}(s) \geq 1 / r$. That first pole will be cancelled (when s^{\prime} goes to 0) by the continuous part of the spectral decomposition.

[^4]: [20] Recall an integration-theory trick. Given a unimodular topological group G, use a topological group decomposition $G=P K$ with K compact open as follows. To integrate a right K-invariant function f on G, with the total mass of K normalized to 1 , we have $\int_{G} f=\int_{P} f$ with a left Haar measure on P normalized so that the measure (in P) of $K \cap P$ is 1.

[^5]: [24] This is the usual spectral inversion formula, as in many sources. For example, see [Godement 1966a] for ground field \mathbb{Q}. The volume constant κ necessary in the general case is inconspicuous when $k=\mathbb{Q}$, because in that case its value is 1 . The $4 \pi i$ is really $2 \cdot 2 \pi i$, where the extra factor of 2 reflects the fact that we indicate an integral over the entire vertical line, rather than half.
 [25] To evaluate the integral of the Poinaré series (with leading term removed) against an Eisenstein series, the computation here is more efficient than the approach which would unwind the Eisenstein series and then compute a Mellin transform of the constant term of the Poincaré series.

[^6]: [26] As with the pairing against cuspforms, because the integrand has trivial central character, we can take the pairing integral to be an integral over $Z_{\mathrm{A}} G_{k} \backslash G_{\mathrm{A}}$.
 [27] This integral only converges nicely for $\operatorname{Re}(s) \gg 0$, but admits a meromorphic continuation in s by various means. For example, the relatively elementary algebraic form of Bernstein's continuation principle applies, since the dimension of the space of intertwining operators from the principal series to the Whittaker space is one-dimensional.

[^7]: [36] A neo-classical version of Godement's criterion appears in [Borel 1966].

